1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | * |
7 | * The following code is based on the description in RFC 1321. |
8 | * http://www.ietf.org/rfc/rfc1321.txt |
9 | */ |
10 | |
11 | //The following macros can be defined to affect the MD5 code generated. |
12 | //SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's. |
13 | //SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned). |
14 | //SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN. |
15 | |
16 | #include "src/core/SkMD5.h" |
17 | #include <string.h> |
18 | |
19 | /** MD5 basic transformation. Transforms state based on block. */ |
20 | static void transform(uint32_t state[4], const uint8_t block[64]); |
21 | |
22 | /** Encodes input into output (4 little endian 32 bit values). */ |
23 | static void encode(uint8_t output[16], const uint32_t input[4]); |
24 | |
25 | /** Encodes input into output (little endian 64 bit value). */ |
26 | static void encode(uint8_t output[8], const uint64_t input); |
27 | |
28 | /** Decodes input (4 little endian 32 bit values) into storage, if required. */ |
29 | static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); |
30 | |
31 | SkMD5::SkMD5() : byteCount(0) { |
32 | // These are magic numbers from the specification. |
33 | this->state[0] = 0x67452301; |
34 | this->state[1] = 0xefcdab89; |
35 | this->state[2] = 0x98badcfe; |
36 | this->state[3] = 0x10325476; |
37 | } |
38 | |
39 | bool SkMD5::write(const void* buf, size_t inputLength) { |
40 | const uint8_t* input = reinterpret_cast<const uint8_t*>(buf); |
41 | unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
42 | unsigned int bufferAvailable = 64 - bufferIndex; |
43 | |
44 | unsigned int inputIndex; |
45 | if (inputLength >= bufferAvailable) { |
46 | if (bufferIndex) { |
47 | memcpy(&this->buffer[bufferIndex], input, bufferAvailable); |
48 | transform(this->state, this->buffer); |
49 | inputIndex = bufferAvailable; |
50 | } else { |
51 | inputIndex = 0; |
52 | } |
53 | |
54 | for (; inputIndex + 63 < inputLength; inputIndex += 64) { |
55 | transform(this->state, &input[inputIndex]); |
56 | } |
57 | |
58 | bufferIndex = 0; |
59 | } else { |
60 | inputIndex = 0; |
61 | } |
62 | |
63 | memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); |
64 | |
65 | this->byteCount += inputLength; |
66 | return true; |
67 | } |
68 | |
69 | SkMD5::Digest SkMD5::finish() { |
70 | SkMD5::Digest digest; |
71 | // Get the number of bits before padding. |
72 | uint8_t bits[8]; |
73 | encode(bits, this->byteCount << 3); |
74 | |
75 | // Pad out to 56 mod 64. |
76 | unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
77 | unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); |
78 | static const uint8_t PADDING[64] = { |
79 | 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
80 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
81 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
82 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
83 | }; |
84 | (void)this->write(PADDING, paddingLength); |
85 | |
86 | // Append length (length before padding, will cause final update). |
87 | (void)this->write(bits, 8); |
88 | |
89 | // Write out digest. |
90 | encode(digest.data, this->state); |
91 | |
92 | #if defined(SK_MD5_CLEAR_DATA) |
93 | // Clear state. |
94 | memset(this, 0, sizeof(*this)); |
95 | #endif |
96 | return digest; |
97 | } |
98 | |
99 | struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
100 | //return (x & y) | ((~x) & z); |
101 | return ((y ^ z) & x) ^ z; //equivelent but faster |
102 | }}; |
103 | |
104 | struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
105 | return (x & z) | (y & (~z)); |
106 | //return ((x ^ y) & z) ^ y; //equivelent but slower |
107 | }}; |
108 | |
109 | struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
110 | return x ^ y ^ z; |
111 | }}; |
112 | |
113 | struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
114 | return y ^ (x | (~z)); |
115 | }}; |
116 | |
117 | /** Rotates x left n bits. */ |
118 | static inline uint32_t rotate_left(uint32_t x, uint8_t n) { |
119 | return (x << n) | (x >> (32 - n)); |
120 | } |
121 | |
122 | template <typename T> |
123 | static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, |
124 | uint32_t x, uint8_t s, uint32_t t) { |
125 | a = b + rotate_left(a + operation(b, c, d) + x + t, s); |
126 | } |
127 | |
128 | static void transform(uint32_t state[4], const uint8_t block[64]) { |
129 | uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; |
130 | |
131 | uint32_t storage[16]; |
132 | const uint32_t* X = decode(storage, block); |
133 | |
134 | // Round 1 |
135 | operation(F(), a, b, c, d, X[ 0], 7, 0xd76aa478); // 1 |
136 | operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 |
137 | operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 |
138 | operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 |
139 | operation(F(), a, b, c, d, X[ 4], 7, 0xf57c0faf); // 5 |
140 | operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 |
141 | operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 |
142 | operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 |
143 | operation(F(), a, b, c, d, X[ 8], 7, 0x698098d8); // 9 |
144 | operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 |
145 | operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 |
146 | operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 |
147 | operation(F(), a, b, c, d, X[12], 7, 0x6b901122); // 13 |
148 | operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 |
149 | operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 |
150 | operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 |
151 | |
152 | // Round 2 |
153 | operation(G(), a, b, c, d, X[ 1], 5, 0xf61e2562); // 17 |
154 | operation(G(), d, a, b, c, X[ 6], 9, 0xc040b340); // 18 |
155 | operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 |
156 | operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 |
157 | operation(G(), a, b, c, d, X[ 5], 5, 0xd62f105d); // 21 |
158 | operation(G(), d, a, b, c, X[10], 9, 0x2441453); // 22 |
159 | operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 |
160 | operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 |
161 | operation(G(), a, b, c, d, X[ 9], 5, 0x21e1cde6); // 25 |
162 | operation(G(), d, a, b, c, X[14], 9, 0xc33707d6); // 26 |
163 | operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 |
164 | operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 |
165 | operation(G(), a, b, c, d, X[13], 5, 0xa9e3e905); // 29 |
166 | operation(G(), d, a, b, c, X[ 2], 9, 0xfcefa3f8); // 30 |
167 | operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 |
168 | operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 |
169 | |
170 | // Round 3 |
171 | operation(H(), a, b, c, d, X[ 5], 4, 0xfffa3942); // 33 |
172 | operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 |
173 | operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 |
174 | operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 |
175 | operation(H(), a, b, c, d, X[ 1], 4, 0xa4beea44); // 37 |
176 | operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 |
177 | operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 |
178 | operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 |
179 | operation(H(), a, b, c, d, X[13], 4, 0x289b7ec6); // 41 |
180 | operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 |
181 | operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 |
182 | operation(H(), b, c, d, a, X[ 6], 23, 0x4881d05); // 44 |
183 | operation(H(), a, b, c, d, X[ 9], 4, 0xd9d4d039); // 45 |
184 | operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 |
185 | operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 |
186 | operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 |
187 | |
188 | // Round 4 |
189 | operation(I(), a, b, c, d, X[ 0], 6, 0xf4292244); // 49 |
190 | operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 |
191 | operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 |
192 | operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 |
193 | operation(I(), a, b, c, d, X[12], 6, 0x655b59c3); // 53 |
194 | operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 |
195 | operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 |
196 | operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 |
197 | operation(I(), a, b, c, d, X[ 8], 6, 0x6fa87e4f); // 57 |
198 | operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 |
199 | operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 |
200 | operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 |
201 | operation(I(), a, b, c, d, X[ 4], 6, 0xf7537e82); // 61 |
202 | operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 |
203 | operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 |
204 | operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 |
205 | |
206 | state[0] += a; |
207 | state[1] += b; |
208 | state[2] += c; |
209 | state[3] += d; |
210 | |
211 | #if defined(SK_MD5_CLEAR_DATA) |
212 | // Clear sensitive information. |
213 | if (X == &storage) { |
214 | memset(storage, 0, sizeof(storage)); |
215 | } |
216 | #endif |
217 | } |
218 | |
219 | static void encode(uint8_t output[16], const uint32_t input[4]) { |
220 | for (size_t i = 0, j = 0; i < 4; i++, j += 4) { |
221 | output[j ] = (uint8_t) (input[i] & 0xff); |
222 | output[j+1] = (uint8_t)((input[i] >> 8) & 0xff); |
223 | output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); |
224 | output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); |
225 | } |
226 | } |
227 | |
228 | static void encode(uint8_t output[8], const uint64_t input) { |
229 | output[0] = (uint8_t) (input & 0xff); |
230 | output[1] = (uint8_t)((input >> 8) & 0xff); |
231 | output[2] = (uint8_t)((input >> 16) & 0xff); |
232 | output[3] = (uint8_t)((input >> 24) & 0xff); |
233 | output[4] = (uint8_t)((input >> 32) & 0xff); |
234 | output[5] = (uint8_t)((input >> 40) & 0xff); |
235 | output[6] = (uint8_t)((input >> 48) & 0xff); |
236 | output[7] = (uint8_t)((input >> 56) & 0xff); |
237 | } |
238 | |
239 | static inline bool is_aligned(const void *pointer, size_t byte_count) { |
240 | return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0; |
241 | } |
242 | |
243 | static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { |
244 | #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) |
245 | return reinterpret_cast<const uint32_t*>(input); |
246 | #else |
247 | #if defined(SK_CPU_LENDIAN) |
248 | if (is_aligned(input, 4)) { |
249 | return reinterpret_cast<const uint32_t*>(input); |
250 | } |
251 | #endif |
252 | for (size_t i = 0, j = 0; j < 64; i++, j += 4) { |
253 | storage[i] = ((uint32_t)input[j ]) | |
254 | (((uint32_t)input[j+1]) << 8) | |
255 | (((uint32_t)input[j+2]) << 16) | |
256 | (((uint32_t)input[j+3]) << 24); |
257 | } |
258 | return storage; |
259 | #endif |
260 | } |
261 | |