| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkMathPriv_DEFINED |
| 9 | #define SkMathPriv_DEFINED |
| 10 | |
| 11 | #include "include/core/SkMath.h" |
| 12 | |
| 13 | /** |
| 14 | * Return the integer square root of value, with a bias of bitBias |
| 15 | */ |
| 16 | int32_t SkSqrtBits(int32_t value, int bitBias); |
| 17 | |
| 18 | /** Return the integer square root of n, treated as a SkFixed (16.16) |
| 19 | */ |
| 20 | static inline int32_t SkSqrt32(int32_t n) { return SkSqrtBits(n, 15); } |
| 21 | |
| 22 | /** |
| 23 | * Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) |
| 24 | */ |
| 25 | static inline int SkClampPos(int value) { |
| 26 | return value & ~(value >> 31); |
| 27 | } |
| 28 | |
| 29 | /** |
| 30 | * Stores numer/denom and numer%denom into div and mod respectively. |
| 31 | */ |
| 32 | template <typename In, typename Out> |
| 33 | inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) { |
| 34 | #ifdef SK_CPU_ARM32 |
| 35 | // If we wrote this as in the else branch, GCC won't fuse the two into one |
| 36 | // divmod call, but rather a div call followed by a divmod. Silly! This |
| 37 | // version is just as fast as calling __aeabi_[u]idivmod manually, but with |
| 38 | // prettier code. |
| 39 | // |
| 40 | // This benches as around 2x faster than the code in the else branch. |
| 41 | const In d = numer/denom; |
| 42 | *div = static_cast<Out>(d); |
| 43 | *mod = static_cast<Out>(numer-d*denom); |
| 44 | #else |
| 45 | // On x86 this will just be a single idiv. |
| 46 | *div = static_cast<Out>(numer/denom); |
| 47 | *mod = static_cast<Out>(numer%denom); |
| 48 | #endif |
| 49 | } |
| 50 | |
| 51 | /** Returns -1 if n < 0, else returns 0 |
| 52 | */ |
| 53 | #define (n) ((int32_t)(n) >> 31) |
| 54 | |
| 55 | /** If sign == -1, returns -n, else sign must be 0, and returns n. |
| 56 | Typically used in conjunction with SkExtractSign(). |
| 57 | */ |
| 58 | static inline int32_t SkApplySign(int32_t n, int32_t sign) { |
| 59 | SkASSERT(sign == 0 || sign == -1); |
| 60 | return (n ^ sign) - sign; |
| 61 | } |
| 62 | |
| 63 | /** Return x with the sign of y */ |
| 64 | static inline int32_t SkCopySign32(int32_t x, int32_t y) { |
| 65 | return SkApplySign(x, SkExtractSign(x ^ y)); |
| 66 | } |
| 67 | |
| 68 | /** Given a positive value and a positive max, return the value |
| 69 | pinned against max. |
| 70 | Note: only works as long as max - value doesn't wrap around |
| 71 | @return max if value >= max, else value |
| 72 | */ |
| 73 | static inline unsigned SkClampUMax(unsigned value, unsigned max) { |
| 74 | if (value > max) { |
| 75 | value = max; |
| 76 | } |
| 77 | return value; |
| 78 | } |
| 79 | |
| 80 | // If a signed int holds min_int (e.g. 0x80000000) it is undefined what happens when |
| 81 | // we negate it (even though we *know* we're 2's complement and we'll get the same |
| 82 | // value back). So we create this helper function that casts to size_t (unsigned) first, |
| 83 | // to avoid the complaint. |
| 84 | static inline size_t sk_negate_to_size_t(int32_t value) { |
| 85 | #if defined(_MSC_VER) |
| 86 | #pragma warning(push) |
| 87 | #pragma warning(disable : 4146) // Thanks MSVC, we know what we're negating an unsigned |
| 88 | #endif |
| 89 | return -static_cast<size_t>(value); |
| 90 | #if defined(_MSC_VER) |
| 91 | #pragma warning(pop) |
| 92 | #endif |
| 93 | } |
| 94 | |
| 95 | /////////////////////////////////////////////////////////////////////////////// |
| 96 | |
| 97 | /** Return a*b/255, truncating away any fractional bits. Only valid if both |
| 98 | a and b are 0..255 |
| 99 | */ |
| 100 | static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { |
| 101 | SkASSERT((uint8_t)a == a); |
| 102 | SkASSERT((uint8_t)b == b); |
| 103 | unsigned prod = a*b + 1; |
| 104 | return (prod + (prod >> 8)) >> 8; |
| 105 | } |
| 106 | |
| 107 | /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if |
| 108 | both a and b are 0..255. The expected result equals (a * b + 254) / 255. |
| 109 | */ |
| 110 | static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { |
| 111 | SkASSERT((uint8_t)a == a); |
| 112 | SkASSERT((uint8_t)b == b); |
| 113 | unsigned prod = a*b + 255; |
| 114 | return (prod + (prod >> 8)) >> 8; |
| 115 | } |
| 116 | |
| 117 | /** Just the rounding step in SkDiv255Round: round(value / 255) |
| 118 | */ |
| 119 | static inline unsigned SkDiv255Round(unsigned prod) { |
| 120 | prod += 128; |
| 121 | return (prod + (prod >> 8)) >> 8; |
| 122 | } |
| 123 | |
| 124 | /** |
| 125 | * Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa. |
| 126 | */ |
| 127 | #if defined(_MSC_VER) |
| 128 | #include <stdlib.h> |
| 129 | static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); } |
| 130 | #else |
| 131 | static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); } |
| 132 | #endif |
| 133 | |
| 134 | //! Returns the number of leading zero bits (0...32) |
| 135 | int SkCLZ_portable(uint32_t); |
| 136 | |
| 137 | #ifndef SkCLZ |
| 138 | #if defined(SK_BUILD_FOR_WIN) |
| 139 | #include <intrin.h> |
| 140 | |
| 141 | static inline int SkCLZ(uint32_t mask) { |
| 142 | if (mask) { |
| 143 | unsigned long index; |
| 144 | _BitScanReverse(&index, mask); |
| 145 | // Suppress this bogus /analyze warning. The check for non-zero |
| 146 | // guarantees that _BitScanReverse will succeed. |
| 147 | #pragma warning(suppress : 6102) // Using 'index' from failed function call |
| 148 | return index ^ 0x1F; |
| 149 | } else { |
| 150 | return 32; |
| 151 | } |
| 152 | } |
| 153 | #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) |
| 154 | static inline int SkCLZ(uint32_t mask) { |
| 155 | // __builtin_clz(0) is undefined, so we have to detect that case. |
| 156 | return mask ? __builtin_clz(mask) : 32; |
| 157 | } |
| 158 | #else |
| 159 | #define SkCLZ(x) SkCLZ_portable(x) |
| 160 | #endif |
| 161 | #endif |
| 162 | |
| 163 | /** |
| 164 | * Returns the smallest power-of-2 that is >= the specified value. If value |
| 165 | * is already a power of 2, then it is returned unchanged. It is undefined |
| 166 | * if value is <= 0. |
| 167 | */ |
| 168 | static inline int SkNextPow2(int value) { |
| 169 | SkASSERT(value > 0); |
| 170 | return 1 << (32 - SkCLZ(value - 1)); |
| 171 | } |
| 172 | |
| 173 | /** |
| 174 | * Returns the largest power-of-2 that is <= the specified value. If value |
| 175 | * is already a power of 2, then it is returned unchanged. It is undefined |
| 176 | * if value is <= 0. |
| 177 | */ |
| 178 | static inline int SkPrevPow2(int value) { |
| 179 | SkASSERT(value > 0); |
| 180 | return 1 << (32 - SkCLZ(value >> 1)); |
| 181 | } |
| 182 | |
| 183 | /** |
| 184 | * Returns the log2 of the specified value, were that value to be rounded up |
| 185 | * to the next power of 2. It is undefined to pass 0. Examples: |
| 186 | * SkNextLog2(1) -> 0 |
| 187 | * SkNextLog2(2) -> 1 |
| 188 | * SkNextLog2(3) -> 2 |
| 189 | * SkNextLog2(4) -> 2 |
| 190 | * SkNextLog2(5) -> 3 |
| 191 | */ |
| 192 | static inline int SkNextLog2(uint32_t value) { |
| 193 | SkASSERT(value != 0); |
| 194 | return 32 - SkCLZ(value - 1); |
| 195 | } |
| 196 | |
| 197 | /** |
| 198 | * Returns the log2 of the specified value, were that value to be rounded down |
| 199 | * to the previous power of 2. It is undefined to pass 0. Examples: |
| 200 | * SkPrevLog2(1) -> 0 |
| 201 | * SkPrevLog2(2) -> 1 |
| 202 | * SkPrevLog2(3) -> 1 |
| 203 | * SkPrevLog2(4) -> 2 |
| 204 | * SkPrevLog2(5) -> 2 |
| 205 | */ |
| 206 | static inline int SkPrevLog2(uint32_t value) { |
| 207 | SkASSERT(value != 0); |
| 208 | return 32 - SkCLZ(value >> 1); |
| 209 | } |
| 210 | |
| 211 | /////////////////////////////////////////////////////////////////////////////// |
| 212 | |
| 213 | /** |
| 214 | * Return the smallest power-of-2 >= n. |
| 215 | */ |
| 216 | static inline uint32_t GrNextPow2(uint32_t n) { |
| 217 | return n ? (1 << (32 - SkCLZ(n - 1))) : 1; |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t. |
| 222 | */ |
| 223 | static inline size_t GrNextSizePow2(size_t n) { |
| 224 | constexpr int kNumSizeTBits = 8 * sizeof(size_t); |
| 225 | constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1); |
| 226 | |
| 227 | if (!n) { |
| 228 | return 1; |
| 229 | } else if (n >= kHighBitSet) { |
| 230 | return n; |
| 231 | } |
| 232 | |
| 233 | n--; |
| 234 | uint32_t shift = 1; |
| 235 | while (shift < kNumSizeTBits) { |
| 236 | n |= n >> shift; |
| 237 | shift <<= 1; |
| 238 | } |
| 239 | return n + 1; |
| 240 | } |
| 241 | |
| 242 | // conservative check. will return false for very large values that "could" fit |
| 243 | template <typename T> static inline bool SkFitsInFixed(T x) { |
| 244 | return SkTAbs(x) <= 32767.0f; |
| 245 | } |
| 246 | |
| 247 | #endif |
| 248 | |