1 | /* |
2 | * Copyright 2019 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SKVX_DEFINED |
9 | #define SKVX_DEFINED |
10 | |
11 | // skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>. |
12 | // |
13 | // This time we're leaning a bit less on platform-specific intrinsics and a bit |
14 | // more on Clang/GCC vector extensions, but still keeping the option open to |
15 | // drop in platform-specific intrinsics, actually more easily than before. |
16 | // |
17 | // We've also fixed a few of the caveats that used to make SkNx awkward to work |
18 | // with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size |
19 | // and alignment[1][2] and is safe to use across translation units freely. |
20 | // |
21 | // [1] Ideally we'd only align to T, but that tanks ARMv7 NEON codegen. |
22 | // [2] Some compilers barf if we try to use N*sizeof(T), so instead we leave them at T. |
23 | |
24 | // Please try to keep this file independent of Skia headers. |
25 | #include <algorithm> // std::min, std::max |
26 | #include <cmath> // std::ceil, std::floor, std::trunc, std::round, std::sqrt, etc. |
27 | #include <cstdint> // intXX_t |
28 | #include <cstring> // memcpy() |
29 | #include <initializer_list> // std::initializer_list |
30 | |
31 | #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) |
32 | #include <immintrin.h> |
33 | #elif defined(__ARM_NEON) |
34 | #include <arm_neon.h> |
35 | #endif |
36 | |
37 | #if !defined(__clang__) && defined(__GNUC__) && defined(__mips64) |
38 | // GCC 7 hits an internal compiler error when targeting MIPS64. |
39 | #define SKVX_ALIGNMENT |
40 | #elif !defined(__clang__) && defined(_MSC_VER) && defined(_M_IX86) |
41 | // Our SkVx unit tests fail when built by MSVC for 32-bit x86. |
42 | #define SKVX_ALIGNMENT |
43 | #else |
44 | #define SKVX_ALIGNMENT alignas(N * sizeof(T)) |
45 | #endif |
46 | |
47 | #if defined(__GNUC__) && !defined(__clang__) && defined(__SSE__) |
48 | // GCC warns about ABI changes when returning >= 32 byte vectors when -mavx is not enabled. |
49 | // This only happens for types like VExt whose ABI we don't care about, not for Vec itself. |
50 | #pragma GCC diagnostic ignored "-Wpsabi" |
51 | #endif |
52 | |
53 | // To avoid ODR violations, all methods must be force-inlined, |
54 | // and all standalone functions must be static, perhaps using these helpers. |
55 | #if defined(_MSC_VER) |
56 | #define SKVX_ALWAYS_INLINE __forceinline |
57 | #else |
58 | #define SKVX_ALWAYS_INLINE __attribute__((always_inline)) |
59 | #endif |
60 | |
61 | #define SIT template < typename T> static inline |
62 | #define SINT template <int N, typename T> static inline |
63 | #define SINTU template <int N, typename T, typename U, \ |
64 | typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> \ |
65 | static inline |
66 | |
67 | namespace skvx { |
68 | |
69 | // All Vec have the same simple memory layout, the same as `T vec[N]`. |
70 | template <int N, typename T> |
71 | struct SKVX_ALIGNMENT Vec { |
72 | static_assert((N & (N-1)) == 0, "N must be a power of 2." ); |
73 | static_assert(sizeof(T) >= alignof(T), "What kind of crazy T is this?" ); |
74 | |
75 | Vec<N/2,T> lo, hi; |
76 | |
77 | // Methods belong here in the class declaration of Vec only if: |
78 | // - they must be here, like constructors or operator[]; |
79 | // - they'll definitely never want a specialized implementation. |
80 | // Other operations on Vec should be defined outside the type. |
81 | |
82 | SKVX_ALWAYS_INLINE Vec() = default; |
83 | |
84 | template <typename U, |
85 | typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> |
86 | SKVX_ALWAYS_INLINE |
87 | Vec(U x) : lo(x), hi(x) {} |
88 | |
89 | SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) { |
90 | T vals[N] = {0}; |
91 | memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T)); |
92 | |
93 | lo = Vec<N/2,T>::Load(vals + 0); |
94 | hi = Vec<N/2,T>::Load(vals + N/2); |
95 | } |
96 | |
97 | SKVX_ALWAYS_INLINE T operator[](int i) const { return i < N/2 ? lo[i] : hi[i-N/2]; } |
98 | SKVX_ALWAYS_INLINE T& operator[](int i) { return i < N/2 ? lo[i] : hi[i-N/2]; } |
99 | |
100 | SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
101 | Vec v; |
102 | memcpy(&v, ptr, sizeof(Vec)); |
103 | return v; |
104 | } |
105 | SKVX_ALWAYS_INLINE void store(void* ptr) const { |
106 | memcpy(ptr, this, sizeof(Vec)); |
107 | } |
108 | }; |
109 | |
110 | template <typename T> |
111 | struct Vec<1,T> { |
112 | T val; |
113 | |
114 | SKVX_ALWAYS_INLINE Vec() = default; |
115 | |
116 | template <typename U, |
117 | typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> |
118 | SKVX_ALWAYS_INLINE |
119 | Vec(U x) : val(x) {} |
120 | |
121 | SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) {} |
122 | |
123 | SKVX_ALWAYS_INLINE T operator[](int) const { return val; } |
124 | SKVX_ALWAYS_INLINE T& operator[](int) { return val; } |
125 | |
126 | SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
127 | Vec v; |
128 | memcpy(&v, ptr, sizeof(Vec)); |
129 | return v; |
130 | } |
131 | SKVX_ALWAYS_INLINE void store(void* ptr) const { |
132 | memcpy(ptr, this, sizeof(Vec)); |
133 | } |
134 | }; |
135 | |
136 | template <typename D, typename S> |
137 | static inline D bit_pun(const S& s) { |
138 | static_assert(sizeof(D) == sizeof(S), "" ); |
139 | D d; |
140 | memcpy(&d, &s, sizeof(D)); |
141 | return d; |
142 | } |
143 | |
144 | // Translate from a value type T to its corresponding Mask, the result of a comparison. |
145 | template <typename T> struct Mask { using type = T; }; |
146 | template <> struct Mask<float > { using type = int32_t; }; |
147 | template <> struct Mask<double> { using type = int64_t; }; |
148 | template <typename T> using M = typename Mask<T>::type; |
149 | |
150 | // Join two Vec<N,T> into one Vec<2N,T>. |
151 | SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) { |
152 | Vec<2*N,T> v; |
153 | v.lo = lo; |
154 | v.hi = hi; |
155 | return v; |
156 | } |
157 | |
158 | // We have two default strategies for implementing most operations: |
159 | // 1) lean on Clang/GCC vector extensions when available; |
160 | // 2) recurse to scalar portable implementations when not. |
161 | // At the end we can drop in platform-specific implementations that override either default. |
162 | |
163 | #if !defined(SKNX_NO_SIMD) && (defined(__clang__) || defined(__GNUC__)) |
164 | |
165 | // VExt<N,T> types have the same size as Vec<N,T> and support most operations directly. |
166 | // N.B. VExt<N,T> alignment is N*alignof(T), stricter than Vec<N,T>'s alignof(T). |
167 | #if defined(__clang__) |
168 | template <int N, typename T> |
169 | using VExt = T __attribute__((ext_vector_type(N))); |
170 | |
171 | #elif defined(__GNUC__) |
172 | template <int N, typename T> |
173 | struct VExtHelper { |
174 | typedef T __attribute__((vector_size(N*sizeof(T)))) type; |
175 | }; |
176 | |
177 | template <int N, typename T> |
178 | using VExt = typename VExtHelper<N,T>::type; |
179 | |
180 | // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic |
181 | // to_vec<N,T>() below for N=4 and T=float. This workaround seems to help... |
182 | static inline Vec<4,float> to_vec(VExt<4,float> v) { return bit_pun<Vec<4,float>>(v); } |
183 | #endif |
184 | |
185 | SINT VExt<N,T> to_vext(const Vec<N,T>& v) { return bit_pun<VExt<N,T>>(v); } |
186 | SINT Vec <N,T> to_vec(const VExt<N,T>& v) { return bit_pun<Vec <N,T>>(v); } |
187 | |
188 | SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) + to_vext(y)); } |
189 | SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) - to_vext(y)); } |
190 | SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) * to_vext(y)); } |
191 | SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) / to_vext(y)); } |
192 | |
193 | SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) ^ to_vext(y)); } |
194 | SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) & to_vext(y)); } |
195 | SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) | to_vext(y)); } |
196 | |
197 | SINT Vec<N,T> operator!(const Vec<N,T>& x) { return to_vec<N,T>(!to_vext(x)); } |
198 | SINT Vec<N,T> operator-(const Vec<N,T>& x) { return to_vec<N,T>(-to_vext(x)); } |
199 | SINT Vec<N,T> operator~(const Vec<N,T>& x) { return to_vec<N,T>(~to_vext(x)); } |
200 | |
201 | SINT Vec<N,T> operator<<(const Vec<N,T>& x, int bits) { return to_vec<N,T>(to_vext(x) << bits); } |
202 | SINT Vec<N,T> operator>>(const Vec<N,T>& x, int bits) { return to_vec<N,T>(to_vext(x) >> bits); } |
203 | |
204 | SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) == to_vext(y)); } |
205 | SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) != to_vext(y)); } |
206 | SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) <= to_vext(y)); } |
207 | SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) >= to_vext(y)); } |
208 | SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) < to_vext(y)); } |
209 | SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) > to_vext(y)); } |
210 | |
211 | #else |
212 | |
213 | // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available. |
214 | // We'll implement things portably, in a way that should be easily autovectorizable. |
215 | |
216 | // N == 1 scalar implementations. |
217 | SIT Vec<1,T> operator+(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val + y.val; } |
218 | SIT Vec<1,T> operator-(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val - y.val; } |
219 | SIT Vec<1,T> operator*(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val * y.val; } |
220 | SIT Vec<1,T> operator/(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val / y.val; } |
221 | |
222 | SIT Vec<1,T> operator^(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val ^ y.val; } |
223 | SIT Vec<1,T> operator&(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val & y.val; } |
224 | SIT Vec<1,T> operator|(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val | y.val; } |
225 | |
226 | SIT Vec<1,T> operator!(const Vec<1,T>& x) { return !x.val; } |
227 | SIT Vec<1,T> operator-(const Vec<1,T>& x) { return -x.val; } |
228 | SIT Vec<1,T> operator~(const Vec<1,T>& x) { return ~x.val; } |
229 | |
230 | SIT Vec<1,T> operator<<(const Vec<1,T>& x, int bits) { return x.val << bits; } |
231 | SIT Vec<1,T> operator>>(const Vec<1,T>& x, int bits) { return x.val >> bits; } |
232 | |
233 | SIT Vec<1,M<T>> operator==(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val == y.val ? ~0 : 0; } |
234 | SIT Vec<1,M<T>> operator!=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val != y.val ? ~0 : 0; } |
235 | SIT Vec<1,M<T>> operator<=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val <= y.val ? ~0 : 0; } |
236 | SIT Vec<1,M<T>> operator>=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val >= y.val ? ~0 : 0; } |
237 | SIT Vec<1,M<T>> operator< (const Vec<1,T>& x, const Vec<1,T>& y) { return x.val < y.val ? ~0 : 0; } |
238 | SIT Vec<1,M<T>> operator> (const Vec<1,T>& x, const Vec<1,T>& y) { return x.val > y.val ? ~0 : 0; } |
239 | |
240 | // All default N != 1 implementations just recurse on lo and hi halves. |
241 | SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo + y.lo, x.hi + y.hi); } |
242 | SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo - y.lo, x.hi - y.hi); } |
243 | SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo * y.lo, x.hi * y.hi); } |
244 | SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo / y.lo, x.hi / y.hi); } |
245 | |
246 | SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo ^ y.lo, x.hi ^ y.hi); } |
247 | SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo & y.lo, x.hi & y.hi); } |
248 | SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo | y.lo, x.hi | y.hi); } |
249 | |
250 | SINT Vec<N,T> operator!(const Vec<N,T>& x) { return join(!x.lo, !x.hi); } |
251 | SINT Vec<N,T> operator-(const Vec<N,T>& x) { return join(-x.lo, -x.hi); } |
252 | SINT Vec<N,T> operator~(const Vec<N,T>& x) { return join(~x.lo, ~x.hi); } |
253 | |
254 | SINT Vec<N,T> operator<<(const Vec<N,T>& x, int bits) { return join(x.lo << bits, x.hi << bits); } |
255 | SINT Vec<N,T> operator>>(const Vec<N,T>& x, int bits) { return join(x.lo >> bits, x.hi >> bits); } |
256 | |
257 | SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo == y.lo, x.hi == y.hi); } |
258 | SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo != y.lo, x.hi != y.hi); } |
259 | SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo <= y.lo, x.hi <= y.hi); } |
260 | SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo >= y.lo, x.hi >= y.hi); } |
261 | SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo < y.lo, x.hi < y.hi); } |
262 | SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo > y.lo, x.hi > y.hi); } |
263 | #endif |
264 | |
265 | // Some operations we want are not expressible with Clang/GCC vector |
266 | // extensions, so we implement them using the recursive approach. |
267 | |
268 | // N == 1 scalar implementations. |
269 | SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) { |
270 | auto t_bits = bit_pun<M<T>>(t), |
271 | e_bits = bit_pun<M<T>>(e); |
272 | return bit_pun<T>( (cond.val & t_bits) | (~cond.val & e_bits) ); |
273 | } |
274 | |
275 | SIT bool any(const Vec<1,T>& x) { return x.val != 0; } |
276 | SIT bool all(const Vec<1,T>& x) { return x.val != 0; } |
277 | |
278 | SIT T min(const Vec<1,T>& x) { return x.val; } |
279 | SIT T max(const Vec<1,T>& x) { return x.val; } |
280 | |
281 | SIT Vec<1,T> min(const Vec<1,T>& x, const Vec<1,T>& y) { return std::min(x.val, y.val); } |
282 | SIT Vec<1,T> max(const Vec<1,T>& x, const Vec<1,T>& y) { return std::max(x.val, y.val); } |
283 | |
284 | SIT Vec<1,T> ceil(const Vec<1,T>& x) { return std:: ceil(x.val); } |
285 | SIT Vec<1,T> floor(const Vec<1,T>& x) { return std::floor(x.val); } |
286 | SIT Vec<1,T> trunc(const Vec<1,T>& x) { return std::trunc(x.val); } |
287 | SIT Vec<1,T> round(const Vec<1,T>& x) { return std::round(x.val); } |
288 | SIT Vec<1,T> sqrt(const Vec<1,T>& x) { return std:: sqrt(x.val); } |
289 | SIT Vec<1,T> abs(const Vec<1,T>& x) { return std:: abs(x.val); } |
290 | |
291 | SIT Vec<1,int> lrint(const Vec<1,T>& x) { return (int)std::lrint(x.val); } |
292 | |
293 | SIT Vec<1,T> rcp(const Vec<1,T>& x) { return 1 / x.val; } |
294 | SIT Vec<1,T> rsqrt(const Vec<1,T>& x) { return rcp(sqrt(x)); } |
295 | SIT Vec<1,T> mad(const Vec<1,T>& f, |
296 | const Vec<1,T>& m, |
297 | const Vec<1,T>& a) { return f*m+a; } |
298 | |
299 | // All default N != 1 implementations just recurse on lo and hi halves. |
300 | SINT Vec<N,T> if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) { |
301 | return join(if_then_else(cond.lo, t.lo, e.lo), |
302 | if_then_else(cond.hi, t.hi, e.hi)); |
303 | } |
304 | |
305 | SINT bool any(const Vec<N,T>& x) { return any(x.lo) || any(x.hi); } |
306 | SINT bool all(const Vec<N,T>& x) { return all(x.lo) && all(x.hi); } |
307 | |
308 | SINT T min(const Vec<N,T>& x) { return std::min(min(x.lo), min(x.hi)); } |
309 | SINT T max(const Vec<N,T>& x) { return std::max(max(x.lo), max(x.hi)); } |
310 | |
311 | SINT Vec<N,T> min(const Vec<N,T>& x, const Vec<N,T>& y) { return join(min(x.lo, y.lo), min(x.hi, y.hi)); } |
312 | SINT Vec<N,T> max(const Vec<N,T>& x, const Vec<N,T>& y) { return join(max(x.lo, y.lo), max(x.hi, y.hi)); } |
313 | |
314 | SINT Vec<N,T> ceil(const Vec<N,T>& x) { return join( ceil(x.lo), ceil(x.hi)); } |
315 | SINT Vec<N,T> floor(const Vec<N,T>& x) { return join(floor(x.lo), floor(x.hi)); } |
316 | SINT Vec<N,T> trunc(const Vec<N,T>& x) { return join(trunc(x.lo), trunc(x.hi)); } |
317 | SINT Vec<N,T> round(const Vec<N,T>& x) { return join(round(x.lo), round(x.hi)); } |
318 | SINT Vec<N,T> sqrt(const Vec<N,T>& x) { return join( sqrt(x.lo), sqrt(x.hi)); } |
319 | SINT Vec<N,T> abs(const Vec<N,T>& x) { return join( abs(x.lo), abs(x.hi)); } |
320 | |
321 | SINT Vec<N,int> lrint(const Vec<N,T>& x) { return join(lrint(x.lo), lrint(x.hi)); } |
322 | |
323 | SINT Vec<N,T> rcp(const Vec<N,T>& x) { return join( rcp(x.lo), rcp(x.hi)); } |
324 | SINT Vec<N,T> rsqrt(const Vec<N,T>& x) { return join(rsqrt(x.lo), rsqrt(x.hi)); } |
325 | SINT Vec<N,T> mad(const Vec<N,T>& f, |
326 | const Vec<N,T>& m, |
327 | const Vec<N,T>& a) { return join(mad(f.lo, m.lo, a.lo), mad(f.hi, m.hi, a.hi)); } |
328 | |
329 | |
330 | // Scalar/vector operations just splat the scalar to a vector... |
331 | SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; } |
332 | SINTU Vec<N,T> operator- (U x, const Vec<N,T>& y) { return Vec<N,T>(x) - y; } |
333 | SINTU Vec<N,T> operator* (U x, const Vec<N,T>& y) { return Vec<N,T>(x) * y; } |
334 | SINTU Vec<N,T> operator/ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) / y; } |
335 | SINTU Vec<N,T> operator^ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) ^ y; } |
336 | SINTU Vec<N,T> operator& (U x, const Vec<N,T>& y) { return Vec<N,T>(x) & y; } |
337 | SINTU Vec<N,T> operator| (U x, const Vec<N,T>& y) { return Vec<N,T>(x) | y; } |
338 | SINTU Vec<N,M<T>> operator==(U x, const Vec<N,T>& y) { return Vec<N,T>(x) == y; } |
339 | SINTU Vec<N,M<T>> operator!=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) != y; } |
340 | SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y; } |
341 | SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; } |
342 | SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; } |
343 | SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; } |
344 | SINTU Vec<N,T> min(U x, const Vec<N,T>& y) { return min(Vec<N,T>(x), y); } |
345 | SINTU Vec<N,T> max(U x, const Vec<N,T>& y) { return max(Vec<N,T>(x), y); } |
346 | |
347 | // ... and same deal for vector/scalar operations. |
348 | SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); } |
349 | SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); } |
350 | SINTU Vec<N,T> operator* (const Vec<N,T>& x, U y) { return x * Vec<N,T>(y); } |
351 | SINTU Vec<N,T> operator/ (const Vec<N,T>& x, U y) { return x / Vec<N,T>(y); } |
352 | SINTU Vec<N,T> operator^ (const Vec<N,T>& x, U y) { return x ^ Vec<N,T>(y); } |
353 | SINTU Vec<N,T> operator& (const Vec<N,T>& x, U y) { return x & Vec<N,T>(y); } |
354 | SINTU Vec<N,T> operator| (const Vec<N,T>& x, U y) { return x | Vec<N,T>(y); } |
355 | SINTU Vec<N,M<T>> operator==(const Vec<N,T>& x, U y) { return x == Vec<N,T>(y); } |
356 | SINTU Vec<N,M<T>> operator!=(const Vec<N,T>& x, U y) { return x != Vec<N,T>(y); } |
357 | SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y); } |
358 | SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); } |
359 | SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); } |
360 | SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); } |
361 | SINTU Vec<N,T> min(const Vec<N,T>& x, U y) { return min(x, Vec<N,T>(y)); } |
362 | SINTU Vec<N,T> max(const Vec<N,T>& x, U y) { return max(x, Vec<N,T>(y)); } |
363 | |
364 | // All vector/scalar combinations for mad() with at least one vector. |
365 | SINTU Vec<N,T> mad(U f, const Vec<N,T>& m, const Vec<N,T>& a) { return Vec<N,T>(f)*m + a; } |
366 | SINTU Vec<N,T> mad(const Vec<N,T>& f, U m, const Vec<N,T>& a) { return f*Vec<N,T>(m) + a; } |
367 | SINTU Vec<N,T> mad(const Vec<N,T>& f, const Vec<N,T>& m, U a) { return f*m + Vec<N,T>(a); } |
368 | SINTU Vec<N,T> mad(const Vec<N,T>& f, U m, U a) { return f*Vec<N,T>(m) + Vec<N,T>(a); } |
369 | SINTU Vec<N,T> mad(U f, const Vec<N,T>& m, U a) { return Vec<N,T>(f)*m + Vec<N,T>(a); } |
370 | SINTU Vec<N,T> mad(U f, U m, const Vec<N,T>& a) { return Vec<N,T>(f)*Vec<N,T>(m) + a; } |
371 | |
372 | // The various op= operators, for vectors... |
373 | SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); } |
374 | SINT Vec<N,T>& operator-=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x - y); } |
375 | SINT Vec<N,T>& operator*=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x * y); } |
376 | SINT Vec<N,T>& operator/=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x / y); } |
377 | SINT Vec<N,T>& operator^=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x ^ y); } |
378 | SINT Vec<N,T>& operator&=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x & y); } |
379 | SINT Vec<N,T>& operator|=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x | y); } |
380 | |
381 | // ... for scalars... |
382 | SINTU Vec<N,T>& operator+=(Vec<N,T>& x, U y) { return (x = x + Vec<N,T>(y)); } |
383 | SINTU Vec<N,T>& operator-=(Vec<N,T>& x, U y) { return (x = x - Vec<N,T>(y)); } |
384 | SINTU Vec<N,T>& operator*=(Vec<N,T>& x, U y) { return (x = x * Vec<N,T>(y)); } |
385 | SINTU Vec<N,T>& operator/=(Vec<N,T>& x, U y) { return (x = x / Vec<N,T>(y)); } |
386 | SINTU Vec<N,T>& operator^=(Vec<N,T>& x, U y) { return (x = x ^ Vec<N,T>(y)); } |
387 | SINTU Vec<N,T>& operator&=(Vec<N,T>& x, U y) { return (x = x & Vec<N,T>(y)); } |
388 | SINTU Vec<N,T>& operator|=(Vec<N,T>& x, U y) { return (x = x | Vec<N,T>(y)); } |
389 | |
390 | // ... and for shifts. |
391 | SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); } |
392 | SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); } |
393 | |
394 | // cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane. |
395 | template <typename D, typename S> |
396 | static inline Vec<1,D> cast(const Vec<1,S>& src) { return (D)src.val; } |
397 | |
398 | template <typename D, int N, typename S> |
399 | static inline Vec<N,D> cast(const Vec<N,S>& src) { |
400 | #if !defined(SKNX_NO_SIMD) && defined(__clang__) |
401 | return to_vec(__builtin_convertvector(to_vext(src), VExt<N,D>)); |
402 | #else |
403 | return join(cast<D>(src.lo), cast<D>(src.hi)); |
404 | #endif |
405 | } |
406 | |
407 | // Shuffle values from a vector pretty arbitrarily: |
408 | // skvx::Vec<4,float> rgba = {R,G,B,A}; |
409 | // shuffle<2,1,0,3> (rgba) ~> {B,G,R,A} |
410 | // shuffle<2,1> (rgba) ~> {B,G} |
411 | // shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G} |
412 | // shuffle<3,3,3,3> (rgba) ~> {A,A,A,A} |
413 | // The only real restriction is that the output also be a legal N=power-of-two sknx::Vec. |
414 | template <int... Ix, int N, typename T> |
415 | static inline Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) { |
416 | #if !defined(SKNX_NO_SIMD) && defined(__clang__) |
417 | return to_vec<sizeof...(Ix),T>(__builtin_shufflevector(to_vext(x), to_vext(x), Ix...)); |
418 | #else |
419 | return { x[Ix]... }; |
420 | #endif |
421 | } |
422 | |
423 | // fma() delivers a fused mul-add, even if that's really expensive. Call it when you know it's not. |
424 | static inline Vec<1,float> fma(const Vec<1,float>& x, |
425 | const Vec<1,float>& y, |
426 | const Vec<1,float>& z) { |
427 | return std::fma(x.val, y.val, z.val); |
428 | } |
429 | template <int N> |
430 | static inline Vec<N,float> fma(const Vec<N,float>& x, |
431 | const Vec<N,float>& y, |
432 | const Vec<N,float>& z) { |
433 | return join(fma(x.lo, y.lo, z.lo), |
434 | fma(x.hi, y.hi, z.hi)); |
435 | } |
436 | |
437 | // div255(x) = (x + 127) / 255 is a bit-exact rounding divide-by-255, packing down to 8-bit. |
438 | template <int N> |
439 | static inline Vec<N,uint8_t> div255(const Vec<N,uint16_t>& x) { |
440 | return cast<uint8_t>( (x+127)/255 ); |
441 | } |
442 | |
443 | // approx_scale(x,y) approximates div255(cast<uint16_t>(x)*cast<uint16_t>(y)) within a bit, |
444 | // and is always perfect when x or y is 0 or 255. |
445 | template <int N> |
446 | static inline Vec<N,uint8_t> approx_scale(const Vec<N,uint8_t>& x, const Vec<N,uint8_t>& y) { |
447 | // All of (x*y+x)/256, (x*y+y)/256, and (x*y+255)/256 meet the criteria above. |
448 | // We happen to have historically picked (x*y+x)/256. |
449 | auto X = cast<uint16_t>(x), |
450 | Y = cast<uint16_t>(y); |
451 | return cast<uint8_t>( (X*Y+X)/256 ); |
452 | } |
453 | |
454 | #if !defined(SKNX_NO_SIMD) && defined(__ARM_NEON) |
455 | // With NEON we can do eight u8*u8 -> u16 in one instruction, vmull_u8 (read, mul-long). |
456 | static inline Vec<8,uint16_t> mull(const Vec<8,uint8_t>& x, |
457 | const Vec<8,uint8_t>& y) { |
458 | return to_vec<8,uint16_t>(vmull_u8(to_vext(x), |
459 | to_vext(y))); |
460 | } |
461 | |
462 | template <int N> |
463 | static inline typename std::enable_if<(N < 8), |
464 | Vec<N,uint16_t>>::type mull(const Vec<N,uint8_t>& x, |
465 | const Vec<N,uint8_t>& y) { |
466 | // N < 8 --> double up data until N == 8, returning the part we need. |
467 | return mull(join(x,x), |
468 | join(y,y)).lo; |
469 | } |
470 | |
471 | template <int N> |
472 | static inline typename std::enable_if<(N > 8), |
473 | Vec<N,uint16_t>>::type mull(const Vec<N,uint8_t>& x, |
474 | const Vec<N,uint8_t>& y) { |
475 | // N > 8 --> usual join(lo,hi) strategy to recurse down to N == 8. |
476 | return join(mull(x.lo, y.lo), |
477 | mull(x.hi, y.hi)); |
478 | } |
479 | #else |
480 | // Nothing special when we don't have NEON... just cast up to 16-bit and multiply. |
481 | template <int N> |
482 | static inline Vec<N,uint16_t> mull(const Vec<N,uint8_t>& x, |
483 | const Vec<N,uint8_t>& y) { |
484 | return cast<uint16_t>(x) |
485 | * cast<uint16_t>(y); |
486 | } |
487 | #endif |
488 | |
489 | #if !defined(SKNX_NO_SIMD) |
490 | |
491 | // Platform-specific specializations and overloads can now drop in here. |
492 | |
493 | #if defined(__AVX__) |
494 | static inline Vec<8,float> sqrt(const Vec<8,float>& x) { |
495 | return bit_pun<Vec<8,float>>(_mm256_sqrt_ps(bit_pun<__m256>(x))); |
496 | } |
497 | static inline Vec<8,float> rsqrt(const Vec<8,float>& x) { |
498 | return bit_pun<Vec<8,float>>(_mm256_rsqrt_ps(bit_pun<__m256>(x))); |
499 | } |
500 | static inline Vec<8,float> rcp(const Vec<8,float>& x) { |
501 | return bit_pun<Vec<8,float>>(_mm256_rcp_ps(bit_pun<__m256>(x))); |
502 | } |
503 | static inline Vec<8,int> lrint(const Vec<8,float>& x) { |
504 | return bit_pun<Vec<8,int>>(_mm256_cvtps_epi32(bit_pun<__m256>(x))); |
505 | } |
506 | #endif |
507 | |
508 | #if defined(__SSE__) |
509 | static inline Vec<4,float> sqrt(const Vec<4,float>& x) { |
510 | return bit_pun<Vec<4,float>>(_mm_sqrt_ps(bit_pun<__m128>(x))); |
511 | } |
512 | static inline Vec<4,float> rsqrt(const Vec<4,float>& x) { |
513 | return bit_pun<Vec<4,float>>(_mm_rsqrt_ps(bit_pun<__m128>(x))); |
514 | } |
515 | static inline Vec<4,float> rcp(const Vec<4,float>& x) { |
516 | return bit_pun<Vec<4,float>>(_mm_rcp_ps(bit_pun<__m128>(x))); |
517 | } |
518 | static inline Vec<4,int> lrint(const Vec<4,float>& x) { |
519 | return bit_pun<Vec<4,int>>(_mm_cvtps_epi32(bit_pun<__m128>(x))); |
520 | } |
521 | |
522 | static inline Vec<2,float> sqrt(const Vec<2,float>& x) { |
523 | return shuffle<0,1>( sqrt(shuffle<0,1,0,1>(x))); |
524 | } |
525 | static inline Vec<2,float> rsqrt(const Vec<2,float>& x) { |
526 | return shuffle<0,1>(rsqrt(shuffle<0,1,0,1>(x))); |
527 | } |
528 | static inline Vec<2,float> rcp(const Vec<2,float>& x) { |
529 | return shuffle<0,1>( rcp(shuffle<0,1,0,1>(x))); |
530 | } |
531 | static inline Vec<2,int> lrint(const Vec<2,float>& x) { |
532 | return shuffle<0,1>(lrint(shuffle<0,1,0,1>(x))); |
533 | } |
534 | #endif |
535 | |
536 | #if defined(__SSE4_1__) |
537 | static inline Vec<4,float> if_then_else(const Vec<4,int >& c, |
538 | const Vec<4,float>& t, |
539 | const Vec<4,float>& e) { |
540 | return bit_pun<Vec<4,float>>(_mm_blendv_ps(bit_pun<__m128>(e), |
541 | bit_pun<__m128>(t), |
542 | bit_pun<__m128>(c))); |
543 | } |
544 | #elif defined(__SSE__) |
545 | static inline Vec<4,float> if_then_else(const Vec<4,int >& c, |
546 | const Vec<4,float>& t, |
547 | const Vec<4,float>& e) { |
548 | return bit_pun<Vec<4,float>>(_mm_or_ps(_mm_and_ps (bit_pun<__m128>(c), |
549 | bit_pun<__m128>(t)), |
550 | _mm_andnot_ps(bit_pun<__m128>(c), |
551 | bit_pun<__m128>(e)))); |
552 | } |
553 | #elif defined(__ARM_NEON) |
554 | static inline Vec<4,float> if_then_else(const Vec<4,int >& c, |
555 | const Vec<4,float>& t, |
556 | const Vec<4,float>& e) { |
557 | return bit_pun<Vec<4,float>>(vbslq_f32(bit_pun<uint32x4_t> (c), |
558 | bit_pun<float32x4_t>(t), |
559 | bit_pun<float32x4_t>(e))); |
560 | } |
561 | #endif |
562 | |
563 | #if defined(__AVX2__) |
564 | static inline Vec<4,float> fma(const Vec<4,float>& x, |
565 | const Vec<4,float>& y, |
566 | const Vec<4,float>& z) { |
567 | return bit_pun<Vec<4,float>>(_mm_fmadd_ps(bit_pun<__m128>(x), |
568 | bit_pun<__m128>(y), |
569 | bit_pun<__m128>(z))); |
570 | } |
571 | |
572 | static inline Vec<8,float> fma(const Vec<8,float>& x, |
573 | const Vec<8,float>& y, |
574 | const Vec<8,float>& z) { |
575 | return bit_pun<Vec<8,float>>(_mm256_fmadd_ps(bit_pun<__m256>(x), |
576 | bit_pun<__m256>(y), |
577 | bit_pun<__m256>(z))); |
578 | } |
579 | #elif defined(__aarch64__) |
580 | static inline Vec<4,float> fma(const Vec<4,float>& x, |
581 | const Vec<4,float>& y, |
582 | const Vec<4,float>& z) { |
583 | // These instructions tend to work like z += xy, so the order here is z,x,y. |
584 | return bit_pun<Vec<4,float>>(vfmaq_f32(bit_pun<float32x4_t>(z), |
585 | bit_pun<float32x4_t>(x), |
586 | bit_pun<float32x4_t>(y))); |
587 | } |
588 | #endif |
589 | |
590 | #endif // !defined(SKNX_NO_SIMD) |
591 | |
592 | } // namespace skvx |
593 | |
594 | #undef SINTU |
595 | #undef SINT |
596 | #undef SIT |
597 | #undef SKVX_ALIGNMENT |
598 | |
599 | #endif//SKVX_DEFINED |
600 | |