| 1 | #include "dng_safe_arithmetic.h" |
| 2 | |
| 3 | #include <cmath> |
| 4 | #include <limits> |
| 5 | |
| 6 | #include "dng_exceptions.h" |
| 7 | |
| 8 | // Implementation of safe integer arithmetic follows guidelines from |
| 9 | // https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap |
| 10 | // and |
| 11 | // https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow |
| 12 | |
| 13 | namespace { |
| 14 | |
| 15 | // Template functions for safe arithmetic. These functions are not exposed in |
| 16 | // the header for the time being to avoid having to add checks for the various |
| 17 | // constraints on the template argument (e.g. that it is integral and possibly |
| 18 | // signed or unsigned only). This should be done using a static_assert(), but |
| 19 | // we want to be portable to pre-C++11 compilers. |
| 20 | |
| 21 | // Returns the result of adding arg1 and arg2 if it will fit in a T (where T is |
| 22 | // a signed or unsigned integer type). Otherwise, throws a dng_exception with |
| 23 | // error code dng_error_unknown. |
| 24 | template <class T> |
| 25 | T SafeAdd(T arg1, T arg2) { |
| 26 | // The condition is reformulated relative to the version on |
| 27 | // www.securecoding.cert.org to check for valid instead of invalid cases. It |
| 28 | // seems safer to enumerate the valid cases (and potentially miss one) than |
| 29 | // enumerate the invalid cases. |
| 30 | // If T is an unsigned type, the second half of the condition always evaluates |
| 31 | // to false and will presumably be compiled out by the compiler. |
| 32 | if ((arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) || |
| 33 | (arg1 < 0 && arg2 >= std::numeric_limits<T>::min() - arg1)) { |
| 34 | return arg1 + arg2; |
| 35 | } else { |
| 36 | ThrowProgramError("Arithmetic overflow" ); |
| 37 | abort(); // Never reached. |
| 38 | } |
| 39 | } |
| 40 | |
| 41 | // Returns the result of multiplying arg1 and arg2 if it will fit in a T (where |
| 42 | // T is an unsigned integer type). Otherwise, throws a dng_exception with error |
| 43 | // code dng_error_unknown. |
| 44 | template <class T> |
| 45 | T SafeUnsignedMult(T arg1, T arg2) { |
| 46 | if (arg1 == 0 || arg2 <= std::numeric_limits<T>::max() / arg1) { |
| 47 | return arg1 * arg2; |
| 48 | } else { |
| 49 | ThrowProgramError("Arithmetic overflow" ); |
| 50 | abort(); // Never reached. |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | } // namespace |
| 55 | |
| 56 | bool SafeInt32Add(std::int32_t arg1, std::int32_t arg2, std::int32_t *result) { |
| 57 | try { |
| 58 | *result = SafeInt32Add(arg1, arg2); |
| 59 | return true; |
| 60 | } catch (const dng_exception &) { |
| 61 | return false; |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | std::int32_t SafeInt32Add(std::int32_t arg1, std::int32_t arg2) { |
| 66 | return SafeAdd<std::int32_t>(arg1, arg2); |
| 67 | } |
| 68 | |
| 69 | std::int64_t SafeInt64Add(std::int64_t arg1, std::int64_t arg2) { |
| 70 | return SafeAdd<std::int64_t>(arg1, arg2); |
| 71 | } |
| 72 | |
| 73 | bool SafeUint32Add(std::uint32_t arg1, std::uint32_t arg2, |
| 74 | std::uint32_t *result) { |
| 75 | try { |
| 76 | *result = SafeUint32Add(arg1, arg2); |
| 77 | return true; |
| 78 | } catch (const dng_exception &) { |
| 79 | return false; |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | std::uint32_t SafeUint32Add(std::uint32_t arg1, std::uint32_t arg2) { |
| 84 | return SafeAdd<std::uint32_t>(arg1, arg2); |
| 85 | } |
| 86 | |
| 87 | std::uint64_t SafeUint64Add(std::uint64_t arg1, std::uint64_t arg2) { |
| 88 | return SafeAdd<std::uint64_t>(arg1, arg2); |
| 89 | } |
| 90 | |
| 91 | bool SafeInt32Sub(std::int32_t arg1, std::int32_t arg2, std::int32_t *result) { |
| 92 | if ((arg2 >= 0 && arg1 >= std::numeric_limits<int32_t>::min() + arg2) || |
| 93 | (arg2 < 0 && arg1 <= std::numeric_limits<int32_t>::max() + arg2)) { |
| 94 | *result = arg1 - arg2; |
| 95 | return true; |
| 96 | } else { |
| 97 | return false; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | std::int32_t SafeInt32Sub(std::int32_t arg1, std::int32_t arg2) { |
| 102 | std::int32_t result = 0; |
| 103 | |
| 104 | if (!SafeInt32Sub(arg1, arg2, &result)) { |
| 105 | ThrowProgramError("Arithmetic overflow" ); |
| 106 | } |
| 107 | |
| 108 | return result; |
| 109 | } |
| 110 | |
| 111 | std::uint32_t SafeUint32Sub(std::uint32_t arg1, std::uint32_t arg2) { |
| 112 | if (arg1 >= arg2) { |
| 113 | return arg1 - arg2; |
| 114 | } else { |
| 115 | ThrowProgramError("Arithmetic overflow" ); |
| 116 | abort(); // Never reached. |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | bool SafeUint32Mult(std::uint32_t arg1, std::uint32_t arg2, |
| 121 | std::uint32_t *result) { |
| 122 | try { |
| 123 | *result = SafeUint32Mult(arg1, arg2); |
| 124 | return true; |
| 125 | } catch (const dng_exception &) { |
| 126 | return false; |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | bool SafeUint32Mult(std::uint32_t arg1, std::uint32_t arg2, std::uint32_t arg3, |
| 131 | std::uint32_t *result) { |
| 132 | try { |
| 133 | *result = SafeUint32Mult(arg1, arg2, arg3); |
| 134 | return true; |
| 135 | } catch (const dng_exception &) { |
| 136 | return false; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | bool SafeUint32Mult(std::uint32_t arg1, std::uint32_t arg2, std::uint32_t arg3, |
| 141 | std::uint32_t arg4, std::uint32_t *result) { |
| 142 | try { |
| 143 | *result = SafeUint32Mult(arg1, arg2, arg3, arg4); |
| 144 | return true; |
| 145 | } catch (const dng_exception &) { |
| 146 | return false; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | std::uint32_t SafeUint32Mult(std::uint32_t arg1, std::uint32_t arg2) { |
| 151 | return SafeUnsignedMult<std::uint32_t>(arg1, arg2); |
| 152 | } |
| 153 | |
| 154 | std::uint32_t SafeUint32Mult(std::uint32_t arg1, std::uint32_t arg2, |
| 155 | std::uint32_t arg3) { |
| 156 | return SafeUint32Mult(SafeUint32Mult(arg1, arg2), arg3); |
| 157 | } |
| 158 | |
| 159 | std::uint32_t SafeUint32Mult(std::uint32_t arg1, std::uint32_t arg2, |
| 160 | std::uint32_t arg3, std::uint32_t arg4) { |
| 161 | return SafeUint32Mult(SafeUint32Mult(arg1, arg2, arg3), arg4); |
| 162 | } |
| 163 | |
| 164 | std::int32_t SafeInt32Mult(std::int32_t arg1, std::int32_t arg2) { |
| 165 | const std::int64_t tmp = |
| 166 | static_cast<std::int64_t>(arg1) * static_cast<std::int64_t>(arg2); |
| 167 | if (tmp >= std::numeric_limits<std::int32_t>::min() && |
| 168 | tmp <= std::numeric_limits<std::int32_t>::max()) { |
| 169 | return static_cast<std::int32_t>(tmp); |
| 170 | } else { |
| 171 | ThrowProgramError("Arithmetic overflow" ); |
| 172 | abort(); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | std::size_t SafeSizetMult(std::size_t arg1, std::size_t arg2) { |
| 177 | return SafeUnsignedMult<std::size_t>(arg1, arg2); |
| 178 | } |
| 179 | |
| 180 | namespace dng_internal { |
| 181 | |
| 182 | std::int64_t SafeInt64MultSlow(std::int64_t arg1, std::int64_t arg2) { |
| 183 | bool overflow = true; |
| 184 | |
| 185 | if (arg1 > 0) { |
| 186 | if (arg2 > 0) { |
| 187 | overflow = (arg1 > std::numeric_limits<std::int64_t>::max() / arg2); |
| 188 | } else { |
| 189 | overflow = (arg2 < std::numeric_limits<std::int64_t>::min() / arg1); |
| 190 | } |
| 191 | } else { |
| 192 | if (arg2 > 0) { |
| 193 | overflow = (arg1 < std::numeric_limits<std::int64_t>::min() / arg2); |
| 194 | } else { |
| 195 | overflow = (arg1 != 0 && |
| 196 | arg2 < std::numeric_limits<std::int64_t>::max() / arg1); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | if (overflow) { |
| 201 | ThrowProgramError("Arithmetic overflow" ); |
| 202 | abort(); // Never reached. |
| 203 | } else { |
| 204 | return arg1 * arg2; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | } // namespace dng_internal |
| 209 | |
| 210 | std::uint32_t SafeUint32DivideUp(std::uint32_t arg1, std::uint32_t arg2) { |
| 211 | // It might seem more intuitive to implement this function simply as |
| 212 | // |
| 213 | // return arg2 == 0 ? 0 : (arg1 + arg2 - 1) / arg2; |
| 214 | // |
| 215 | // but the expression "arg1 + arg2" can wrap around. |
| 216 | |
| 217 | if (arg2 == 0) { |
| 218 | ThrowProgramError("Division by zero" ); |
| 219 | abort(); // Never reached. |
| 220 | } else if (arg1 == 0) { |
| 221 | // If arg1 is zero, return zero to avoid wraparound in the expression |
| 222 | // "arg1 - 1" below. |
| 223 | return 0; |
| 224 | } else { |
| 225 | return (arg1 - 1) / arg2 + 1; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | bool RoundUpUint32ToMultiple(std::uint32_t val, std::uint32_t multiple_of, |
| 230 | std::uint32_t *result) { |
| 231 | try { |
| 232 | *result = RoundUpUint32ToMultiple(val, multiple_of); |
| 233 | return true; |
| 234 | } catch (const dng_exception &) { |
| 235 | return false; |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | std::uint32_t RoundUpUint32ToMultiple(std::uint32_t val, |
| 240 | std::uint32_t multiple_of) { |
| 241 | if (multiple_of == 0) { |
| 242 | ThrowProgramError("multiple_of is zero in RoundUpUint32ToMultiple" ); |
| 243 | } |
| 244 | |
| 245 | const std::uint32_t remainder = val % multiple_of; |
| 246 | if (remainder == 0) { |
| 247 | return val; |
| 248 | } else { |
| 249 | return SafeUint32Add(val, multiple_of - remainder); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | bool ConvertUint32ToInt32(std::uint32_t val, std::int32_t *result) { |
| 254 | try { |
| 255 | *result = ConvertUint32ToInt32(val); |
| 256 | return true; |
| 257 | } catch (const dng_exception &) { |
| 258 | return false; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | std::int32_t ConvertUint32ToInt32(std::uint32_t val) { |
| 263 | const std::uint32_t kInt32MaxAsUint32 = |
| 264 | static_cast<std::uint32_t>(std::numeric_limits<std::int32_t>::max()); |
| 265 | |
| 266 | if (val <= kInt32MaxAsUint32) { |
| 267 | return static_cast<std::int32_t>(val); |
| 268 | } else { |
| 269 | ThrowProgramError("Arithmetic overflow" ); |
| 270 | abort(); // Never reached. |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | std::int32_t ConvertDoubleToInt32(double val) { |
| 275 | const double kMin = |
| 276 | static_cast<double>(std::numeric_limits<std::int32_t>::min()); |
| 277 | const double kMax = |
| 278 | static_cast<double>(std::numeric_limits<std::int32_t>::max()); |
| 279 | // NaNs will fail this test; they always compare false. |
| 280 | if (val > kMin - 1.0 && val < kMax + 1.0) { |
| 281 | return static_cast<std::int32_t>(val); |
| 282 | } else { |
| 283 | ThrowProgramError("Argument not in range in ConvertDoubleToInt32" ); |
| 284 | abort(); // Never reached. |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | std::uint32_t ConvertDoubleToUint32(double val) { |
| 289 | const double kMax = |
| 290 | static_cast<double>(std::numeric_limits<std::uint32_t>::max()); |
| 291 | // NaNs will fail this test; they always compare false. |
| 292 | if (val >= 0.0 && val < kMax + 1.0) { |
| 293 | return static_cast<std::uint32_t>(val); |
| 294 | } else { |
| 295 | ThrowProgramError("Argument not in range in ConvertDoubleToUint32" ); |
| 296 | abort(); // Never reached. |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | float ConvertDoubleToFloat(double val) { |
| 301 | const double kMax = std::numeric_limits<float>::max(); |
| 302 | if (val > kMax) { |
| 303 | return std::numeric_limits<float>::infinity(); |
| 304 | } else if (val < -kMax) { |
| 305 | return -std::numeric_limits<float>::infinity(); |
| 306 | } else { |
| 307 | // The cases that end up here are: |
| 308 | // - values in [-kMax, kMax] |
| 309 | // - NaN (because it always compares false) |
| 310 | return static_cast<float>(val); |
| 311 | } |
| 312 | } |
| 313 | |