1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkNx_sse_DEFINED |
9 | #define SkNx_sse_DEFINED |
10 | |
11 | #include "include/core/SkTypes.h" |
12 | |
13 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
14 | #include <smmintrin.h> |
15 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
16 | #include <tmmintrin.h> |
17 | #else |
18 | #include <emmintrin.h> |
19 | #endif |
20 | |
21 | // This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent. |
22 | // If you do, make sure this is in a static inline function... anywhere else risks violating ODR. |
23 | |
24 | namespace { // NOLINT(google-build-namespaces) |
25 | |
26 | // Emulate _mm_floor_ps() with SSE2: |
27 | // - roundtrip through integers via truncation |
28 | // - subtract 1 if that's too big (possible for negative values). |
29 | // This restricts the domain of our inputs to a maximum somehwere around 2^31. |
30 | // Seems plenty big. |
31 | AI static __m128 emulate_mm_floor_ps(__m128 v) { |
32 | __m128 roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); |
33 | __m128 too_big = _mm_cmpgt_ps(roundtrip, v); |
34 | return _mm_sub_ps(roundtrip, _mm_and_ps(too_big, _mm_set1_ps(1.0f))); |
35 | } |
36 | |
37 | template <> |
38 | class SkNx<2, float> { |
39 | public: |
40 | AI SkNx(const __m128& vec) : fVec(vec) {} |
41 | |
42 | AI SkNx() {} |
43 | AI SkNx(float val) : fVec(_mm_set1_ps(val)) {} |
44 | AI static SkNx Load(const void* ptr) { |
45 | return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)ptr)); |
46 | } |
47 | AI SkNx(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {} |
48 | |
49 | AI void store(void* ptr) const { _mm_storel_pi((__m64*)ptr, fVec); } |
50 | |
51 | AI static void Load2(const void* ptr, SkNx* x, SkNx* y) { |
52 | const float* m = (const float*)ptr; |
53 | *x = SkNx{m[0], m[2]}; |
54 | *y = SkNx{m[1], m[3]}; |
55 | } |
56 | |
57 | AI static void Store2(void* dst, const SkNx& a, const SkNx& b) { |
58 | auto vals = _mm_unpacklo_ps(a.fVec, b.fVec); |
59 | _mm_storeu_ps((float*)dst, vals); |
60 | } |
61 | |
62 | AI static void Store3(void* dst, const SkNx& a, const SkNx& b, const SkNx& c) { |
63 | auto lo = _mm_setr_ps(a[0], b[0], c[0], a[1]), |
64 | hi = _mm_setr_ps(b[1], c[1], 0, 0); |
65 | _mm_storeu_ps((float*)dst, lo); |
66 | _mm_storel_pi(((__m64*)dst) + 2, hi); |
67 | } |
68 | |
69 | AI static void Store4(void* dst, const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) { |
70 | auto lo = _mm_setr_ps(a[0], b[0], c[0], d[0]), |
71 | hi = _mm_setr_ps(a[1], b[1], c[1], d[1]); |
72 | _mm_storeu_ps((float*)dst, lo); |
73 | _mm_storeu_ps(((float*)dst) + 4, hi); |
74 | } |
75 | |
76 | AI SkNx operator - () const { return _mm_xor_ps(_mm_set1_ps(-0.0f), fVec); } |
77 | |
78 | AI SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } |
79 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } |
80 | AI SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } |
81 | AI SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } |
82 | |
83 | AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
84 | AI SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
85 | AI SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
86 | AI SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
87 | AI SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
88 | AI SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
89 | |
90 | AI static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } |
91 | AI static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } |
92 | |
93 | AI SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); } |
94 | AI SkNx floor() const { |
95 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
96 | return _mm_floor_ps(fVec); |
97 | #else |
98 | return emulate_mm_floor_ps(fVec); |
99 | #endif |
100 | } |
101 | |
102 | AI SkNx sqrt() const { return _mm_sqrt_ps (fVec); } |
103 | AI SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } |
104 | AI SkNx invert() const { return _mm_rcp_ps(fVec); } |
105 | |
106 | AI float operator[](int k) const { |
107 | SkASSERT(0 <= k && k < 2); |
108 | union { __m128 v; float fs[4]; } pun = {fVec}; |
109 | return pun.fs[k&1]; |
110 | } |
111 | |
112 | AI bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } |
113 | AI bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } |
114 | |
115 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
116 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
117 | return _mm_blendv_ps(e.fVec, t.fVec, fVec); |
118 | #else |
119 | return _mm_or_ps(_mm_and_ps (fVec, t.fVec), |
120 | _mm_andnot_ps(fVec, e.fVec)); |
121 | #endif |
122 | } |
123 | |
124 | __m128 fVec; |
125 | }; |
126 | |
127 | template <> |
128 | class SkNx<4, float> { |
129 | public: |
130 | AI SkNx(const __m128& vec) : fVec(vec) {} |
131 | |
132 | AI SkNx() {} |
133 | AI SkNx(float val) : fVec( _mm_set1_ps(val) ) {} |
134 | AI SkNx(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {} |
135 | |
136 | AI static SkNx Load(const void* ptr) { return _mm_loadu_ps((const float*)ptr); } |
137 | AI void store(void* ptr) const { _mm_storeu_ps((float*)ptr, fVec); } |
138 | |
139 | AI static void Load2(const void* ptr, SkNx* x, SkNx* y) { |
140 | SkNx lo = SkNx::Load((const float*)ptr+0), |
141 | hi = SkNx::Load((const float*)ptr+4); |
142 | *x = SkNx{lo[0], lo[2], hi[0], hi[2]}; |
143 | *y = SkNx{lo[1], lo[3], hi[1], hi[3]}; |
144 | } |
145 | |
146 | AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { |
147 | __m128 v0 = _mm_loadu_ps(((float*)ptr) + 0), |
148 | v1 = _mm_loadu_ps(((float*)ptr) + 4), |
149 | v2 = _mm_loadu_ps(((float*)ptr) + 8), |
150 | v3 = _mm_loadu_ps(((float*)ptr) + 12); |
151 | _MM_TRANSPOSE4_PS(v0, v1, v2, v3); |
152 | *r = v0; |
153 | *g = v1; |
154 | *b = v2; |
155 | *a = v3; |
156 | } |
157 | AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { |
158 | __m128 v0 = r.fVec, |
159 | v1 = g.fVec, |
160 | v2 = b.fVec, |
161 | v3 = a.fVec; |
162 | _MM_TRANSPOSE4_PS(v0, v1, v2, v3); |
163 | _mm_storeu_ps(((float*) dst) + 0, v0); |
164 | _mm_storeu_ps(((float*) dst) + 4, v1); |
165 | _mm_storeu_ps(((float*) dst) + 8, v2); |
166 | _mm_storeu_ps(((float*) dst) + 12, v3); |
167 | } |
168 | |
169 | AI SkNx operator - () const { return _mm_xor_ps(_mm_set1_ps(-0.0f), fVec); } |
170 | |
171 | AI SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } |
172 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } |
173 | AI SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } |
174 | AI SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } |
175 | |
176 | AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
177 | AI SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
178 | AI SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
179 | AI SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
180 | AI SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
181 | AI SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
182 | |
183 | AI static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } |
184 | AI static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } |
185 | |
186 | AI SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); } |
187 | AI SkNx floor() const { |
188 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
189 | return _mm_floor_ps(fVec); |
190 | #else |
191 | return emulate_mm_floor_ps(fVec); |
192 | #endif |
193 | } |
194 | |
195 | AI SkNx sqrt() const { return _mm_sqrt_ps (fVec); } |
196 | AI SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } |
197 | AI SkNx invert() const { return _mm_rcp_ps(fVec); } |
198 | |
199 | AI float operator[](int k) const { |
200 | SkASSERT(0 <= k && k < 4); |
201 | union { __m128 v; float fs[4]; } pun = {fVec}; |
202 | return pun.fs[k&3]; |
203 | } |
204 | |
205 | AI float min() const { |
206 | SkNx min = Min(*this, _mm_shuffle_ps(fVec, fVec, _MM_SHUFFLE(2,3,0,1))); |
207 | min = Min(min, _mm_shuffle_ps(min.fVec, min.fVec, _MM_SHUFFLE(0,1,2,3))); |
208 | return min[0]; |
209 | } |
210 | |
211 | AI float max() const { |
212 | SkNx max = Max(*this, _mm_shuffle_ps(fVec, fVec, _MM_SHUFFLE(2,3,0,1))); |
213 | max = Max(max, _mm_shuffle_ps(max.fVec, max.fVec, _MM_SHUFFLE(0,1,2,3))); |
214 | return max[0]; |
215 | } |
216 | |
217 | AI bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); } |
218 | AI bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); } |
219 | |
220 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
221 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
222 | return _mm_blendv_ps(e.fVec, t.fVec, fVec); |
223 | #else |
224 | return _mm_or_ps(_mm_and_ps (fVec, t.fVec), |
225 | _mm_andnot_ps(fVec, e.fVec)); |
226 | #endif |
227 | } |
228 | |
229 | __m128 fVec; |
230 | }; |
231 | |
232 | AI static __m128i mullo32(__m128i a, __m128i b) { |
233 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
234 | return _mm_mullo_epi32(a, b); |
235 | #else |
236 | __m128i mul20 = _mm_mul_epu32(a, b), |
237 | mul31 = _mm_mul_epu32(_mm_srli_si128(a, 4), _mm_srli_si128(b, 4)); |
238 | return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)), |
239 | _mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0))); |
240 | #endif |
241 | } |
242 | |
243 | template <> |
244 | class SkNx<4, int32_t> { |
245 | public: |
246 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
247 | |
248 | AI SkNx() {} |
249 | AI SkNx(int32_t val) : fVec(_mm_set1_epi32(val)) {} |
250 | AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } |
251 | AI SkNx(int32_t a, int32_t b, int32_t c, int32_t d) : fVec(_mm_setr_epi32(a,b,c,d)) {} |
252 | |
253 | AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } |
254 | |
255 | AI SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } |
256 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } |
257 | AI SkNx operator * (const SkNx& o) const { return mullo32(fVec, o.fVec); } |
258 | |
259 | AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } |
260 | AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } |
261 | AI SkNx operator ^ (const SkNx& o) const { return _mm_xor_si128(fVec, o.fVec); } |
262 | |
263 | AI SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } |
264 | AI SkNx operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); } |
265 | |
266 | AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } |
267 | AI SkNx operator < (const SkNx& o) const { return _mm_cmplt_epi32 (fVec, o.fVec); } |
268 | AI SkNx operator > (const SkNx& o) const { return _mm_cmpgt_epi32 (fVec, o.fVec); } |
269 | |
270 | AI int32_t operator[](int k) const { |
271 | SkASSERT(0 <= k && k < 4); |
272 | union { __m128i v; int32_t is[4]; } pun = {fVec}; |
273 | return pun.is[k&3]; |
274 | } |
275 | |
276 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
277 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
278 | return _mm_blendv_epi8(e.fVec, t.fVec, fVec); |
279 | #else |
280 | return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
281 | _mm_andnot_si128(fVec, e.fVec)); |
282 | #endif |
283 | } |
284 | |
285 | AI SkNx abs() const { |
286 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
287 | return _mm_abs_epi32(fVec); |
288 | #else |
289 | SkNx mask = (*this) >> 31; |
290 | return (mask ^ (*this)) - mask; |
291 | #endif |
292 | } |
293 | |
294 | AI static SkNx Min(const SkNx& x, const SkNx& y) { |
295 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
296 | return _mm_min_epi32(x.fVec, y.fVec); |
297 | #else |
298 | return (x < y).thenElse(x, y); |
299 | #endif |
300 | } |
301 | |
302 | AI static SkNx Max(const SkNx& x, const SkNx& y) { |
303 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
304 | return _mm_max_epi32(x.fVec, y.fVec); |
305 | #else |
306 | return (x > y).thenElse(x, y); |
307 | #endif |
308 | } |
309 | |
310 | __m128i fVec; |
311 | }; |
312 | |
313 | template <> |
314 | class SkNx<2, uint32_t> { |
315 | public: |
316 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
317 | |
318 | AI SkNx() {} |
319 | AI SkNx(uint32_t val) : fVec(_mm_set1_epi32(val)) {} |
320 | AI static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } |
321 | AI SkNx(uint32_t a, uint32_t b) : fVec(_mm_setr_epi32(a,b,0,0)) {} |
322 | |
323 | AI void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); } |
324 | |
325 | AI SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } |
326 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } |
327 | AI SkNx operator * (const SkNx& o) const { return mullo32(fVec, o.fVec); } |
328 | |
329 | AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } |
330 | AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } |
331 | AI SkNx operator ^ (const SkNx& o) const { return _mm_xor_si128(fVec, o.fVec); } |
332 | |
333 | AI SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } |
334 | AI SkNx operator >> (int bits) const { return _mm_srli_epi32(fVec, bits); } |
335 | |
336 | AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } |
337 | AI SkNx operator != (const SkNx& o) const { return (*this == o) ^ 0xffffffff; } |
338 | // operator < and > take a little extra fiddling to make work for unsigned ints. |
339 | |
340 | AI uint32_t operator[](int k) const { |
341 | SkASSERT(0 <= k && k < 2); |
342 | union { __m128i v; uint32_t us[4]; } pun = {fVec}; |
343 | return pun.us[k&1]; |
344 | } |
345 | |
346 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
347 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
348 | return _mm_blendv_epi8(e.fVec, t.fVec, fVec); |
349 | #else |
350 | return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
351 | _mm_andnot_si128(fVec, e.fVec)); |
352 | #endif |
353 | } |
354 | |
355 | AI bool allTrue() const { return 0xff == (_mm_movemask_epi8(fVec) & 0xff); } |
356 | |
357 | __m128i fVec; |
358 | }; |
359 | |
360 | template <> |
361 | class SkNx<4, uint32_t> { |
362 | public: |
363 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
364 | |
365 | AI SkNx() {} |
366 | AI SkNx(uint32_t val) : fVec(_mm_set1_epi32(val)) {} |
367 | AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } |
368 | AI SkNx(uint32_t a, uint32_t b, uint32_t c, uint32_t d) : fVec(_mm_setr_epi32(a,b,c,d)) {} |
369 | |
370 | AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } |
371 | |
372 | AI SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } |
373 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } |
374 | AI SkNx operator * (const SkNx& o) const { return mullo32(fVec, o.fVec); } |
375 | |
376 | AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } |
377 | AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } |
378 | AI SkNx operator ^ (const SkNx& o) const { return _mm_xor_si128(fVec, o.fVec); } |
379 | |
380 | AI SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } |
381 | AI SkNx operator >> (int bits) const { return _mm_srli_epi32(fVec, bits); } |
382 | |
383 | AI SkNx operator == (const SkNx& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } |
384 | AI SkNx operator != (const SkNx& o) const { return (*this == o) ^ 0xffffffff; } |
385 | |
386 | // operator < and > take a little extra fiddling to make work for unsigned ints. |
387 | |
388 | AI uint32_t operator[](int k) const { |
389 | SkASSERT(0 <= k && k < 4); |
390 | union { __m128i v; uint32_t us[4]; } pun = {fVec}; |
391 | return pun.us[k&3]; |
392 | } |
393 | |
394 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
395 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
396 | return _mm_blendv_epi8(e.fVec, t.fVec, fVec); |
397 | #else |
398 | return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
399 | _mm_andnot_si128(fVec, e.fVec)); |
400 | #endif |
401 | } |
402 | |
403 | AI SkNx mulHi(SkNx m) const { |
404 | SkNx v20{_mm_mul_epu32(m.fVec, fVec)}; |
405 | SkNx v31{_mm_mul_epu32(_mm_srli_si128(m.fVec, 4), _mm_srli_si128(fVec, 4))}; |
406 | |
407 | return SkNx{v20[1], v31[1], v20[3], v31[3]}; |
408 | } |
409 | |
410 | __m128i fVec; |
411 | }; |
412 | |
413 | template <> |
414 | class SkNx<4, uint16_t> { |
415 | public: |
416 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
417 | |
418 | AI SkNx() {} |
419 | AI SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} |
420 | AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) |
421 | : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {} |
422 | |
423 | AI static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } |
424 | AI void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); } |
425 | |
426 | AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { |
427 | __m128i lo = _mm_loadu_si128(((__m128i*)ptr) + 0), |
428 | hi = _mm_loadu_si128(((__m128i*)ptr) + 1); |
429 | __m128i even = _mm_unpacklo_epi16(lo, hi), // r0 r2 g0 g2 b0 b2 a0 a2 |
430 | odd = _mm_unpackhi_epi16(lo, hi); // r1 r3 ... |
431 | __m128i rg = _mm_unpacklo_epi16(even, odd), // r0 r1 r2 r3 g0 g1 g2 g3 |
432 | ba = _mm_unpackhi_epi16(even, odd); // b0 b1 ... a0 a1 ... |
433 | *r = rg; |
434 | *g = _mm_srli_si128(rg, 8); |
435 | *b = ba; |
436 | *a = _mm_srli_si128(ba, 8); |
437 | } |
438 | AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) { |
439 | // The idea here is to get 4 vectors that are R G B _ _ _ _ _. |
440 | // The second load is at a funny location to make sure we don't read past |
441 | // the bounds of memory. This is fine, we just need to shift it a little bit. |
442 | const uint8_t* ptr8 = (const uint8_t*) ptr; |
443 | __m128i rgb0 = _mm_loadu_si128((const __m128i*) (ptr8 + 0)); |
444 | __m128i rgb1 = _mm_srli_si128(rgb0, 3*2); |
445 | __m128i rgb2 = _mm_srli_si128(_mm_loadu_si128((const __m128i*) (ptr8 + 4*2)), 2*2); |
446 | __m128i rgb3 = _mm_srli_si128(rgb2, 3*2); |
447 | |
448 | __m128i rrggbb01 = _mm_unpacklo_epi16(rgb0, rgb1); |
449 | __m128i rrggbb23 = _mm_unpacklo_epi16(rgb2, rgb3); |
450 | *r = _mm_unpacklo_epi32(rrggbb01, rrggbb23); |
451 | *g = _mm_srli_si128(r->fVec, 4*2); |
452 | *b = _mm_unpackhi_epi32(rrggbb01, rrggbb23); |
453 | } |
454 | AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { |
455 | __m128i rg = _mm_unpacklo_epi16(r.fVec, g.fVec); |
456 | __m128i ba = _mm_unpacklo_epi16(b.fVec, a.fVec); |
457 | __m128i lo = _mm_unpacklo_epi32(rg, ba); |
458 | __m128i hi = _mm_unpackhi_epi32(rg, ba); |
459 | _mm_storeu_si128(((__m128i*) dst) + 0, lo); |
460 | _mm_storeu_si128(((__m128i*) dst) + 1, hi); |
461 | } |
462 | |
463 | AI SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } |
464 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } |
465 | AI SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } |
466 | AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } |
467 | AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } |
468 | |
469 | AI SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } |
470 | AI SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } |
471 | |
472 | AI uint16_t operator[](int k) const { |
473 | SkASSERT(0 <= k && k < 4); |
474 | union { __m128i v; uint16_t us[8]; } pun = {fVec}; |
475 | return pun.us[k&3]; |
476 | } |
477 | |
478 | __m128i fVec; |
479 | }; |
480 | |
481 | template <> |
482 | class SkNx<8, uint16_t> { |
483 | public: |
484 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
485 | |
486 | AI SkNx() {} |
487 | AI SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} |
488 | AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
489 | uint16_t e, uint16_t f, uint16_t g, uint16_t h) |
490 | : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {} |
491 | |
492 | AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } |
493 | AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } |
494 | |
495 | AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { |
496 | __m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0), |
497 | _23 = _mm_loadu_si128(((__m128i*)ptr) + 1), |
498 | _45 = _mm_loadu_si128(((__m128i*)ptr) + 2), |
499 | _67 = _mm_loadu_si128(((__m128i*)ptr) + 3); |
500 | |
501 | __m128i _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 |
502 | _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3 |
503 | _46 = _mm_unpacklo_epi16(_45, _67), |
504 | _57 = _mm_unpackhi_epi16(_45, _67); |
505 | |
506 | __m128i rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 |
507 | ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3 |
508 | rg4567 = _mm_unpacklo_epi16(_46, _57), |
509 | ba4567 = _mm_unpackhi_epi16(_46, _57); |
510 | |
511 | *r = _mm_unpacklo_epi64(rg0123, rg4567); |
512 | *g = _mm_unpackhi_epi64(rg0123, rg4567); |
513 | *b = _mm_unpacklo_epi64(ba0123, ba4567); |
514 | *a = _mm_unpackhi_epi64(ba0123, ba4567); |
515 | } |
516 | AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) { |
517 | const uint8_t* ptr8 = (const uint8_t*) ptr; |
518 | __m128i rgb0 = _mm_loadu_si128((const __m128i*) (ptr8 + 0*2)); |
519 | __m128i rgb1 = _mm_srli_si128(rgb0, 3*2); |
520 | __m128i rgb2 = _mm_loadu_si128((const __m128i*) (ptr8 + 6*2)); |
521 | __m128i rgb3 = _mm_srli_si128(rgb2, 3*2); |
522 | __m128i rgb4 = _mm_loadu_si128((const __m128i*) (ptr8 + 12*2)); |
523 | __m128i rgb5 = _mm_srli_si128(rgb4, 3*2); |
524 | __m128i rgb6 = _mm_srli_si128(_mm_loadu_si128((const __m128i*) (ptr8 + 16*2)), 2*2); |
525 | __m128i rgb7 = _mm_srli_si128(rgb6, 3*2); |
526 | |
527 | __m128i rgb01 = _mm_unpacklo_epi16(rgb0, rgb1); |
528 | __m128i rgb23 = _mm_unpacklo_epi16(rgb2, rgb3); |
529 | __m128i rgb45 = _mm_unpacklo_epi16(rgb4, rgb5); |
530 | __m128i rgb67 = _mm_unpacklo_epi16(rgb6, rgb7); |
531 | |
532 | __m128i rg03 = _mm_unpacklo_epi32(rgb01, rgb23); |
533 | __m128i bx03 = _mm_unpackhi_epi32(rgb01, rgb23); |
534 | __m128i rg47 = _mm_unpacklo_epi32(rgb45, rgb67); |
535 | __m128i bx47 = _mm_unpackhi_epi32(rgb45, rgb67); |
536 | |
537 | *r = _mm_unpacklo_epi64(rg03, rg47); |
538 | *g = _mm_unpackhi_epi64(rg03, rg47); |
539 | *b = _mm_unpacklo_epi64(bx03, bx47); |
540 | } |
541 | AI static void Store4(void* ptr, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { |
542 | __m128i rg0123 = _mm_unpacklo_epi16(r.fVec, g.fVec), // r0 g0 r1 g1 r2 g2 r3 g3 |
543 | rg4567 = _mm_unpackhi_epi16(r.fVec, g.fVec), // r4 g4 r5 g5 r6 g6 r7 g7 |
544 | ba0123 = _mm_unpacklo_epi16(b.fVec, a.fVec), |
545 | ba4567 = _mm_unpackhi_epi16(b.fVec, a.fVec); |
546 | |
547 | _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg0123, ba0123)); |
548 | _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg0123, ba0123)); |
549 | _mm_storeu_si128((__m128i*)ptr + 2, _mm_unpacklo_epi32(rg4567, ba4567)); |
550 | _mm_storeu_si128((__m128i*)ptr + 3, _mm_unpackhi_epi32(rg4567, ba4567)); |
551 | } |
552 | |
553 | AI SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } |
554 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } |
555 | AI SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } |
556 | AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } |
557 | AI SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); } |
558 | |
559 | AI SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } |
560 | AI SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } |
561 | |
562 | AI static SkNx Min(const SkNx& a, const SkNx& b) { |
563 | // No unsigned _mm_min_epu16, so we'll shift into a space where we can use the |
564 | // signed version, _mm_min_epi16, then shift back. |
565 | const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine. |
566 | const __m128i top_8x = _mm_set1_epi16(top); |
567 | return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x), |
568 | _mm_sub_epi8(b.fVec, top_8x))); |
569 | } |
570 | |
571 | AI SkNx mulHi(const SkNx& m) const { |
572 | return _mm_mulhi_epu16(fVec, m.fVec); |
573 | } |
574 | |
575 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
576 | return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
577 | _mm_andnot_si128(fVec, e.fVec)); |
578 | } |
579 | |
580 | AI uint16_t operator[](int k) const { |
581 | SkASSERT(0 <= k && k < 8); |
582 | union { __m128i v; uint16_t us[8]; } pun = {fVec}; |
583 | return pun.us[k&7]; |
584 | } |
585 | |
586 | __m128i fVec; |
587 | }; |
588 | |
589 | template <> |
590 | class SkNx<4, uint8_t> { |
591 | public: |
592 | AI SkNx() {} |
593 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
594 | AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) |
595 | : fVec(_mm_setr_epi8(a,b,c,d, 0,0,0,0, 0,0,0,0, 0,0,0,0)) {} |
596 | |
597 | AI static SkNx Load(const void* ptr) { return _mm_cvtsi32_si128(*(const int*)ptr); } |
598 | AI void store(void* ptr) const { *(int*)ptr = _mm_cvtsi128_si32(fVec); } |
599 | |
600 | AI uint8_t operator[](int k) const { |
601 | SkASSERT(0 <= k && k < 4); |
602 | union { __m128i v; uint8_t us[16]; } pun = {fVec}; |
603 | return pun.us[k&3]; |
604 | } |
605 | |
606 | // TODO as needed |
607 | |
608 | __m128i fVec; |
609 | }; |
610 | |
611 | template <> |
612 | class SkNx<8, uint8_t> { |
613 | public: |
614 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
615 | |
616 | AI SkNx() {} |
617 | AI SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {} |
618 | AI static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } |
619 | AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, |
620 | uint8_t e, uint8_t f, uint8_t g, uint8_t h) |
621 | : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, 0,0,0,0, 0,0,0,0)) {} |
622 | |
623 | AI void store(void* ptr) const {_mm_storel_epi64((__m128i*)ptr, fVec);} |
624 | |
625 | AI SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); } |
626 | |
627 | AI SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); } |
628 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); } |
629 | |
630 | AI static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); } |
631 | AI SkNx operator < (const SkNx& o) const { |
632 | // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. |
633 | auto flip = _mm_set1_epi8(char(0x80)); |
634 | return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); |
635 | } |
636 | |
637 | AI uint8_t operator[](int k) const { |
638 | SkASSERT(0 <= k && k < 16); |
639 | union { __m128i v; uint8_t us[16]; } pun = {fVec}; |
640 | return pun.us[k&15]; |
641 | } |
642 | |
643 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
644 | return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
645 | _mm_andnot_si128(fVec, e.fVec)); |
646 | } |
647 | |
648 | __m128i fVec; |
649 | }; |
650 | |
651 | template <> |
652 | class SkNx<16, uint8_t> { |
653 | public: |
654 | AI SkNx(const __m128i& vec) : fVec(vec) {} |
655 | |
656 | AI SkNx() {} |
657 | AI SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {} |
658 | AI static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } |
659 | AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, |
660 | uint8_t e, uint8_t f, uint8_t g, uint8_t h, |
661 | uint8_t i, uint8_t j, uint8_t k, uint8_t l, |
662 | uint8_t m, uint8_t n, uint8_t o, uint8_t p) |
663 | : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {} |
664 | |
665 | AI void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } |
666 | |
667 | AI SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); } |
668 | |
669 | AI SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); } |
670 | AI SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); } |
671 | AI SkNx operator & (const SkNx& o) const { return _mm_and_si128(fVec, o.fVec); } |
672 | |
673 | AI static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); } |
674 | AI SkNx operator < (const SkNx& o) const { |
675 | // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. |
676 | auto flip = _mm_set1_epi8(char(0x80)); |
677 | return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); |
678 | } |
679 | |
680 | AI uint8_t operator[](int k) const { |
681 | SkASSERT(0 <= k && k < 16); |
682 | union { __m128i v; uint8_t us[16]; } pun = {fVec}; |
683 | return pun.us[k&15]; |
684 | } |
685 | |
686 | AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
687 | return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
688 | _mm_andnot_si128(fVec, e.fVec)); |
689 | } |
690 | |
691 | __m128i fVec; |
692 | }; |
693 | |
694 | template<> AI /*static*/ Sk4f SkNx_cast<float, int32_t>(const Sk4i& src) { |
695 | return _mm_cvtepi32_ps(src.fVec); |
696 | } |
697 | |
698 | template<> AI /*static*/ Sk4f SkNx_cast<float, uint32_t>(const Sk4u& src) { |
699 | return SkNx_cast<float>(Sk4i::Load(&src)); |
700 | } |
701 | |
702 | template <> AI /*static*/ Sk4i SkNx_cast<int32_t, float>(const Sk4f& src) { |
703 | return _mm_cvttps_epi32(src.fVec); |
704 | } |
705 | |
706 | template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, int32_t>(const Sk4i& src) { |
707 | #if 0 && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
708 | // TODO: This seems to be causing code generation problems. Investigate? |
709 | return _mm_packus_epi32(src.fVec); |
710 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
711 | // With SSSE3, we can just shuffle the low 2 bytes from each lane right into place. |
712 | const int _ = ~0; |
713 | return _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,1, 4,5, 8,9, 12,13, _,_,_,_,_,_,_,_)); |
714 | #else |
715 | // With SSE2, we have to sign extend our input, making _mm_packs_epi32 do the pack we want. |
716 | __m128i x = _mm_srai_epi32(_mm_slli_epi32(src.fVec, 16), 16); |
717 | return _mm_packs_epi32(x,x); |
718 | #endif |
719 | } |
720 | |
721 | template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) { |
722 | return SkNx_cast<uint16_t>(SkNx_cast<int32_t>(src)); |
723 | } |
724 | |
725 | template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) { |
726 | auto _32 = _mm_cvttps_epi32(src.fVec); |
727 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
728 | const int _ = ~0; |
729 | return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,4,8,12, _,_,_,_, _,_,_,_, _,_,_,_)); |
730 | #else |
731 | auto _16 = _mm_packus_epi16(_32, _32); |
732 | return _mm_packus_epi16(_16, _16); |
733 | #endif |
734 | } |
735 | |
736 | template<> AI /*static*/ Sk4u SkNx_cast<uint32_t, uint8_t>(const Sk4b& src) { |
737 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
738 | const int _ = ~0; |
739 | return _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_)); |
740 | #else |
741 | auto _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); |
742 | return _mm_unpacklo_epi16(_16, _mm_setzero_si128()); |
743 | #endif |
744 | } |
745 | |
746 | template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint8_t>(const Sk4b& src) { |
747 | return SkNx_cast<uint32_t>(src).fVec; |
748 | } |
749 | |
750 | template<> AI /*static*/ Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) { |
751 | return _mm_cvtepi32_ps(SkNx_cast<int32_t>(src).fVec); |
752 | } |
753 | |
754 | template<> AI /*static*/ Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) { |
755 | auto _32 = _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128()); |
756 | return _mm_cvtepi32_ps(_32); |
757 | } |
758 | |
759 | template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, int32_t>(const Sk8i& src) { |
760 | Sk4i lo, hi; |
761 | SkNx_split(src, &lo, &hi); |
762 | |
763 | auto t = _mm_packs_epi32(lo.fVec, hi.fVec); |
764 | return _mm_packus_epi16(t, t); |
765 | } |
766 | |
767 | template<> AI /*static*/ Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) { |
768 | Sk8f ab, cd; |
769 | SkNx_split(src, &ab, &cd); |
770 | |
771 | Sk4f a,b,c,d; |
772 | SkNx_split(ab, &a, &b); |
773 | SkNx_split(cd, &c, &d); |
774 | |
775 | return _mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec), |
776 | _mm_cvttps_epi32(b.fVec)), |
777 | _mm_packus_epi16(_mm_cvttps_epi32(c.fVec), |
778 | _mm_cvttps_epi32(d.fVec))); |
779 | } |
780 | |
781 | template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) { |
782 | return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); |
783 | } |
784 | |
785 | template<> AI /*static*/ Sk8h SkNx_cast<uint16_t, uint8_t>(const Sk8b& src) { |
786 | return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); |
787 | } |
788 | |
789 | template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) { |
790 | return _mm_packus_epi16(src.fVec, src.fVec); |
791 | } |
792 | |
793 | template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, uint16_t>(const Sk8h& src) { |
794 | return _mm_packus_epi16(src.fVec, src.fVec); |
795 | } |
796 | |
797 | template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint16_t>(const Sk4h& src) { |
798 | return _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128()); |
799 | } |
800 | |
801 | |
802 | template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, int32_t>(const Sk4i& src) { |
803 | return _mm_packus_epi16(_mm_packus_epi16(src.fVec, src.fVec), src.fVec); |
804 | } |
805 | |
806 | template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint32_t>(const Sk4u& src) { |
807 | return _mm_packus_epi16(_mm_packus_epi16(src.fVec, src.fVec), src.fVec); |
808 | } |
809 | |
810 | template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint32_t>(const Sk4u& src) { |
811 | return src.fVec; |
812 | } |
813 | |
814 | AI static Sk4i Sk4f_round(const Sk4f& x) { |
815 | return _mm_cvtps_epi32(x.fVec); |
816 | } |
817 | |
818 | } // namespace |
819 | |
820 | #endif//SkNx_sse_DEFINED |
821 | |