| 1 | /* |
| 2 | * Copyright 2016 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SKSL_CONSTRUCTOR |
| 9 | #define SKSL_CONSTRUCTOR |
| 10 | |
| 11 | #include "src/sksl/SkSLIRGenerator.h" |
| 12 | #include "src/sksl/ir/SkSLExpression.h" |
| 13 | #include "src/sksl/ir/SkSLFloatLiteral.h" |
| 14 | #include "src/sksl/ir/SkSLIntLiteral.h" |
| 15 | #include "src/sksl/ir/SkSLPrefixExpression.h" |
| 16 | |
| 17 | namespace SkSL { |
| 18 | |
| 19 | /** |
| 20 | * Represents the construction of a compound type, such as "float2(x, y)". |
| 21 | * |
| 22 | * Vector constructors will always consist of either exactly 1 scalar, or a collection of vectors |
| 23 | * and scalars totalling exactly the right number of scalar components. |
| 24 | * |
| 25 | * Matrix constructors will always consist of either exactly 1 scalar, exactly 1 matrix, or a |
| 26 | * collection of vectors and scalars totalling exactly the right number of scalar components. |
| 27 | */ |
| 28 | struct Constructor : public Expression { |
| 29 | Constructor(int offset, const Type& type, std::vector<std::unique_ptr<Expression>> arguments) |
| 30 | : INHERITED(offset, kConstructor_Kind, type) |
| 31 | , fArguments(std::move(arguments)) {} |
| 32 | |
| 33 | std::unique_ptr<Expression> constantPropagate(const IRGenerator& irGenerator, |
| 34 | const DefinitionMap& definitions) override { |
| 35 | if (fArguments.size() == 1 && fArguments[0]->fKind == Expression::kIntLiteral_Kind) { |
| 36 | if (fType.isFloat()) { |
| 37 | // promote float(1) to 1.0 |
| 38 | int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; |
| 39 | return std::unique_ptr<Expression>(new FloatLiteral(irGenerator.fContext, |
| 40 | fOffset, |
| 41 | intValue)); |
| 42 | } else if (fType.isInteger()) { |
| 43 | // promote uint(1) to 1u |
| 44 | int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; |
| 45 | return std::unique_ptr<Expression>(new IntLiteral(fOffset, |
| 46 | intValue, |
| 47 | &fType)); |
| 48 | } |
| 49 | } |
| 50 | return nullptr; |
| 51 | } |
| 52 | |
| 53 | bool hasProperty(Property property) const override { |
| 54 | for (const auto& arg : fArguments) { |
| 55 | if (arg->hasProperty(property)) { |
| 56 | return true; |
| 57 | } |
| 58 | } |
| 59 | return false; |
| 60 | } |
| 61 | |
| 62 | std::unique_ptr<Expression> clone() const override { |
| 63 | std::vector<std::unique_ptr<Expression>> cloned; |
| 64 | for (const auto& arg : fArguments) { |
| 65 | cloned.push_back(arg->clone()); |
| 66 | } |
| 67 | return std::unique_ptr<Expression>(new Constructor(fOffset, fType, std::move(cloned))); |
| 68 | } |
| 69 | |
| 70 | #ifdef SK_DEBUG |
| 71 | String description() const override { |
| 72 | String result = fType.description() + "(" ; |
| 73 | String separator; |
| 74 | for (size_t i = 0; i < fArguments.size(); i++) { |
| 75 | result += separator; |
| 76 | result += fArguments[i]->description(); |
| 77 | separator = ", " ; |
| 78 | } |
| 79 | result += ")" ; |
| 80 | return result; |
| 81 | } |
| 82 | #endif |
| 83 | |
| 84 | bool isConstant() const override { |
| 85 | for (size_t i = 0; i < fArguments.size(); i++) { |
| 86 | if (!fArguments[i]->isConstant()) { |
| 87 | return false; |
| 88 | } |
| 89 | } |
| 90 | return true; |
| 91 | } |
| 92 | |
| 93 | bool compareConstant(const Context& context, const Expression& other) const override { |
| 94 | SkASSERT(other.fKind == Expression::kConstructor_Kind && other.fType == fType); |
| 95 | Constructor& c = (Constructor&) other; |
| 96 | if (c.fType.kind() == Type::kVector_Kind) { |
| 97 | bool isFloat = c.fType.columns() > 1 ? c.fType.componentType().isFloat() |
| 98 | : c.fType.isFloat(); |
| 99 | for (int i = 0; i < fType.columns(); i++) { |
| 100 | if (isFloat) { |
| 101 | if (this->getFVecComponent(i) != c.getFVecComponent(i)) { |
| 102 | return false; |
| 103 | } |
| 104 | } else if (this->getIVecComponent(i) != c.getIVecComponent(i)) { |
| 105 | return false; |
| 106 | } |
| 107 | } |
| 108 | return true; |
| 109 | } |
| 110 | // shouldn't be possible to have a constant constructor that isn't a vector or matrix; |
| 111 | // a constant scalar constructor should have been collapsed down to the appropriate |
| 112 | // literal |
| 113 | SkASSERT(fType.kind() == Type::kMatrix_Kind); |
| 114 | for (int col = 0; col < fType.columns(); col++) { |
| 115 | for (int row = 0; row < fType.rows(); row++) { |
| 116 | if (getMatComponent(col, row) != c.getMatComponent(col, row)) { |
| 117 | return false; |
| 118 | } |
| 119 | } |
| 120 | } |
| 121 | return true; |
| 122 | } |
| 123 | |
| 124 | template<typename type> |
| 125 | type getVecComponent(int index) const { |
| 126 | SkASSERT(fType.kind() == Type::kVector_Kind); |
| 127 | if (fArguments.size() == 1 && fArguments[0]->fType.kind() == Type::kScalar_Kind) { |
| 128 | if (std::is_floating_point<type>::value) { |
| 129 | return fArguments[0]->getConstantFloat(); |
| 130 | } else { |
| 131 | return fArguments[0]->getConstantInt(); |
| 132 | } |
| 133 | } |
| 134 | int current = 0; |
| 135 | for (const auto& arg : fArguments) { |
| 136 | SkASSERT(current <= index); |
| 137 | if (arg->fType.kind() == Type::kScalar_Kind) { |
| 138 | if (index == current) { |
| 139 | if (std::is_floating_point<type>::value) { |
| 140 | return arg.get()->getConstantFloat(); |
| 141 | } else { |
| 142 | return arg.get()->getConstantInt(); |
| 143 | } |
| 144 | } |
| 145 | current++; |
| 146 | } else if (arg->fKind == kConstructor_Kind) { |
| 147 | if (current + arg->fType.columns() > index) { |
| 148 | return ((const Constructor&) *arg).getVecComponent<type>(index - current); |
| 149 | } |
| 150 | current += arg->fType.columns(); |
| 151 | } else { |
| 152 | if (current + arg->fType.columns() > index) { |
| 153 | SkASSERT(arg->fKind == kPrefix_Kind); |
| 154 | const PrefixExpression& p = (PrefixExpression&) *arg; |
| 155 | const Constructor& c = (const Constructor&) *p.fOperand; |
| 156 | return -c.getVecComponent<type>(index - current); |
| 157 | } |
| 158 | current += arg->fType.columns(); |
| 159 | } |
| 160 | } |
| 161 | #ifdef SK_DEBUG |
| 162 | ABORT("failed to find vector component %d in %s\n" , index, description().c_str()); |
| 163 | #endif |
| 164 | return -1; |
| 165 | } |
| 166 | |
| 167 | SKSL_FLOAT getFVecComponent(int n) const override { |
| 168 | return this->getVecComponent<SKSL_FLOAT>(n); |
| 169 | } |
| 170 | |
| 171 | /** |
| 172 | * For a literal vector expression, return the integer value of the n'th vector component. It is |
| 173 | * an error to call this method on an expression which is not a literal vector. |
| 174 | */ |
| 175 | SKSL_INT getIVecComponent(int n) const override { |
| 176 | return this->getVecComponent<SKSL_INT>(n); |
| 177 | } |
| 178 | |
| 179 | SKSL_FLOAT getMatComponent(int col, int row) const override { |
| 180 | SkASSERT(this->isConstant()); |
| 181 | SkASSERT(fType.kind() == Type::kMatrix_Kind); |
| 182 | SkASSERT(col < fType.columns() && row < fType.rows()); |
| 183 | if (fArguments.size() == 1) { |
| 184 | if (fArguments[0]->fType.kind() == Type::kScalar_Kind) { |
| 185 | // single scalar argument, so matrix is of the form: |
| 186 | // x 0 0 |
| 187 | // 0 x 0 |
| 188 | // 0 0 x |
| 189 | // return x if col == row |
| 190 | return col == row ? fArguments[0]->getConstantFloat() : 0.0; |
| 191 | } |
| 192 | if (fArguments[0]->fType.kind() == Type::kMatrix_Kind) { |
| 193 | SkASSERT(fArguments[0]->fKind == Expression::kConstructor_Kind); |
| 194 | // single matrix argument. make sure we're within the argument's bounds. |
| 195 | const Type& argType = ((Constructor&) *fArguments[0]).fType; |
| 196 | if (col < argType.columns() && row < argType.rows()) { |
| 197 | // within bounds, defer to argument |
| 198 | return ((Constructor&) *fArguments[0]).getMatComponent(col, row); |
| 199 | } |
| 200 | // out of bounds |
| 201 | return 0.0; |
| 202 | } |
| 203 | } |
| 204 | int currentIndex = 0; |
| 205 | int targetIndex = col * fType.rows() + row; |
| 206 | for (const auto& arg : fArguments) { |
| 207 | SkASSERT(targetIndex >= currentIndex); |
| 208 | SkASSERT(arg->fType.rows() == 1); |
| 209 | if (currentIndex + arg->fType.columns() > targetIndex) { |
| 210 | if (arg->fType.columns() == 1) { |
| 211 | return arg->getConstantFloat(); |
| 212 | } else { |
| 213 | return arg->getFVecComponent(targetIndex - currentIndex); |
| 214 | } |
| 215 | } |
| 216 | currentIndex += arg->fType.columns(); |
| 217 | } |
| 218 | ABORT("can't happen, matrix component out of bounds" ); |
| 219 | } |
| 220 | |
| 221 | std::vector<std::unique_ptr<Expression>> fArguments; |
| 222 | |
| 223 | typedef Expression INHERITED; |
| 224 | }; |
| 225 | |
| 226 | } // namespace |
| 227 | |
| 228 | #endif |
| 229 | |