| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkFloatingPoint_DEFINED |
| 9 | #define SkFloatingPoint_DEFINED |
| 10 | |
| 11 | #include "include/core/SkTypes.h" |
| 12 | #include "include/private/SkFloatBits.h" |
| 13 | #include "include/private/SkSafe_math.h" |
| 14 | #include <float.h> |
| 15 | #include <math.h> |
| 16 | #include <cmath> |
| 17 | #include <cstring> |
| 18 | #include <limits> |
| 19 | |
| 20 | |
| 21 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| 22 | #include <xmmintrin.h> |
| 23 | #elif defined(SK_ARM_HAS_NEON) |
| 24 | #include <arm_neon.h> |
| 25 | #endif |
| 26 | |
| 27 | // For _POSIX_VERSION |
| 28 | #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) |
| 29 | #include <unistd.h> |
| 30 | #endif |
| 31 | |
| 32 | constexpr float SK_FloatSqrt2 = 1.41421356f; |
| 33 | constexpr float SK_FloatPI = 3.14159265f; |
| 34 | constexpr double SK_DoublePI = 3.14159265358979323846264338327950288; |
| 35 | |
| 36 | // C++98 cmath std::pow seems to be the earliest portable way to get float pow. |
| 37 | // However, on Linux including cmath undefines isfinite. |
| 38 | // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 |
| 39 | static inline float sk_float_pow(float base, float exp) { |
| 40 | return powf(base, exp); |
| 41 | } |
| 42 | |
| 43 | #define sk_float_sqrt(x) sqrtf(x) |
| 44 | #define sk_float_sin(x) sinf(x) |
| 45 | #define sk_float_cos(x) cosf(x) |
| 46 | #define sk_float_tan(x) tanf(x) |
| 47 | #define sk_float_floor(x) floorf(x) |
| 48 | #define sk_float_ceil(x) ceilf(x) |
| 49 | #define sk_float_trunc(x) truncf(x) |
| 50 | #ifdef SK_BUILD_FOR_MAC |
| 51 | # define sk_float_acos(x) static_cast<float>(acos(x)) |
| 52 | # define sk_float_asin(x) static_cast<float>(asin(x)) |
| 53 | #else |
| 54 | # define sk_float_acos(x) acosf(x) |
| 55 | # define sk_float_asin(x) asinf(x) |
| 56 | #endif |
| 57 | #define sk_float_atan2(y,x) atan2f(y,x) |
| 58 | #define sk_float_abs(x) fabsf(x) |
| 59 | #define sk_float_copysign(x, y) copysignf(x, y) |
| 60 | #define sk_float_mod(x,y) fmodf(x,y) |
| 61 | #define sk_float_exp(x) expf(x) |
| 62 | #define sk_float_log(x) logf(x) |
| 63 | |
| 64 | constexpr float sk_float_degrees_to_radians(float degrees) { |
| 65 | return degrees * (SK_FloatPI / 180); |
| 66 | } |
| 67 | |
| 68 | constexpr float sk_float_radians_to_degrees(float radians) { |
| 69 | return radians * (180 / SK_FloatPI); |
| 70 | } |
| 71 | |
| 72 | #define sk_float_round(x) sk_float_floor((x) + 0.5f) |
| 73 | |
| 74 | // can't find log2f on android, but maybe that just a tool bug? |
| 75 | #ifdef SK_BUILD_FOR_ANDROID |
| 76 | static inline float sk_float_log2(float x) { |
| 77 | const double inv_ln_2 = 1.44269504088896; |
| 78 | return (float)(log(x) * inv_ln_2); |
| 79 | } |
| 80 | #else |
| 81 | #define sk_float_log2(x) log2f(x) |
| 82 | #endif |
| 83 | |
| 84 | static inline bool sk_float_isfinite(float x) { |
| 85 | return SkFloatBits_IsFinite(SkFloat2Bits(x)); |
| 86 | } |
| 87 | |
| 88 | static inline bool sk_floats_are_finite(float a, float b) { |
| 89 | return sk_float_isfinite(a) && sk_float_isfinite(b); |
| 90 | } |
| 91 | |
| 92 | static inline bool sk_floats_are_finite(const float array[], int count) { |
| 93 | float prod = 0; |
| 94 | for (int i = 0; i < count; ++i) { |
| 95 | prod *= array[i]; |
| 96 | } |
| 97 | // At this point, prod will either be NaN or 0 |
| 98 | return prod == 0; // if prod is NaN, this check will return false |
| 99 | } |
| 100 | |
| 101 | static inline bool sk_float_isinf(float x) { |
| 102 | return SkFloatBits_IsInf(SkFloat2Bits(x)); |
| 103 | } |
| 104 | |
| 105 | static inline bool sk_float_isnan(float x) { |
| 106 | return !(x == x); |
| 107 | } |
| 108 | |
| 109 | #define sk_double_isnan(a) sk_float_isnan(a) |
| 110 | |
| 111 | #define SK_MaxS32FitsInFloat 2147483520 |
| 112 | #define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat |
| 113 | |
| 114 | #define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000 |
| 115 | #define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat |
| 116 | |
| 117 | /** |
| 118 | * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN. |
| 119 | */ |
| 120 | static inline int sk_float_saturate2int(float x) { |
| 121 | x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat; |
| 122 | x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat; |
| 123 | return (int)x; |
| 124 | } |
| 125 | |
| 126 | /** |
| 127 | * Return the closest int for the given double. Returns SK_MaxS32 for NaN. |
| 128 | */ |
| 129 | static inline int sk_double_saturate2int(double x) { |
| 130 | x = x < SK_MaxS32 ? x : SK_MaxS32; |
| 131 | x = x > SK_MinS32 ? x : SK_MinS32; |
| 132 | return (int)x; |
| 133 | } |
| 134 | |
| 135 | /** |
| 136 | * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN. |
| 137 | */ |
| 138 | static inline int64_t sk_float_saturate2int64(float x) { |
| 139 | x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat; |
| 140 | x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat; |
| 141 | return (int64_t)x; |
| 142 | } |
| 143 | |
| 144 | #define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x)) |
| 145 | #define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f)) |
| 146 | #define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x)) |
| 147 | |
| 148 | #define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x) |
| 149 | #define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f) |
| 150 | #define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x) |
| 151 | |
| 152 | #define sk_double_floor(x) floor(x) |
| 153 | #define sk_double_round(x) floor((x) + 0.5) |
| 154 | #define sk_double_ceil(x) ceil(x) |
| 155 | #define sk_double_floor2int(x) (int)floor(x) |
| 156 | #define sk_double_round2int(x) (int)floor((x) + 0.5) |
| 157 | #define sk_double_ceil2int(x) (int)ceil(x) |
| 158 | |
| 159 | // Cast double to float, ignoring any warning about too-large finite values being cast to float. |
| 160 | // Clang thinks this is undefined, but it's actually implementation defined to return either |
| 161 | // the largest float or infinity (one of the two bracketing representable floats). Good enough! |
| 162 | [[clang::no_sanitize("float-cast-overflow" )]] |
| 163 | static inline float sk_double_to_float(double x) { |
| 164 | return static_cast<float>(x); |
| 165 | } |
| 166 | |
| 167 | #define SK_FloatNaN std::numeric_limits<float>::quiet_NaN() |
| 168 | #define SK_FloatInfinity (+std::numeric_limits<float>::infinity()) |
| 169 | #define SK_FloatNegativeInfinity (-std::numeric_limits<float>::infinity()) |
| 170 | |
| 171 | #define SK_DoubleNaN std::numeric_limits<double>::quiet_NaN() |
| 172 | |
| 173 | // Returns false if any of the floats are outside of [0...1] |
| 174 | // Returns true if count is 0 |
| 175 | bool sk_floats_are_unit(const float array[], size_t count); |
| 176 | |
| 177 | static inline float sk_float_rsqrt_portable(float x) { |
| 178 | // Get initial estimate. |
| 179 | int i; |
| 180 | memcpy(&i, &x, 4); |
| 181 | i = 0x5F1FFFF9 - (i>>1); |
| 182 | float estimate; |
| 183 | memcpy(&estimate, &i, 4); |
| 184 | |
| 185 | // One step of Newton's method to refine. |
| 186 | const float estimate_sq = estimate*estimate; |
| 187 | estimate *= 0.703952253f*(2.38924456f-x*estimate_sq); |
| 188 | return estimate; |
| 189 | } |
| 190 | |
| 191 | // Fast, approximate inverse square root. |
| 192 | // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. |
| 193 | static inline float sk_float_rsqrt(float x) { |
| 194 | // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got |
| 195 | // it at compile time. This is going to be too fast to productively hide behind a function pointer. |
| 196 | // |
| 197 | // We do one step of Newton's method to refine the estimates in the NEON and portable paths. No |
| 198 | // refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. |
| 199 | // |
| 200 | // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html |
| 201 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| 202 | return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); |
| 203 | #elif defined(SK_ARM_HAS_NEON) |
| 204 | // Get initial estimate. |
| 205 | const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. |
| 206 | float32x2_t estimate = vrsqrte_f32(xx); |
| 207 | |
| 208 | // One step of Newton's method to refine. |
| 209 | const float32x2_t estimate_sq = vmul_f32(estimate, estimate); |
| 210 | estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); |
| 211 | return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. |
| 212 | #else |
| 213 | return sk_float_rsqrt_portable(x); |
| 214 | #endif |
| 215 | } |
| 216 | |
| 217 | // This is the number of significant digits we can print in a string such that when we read that |
| 218 | // string back we get the floating point number we expect. The minimum value C requires is 6, but |
| 219 | // most compilers support 9 |
| 220 | #ifdef FLT_DECIMAL_DIG |
| 221 | #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG |
| 222 | #else |
| 223 | #define SK_FLT_DECIMAL_DIG 9 |
| 224 | #endif |
| 225 | |
| 226 | // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not |
| 227 | // so we have a helper that suppresses the possible undefined-behavior warnings. |
| 228 | |
| 229 | [[clang::no_sanitize("float-divide-by-zero" )]] |
| 230 | static inline float sk_ieee_float_divide(float numer, float denom) { |
| 231 | return numer / denom; |
| 232 | } |
| 233 | |
| 234 | [[clang::no_sanitize("float-divide-by-zero" )]] |
| 235 | static inline double sk_ieee_double_divide(double numer, double denom) { |
| 236 | return numer / denom; |
| 237 | } |
| 238 | |
| 239 | // While we clean up divide by zero, we'll replace places that do divide by zero with this TODO. |
| 240 | static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) { |
| 241 | return sk_ieee_float_divide(n,d); |
| 242 | } |
| 243 | static inline float sk_ieee_double_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(double n, double d) { |
| 244 | return sk_ieee_double_divide(n,d); |
| 245 | } |
| 246 | |
| 247 | static inline float sk_fmaf(float f, float m, float a) { |
| 248 | #if defined(FP_FAST_FMA) |
| 249 | return std::fmaf(f,m,a); |
| 250 | #else |
| 251 | return f*m+a; |
| 252 | #endif |
| 253 | } |
| 254 | |
| 255 | #endif |
| 256 | |