1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkMathPriv_DEFINED |
9 | #define SkMathPriv_DEFINED |
10 | |
11 | #include "include/core/SkMath.h" |
12 | |
13 | /** |
14 | * Return the integer square root of value, with a bias of bitBias |
15 | */ |
16 | int32_t SkSqrtBits(int32_t value, int bitBias); |
17 | |
18 | /** Return the integer square root of n, treated as a SkFixed (16.16) |
19 | */ |
20 | static inline int32_t SkSqrt32(int32_t n) { return SkSqrtBits(n, 15); } |
21 | |
22 | /** |
23 | * Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) |
24 | */ |
25 | static inline int SkClampPos(int value) { |
26 | return value & ~(value >> 31); |
27 | } |
28 | |
29 | /** |
30 | * Stores numer/denom and numer%denom into div and mod respectively. |
31 | */ |
32 | template <typename In, typename Out> |
33 | inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) { |
34 | #ifdef SK_CPU_ARM32 |
35 | // If we wrote this as in the else branch, GCC won't fuse the two into one |
36 | // divmod call, but rather a div call followed by a divmod. Silly! This |
37 | // version is just as fast as calling __aeabi_[u]idivmod manually, but with |
38 | // prettier code. |
39 | // |
40 | // This benches as around 2x faster than the code in the else branch. |
41 | const In d = numer/denom; |
42 | *div = static_cast<Out>(d); |
43 | *mod = static_cast<Out>(numer-d*denom); |
44 | #else |
45 | // On x86 this will just be a single idiv. |
46 | *div = static_cast<Out>(numer/denom); |
47 | *mod = static_cast<Out>(numer%denom); |
48 | #endif |
49 | } |
50 | |
51 | /** Returns -1 if n < 0, else returns 0 |
52 | */ |
53 | #define (n) ((int32_t)(n) >> 31) |
54 | |
55 | /** If sign == -1, returns -n, else sign must be 0, and returns n. |
56 | Typically used in conjunction with SkExtractSign(). |
57 | */ |
58 | static inline int32_t SkApplySign(int32_t n, int32_t sign) { |
59 | SkASSERT(sign == 0 || sign == -1); |
60 | return (n ^ sign) - sign; |
61 | } |
62 | |
63 | /** Return x with the sign of y */ |
64 | static inline int32_t SkCopySign32(int32_t x, int32_t y) { |
65 | return SkApplySign(x, SkExtractSign(x ^ y)); |
66 | } |
67 | |
68 | /** Given a positive value and a positive max, return the value |
69 | pinned against max. |
70 | Note: only works as long as max - value doesn't wrap around |
71 | @return max if value >= max, else value |
72 | */ |
73 | static inline unsigned SkClampUMax(unsigned value, unsigned max) { |
74 | if (value > max) { |
75 | value = max; |
76 | } |
77 | return value; |
78 | } |
79 | |
80 | // If a signed int holds min_int (e.g. 0x80000000) it is undefined what happens when |
81 | // we negate it (even though we *know* we're 2's complement and we'll get the same |
82 | // value back). So we create this helper function that casts to size_t (unsigned) first, |
83 | // to avoid the complaint. |
84 | static inline size_t sk_negate_to_size_t(int32_t value) { |
85 | #if defined(_MSC_VER) |
86 | #pragma warning(push) |
87 | #pragma warning(disable : 4146) // Thanks MSVC, we know what we're negating an unsigned |
88 | #endif |
89 | return -static_cast<size_t>(value); |
90 | #if defined(_MSC_VER) |
91 | #pragma warning(pop) |
92 | #endif |
93 | } |
94 | |
95 | /////////////////////////////////////////////////////////////////////////////// |
96 | |
97 | /** Return a*b/255, truncating away any fractional bits. Only valid if both |
98 | a and b are 0..255 |
99 | */ |
100 | static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { |
101 | SkASSERT((uint8_t)a == a); |
102 | SkASSERT((uint8_t)b == b); |
103 | unsigned prod = a*b + 1; |
104 | return (prod + (prod >> 8)) >> 8; |
105 | } |
106 | |
107 | /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if |
108 | both a and b are 0..255. The expected result equals (a * b + 254) / 255. |
109 | */ |
110 | static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { |
111 | SkASSERT((uint8_t)a == a); |
112 | SkASSERT((uint8_t)b == b); |
113 | unsigned prod = a*b + 255; |
114 | return (prod + (prod >> 8)) >> 8; |
115 | } |
116 | |
117 | /** Just the rounding step in SkDiv255Round: round(value / 255) |
118 | */ |
119 | static inline unsigned SkDiv255Round(unsigned prod) { |
120 | prod += 128; |
121 | return (prod + (prod >> 8)) >> 8; |
122 | } |
123 | |
124 | /** |
125 | * Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa. |
126 | */ |
127 | #if defined(_MSC_VER) |
128 | #include <stdlib.h> |
129 | static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); } |
130 | #else |
131 | static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); } |
132 | #endif |
133 | |
134 | //! Returns the number of leading zero bits (0...32) |
135 | int SkCLZ_portable(uint32_t); |
136 | |
137 | #ifndef SkCLZ |
138 | #if defined(SK_BUILD_FOR_WIN) |
139 | #include <intrin.h> |
140 | |
141 | static inline int SkCLZ(uint32_t mask) { |
142 | if (mask) { |
143 | unsigned long index; |
144 | _BitScanReverse(&index, mask); |
145 | // Suppress this bogus /analyze warning. The check for non-zero |
146 | // guarantees that _BitScanReverse will succeed. |
147 | #pragma warning(suppress : 6102) // Using 'index' from failed function call |
148 | return index ^ 0x1F; |
149 | } else { |
150 | return 32; |
151 | } |
152 | } |
153 | #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) |
154 | static inline int SkCLZ(uint32_t mask) { |
155 | // __builtin_clz(0) is undefined, so we have to detect that case. |
156 | return mask ? __builtin_clz(mask) : 32; |
157 | } |
158 | #else |
159 | #define SkCLZ(x) SkCLZ_portable(x) |
160 | #endif |
161 | #endif |
162 | |
163 | /** |
164 | * Returns the smallest power-of-2 that is >= the specified value. If value |
165 | * is already a power of 2, then it is returned unchanged. It is undefined |
166 | * if value is <= 0. |
167 | */ |
168 | static inline int SkNextPow2(int value) { |
169 | SkASSERT(value > 0); |
170 | return 1 << (32 - SkCLZ(value - 1)); |
171 | } |
172 | |
173 | /** |
174 | * Returns the largest power-of-2 that is <= the specified value. If value |
175 | * is already a power of 2, then it is returned unchanged. It is undefined |
176 | * if value is <= 0. |
177 | */ |
178 | static inline int SkPrevPow2(int value) { |
179 | SkASSERT(value > 0); |
180 | return 1 << (32 - SkCLZ(value >> 1)); |
181 | } |
182 | |
183 | /** |
184 | * Returns the log2 of the specified value, were that value to be rounded up |
185 | * to the next power of 2. It is undefined to pass 0. Examples: |
186 | * SkNextLog2(1) -> 0 |
187 | * SkNextLog2(2) -> 1 |
188 | * SkNextLog2(3) -> 2 |
189 | * SkNextLog2(4) -> 2 |
190 | * SkNextLog2(5) -> 3 |
191 | */ |
192 | static inline int SkNextLog2(uint32_t value) { |
193 | SkASSERT(value != 0); |
194 | return 32 - SkCLZ(value - 1); |
195 | } |
196 | |
197 | /** |
198 | * Returns the log2 of the specified value, were that value to be rounded down |
199 | * to the previous power of 2. It is undefined to pass 0. Examples: |
200 | * SkPrevLog2(1) -> 0 |
201 | * SkPrevLog2(2) -> 1 |
202 | * SkPrevLog2(3) -> 1 |
203 | * SkPrevLog2(4) -> 2 |
204 | * SkPrevLog2(5) -> 2 |
205 | */ |
206 | static inline int SkPrevLog2(uint32_t value) { |
207 | SkASSERT(value != 0); |
208 | return 32 - SkCLZ(value >> 1); |
209 | } |
210 | |
211 | /////////////////////////////////////////////////////////////////////////////// |
212 | |
213 | /** |
214 | * Return the smallest power-of-2 >= n. |
215 | */ |
216 | static inline uint32_t GrNextPow2(uint32_t n) { |
217 | return n ? (1 << (32 - SkCLZ(n - 1))) : 1; |
218 | } |
219 | |
220 | /** |
221 | * Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t. |
222 | */ |
223 | static inline size_t GrNextSizePow2(size_t n) { |
224 | constexpr int kNumSizeTBits = 8 * sizeof(size_t); |
225 | constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1); |
226 | |
227 | if (!n) { |
228 | return 1; |
229 | } else if (n >= kHighBitSet) { |
230 | return n; |
231 | } |
232 | |
233 | n--; |
234 | uint32_t shift = 1; |
235 | while (shift < kNumSizeTBits) { |
236 | n |= n >> shift; |
237 | shift <<= 1; |
238 | } |
239 | return n + 1; |
240 | } |
241 | |
242 | // conservative check. will return false for very large values that "could" fit |
243 | template <typename T> static inline bool SkFitsInFixed(T x) { |
244 | return SkTAbs(x) <= 32767.0f; |
245 | } |
246 | |
247 | #endif |
248 | |