1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkTemplates_DEFINED |
9 | #define SkTemplates_DEFINED |
10 | |
11 | #include "include/core/SkTypes.h" |
12 | #include "include/private/SkMalloc.h" |
13 | #include "include/private/SkTLogic.h" |
14 | |
15 | #include <string.h> |
16 | #include <array> |
17 | #include <cstddef> |
18 | #include <memory> |
19 | #include <new> |
20 | #include <utility> |
21 | |
22 | /** \file SkTemplates.h |
23 | |
24 | This file contains light-weight template classes for type-safe and exception-safe |
25 | resource management. |
26 | */ |
27 | |
28 | /** |
29 | * Marks a local variable as known to be unused (to avoid warnings). |
30 | * Note that this does *not* prevent the local variable from being optimized away. |
31 | */ |
32 | template<typename T> inline void sk_ignore_unused_variable(const T&) { } |
33 | |
34 | /** |
35 | * Returns a pointer to a D which comes immediately after S[count]. |
36 | */ |
37 | template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) { |
38 | return reinterpret_cast<D*>(ptr + count); |
39 | } |
40 | |
41 | /** |
42 | * Returns a pointer to a D which comes byteOffset bytes after S. |
43 | */ |
44 | template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) { |
45 | // The intermediate char* has the same cv-ness as D as this produces better error messages. |
46 | // This relies on the fact that reinterpret_cast can add constness, but cannot remove it. |
47 | return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset); |
48 | } |
49 | |
50 | // TODO: when C++17 the language is available, use template <auto P> |
51 | template <typename T, T* P> struct SkFunctionWrapper { |
52 | template <typename... Args> |
53 | auto operator()(Args&&... args) const -> decltype(P(std::forward<Args>(args)...)) { |
54 | return P(std::forward<Args>(args)...); |
55 | } |
56 | }; |
57 | |
58 | /** \class SkAutoTCallVProc |
59 | |
60 | Call a function when this goes out of scope. The template uses two |
61 | parameters, the object, and a function that is to be called in the destructor. |
62 | If release() is called, the object reference is set to null. If the object |
63 | reference is null when the destructor is called, we do not call the |
64 | function. |
65 | */ |
66 | template <typename T, void (*P)(T*)> class SkAutoTCallVProc |
67 | : public std::unique_ptr<T, SkFunctionWrapper<skstd::remove_pointer_t<decltype(P)>, P>> { |
68 | public: |
69 | SkAutoTCallVProc(T* obj) |
70 | : std::unique_ptr<T, SkFunctionWrapper<skstd::remove_pointer_t<decltype(P)>, P>>(obj) {} |
71 | |
72 | operator T*() const { return this->get(); } |
73 | }; |
74 | |
75 | /** Allocate an array of T elements, and free the array in the destructor |
76 | */ |
77 | template <typename T> class SkAutoTArray { |
78 | public: |
79 | SkAutoTArray() {} |
80 | /** Allocate count number of T elements |
81 | */ |
82 | explicit SkAutoTArray(int count) { |
83 | SkASSERT(count >= 0); |
84 | if (count) { |
85 | fArray.reset(new T[count]); |
86 | } |
87 | SkDEBUGCODE(fCount = count;) |
88 | } |
89 | |
90 | SkAutoTArray(SkAutoTArray&& other) : fArray(std::move(other.fArray)) { |
91 | SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;) |
92 | } |
93 | SkAutoTArray& operator=(SkAutoTArray&& other) { |
94 | if (this != &other) { |
95 | fArray = std::move(other.fArray); |
96 | SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;) |
97 | } |
98 | return *this; |
99 | } |
100 | |
101 | /** Reallocates given a new count. Reallocation occurs even if new count equals old count. |
102 | */ |
103 | void reset(int count) { *this = SkAutoTArray(count); } |
104 | |
105 | /** Return the array of T elements. Will be NULL if count == 0 |
106 | */ |
107 | T* get() const { return fArray.get(); } |
108 | |
109 | /** Return the nth element in the array |
110 | */ |
111 | T& operator[](int index) const { |
112 | SkASSERT((unsigned)index < (unsigned)fCount); |
113 | return fArray[index]; |
114 | } |
115 | |
116 | private: |
117 | std::unique_ptr<T[]> fArray; |
118 | SkDEBUGCODE(int fCount = 0;) |
119 | }; |
120 | |
121 | /** Wraps SkAutoTArray, with room for kCountRequested elements preallocated. |
122 | */ |
123 | template <int kCountRequested, typename T> class SkAutoSTArray { |
124 | public: |
125 | SkAutoSTArray(SkAutoSTArray&&) = delete; |
126 | SkAutoSTArray(const SkAutoSTArray&) = delete; |
127 | SkAutoSTArray& operator=(SkAutoSTArray&&) = delete; |
128 | SkAutoSTArray& operator=(const SkAutoSTArray&) = delete; |
129 | |
130 | /** Initialize with no objects */ |
131 | SkAutoSTArray() { |
132 | fArray = nullptr; |
133 | fCount = 0; |
134 | } |
135 | |
136 | /** Allocate count number of T elements |
137 | */ |
138 | SkAutoSTArray(int count) { |
139 | fArray = nullptr; |
140 | fCount = 0; |
141 | this->reset(count); |
142 | } |
143 | |
144 | ~SkAutoSTArray() { |
145 | this->reset(0); |
146 | } |
147 | |
148 | /** Destroys previous objects in the array and default constructs count number of objects */ |
149 | void reset(int count) { |
150 | T* start = fArray; |
151 | T* iter = start + fCount; |
152 | while (iter > start) { |
153 | (--iter)->~T(); |
154 | } |
155 | |
156 | SkASSERT(count >= 0); |
157 | if (fCount != count) { |
158 | if (fCount > kCount) { |
159 | // 'fArray' was allocated last time so free it now |
160 | SkASSERT((T*) fStorage != fArray); |
161 | sk_free(fArray); |
162 | } |
163 | |
164 | if (count > kCount) { |
165 | fArray = (T*) sk_malloc_throw(count, sizeof(T)); |
166 | } else if (count > 0) { |
167 | fArray = (T*) fStorage; |
168 | } else { |
169 | fArray = nullptr; |
170 | } |
171 | |
172 | fCount = count; |
173 | } |
174 | |
175 | iter = fArray; |
176 | T* stop = fArray + count; |
177 | while (iter < stop) { |
178 | new (iter++) T; |
179 | } |
180 | } |
181 | |
182 | /** Return the number of T elements in the array |
183 | */ |
184 | int count() const { return fCount; } |
185 | |
186 | /** Return the array of T elements. Will be NULL if count == 0 |
187 | */ |
188 | T* get() const { return fArray; } |
189 | |
190 | T* begin() { return fArray; } |
191 | |
192 | const T* begin() const { return fArray; } |
193 | |
194 | T* end() { return fArray + fCount; } |
195 | |
196 | const T* end() const { return fArray + fCount; } |
197 | |
198 | /** Return the nth element in the array |
199 | */ |
200 | T& operator[](int index) const { |
201 | SkASSERT(index < fCount); |
202 | return fArray[index]; |
203 | } |
204 | |
205 | private: |
206 | #if defined(SK_BUILD_FOR_GOOGLE3) |
207 | // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions |
208 | // have multiple large stack allocations. |
209 | static const int kMaxBytes = 4 * 1024; |
210 | static const int kCount = kCountRequested * sizeof(T) > kMaxBytes |
211 | ? kMaxBytes / sizeof(T) |
212 | : kCountRequested; |
213 | #else |
214 | static const int kCount = kCountRequested; |
215 | #endif |
216 | |
217 | int fCount; |
218 | T* fArray; |
219 | // since we come right after fArray, fStorage should be properly aligned |
220 | char fStorage[kCount * sizeof(T)]; |
221 | }; |
222 | |
223 | /** Manages an array of T elements, freeing the array in the destructor. |
224 | * Does NOT call any constructors/destructors on T (T must be POD). |
225 | */ |
226 | template <typename T> class SkAutoTMalloc { |
227 | public: |
228 | /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */ |
229 | explicit SkAutoTMalloc(T* ptr = nullptr) : fPtr(ptr) {} |
230 | |
231 | /** Allocates space for 'count' Ts. */ |
232 | explicit SkAutoTMalloc(size_t count) |
233 | : fPtr(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr) {} |
234 | |
235 | SkAutoTMalloc(SkAutoTMalloc&&) = default; |
236 | SkAutoTMalloc& operator=(SkAutoTMalloc&&) = default; |
237 | |
238 | /** Resize the memory area pointed to by the current ptr preserving contents. */ |
239 | void realloc(size_t count) { |
240 | fPtr.reset(count ? (T*)sk_realloc_throw(fPtr.release(), count * sizeof(T)) : nullptr); |
241 | } |
242 | |
243 | /** Resize the memory area pointed to by the current ptr without preserving contents. */ |
244 | T* reset(size_t count = 0) { |
245 | fPtr.reset(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr); |
246 | return this->get(); |
247 | } |
248 | |
249 | T* get() const { return fPtr.get(); } |
250 | |
251 | operator T*() { return fPtr.get(); } |
252 | |
253 | operator const T*() const { return fPtr.get(); } |
254 | |
255 | T& operator[](int index) { return fPtr.get()[index]; } |
256 | |
257 | const T& operator[](int index) const { return fPtr.get()[index]; } |
258 | |
259 | /** |
260 | * Transfer ownership of the ptr to the caller, setting the internal |
261 | * pointer to NULL. Note that this differs from get(), which also returns |
262 | * the pointer, but it does not transfer ownership. |
263 | */ |
264 | T* release() { return fPtr.release(); } |
265 | |
266 | private: |
267 | std::unique_ptr<T, SkFunctionWrapper<void(void*), sk_free>> fPtr; |
268 | }; |
269 | |
270 | template <size_t kCountRequested, typename T> class SkAutoSTMalloc { |
271 | public: |
272 | SkAutoSTMalloc() : fPtr(fTStorage) {} |
273 | |
274 | SkAutoSTMalloc(size_t count) { |
275 | if (count > kCount) { |
276 | fPtr = (T*)sk_malloc_throw(count, sizeof(T)); |
277 | } else if (count) { |
278 | fPtr = fTStorage; |
279 | } else { |
280 | fPtr = nullptr; |
281 | } |
282 | } |
283 | |
284 | SkAutoSTMalloc(SkAutoSTMalloc&&) = delete; |
285 | SkAutoSTMalloc(const SkAutoSTMalloc&) = delete; |
286 | SkAutoSTMalloc& operator=(SkAutoSTMalloc&&) = delete; |
287 | SkAutoSTMalloc& operator=(const SkAutoSTMalloc&) = delete; |
288 | |
289 | ~SkAutoSTMalloc() { |
290 | if (fPtr != fTStorage) { |
291 | sk_free(fPtr); |
292 | } |
293 | } |
294 | |
295 | // doesn't preserve contents |
296 | T* reset(size_t count) { |
297 | if (fPtr != fTStorage) { |
298 | sk_free(fPtr); |
299 | } |
300 | if (count > kCount) { |
301 | fPtr = (T*)sk_malloc_throw(count, sizeof(T)); |
302 | } else if (count) { |
303 | fPtr = fTStorage; |
304 | } else { |
305 | fPtr = nullptr; |
306 | } |
307 | return fPtr; |
308 | } |
309 | |
310 | T* get() const { return fPtr; } |
311 | |
312 | operator T*() { |
313 | return fPtr; |
314 | } |
315 | |
316 | operator const T*() const { |
317 | return fPtr; |
318 | } |
319 | |
320 | T& operator[](int index) { |
321 | return fPtr[index]; |
322 | } |
323 | |
324 | const T& operator[](int index) const { |
325 | return fPtr[index]; |
326 | } |
327 | |
328 | // Reallocs the array, can be used to shrink the allocation. Makes no attempt to be intelligent |
329 | void realloc(size_t count) { |
330 | if (count > kCount) { |
331 | if (fPtr == fTStorage) { |
332 | fPtr = (T*)sk_malloc_throw(count, sizeof(T)); |
333 | memcpy(fPtr, fTStorage, kCount * sizeof(T)); |
334 | } else { |
335 | fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T)); |
336 | } |
337 | } else if (count) { |
338 | if (fPtr != fTStorage) { |
339 | fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T)); |
340 | } |
341 | } else { |
342 | this->reset(0); |
343 | } |
344 | } |
345 | |
346 | private: |
347 | // Since we use uint32_t storage, we might be able to get more elements for free. |
348 | static const size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T); |
349 | #if defined(SK_BUILD_FOR_GOOGLE3) |
350 | // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions |
351 | // have multiple large stack allocations. |
352 | static const size_t kMaxBytes = 4 * 1024; |
353 | static const size_t kCount = kCountRequested * sizeof(T) > kMaxBytes |
354 | ? kMaxBytes / sizeof(T) |
355 | : kCountWithPadding; |
356 | #else |
357 | static const size_t kCount = kCountWithPadding; |
358 | #endif |
359 | |
360 | T* fPtr; |
361 | union { |
362 | uint32_t fStorage32[SkAlign4(kCount*sizeof(T)) >> 2]; |
363 | T fTStorage[1]; // do NOT want to invoke T::T() |
364 | }; |
365 | }; |
366 | |
367 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
368 | |
369 | /** |
370 | * Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will |
371 | * safely destroy (and free if it was dynamically allocated) the object. |
372 | */ |
373 | template <typename T> void SkInPlaceDeleteCheck(T* obj, void* storage) { |
374 | if (storage == obj) { |
375 | obj->~T(); |
376 | } else { |
377 | delete obj; |
378 | } |
379 | } |
380 | |
381 | /** |
382 | * Allocates T, using storage if it is large enough, and allocating on the heap (via new) if |
383 | * storage is not large enough. |
384 | * |
385 | * obj = SkInPlaceNewCheck<Type>(storage, size); |
386 | * ... |
387 | * SkInPlaceDeleteCheck(obj, storage); |
388 | */ |
389 | template<typename T, typename... Args> |
390 | T* SkInPlaceNewCheck(void* storage, size_t size, Args&&... args) { |
391 | return (sizeof(T) <= size) ? new (storage) T(std::forward<Args>(args)...) |
392 | : new T(std::forward<Args>(args)...); |
393 | } |
394 | /** |
395 | * Reserves memory that is aligned on double and pointer boundaries. |
396 | * Hopefully this is sufficient for all practical purposes. |
397 | */ |
398 | template <size_t N> class SkAlignedSStorage { |
399 | public: |
400 | SkAlignedSStorage() {} |
401 | SkAlignedSStorage(SkAlignedSStorage&&) = delete; |
402 | SkAlignedSStorage(const SkAlignedSStorage&) = delete; |
403 | SkAlignedSStorage& operator=(SkAlignedSStorage&&) = delete; |
404 | SkAlignedSStorage& operator=(const SkAlignedSStorage&) = delete; |
405 | |
406 | size_t size() const { return N; } |
407 | void* get() { return fData; } |
408 | const void* get() const { return fData; } |
409 | |
410 | private: |
411 | union { |
412 | void* fPtr; |
413 | double fDouble; |
414 | char fData[N]; |
415 | }; |
416 | }; |
417 | |
418 | /** |
419 | * Reserves memory that is aligned on double and pointer boundaries. |
420 | * Hopefully this is sufficient for all practical purposes. Otherwise, |
421 | * we have to do some arcane trickery to determine alignment of non-POD |
422 | * types. Lifetime of the memory is the lifetime of the object. |
423 | */ |
424 | template <int N, typename T> class SkAlignedSTStorage { |
425 | public: |
426 | SkAlignedSTStorage() {} |
427 | SkAlignedSTStorage(SkAlignedSTStorage&&) = delete; |
428 | SkAlignedSTStorage(const SkAlignedSTStorage&) = delete; |
429 | SkAlignedSTStorage& operator=(SkAlignedSTStorage&&) = delete; |
430 | SkAlignedSTStorage& operator=(const SkAlignedSTStorage&) = delete; |
431 | |
432 | /** |
433 | * Returns void* because this object does not initialize the |
434 | * memory. Use placement new for types that require a cons. |
435 | */ |
436 | void* get() { return fStorage.get(); } |
437 | const void* get() const { return fStorage.get(); } |
438 | private: |
439 | SkAlignedSStorage<sizeof(T)*N> fStorage; |
440 | }; |
441 | |
442 | using SkAutoFree = std::unique_ptr<void, SkFunctionWrapper<void(void*), sk_free>>; |
443 | |
444 | template<typename C, std::size_t... Is> |
445 | constexpr auto SkMakeArrayFromIndexSequence(C c, skstd::index_sequence<Is...>) |
446 | -> std::array<skstd::result_of_t<C(std::size_t)>, sizeof...(Is)> { |
447 | return {{ c(Is)... }}; |
448 | } |
449 | |
450 | template<size_t N, typename C> constexpr auto SkMakeArray(C c) |
451 | -> std::array<skstd::result_of_t<C(std::size_t)>, N> { |
452 | return SkMakeArrayFromIndexSequence(c, skstd::make_index_sequence<N>{}); |
453 | } |
454 | |
455 | #endif |
456 | |