| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | |
| 9 | #ifndef SkTDArray_DEFINED |
| 10 | #define SkTDArray_DEFINED |
| 11 | |
| 12 | #include "include/core/SkTypes.h" |
| 13 | #include "include/private/SkMalloc.h" |
| 14 | #include "include/private/SkTo.h" |
| 15 | |
| 16 | #include <algorithm> |
| 17 | #include <initializer_list> |
| 18 | #include <utility> |
| 19 | |
| 20 | template <typename T> class SkTDArray { |
| 21 | public: |
| 22 | SkTDArray() : fArray(nullptr), fReserve(0), fCount(0) {} |
| 23 | SkTDArray(const T src[], int count) { |
| 24 | SkASSERT(src || count == 0); |
| 25 | |
| 26 | fReserve = fCount = 0; |
| 27 | fArray = nullptr; |
| 28 | if (count) { |
| 29 | fArray = (T*)sk_malloc_throw(count * sizeof(T)); |
| 30 | memcpy(fArray, src, sizeof(T) * count); |
| 31 | fReserve = fCount = count; |
| 32 | } |
| 33 | } |
| 34 | SkTDArray(const std::initializer_list<T>& list) : SkTDArray(list.begin(), list.size()) {} |
| 35 | SkTDArray(const SkTDArray<T>& src) : fArray(nullptr), fReserve(0), fCount(0) { |
| 36 | SkTDArray<T> tmp(src.fArray, src.fCount); |
| 37 | this->swap(tmp); |
| 38 | } |
| 39 | SkTDArray(SkTDArray<T>&& src) : fArray(nullptr), fReserve(0), fCount(0) { |
| 40 | this->swap(src); |
| 41 | } |
| 42 | ~SkTDArray() { |
| 43 | sk_free(fArray); |
| 44 | } |
| 45 | |
| 46 | SkTDArray<T>& operator=(const SkTDArray<T>& src) { |
| 47 | if (this != &src) { |
| 48 | if (src.fCount > fReserve) { |
| 49 | SkTDArray<T> tmp(src.fArray, src.fCount); |
| 50 | this->swap(tmp); |
| 51 | } else { |
| 52 | sk_careful_memcpy(fArray, src.fArray, sizeof(T) * src.fCount); |
| 53 | fCount = src.fCount; |
| 54 | } |
| 55 | } |
| 56 | return *this; |
| 57 | } |
| 58 | SkTDArray<T>& operator=(SkTDArray<T>&& src) { |
| 59 | if (this != &src) { |
| 60 | this->swap(src); |
| 61 | src.reset(); |
| 62 | } |
| 63 | return *this; |
| 64 | } |
| 65 | |
| 66 | friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
| 67 | return a.fCount == b.fCount && |
| 68 | (a.fCount == 0 || |
| 69 | !memcmp(a.fArray, b.fArray, a.fCount * sizeof(T))); |
| 70 | } |
| 71 | friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
| 72 | return !(a == b); |
| 73 | } |
| 74 | |
| 75 | void swap(SkTDArray<T>& that) { |
| 76 | using std::swap; |
| 77 | swap(fArray, that.fArray); |
| 78 | swap(fReserve, that.fReserve); |
| 79 | swap(fCount, that.fCount); |
| 80 | } |
| 81 | |
| 82 | bool isEmpty() const { return fCount == 0; } |
| 83 | bool empty() const { return this->isEmpty(); } |
| 84 | |
| 85 | /** |
| 86 | * Return the number of elements in the array |
| 87 | */ |
| 88 | int count() const { return fCount; } |
| 89 | size_t size() const { return fCount; } |
| 90 | |
| 91 | /** |
| 92 | * Return the total number of elements allocated. |
| 93 | * reserved() - count() gives you the number of elements you can add |
| 94 | * without causing an allocation. |
| 95 | */ |
| 96 | int reserved() const { return fReserve; } |
| 97 | |
| 98 | /** |
| 99 | * return the number of bytes in the array: count * sizeof(T) |
| 100 | */ |
| 101 | size_t bytes() const { return fCount * sizeof(T); } |
| 102 | |
| 103 | T* begin() { return fArray; } |
| 104 | const T* begin() const { return fArray; } |
| 105 | T* end() { return fArray ? fArray + fCount : nullptr; } |
| 106 | const T* end() const { return fArray ? fArray + fCount : nullptr; } |
| 107 | |
| 108 | T& operator[](int index) { |
| 109 | SkASSERT(index < fCount); |
| 110 | return fArray[index]; |
| 111 | } |
| 112 | const T& operator[](int index) const { |
| 113 | SkASSERT(index < fCount); |
| 114 | return fArray[index]; |
| 115 | } |
| 116 | |
| 117 | T& getAt(int index) { |
| 118 | return (*this)[index]; |
| 119 | } |
| 120 | |
| 121 | |
| 122 | void reset() { |
| 123 | if (fArray) { |
| 124 | sk_free(fArray); |
| 125 | fArray = nullptr; |
| 126 | fReserve = fCount = 0; |
| 127 | } else { |
| 128 | SkASSERT(fReserve == 0 && fCount == 0); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | void rewind() { |
| 133 | // same as setCount(0) |
| 134 | fCount = 0; |
| 135 | } |
| 136 | |
| 137 | /** |
| 138 | * Sets the number of elements in the array. |
| 139 | * If the array does not have space for count elements, it will increase |
| 140 | * the storage allocated to some amount greater than that required. |
| 141 | * It will never shrink the storage. |
| 142 | */ |
| 143 | void setCount(int count) { |
| 144 | SkASSERT(count >= 0); |
| 145 | if (count > fReserve) { |
| 146 | this->resizeStorageToAtLeast(count); |
| 147 | } |
| 148 | fCount = count; |
| 149 | } |
| 150 | |
| 151 | void setReserve(int reserve) { |
| 152 | SkASSERT(reserve >= 0); |
| 153 | if (reserve > fReserve) { |
| 154 | this->resizeStorageToAtLeast(reserve); |
| 155 | } |
| 156 | } |
| 157 | void reserve(size_t n) { |
| 158 | SkASSERT_RELEASE(SkTFitsIn<int>(n)); |
| 159 | this->setReserve(SkToInt(n)); |
| 160 | } |
| 161 | |
| 162 | T* prepend() { |
| 163 | this->adjustCount(1); |
| 164 | memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T)); |
| 165 | return fArray; |
| 166 | } |
| 167 | |
| 168 | T* append() { |
| 169 | return this->append(1, nullptr); |
| 170 | } |
| 171 | T* append(int count, const T* src = nullptr) { |
| 172 | int oldCount = fCount; |
| 173 | if (count) { |
| 174 | SkASSERT(src == nullptr || fArray == nullptr || |
| 175 | src + count <= fArray || fArray + oldCount <= src); |
| 176 | |
| 177 | this->adjustCount(count); |
| 178 | if (src) { |
| 179 | memcpy(fArray + oldCount, src, sizeof(T) * count); |
| 180 | } |
| 181 | } |
| 182 | return fArray + oldCount; |
| 183 | } |
| 184 | |
| 185 | T* insert(int index) { |
| 186 | return this->insert(index, 1, nullptr); |
| 187 | } |
| 188 | T* insert(int index, int count, const T* src = nullptr) { |
| 189 | SkASSERT(count); |
| 190 | SkASSERT(index <= fCount); |
| 191 | size_t oldCount = fCount; |
| 192 | this->adjustCount(count); |
| 193 | T* dst = fArray + index; |
| 194 | memmove(dst + count, dst, sizeof(T) * (oldCount - index)); |
| 195 | if (src) { |
| 196 | memcpy(dst, src, sizeof(T) * count); |
| 197 | } |
| 198 | return dst; |
| 199 | } |
| 200 | |
| 201 | void remove(int index, int count = 1) { |
| 202 | SkASSERT(index + count <= fCount); |
| 203 | fCount = fCount - count; |
| 204 | memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - index)); |
| 205 | } |
| 206 | |
| 207 | void removeShuffle(int index) { |
| 208 | SkASSERT(index < fCount); |
| 209 | int newCount = fCount - 1; |
| 210 | fCount = newCount; |
| 211 | if (index != newCount) { |
| 212 | memcpy(fArray + index, fArray + newCount, sizeof(T)); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | int find(const T& elem) const { |
| 217 | const T* iter = fArray; |
| 218 | const T* stop = fArray + fCount; |
| 219 | |
| 220 | for (; iter < stop; iter++) { |
| 221 | if (*iter == elem) { |
| 222 | return SkToInt(iter - fArray); |
| 223 | } |
| 224 | } |
| 225 | return -1; |
| 226 | } |
| 227 | |
| 228 | int rfind(const T& elem) const { |
| 229 | const T* iter = fArray + fCount; |
| 230 | const T* stop = fArray; |
| 231 | |
| 232 | while (iter > stop) { |
| 233 | if (*--iter == elem) { |
| 234 | return SkToInt(iter - stop); |
| 235 | } |
| 236 | } |
| 237 | return -1; |
| 238 | } |
| 239 | |
| 240 | /** |
| 241 | * Returns true iff the array contains this element. |
| 242 | */ |
| 243 | bool contains(const T& elem) const { |
| 244 | return (this->find(elem) >= 0); |
| 245 | } |
| 246 | |
| 247 | /** |
| 248 | * Copies up to max elements into dst. The number of items copied is |
| 249 | * capped by count - index. The actual number copied is returned. |
| 250 | */ |
| 251 | int copyRange(T* dst, int index, int max) const { |
| 252 | SkASSERT(max >= 0); |
| 253 | SkASSERT(!max || dst); |
| 254 | if (index >= fCount) { |
| 255 | return 0; |
| 256 | } |
| 257 | int count = std::min(max, fCount - index); |
| 258 | memcpy(dst, fArray + index, sizeof(T) * count); |
| 259 | return count; |
| 260 | } |
| 261 | |
| 262 | void copy(T* dst) const { |
| 263 | this->copyRange(dst, 0, fCount); |
| 264 | } |
| 265 | |
| 266 | // routines to treat the array like a stack |
| 267 | void push_back(const T& v) { *this->append() = v; } |
| 268 | T* push() { return this->append(); } |
| 269 | const T& top() const { return (*this)[fCount - 1]; } |
| 270 | T& top() { return (*this)[fCount - 1]; } |
| 271 | void pop(T* elem) { SkASSERT(fCount > 0); if (elem) *elem = (*this)[fCount - 1]; --fCount; } |
| 272 | void pop() { SkASSERT(fCount > 0); --fCount; } |
| 273 | |
| 274 | void deleteAll() { |
| 275 | T* iter = fArray; |
| 276 | T* stop = fArray + fCount; |
| 277 | while (iter < stop) { |
| 278 | delete *iter; |
| 279 | iter += 1; |
| 280 | } |
| 281 | this->reset(); |
| 282 | } |
| 283 | |
| 284 | void freeAll() { |
| 285 | T* iter = fArray; |
| 286 | T* stop = fArray + fCount; |
| 287 | while (iter < stop) { |
| 288 | sk_free(*iter); |
| 289 | iter += 1; |
| 290 | } |
| 291 | this->reset(); |
| 292 | } |
| 293 | |
| 294 | void unrefAll() { |
| 295 | T* iter = fArray; |
| 296 | T* stop = fArray + fCount; |
| 297 | while (iter < stop) { |
| 298 | (*iter)->unref(); |
| 299 | iter += 1; |
| 300 | } |
| 301 | this->reset(); |
| 302 | } |
| 303 | |
| 304 | void safeUnrefAll() { |
| 305 | T* iter = fArray; |
| 306 | T* stop = fArray + fCount; |
| 307 | while (iter < stop) { |
| 308 | SkSafeUnref(*iter); |
| 309 | iter += 1; |
| 310 | } |
| 311 | this->reset(); |
| 312 | } |
| 313 | |
| 314 | #ifdef SK_DEBUG |
| 315 | void validate() const { |
| 316 | SkASSERT((fReserve == 0 && fArray == nullptr) || |
| 317 | (fReserve > 0 && fArray != nullptr)); |
| 318 | SkASSERT(fCount <= fReserve); |
| 319 | } |
| 320 | #endif |
| 321 | |
| 322 | void shrinkToFit() { |
| 323 | if (fReserve != fCount) { |
| 324 | SkASSERT(fReserve > fCount); |
| 325 | fReserve = fCount; |
| 326 | fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | private: |
| 331 | T* fArray; |
| 332 | int fReserve; // size of the allocation in fArray (#elements) |
| 333 | int fCount; // logical number of elements (fCount <= fReserve) |
| 334 | |
| 335 | /** |
| 336 | * Adjusts the number of elements in the array. |
| 337 | * This is the same as calling setCount(count() + delta). |
| 338 | */ |
| 339 | void adjustCount(int delta) { |
| 340 | SkASSERT(delta > 0); |
| 341 | |
| 342 | // We take care to avoid overflow here. |
| 343 | // The sum of fCount and delta is at most 4294967294, which fits fine in uint32_t. |
| 344 | uint32_t count = (uint32_t)fCount + (uint32_t)delta; |
| 345 | SkASSERT_RELEASE( SkTFitsIn<int>(count) ); |
| 346 | |
| 347 | this->setCount(SkTo<int>(count)); |
| 348 | } |
| 349 | |
| 350 | /** |
| 351 | * Increase the storage allocation such that it can hold (fCount + extra) |
| 352 | * elements. |
| 353 | * It never shrinks the allocation, and it may increase the allocation by |
| 354 | * more than is strictly required, based on a private growth heuristic. |
| 355 | * |
| 356 | * note: does NOT modify fCount |
| 357 | */ |
| 358 | void resizeStorageToAtLeast(int count) { |
| 359 | SkASSERT(count > fReserve); |
| 360 | |
| 361 | // We take care to avoid overflow here. |
| 362 | // The maximum value we can get for reserve here is 2684354563, which fits in uint32_t. |
| 363 | uint32_t reserve = (uint32_t)count + 4; |
| 364 | reserve += reserve / 4; |
| 365 | SkASSERT_RELEASE( SkTFitsIn<int>(reserve) ); |
| 366 | |
| 367 | fReserve = SkTo<int>(reserve); |
| 368 | fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); |
| 369 | } |
| 370 | }; |
| 371 | |
| 372 | template <typename T> static inline void swap(SkTDArray<T>& a, SkTDArray<T>& b) { |
| 373 | a.swap(b); |
| 374 | } |
| 375 | |
| 376 | #endif |
| 377 | |