| 1 | /* | 
|---|
| 2 | * Copyright 2012 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef SkMathPriv_DEFINED | 
|---|
| 9 | #define SkMathPriv_DEFINED | 
|---|
| 10 |  | 
|---|
| 11 | #include "include/core/SkMath.h" | 
|---|
| 12 |  | 
|---|
| 13 | /** | 
|---|
| 14 | *  Return the integer square root of value, with a bias of bitBias | 
|---|
| 15 | */ | 
|---|
| 16 | int32_t SkSqrtBits(int32_t value, int bitBias); | 
|---|
| 17 |  | 
|---|
| 18 | /** Return the integer square root of n, treated as a SkFixed (16.16) | 
|---|
| 19 | */ | 
|---|
| 20 | static inline int32_t SkSqrt32(int32_t n) { return SkSqrtBits(n, 15); } | 
|---|
| 21 |  | 
|---|
| 22 | /** | 
|---|
| 23 | *  Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) | 
|---|
| 24 | */ | 
|---|
| 25 | static inline int SkClampPos(int value) { | 
|---|
| 26 | return value & ~(value >> 31); | 
|---|
| 27 | } | 
|---|
| 28 |  | 
|---|
| 29 | /** | 
|---|
| 30 | * Stores numer/denom and numer%denom into div and mod respectively. | 
|---|
| 31 | */ | 
|---|
| 32 | template <typename In, typename Out> | 
|---|
| 33 | inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) { | 
|---|
| 34 | #ifdef SK_CPU_ARM32 | 
|---|
| 35 | // If we wrote this as in the else branch, GCC won't fuse the two into one | 
|---|
| 36 | // divmod call, but rather a div call followed by a divmod.  Silly!  This | 
|---|
| 37 | // version is just as fast as calling __aeabi_[u]idivmod manually, but with | 
|---|
| 38 | // prettier code. | 
|---|
| 39 | // | 
|---|
| 40 | // This benches as around 2x faster than the code in the else branch. | 
|---|
| 41 | const In d = numer/denom; | 
|---|
| 42 | *div = static_cast<Out>(d); | 
|---|
| 43 | *mod = static_cast<Out>(numer-d*denom); | 
|---|
| 44 | #else | 
|---|
| 45 | // On x86 this will just be a single idiv. | 
|---|
| 46 | *div = static_cast<Out>(numer/denom); | 
|---|
| 47 | *mod = static_cast<Out>(numer%denom); | 
|---|
| 48 | #endif | 
|---|
| 49 | } | 
|---|
| 50 |  | 
|---|
| 51 | /** Returns -1 if n < 0, else returns 0 | 
|---|
| 52 | */ | 
|---|
| 53 | #define (n)    ((int32_t)(n) >> 31) | 
|---|
| 54 |  | 
|---|
| 55 | /** If sign == -1, returns -n, else sign must be 0, and returns n. | 
|---|
| 56 | Typically used in conjunction with SkExtractSign(). | 
|---|
| 57 | */ | 
|---|
| 58 | static inline int32_t SkApplySign(int32_t n, int32_t sign) { | 
|---|
| 59 | SkASSERT(sign == 0 || sign == -1); | 
|---|
| 60 | return (n ^ sign) - sign; | 
|---|
| 61 | } | 
|---|
| 62 |  | 
|---|
| 63 | /** Return x with the sign of y */ | 
|---|
| 64 | static inline int32_t SkCopySign32(int32_t x, int32_t y) { | 
|---|
| 65 | return SkApplySign(x, SkExtractSign(x ^ y)); | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | /** Given a positive value and a positive max, return the value | 
|---|
| 69 | pinned against max. | 
|---|
| 70 | Note: only works as long as max - value doesn't wrap around | 
|---|
| 71 | @return max if value >= max, else value | 
|---|
| 72 | */ | 
|---|
| 73 | static inline unsigned SkClampUMax(unsigned value, unsigned max) { | 
|---|
| 74 | if (value > max) { | 
|---|
| 75 | value = max; | 
|---|
| 76 | } | 
|---|
| 77 | return value; | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | // If a signed int holds min_int (e.g. 0x80000000) it is undefined what happens when | 
|---|
| 81 | // we negate it (even though we *know* we're 2's complement and we'll get the same | 
|---|
| 82 | // value back). So we create this helper function that casts to size_t (unsigned) first, | 
|---|
| 83 | // to avoid the complaint. | 
|---|
| 84 | static inline size_t sk_negate_to_size_t(int32_t value) { | 
|---|
| 85 | #if defined(_MSC_VER) | 
|---|
| 86 | #pragma warning(push) | 
|---|
| 87 | #pragma warning(disable : 4146)  // Thanks MSVC, we know what we're negating an unsigned | 
|---|
| 88 | #endif | 
|---|
| 89 | return -static_cast<size_t>(value); | 
|---|
| 90 | #if defined(_MSC_VER) | 
|---|
| 91 | #pragma warning(pop) | 
|---|
| 92 | #endif | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 96 |  | 
|---|
| 97 | /** Return a*b/255, truncating away any fractional bits. Only valid if both | 
|---|
| 98 | a and b are 0..255 | 
|---|
| 99 | */ | 
|---|
| 100 | static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { | 
|---|
| 101 | SkASSERT((uint8_t)a == a); | 
|---|
| 102 | SkASSERT((uint8_t)b == b); | 
|---|
| 103 | unsigned prod = a*b + 1; | 
|---|
| 104 | return (prod + (prod >> 8)) >> 8; | 
|---|
| 105 | } | 
|---|
| 106 |  | 
|---|
| 107 | /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if | 
|---|
| 108 | both a and b are 0..255. The expected result equals (a * b + 254) / 255. | 
|---|
| 109 | */ | 
|---|
| 110 | static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { | 
|---|
| 111 | SkASSERT((uint8_t)a == a); | 
|---|
| 112 | SkASSERT((uint8_t)b == b); | 
|---|
| 113 | unsigned prod = a*b + 255; | 
|---|
| 114 | return (prod + (prod >> 8)) >> 8; | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | /** Just the rounding step in SkDiv255Round: round(value / 255) | 
|---|
| 118 | */ | 
|---|
| 119 | static inline unsigned SkDiv255Round(unsigned prod) { | 
|---|
| 120 | prod += 128; | 
|---|
| 121 | return (prod + (prod >> 8)) >> 8; | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | /** | 
|---|
| 125 | * Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa. | 
|---|
| 126 | */ | 
|---|
| 127 | #if defined(_MSC_VER) | 
|---|
| 128 | #include <stdlib.h> | 
|---|
| 129 | static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); } | 
|---|
| 130 | #else | 
|---|
| 131 | static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); } | 
|---|
| 132 | #endif | 
|---|
| 133 |  | 
|---|
| 134 | //! Returns the number of leading zero bits (0...32) | 
|---|
| 135 | int SkCLZ_portable(uint32_t); | 
|---|
| 136 |  | 
|---|
| 137 | #ifndef SkCLZ | 
|---|
| 138 | #if defined(SK_BUILD_FOR_WIN) | 
|---|
| 139 | #include <intrin.h> | 
|---|
| 140 |  | 
|---|
| 141 | static inline int SkCLZ(uint32_t mask) { | 
|---|
| 142 | if (mask) { | 
|---|
| 143 | unsigned long index; | 
|---|
| 144 | _BitScanReverse(&index, mask); | 
|---|
| 145 | // Suppress this bogus /analyze warning. The check for non-zero | 
|---|
| 146 | // guarantees that _BitScanReverse will succeed. | 
|---|
| 147 | #pragma warning(suppress : 6102) // Using 'index' from failed function call | 
|---|
| 148 | return index ^ 0x1F; | 
|---|
| 149 | } else { | 
|---|
| 150 | return 32; | 
|---|
| 151 | } | 
|---|
| 152 | } | 
|---|
| 153 | #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) | 
|---|
| 154 | static inline int SkCLZ(uint32_t mask) { | 
|---|
| 155 | // __builtin_clz(0) is undefined, so we have to detect that case. | 
|---|
| 156 | return mask ? __builtin_clz(mask) : 32; | 
|---|
| 157 | } | 
|---|
| 158 | #else | 
|---|
| 159 | #define SkCLZ(x)    SkCLZ_portable(x) | 
|---|
| 160 | #endif | 
|---|
| 161 | #endif | 
|---|
| 162 |  | 
|---|
| 163 | /** | 
|---|
| 164 | *  Returns the smallest power-of-2 that is >= the specified value. If value | 
|---|
| 165 | *  is already a power of 2, then it is returned unchanged. It is undefined | 
|---|
| 166 | *  if value is <= 0. | 
|---|
| 167 | */ | 
|---|
| 168 | static inline int SkNextPow2(int value) { | 
|---|
| 169 | SkASSERT(value > 0); | 
|---|
| 170 | return 1 << (32 - SkCLZ(value - 1)); | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | /** | 
|---|
| 174 | *  Returns the largest power-of-2 that is <= the specified value. If value | 
|---|
| 175 | *  is already a power of 2, then it is returned unchanged. It is undefined | 
|---|
| 176 | *  if value is <= 0. | 
|---|
| 177 | */ | 
|---|
| 178 | static inline int SkPrevPow2(int value) { | 
|---|
| 179 | SkASSERT(value > 0); | 
|---|
| 180 | return 1 << (32 - SkCLZ(value >> 1)); | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | /** | 
|---|
| 184 | *  Returns the log2 of the specified value, were that value to be rounded up | 
|---|
| 185 | *  to the next power of 2. It is undefined to pass 0. Examples: | 
|---|
| 186 | *  SkNextLog2(1) -> 0 | 
|---|
| 187 | *  SkNextLog2(2) -> 1 | 
|---|
| 188 | *  SkNextLog2(3) -> 2 | 
|---|
| 189 | *  SkNextLog2(4) -> 2 | 
|---|
| 190 | *  SkNextLog2(5) -> 3 | 
|---|
| 191 | */ | 
|---|
| 192 | static inline int SkNextLog2(uint32_t value) { | 
|---|
| 193 | SkASSERT(value != 0); | 
|---|
| 194 | return 32 - SkCLZ(value - 1); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | /** | 
|---|
| 198 | *  Returns the log2 of the specified value, were that value to be rounded down | 
|---|
| 199 | *  to the previous power of 2. It is undefined to pass 0. Examples: | 
|---|
| 200 | *  SkPrevLog2(1) -> 0 | 
|---|
| 201 | *  SkPrevLog2(2) -> 1 | 
|---|
| 202 | *  SkPrevLog2(3) -> 1 | 
|---|
| 203 | *  SkPrevLog2(4) -> 2 | 
|---|
| 204 | *  SkPrevLog2(5) -> 2 | 
|---|
| 205 | */ | 
|---|
| 206 | static inline int SkPrevLog2(uint32_t value) { | 
|---|
| 207 | SkASSERT(value != 0); | 
|---|
| 208 | return 32 - SkCLZ(value >> 1); | 
|---|
| 209 | } | 
|---|
| 210 |  | 
|---|
| 211 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 212 |  | 
|---|
| 213 | /** | 
|---|
| 214 | *  Return the smallest power-of-2 >= n. | 
|---|
| 215 | */ | 
|---|
| 216 | static inline uint32_t GrNextPow2(uint32_t n) { | 
|---|
| 217 | return n ? (1 << (32 - SkCLZ(n - 1))) : 1; | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | /** | 
|---|
| 221 | * Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t. | 
|---|
| 222 | */ | 
|---|
| 223 | static inline size_t GrNextSizePow2(size_t n) { | 
|---|
| 224 | constexpr int kNumSizeTBits = 8 * sizeof(size_t); | 
|---|
| 225 | constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1); | 
|---|
| 226 |  | 
|---|
| 227 | if (!n) { | 
|---|
| 228 | return 1; | 
|---|
| 229 | } else if (n >= kHighBitSet) { | 
|---|
| 230 | return n; | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | n--; | 
|---|
| 234 | uint32_t shift = 1; | 
|---|
| 235 | while (shift < kNumSizeTBits) { | 
|---|
| 236 | n |= n >> shift; | 
|---|
| 237 | shift <<= 1; | 
|---|
| 238 | } | 
|---|
| 239 | return n + 1; | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | // conservative check. will return false for very large values that "could" fit | 
|---|
| 243 | template <typename T> static inline bool SkFitsInFixed(T x) { | 
|---|
| 244 | return SkTAbs(x) <= 32767.0f; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | #endif | 
|---|
| 248 |  | 
|---|