1 | /* |
2 | * Copyright 2020 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef GrBlockAllocator_DEFINED |
9 | #define GrBlockAllocator_DEFINED |
10 | |
11 | #include "include/private/GrTypesPriv.h" |
12 | #include "include/private/SkNoncopyable.h" |
13 | |
14 | #include <memory> // std::unique_ptr |
15 | #include <cstddef> // max_align_t |
16 | |
17 | /** |
18 | * GrBlockAllocator provides low-level support for a block allocated arena with a dynamic tail that |
19 | * tracks space reservations within each block. Its APIs provide the ability to reserve space, |
20 | * resize reservations, and release reservations. It will automatically create new blocks if needed |
21 | * and destroy all remaining blocks when it is destructed. It assumes that anything allocated within |
22 | * its blocks has its destructors called externally. It is recommended that GrBlockAllocator is |
23 | * wrapped by a higher-level allocator that uses the low-level APIs to implement a simpler, |
24 | * purpose-focused API w/o having to worry as much about byte-level concerns. |
25 | * |
26 | * GrBlockAllocator has no limit to its total size, but each allocation is limited to 512MB (which |
27 | * should be sufficient for Ganesh's use cases). This upper allocation limit allows all internal |
28 | * operations to be performed using 'int' and avoid many overflow checks. Static asserts are used |
29 | * to ensure that those operations would not overflow when using the largest possible values. |
30 | * |
31 | * Possible use modes: |
32 | * 1. No upfront allocation, either on the stack or as a field |
33 | * GrBlockAllocator allocator(policy, heapAllocSize); |
34 | * |
35 | * 2. In-place new'd |
36 | * void* mem = operator new(totalSize); |
37 | * GrBlockAllocator* allocator = new (mem) GrBlockAllocator(policy, heapAllocSize, |
38 | * totalSize- sizeof(GrBlockAllocator)); |
39 | * delete allocator; |
40 | * |
41 | * 3. Use GrSBlockAllocator to increase the preallocation size |
42 | * GrSBlockAllocator<1024> allocator(policy, heapAllocSize); |
43 | * sizeof(allocator) == 1024; |
44 | */ |
45 | class GrBlockAllocator final : SkNoncopyable { |
46 | public: |
47 | // Largest size that can be requested from allocate(), chosen because it's the largest pow-2 |
48 | // that is less than int32_t::max()/2. |
49 | static constexpr int kMaxAllocationSize = 1 << 29; |
50 | |
51 | enum class GrowthPolicy : int { |
52 | kFixed, // Next block size = N |
53 | kLinear, // = #blocks * N |
54 | kFibonacci, // = fibonacci(#blocks) * N |
55 | kExponential, // = 2^#blocks * N |
56 | kLast = kExponential |
57 | }; |
58 | static constexpr int kGrowthPolicyCount = static_cast<int>(GrowthPolicy::kLast) + 1; |
59 | |
60 | class Block; |
61 | |
62 | // Tuple representing a range of bytes, marking the unaligned start, the first aligned point |
63 | // after any padding, and the upper limit depending on requested size. |
64 | struct ByteRange { |
65 | Block* fBlock; // Owning block |
66 | int fStart; // Inclusive byte lower limit of byte range |
67 | int fAlignedOffset; // >= start, matching alignment requirement (i.e. first real byte) |
68 | int fEnd; // Exclusive upper limit of byte range |
69 | }; |
70 | |
71 | class Block final { |
72 | public: |
73 | ~Block(); |
74 | void operator delete(void* p) { ::operator delete(p); } |
75 | |
76 | // Return the maximum allocation size with the given alignment that can fit in this block. |
77 | template <size_t Align = 1, size_t Padding = 0> |
78 | int avail() const { return std::max(0, fSize - this->cursor<Align, Padding>()); } |
79 | |
80 | // Return the aligned offset of the first allocation, assuming it was made with the |
81 | // specified Align, and Padding. The returned offset does not mean a valid allocation |
82 | // starts at that offset, this is a utility function for classes built on top to manage |
83 | // indexing into a block effectively. |
84 | template <size_t Align = 1, size_t Padding = 0> |
85 | int firstAlignedOffset() const { return this->alignedOffset<Align, Padding>(kDataStart); } |
86 | |
87 | // Convert an offset into this block's storage into a usable pointer. |
88 | void* ptr(int offset) { |
89 | SkASSERT(offset >= kDataStart && offset < fSize); |
90 | return reinterpret_cast<char*>(this) + offset; |
91 | } |
92 | const void* ptr(int offset) const { return const_cast<Block*>(this)->ptr(offset); } |
93 | |
94 | // Every block has an extra 'int' for clients to use however they want. It will start |
95 | // at 0 when a new block is made, or when the head block is reset. |
96 | int metadata() const { return fMetadata; } |
97 | void setMetadata(int value) { fMetadata = value; } |
98 | |
99 | /** |
100 | * Release the byte range between offset 'start' (inclusive) and 'end' (exclusive). This |
101 | * will return true if those bytes were successfully reclaimed, i.e. a subsequent allocation |
102 | * request could occupy the space. Regardless of return value, the provided byte range that |
103 | * [start, end) represents should not be used until it's re-allocated with allocate<...>(). |
104 | */ |
105 | inline bool release(int start, int end); |
106 | |
107 | /** |
108 | * Resize a previously reserved byte range of offset 'start' (inclusive) to 'end' |
109 | * (exclusive). 'deltaBytes' is the SIGNED change to length of the reservation. |
110 | * |
111 | * When negative this means the reservation is shrunk and the new length is (end - start - |
112 | * |deltaBytes|). If this new length would be 0, the byte range can no longer be used (as if |
113 | * it were released instead). Asserts that it would not shrink the reservation below 0. |
114 | * |
115 | * If 'deltaBytes' is positive, the allocator attempts to increase the length of the |
116 | * reservation. If 'deltaBytes' is less than or equal to avail() and it was the last |
117 | * allocation in the block, it can be resized. If there is not enough available bytes to |
118 | * accommodate the increase in size, or another allocation is blocking the increase in size, |
119 | * then false will be returned and the reserved byte range is unmodified. |
120 | */ |
121 | inline bool resize(int start, int end, int deltaBytes); |
122 | |
123 | private: |
124 | friend class GrBlockAllocator; |
125 | |
126 | Block(Block* prev, int allocationSize); |
127 | |
128 | // Get fCursor, but aligned such that ptr(rval) satisfies Align. |
129 | template <size_t Align, size_t Padding> |
130 | int cursor() const { return this->alignedOffset<Align, Padding>(fCursor); } |
131 | |
132 | template <size_t Align, size_t Padding> |
133 | int alignedOffset(int offset) const; |
134 | |
135 | SkDEBUGCODE(int fSentinel;) // known value to check for bad back pointers to blocks |
136 | |
137 | Block* fNext; // doubly-linked list of blocks |
138 | Block* fPrev; |
139 | |
140 | // Each block tracks its own cursor because as later blocks are released, an older block |
141 | // may become the active tail again. |
142 | int fSize; // includes the size of the BlockHeader and requested metadata |
143 | int fCursor; // (this + fCursor) points to next available allocation |
144 | int fMetadata; |
145 | }; |
146 | |
147 | // The size of the head block is determined by 'additionalPreallocBytes'. Subsequent heap blocks |
148 | // are determined by 'policy' and 'blockIncrementBytes', although 'blockIncrementBytes' will be |
149 | // aligned to std::max_align_t. |
150 | // |
151 | // When 'additionalPreallocBytes' > 0, the allocator assumes that many extra bytes immediately |
152 | // after the allocator can be used by its inline head block. This is useful when the allocator |
153 | // is in-place new'ed into a larger block of memory, but it should remain set to 0 if stack |
154 | // allocated or if the class layout does not guarantee that space is present. |
155 | GrBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes, |
156 | size_t additionalPreallocBytes = 0); |
157 | |
158 | ~GrBlockAllocator() { this->reset(); } |
159 | void operator delete(void* p) { ::operator delete(p); } |
160 | |
161 | /** |
162 | * Helper to calculate the minimum number of bytes needed for heap block size, under the |
163 | * assumption that Align will be the requested alignment of the first call to allocate(). |
164 | * Ex. To store N instances of T in a heap block, the 'blockIncrementBytes' should be set to |
165 | * BlockOverhead<alignof(T)>() + N * sizeof(T) when making the GrBlockAllocator. |
166 | */ |
167 | template<size_t Align = 1, size_t Padding = 0> |
168 | static constexpr size_t BlockOverhead(); |
169 | |
170 | /** |
171 | * Helper to calculate the minimum number of bytes needed for a preallocation, under the |
172 | * assumption that Align will be the requested alignment of the first call to allocate(). |
173 | * Ex. To preallocate a GrSBlockAllocator to hold N instances of T, its arge should be |
174 | * Overhead<alignof(T)>() + N * sizeof(T) |
175 | */ |
176 | template<size_t Align = 1, size_t Padding = 0> |
177 | static constexpr size_t Overhead(); |
178 | |
179 | /** |
180 | * Return the total number of bytes of the allocator, including its instance overhead, per-block |
181 | * overhead and space used for allocations. |
182 | */ |
183 | size_t totalSize() const; |
184 | /** |
185 | * Return the total number of bytes usable for allocations. This includes bytes that have |
186 | * been reserved already by a call to allocate() and bytes that are still available. It is |
187 | * totalSize() minus all allocator and block-level overhead. |
188 | */ |
189 | size_t totalUsableSpace() const; |
190 | /** |
191 | * Return the total number of usable bytes that have been reserved by allocations. This will |
192 | * be less than or equal to totalUsableSpace(). |
193 | */ |
194 | size_t totalSpaceInUse() const; |
195 | |
196 | /** |
197 | * Return the total number of bytes that were pre-allocated for the GrBlockAllocator. This will |
198 | * include 'additionalPreallocBytes' passed to the constructor, and represents what the total |
199 | * size would become after a call to reset(). |
200 | */ |
201 | size_t preallocSize() const { |
202 | // Don't double count fHead's Block overhead in both sizeof(GrBlockAllocator) and fSize. |
203 | return sizeof(GrBlockAllocator) + fHead.fSize - BaseHeadBlockSize(); |
204 | } |
205 | /** |
206 | * Return the usable size of the inline head block; this will be equal to |
207 | * 'additionalPreallocBytes' plus any alignment padding that the system had to add to Block. |
208 | * The returned value represents what could be allocated before a heap block is be created. |
209 | */ |
210 | size_t preallocUsableSpace() const { |
211 | return fHead.fSize - kDataStart; |
212 | } |
213 | |
214 | /** |
215 | * Reserve space that will hold 'size' bytes. This will automatically allocate a new block if |
216 | * there is not enough available space in the current block to provide 'size' bytes. The |
217 | * returned ByteRange tuple specifies the Block owning the reserved memory, the full byte range, |
218 | * and the aligned offset within that range to use for the user-facing pointer. The following |
219 | * invariants hold: |
220 | * |
221 | * 1. block->ptr(alignedOffset) is aligned to Align |
222 | * 2. end - alignedOffset == size |
223 | * 3. Padding <= alignedOffset - start <= Padding + Align - 1 |
224 | * |
225 | * Invariant #3, when Padding > 0, allows intermediate allocators to embed metadata along with |
226 | * the allocations. If the Padding bytes are used for some 'struct Meta', then |
227 | * ptr(alignedOffset - sizeof(Meta)) can be safely used as a Meta* if Meta's alignment |
228 | * requirements are less than or equal to the alignment specified in allocate<>. This can be |
229 | * easily guaranteed by using the pattern: |
230 | * |
231 | * allocate<max(UserAlign, alignof(Meta)), sizeof(Meta)>(userSize); |
232 | * |
233 | * This ensures that ptr(alignedOffset) will always satisfy UserAlign and |
234 | * ptr(alignedOffset - sizeof(Meta)) will always satisfy alignof(Meta). Alternatively, memcpy |
235 | * can be used to read and write values between start and alignedOffset without worrying about |
236 | * alignment requirements of the metadata. |
237 | * |
238 | * For over-aligned allocations, the alignedOffset (as an int) may not be a multiple of Align, |
239 | * but the result of ptr(alignedOffset) will be a multiple of Align. |
240 | */ |
241 | template <size_t Align, size_t Padding = 0> |
242 | ByteRange allocate(size_t size); |
243 | |
244 | /** |
245 | * Return a pointer to the start of the current block. This will never be null. |
246 | */ |
247 | const Block* currentBlock() const { return fTail; } |
248 | Block* currentBlock() { return fTail; } |
249 | |
250 | const Block* headBlock() const { return &fHead; } |
251 | Block* headBlock() { return &fHead; } |
252 | |
253 | /** |
254 | * Return the block that owns the allocated 'ptr'. Assuming that earlier, an allocation was |
255 | * returned as {b, start, alignedOffset, end}, and 'p = b->ptr(alignedOffset)', then a call |
256 | * to 'owningBlock<Align, Padding>(p, start) == b'. |
257 | * |
258 | * If calling code has already made a pointer to their metadata, i.e. 'm = p - Padding', then |
259 | * 'owningBlock<Align, 0>(m, start)' will also return b, allowing you to recover the block from |
260 | * the metadata pointer. |
261 | * |
262 | * If calling code has access to the original alignedOffset, this function should not be used |
263 | * since the owning block is just 'p - alignedOffset', regardless of original Align or Padding. |
264 | */ |
265 | template <size_t Align, size_t Padding = 0> |
266 | Block* owningBlock(const void* ptr, int start); |
267 | |
268 | template <size_t Align, size_t Padding = 0> |
269 | const Block* owningBlock(const void* ptr, int start) const { |
270 | return const_cast<GrBlockAllocator*>(this)->owningBlock<Align, Padding>(ptr, start); |
271 | } |
272 | |
273 | /** |
274 | * Find the owning block of the allocated pointer, 'p'. Without any additional information this |
275 | * is O(N) on the number of allocated blocks. |
276 | */ |
277 | Block* findOwningBlock(const void* ptr); |
278 | const Block* findOwningBlock(const void* ptr) const { |
279 | return const_cast<GrBlockAllocator*>(this)->findOwningBlock(ptr); |
280 | } |
281 | |
282 | /** |
283 | * Explicitly free an entire block, invalidating any remaining allocations from the block. |
284 | * GrBlockAllocator will release all alive blocks automatically when it is destroyed, but this |
285 | * function can be used to reclaim memory over the lifetime of the allocator. The provided |
286 | * 'block' pointer must have previously come from a call to currentBlock() or allocate(). |
287 | * |
288 | * If 'block' represents the inline-allocated head block, its cursor and metadata are instead |
289 | * reset to their defaults. |
290 | */ |
291 | void releaseBlock(Block* block); |
292 | |
293 | /** |
294 | * Explicitly free all blocks (invalidating all allocations), and resets the head block to its |
295 | * default state. |
296 | */ |
297 | void reset(); |
298 | |
299 | template <bool Forward, bool Const> class BlockIter; |
300 | |
301 | /** |
302 | * Clients can iterate over all active Blocks in the GrBlockAllocator using for loops: |
303 | * |
304 | * Forward iteration from head to tail block (or non-const variant): |
305 | * for (const Block* b : this->blocks()) { } |
306 | * Reverse iteration from tail to head block: |
307 | * for (const Block* b : this->rblocks()) { } |
308 | */ |
309 | inline BlockIter<true, false> blocks(); |
310 | inline BlockIter<true, true> blocks() const; |
311 | inline BlockIter<false, false> rblocks(); |
312 | inline BlockIter<false, true> rblocks() const; |
313 | |
314 | #ifdef SK_DEBUG |
315 | static constexpr int kAssignedMarker = 0xBEEFFACE; |
316 | static constexpr int kFreedMarker = 0xCAFEBABE; |
317 | |
318 | void validate() const; |
319 | #endif |
320 | |
321 | private: |
322 | // Smallest value of fCursor, this will automatically repurpose any alignment padding that |
323 | // the compiler introduced if the first allocation is aligned less than max_align_t. |
324 | static constexpr int kDataStart = offsetof(Block, fMetadata) + sizeof(int); |
325 | static constexpr int kBlockIncrementUnits = alignof(std::max_align_t); |
326 | |
327 | // Calculates the size of a new Block required to store a kMaxAllocationSize request for the |
328 | // given alignment and padding bytes. Also represents maximum valid fCursor value in a Block. |
329 | template<size_t Align, size_t Padding> |
330 | static constexpr size_t MaxBlockSize(); |
331 | |
332 | static constexpr int BaseHeadBlockSize() { |
333 | return sizeof(GrBlockAllocator) - offsetof(GrBlockAllocator, fHead); |
334 | } |
335 | |
336 | // Append a new block to the end of the block linked list, updating fTail. 'minSize' must |
337 | // have enough room for sizeof(Block). 'maxSize' is the upper limit of fSize for the new block |
338 | // that will preserve the static guarantees GrBlockAllocator makes. |
339 | void addBlock(int minSize, int maxSize); |
340 | |
341 | Block* fTail; // All non-head blocks are heap allocated; tail will never be null. |
342 | |
343 | // All remaining state is packed into 64 bits to keep GrBlockAllocator at 16 bytes + head block |
344 | // (on a 64-bit system). |
345 | |
346 | // Growth of the block size is controlled by four factors: BlockIncrement, N0 and N1, and a |
347 | // policy defining how N0 is updated. When a new block is needed, we calculate N1' = N0 + N1. |
348 | // Depending on the policy, N0' = N0 (no growth or linear growth), or N0' = N1 (Fibonacci), or |
349 | // N0' = N1' (exponential). The size of the new block is N1' * BlockIncrement * MaxAlign, |
350 | // after which fN0 and fN1 store N0' and N1' clamped into 23 bits. With current bit allocations, |
351 | // N1' is limited to 2^24, and assuming MaxAlign=16, then BlockIncrement must be '2' in order to |
352 | // eventually reach the hard 2^29 size limit of GrBlockAllocator. |
353 | |
354 | // Next heap block size = (fBlockIncrement * alignof(std::max_align_t) * (fN0 + fN1)) |
355 | uint64_t fBlockIncrement : 16; |
356 | uint64_t fGrowthPolicy : 2; // GrowthPolicy |
357 | uint64_t fN0 : 23; // = 1 for linear/exp.; = 0 for fixed/fibonacci, initially |
358 | uint64_t fN1 : 23; // = 1 initially |
359 | |
360 | // Inline head block, must be at the end so that it can utilize any additional reserved space |
361 | // from the initial allocation. |
362 | alignas(alignof(std::max_align_t)) Block fHead; |
363 | |
364 | static_assert(kGrowthPolicyCount <= 4); |
365 | }; |
366 | |
367 | // A wrapper around GrBlockAllocator that includes preallocated storage for the head block. |
368 | // N will be the preallocSize() reported by the allocator. |
369 | template<size_t N> |
370 | class GrSBlockAllocator : SkNoncopyable { |
371 | public: |
372 | using GrowthPolicy = GrBlockAllocator::GrowthPolicy; |
373 | |
374 | GrSBlockAllocator() { |
375 | new (fStorage) GrBlockAllocator(GrowthPolicy::kFixed, N, N - sizeof(GrBlockAllocator)); |
376 | } |
377 | explicit GrSBlockAllocator(GrowthPolicy policy) { |
378 | new (fStorage) GrBlockAllocator(policy, N, N - sizeof(GrBlockAllocator)); |
379 | } |
380 | |
381 | GrSBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes) { |
382 | new (fStorage) GrBlockAllocator(policy, blockIncrementBytes, N - sizeof(GrBlockAllocator)); |
383 | } |
384 | |
385 | ~GrSBlockAllocator() { |
386 | this->allocator()->~GrBlockAllocator(); |
387 | } |
388 | |
389 | GrBlockAllocator* operator->() { return this->allocator(); } |
390 | const GrBlockAllocator* operator->() const { return this->allocator(); } |
391 | |
392 | GrBlockAllocator* allocator() { return reinterpret_cast<GrBlockAllocator*>(fStorage); } |
393 | const GrBlockAllocator* allocator() const { |
394 | return reinterpret_cast<const GrBlockAllocator*>(fStorage); |
395 | } |
396 | |
397 | private: |
398 | static_assert(N >= sizeof(GrBlockAllocator)); |
399 | |
400 | // Will be used to placement new the allocator |
401 | alignas(GrBlockAllocator) char fStorage[N]; |
402 | }; |
403 | |
404 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
405 | // Template and inline implementations |
406 | |
407 | template<size_t Align, size_t Padding> |
408 | constexpr size_t GrBlockAllocator::BlockOverhead() { |
409 | return std::max(sizeof(Block), GrAlignTo(kDataStart + Padding, Align)); |
410 | } |
411 | |
412 | template<size_t Align, size_t Padding> |
413 | constexpr size_t GrBlockAllocator::Overhead() { |
414 | return std::max(sizeof(GrBlockAllocator), |
415 | offsetof(GrBlockAllocator, fHead) + BlockOverhead<Align, Padding>()); |
416 | } |
417 | |
418 | template<size_t Align, size_t Padding> |
419 | constexpr size_t GrBlockAllocator::MaxBlockSize() { |
420 | // Without loss of generality, assumes 'align' will be the largest encountered alignment for the |
421 | // allocator (if it's not, the largest align will be encountered by the compiler and pass/fail |
422 | // the same set of static asserts). |
423 | return BlockOverhead<Align, Padding>() + kMaxAllocationSize; |
424 | } |
425 | |
426 | template <size_t Align, size_t Padding> |
427 | GrBlockAllocator::ByteRange GrBlockAllocator::allocate(size_t size) { |
428 | // Amount of extra space for a new block to make sure the allocation can succeed. |
429 | static constexpr int kBlockOverhead = (int) BlockOverhead<Align, Padding>(); |
430 | |
431 | // Ensures 'offset' and 'end' calculations will be valid |
432 | static_assert((kMaxAllocationSize + GrAlignTo(MaxBlockSize<Align, Padding>(), Align)) |
433 | <= (size_t) std::numeric_limits<int32_t>::max()); |
434 | // Ensures size + blockOverhead + addBlock's alignment operations will be valid |
435 | static_assert(kMaxAllocationSize + kBlockOverhead + ((1 << 12) - 1) // 4K align for large blocks |
436 | <= std::numeric_limits<int32_t>::max()); |
437 | |
438 | if (size > kMaxAllocationSize) { |
439 | SK_ABORT("Allocation too large" ); |
440 | } |
441 | |
442 | int iSize = (int) size; |
443 | int offset = fTail->cursor<Align, Padding>(); |
444 | int end = offset + iSize; |
445 | if (end > fTail->fSize) { |
446 | this->addBlock(iSize + kBlockOverhead, MaxBlockSize<Align, Padding>()); |
447 | offset = fTail->cursor<Align, Padding>(); |
448 | end = offset + iSize; |
449 | } |
450 | |
451 | // Check invariants |
452 | SkASSERT(end <= fTail->fSize); |
453 | SkASSERT(end - offset == iSize); |
454 | SkASSERT(offset - fTail->fCursor >= (int) Padding && |
455 | offset - fTail->fCursor <= (int) (Padding + Align - 1)); |
456 | SkASSERT(reinterpret_cast<uintptr_t>(fTail->ptr(offset)) % Align == 0); |
457 | |
458 | int start = fTail->fCursor; |
459 | fTail->fCursor = end; |
460 | return {fTail, start, offset, end}; |
461 | } |
462 | |
463 | template <size_t Align, size_t Padding> |
464 | GrBlockAllocator::Block* GrBlockAllocator::owningBlock(const void* p, int start) { |
465 | // 'p' was originally formed by aligning 'block + start + Padding', producing the inequality: |
466 | // block + start + Padding <= p <= block + start + Padding + Align-1 |
467 | // Rearranging this yields: |
468 | // block <= p - start - Padding <= block + Align-1 |
469 | // Masking these terms by ~(Align-1) reconstructs 'block' if the alignment of the block is |
470 | // greater than or equal to Align (since block & ~(Align-1) == (block + Align-1) & ~(Align-1) |
471 | // in that case). Overalignment does not reduce to inequality unfortunately. |
472 | if /* constexpr */ (Align <= alignof(std::max_align_t)) { |
473 | Block* block = reinterpret_cast<Block*>( |
474 | (reinterpret_cast<uintptr_t>(p) - start - Padding) & ~(Align - 1)); |
475 | SkASSERT(block->fSentinel == kAssignedMarker); |
476 | return block; |
477 | } else { |
478 | // There's not a constant-time expression available to reconstruct the block from 'p', |
479 | // but this is unlikely to happen frequently. |
480 | return this->findOwningBlock(p); |
481 | } |
482 | } |
483 | |
484 | template <size_t Align, size_t Padding> |
485 | int GrBlockAllocator::Block::alignedOffset(int offset) const { |
486 | static_assert(SkIsPow2(Align)); |
487 | // Aligning adds (Padding + Align - 1) as an intermediate step, so ensure that can't overflow |
488 | static_assert(MaxBlockSize<Align, Padding>() + Padding + Align - 1 |
489 | <= (size_t) std::numeric_limits<int32_t>::max()); |
490 | |
491 | if /* constexpr */ (Align <= alignof(std::max_align_t)) { |
492 | // Same as GrAlignTo, but operates on ints instead of size_t |
493 | return (offset + Padding + Align - 1) & ~(Align - 1); |
494 | } else { |
495 | // Must take into account that 'this' may be starting at a pointer that doesn't satisfy the |
496 | // larger alignment request, so must align the entire pointer, not just offset |
497 | uintptr_t blockPtr = reinterpret_cast<uintptr_t>(this); |
498 | uintptr_t alignedPtr = (blockPtr + offset + Padding + Align - 1) & ~(Align - 1); |
499 | SkASSERT(alignedPtr - blockPtr <= (uintptr_t) std::numeric_limits<int32_t>::max()); |
500 | return (int) (alignedPtr - blockPtr); |
501 | } |
502 | } |
503 | |
504 | bool GrBlockAllocator::Block::resize(int start, int end, int deltaBytes) { |
505 | SkASSERT(fSentinel == kAssignedMarker); |
506 | SkASSERT(start >= kDataStart && end <= fSize && start < end); |
507 | |
508 | if (deltaBytes > kMaxAllocationSize || deltaBytes < -kMaxAllocationSize) { |
509 | // Cannot possibly satisfy the resize and could overflow subsequent math |
510 | return false; |
511 | } |
512 | if (fCursor == end) { |
513 | int nextCursor = end + deltaBytes; |
514 | SkASSERT(nextCursor >= start); |
515 | // We still check nextCursor >= start for release builds that wouldn't assert. |
516 | if (nextCursor <= fSize && nextCursor >= start) { |
517 | fCursor = nextCursor; |
518 | return true; |
519 | } |
520 | } |
521 | return false; |
522 | } |
523 | |
524 | // NOTE: release is equivalent to resize(start, end, start - end), and the compiler can optimize |
525 | // most of the operations away, but it wasn't able to remove the unnecessary branch comparing the |
526 | // new cursor to the block size or old start, so release() gets a specialization. |
527 | bool GrBlockAllocator::Block::release(int start, int end) { |
528 | SkASSERT(fSentinel == kAssignedMarker); |
529 | SkASSERT(start >= kDataStart && end <= fSize && start < end); |
530 | if (fCursor == end) { |
531 | fCursor = start; |
532 | return true; |
533 | } else { |
534 | return false; |
535 | } |
536 | } |
537 | |
538 | ///////// Block iteration |
539 | template <bool Forward, bool Const> |
540 | class GrBlockAllocator::BlockIter { |
541 | public: |
542 | using BlockT = typename std::conditional<Const, const Block, Block>::type; |
543 | using AllocatorT = |
544 | typename std::conditional<Const, const GrBlockAllocator, GrBlockAllocator>::type; |
545 | |
546 | BlockIter(AllocatorT* allocator) : fAllocator(allocator) {} |
547 | |
548 | class Item { |
549 | public: |
550 | bool operator!=(const Item& other) const { return fBlock != other.fBlock; } |
551 | |
552 | BlockT* operator*() const { return fBlock; } |
553 | |
554 | Item& operator++() { |
555 | fBlock = Forward ? fBlock->fNext : fBlock->fPrev; |
556 | return *this; |
557 | } |
558 | |
559 | private: |
560 | friend BlockIter; |
561 | |
562 | Item(BlockT* block) : fBlock(block) {} |
563 | |
564 | BlockT* fBlock; |
565 | }; |
566 | |
567 | Item begin() const { return Item(Forward ? &fAllocator->fHead : fAllocator->fTail); } |
568 | Item end() const { return Item(nullptr); } |
569 | |
570 | private: |
571 | AllocatorT* fAllocator; |
572 | }; |
573 | |
574 | GrBlockAllocator::BlockIter<true, false> GrBlockAllocator::blocks() { |
575 | return BlockIter<true, false>(this); |
576 | } |
577 | GrBlockAllocator::BlockIter<true, true> GrBlockAllocator::blocks() const { |
578 | return BlockIter<true, true>(this); |
579 | } |
580 | GrBlockAllocator::BlockIter<false, false> GrBlockAllocator::rblocks() { |
581 | return BlockIter<false, false>(this); |
582 | } |
583 | GrBlockAllocator::BlockIter<false, true> GrBlockAllocator::rblocks() const { |
584 | return BlockIter<false, true>(this); |
585 | } |
586 | |
587 | #endif // GrBlockAllocator_DEFINED |
588 | |