1 | /* |
2 | * Copyright © 2018 Google, Inc. |
3 | * Copyright © 2019 Facebook, Inc. |
4 | * |
5 | * This is part of HarfBuzz, a text shaping library. |
6 | * |
7 | * Permission is hereby granted, without written agreement and without |
8 | * license or royalty fees, to use, copy, modify, and distribute this |
9 | * software and its documentation for any purpose, provided that the |
10 | * above copyright notice and the following two paragraphs appear in |
11 | * all copies of this software. |
12 | * |
13 | * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR |
14 | * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES |
15 | * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN |
16 | * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
17 | * DAMAGE. |
18 | * |
19 | * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, |
20 | * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
21 | * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS |
22 | * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO |
23 | * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
24 | * |
25 | * Google Author(s): Behdad Esfahbod |
26 | * Facebook Author(s): Behdad Esfahbod |
27 | */ |
28 | |
29 | #ifndef HB_ITER_HH |
30 | #define HB_ITER_HH |
31 | |
32 | #include "hb.hh" |
33 | #include "hb-algs.hh" |
34 | #include "hb-meta.hh" |
35 | |
36 | |
37 | /* Unified iterator object. |
38 | * |
39 | * The goal of this template is to make the same iterator interface |
40 | * available to all types, and make it very easy and compact to use. |
41 | * hb_iter_tator objects are small, light-weight, objects that can be |
42 | * copied by value. If the collection / object being iterated on |
43 | * is writable, then the iterator returns lvalues, otherwise it |
44 | * returns rvalues. |
45 | * |
46 | * TODO Document more. |
47 | * |
48 | * If iterator implementation implements operator!=, then can be |
49 | * used in range-based for loop. That comes free if the iterator |
50 | * is random-access. Otherwise, the range-based for loop incurs |
51 | * one traversal to find end(), which can be avoided if written |
52 | * as a while-style for loop, or if iterator implements a faster |
53 | * __end__() method. |
54 | * TODO When opting in for C++17, address this by changing return |
55 | * type of .end()? |
56 | */ |
57 | |
58 | /* |
59 | * Base classes for iterators. |
60 | */ |
61 | |
62 | /* Base class for all iterators. */ |
63 | template <typename iter_t, typename Item = typename iter_t::__item_t__> |
64 | struct hb_iter_t |
65 | { |
66 | typedef Item item_t; |
67 | constexpr unsigned get_item_size () const { return hb_static_size (Item); } |
68 | static constexpr bool is_iterator = true; |
69 | static constexpr bool is_random_access_iterator = false; |
70 | static constexpr bool is_sorted_iterator = false; |
71 | |
72 | private: |
73 | /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ |
74 | const iter_t* thiz () const { return static_cast<const iter_t *> (this); } |
75 | iter_t* thiz () { return static_cast< iter_t *> (this); } |
76 | public: |
77 | |
78 | /* TODO: |
79 | * Port operators below to use hb_enable_if to sniff which method implements |
80 | * an operator and use it, and remove hb_iter_fallback_mixin_t completely. */ |
81 | |
82 | /* Operators. */ |
83 | iter_t iter () const { return *thiz(); } |
84 | iter_t operator + () const { return *thiz(); } |
85 | iter_t begin () const { return *thiz(); } |
86 | iter_t end () const { return thiz()->__end__ (); } |
87 | explicit operator bool () const { return thiz()->__more__ (); } |
88 | unsigned len () const { return thiz()->__len__ (); } |
89 | /* The following can only be enabled if item_t is reference type. Otherwise |
90 | * it will be returning pointer to temporary rvalue. |
91 | * TODO Use a wrapper return type to fix for non-reference type. */ |
92 | template <typename T = item_t, |
93 | hb_enable_if (hb_is_reference (T))> |
94 | hb_remove_reference<item_t>* operator -> () const { return hb_addressof (**thiz()); } |
95 | item_t operator * () const { return thiz()->__item__ (); } |
96 | item_t operator * () { return thiz()->__item__ (); } |
97 | item_t operator [] (unsigned i) const { return thiz()->__item_at__ (i); } |
98 | item_t operator [] (unsigned i) { return thiz()->__item_at__ (i); } |
99 | iter_t& operator += (unsigned count) & { thiz()->__forward__ (count); return *thiz(); } |
100 | iter_t operator += (unsigned count) && { thiz()->__forward__ (count); return *thiz(); } |
101 | iter_t& operator ++ () & { thiz()->__next__ (); return *thiz(); } |
102 | iter_t operator ++ () && { thiz()->__next__ (); return *thiz(); } |
103 | iter_t& operator -= (unsigned count) & { thiz()->__rewind__ (count); return *thiz(); } |
104 | iter_t operator -= (unsigned count) && { thiz()->__rewind__ (count); return *thiz(); } |
105 | iter_t& operator -- () & { thiz()->__prev__ (); return *thiz(); } |
106 | iter_t operator -- () && { thiz()->__prev__ (); return *thiz(); } |
107 | iter_t operator + (unsigned count) const { auto c = thiz()->iter (); c += count; return c; } |
108 | friend iter_t operator + (unsigned count, const iter_t &it) { return it + count; } |
109 | iter_t operator ++ (int) { iter_t c (*thiz()); ++*thiz(); return c; } |
110 | iter_t operator - (unsigned count) const { auto c = thiz()->iter (); c -= count; return c; } |
111 | iter_t operator -- (int) { iter_t c (*thiz()); --*thiz(); return c; } |
112 | template <typename T> |
113 | iter_t& operator >> (T &v) & { v = **thiz(); ++*thiz(); return *thiz(); } |
114 | template <typename T> |
115 | iter_t operator >> (T &v) && { v = **thiz(); ++*thiz(); return *thiz(); } |
116 | template <typename T> |
117 | iter_t& operator << (const T v) & { **thiz() = v; ++*thiz(); return *thiz(); } |
118 | template <typename T> |
119 | iter_t operator << (const T v) && { **thiz() = v; ++*thiz(); return *thiz(); } |
120 | |
121 | protected: |
122 | hb_iter_t () = default; |
123 | hb_iter_t (const hb_iter_t &o HB_UNUSED) = default; |
124 | hb_iter_t (hb_iter_t &&o HB_UNUSED) = default; |
125 | hb_iter_t& operator = (const hb_iter_t &o HB_UNUSED) = default; |
126 | hb_iter_t& operator = (hb_iter_t &&o HB_UNUSED) = default; |
127 | }; |
128 | |
129 | #define HB_ITER_USING(Name) \ |
130 | using item_t = typename Name::item_t; \ |
131 | using Name::begin; \ |
132 | using Name::end; \ |
133 | using Name::get_item_size; \ |
134 | using Name::is_iterator; \ |
135 | using Name::iter; \ |
136 | using Name::operator bool; \ |
137 | using Name::len; \ |
138 | using Name::operator ->; \ |
139 | using Name::operator *; \ |
140 | using Name::operator []; \ |
141 | using Name::operator +=; \ |
142 | using Name::operator ++; \ |
143 | using Name::operator -=; \ |
144 | using Name::operator --; \ |
145 | using Name::operator +; \ |
146 | using Name::operator -; \ |
147 | using Name::operator >>; \ |
148 | using Name::operator <<; \ |
149 | static_assert (true, "") |
150 | |
151 | /* Returns iterator / item type of a type. */ |
152 | template <typename Iterable> |
153 | using hb_iter_type = decltype (hb_deref (hb_declval (Iterable)).iter ()); |
154 | template <typename Iterable> |
155 | using hb_item_type = decltype (*hb_deref (hb_declval (Iterable)).iter ()); |
156 | |
157 | |
158 | template <typename> struct hb_array_t; |
159 | template <typename> struct hb_sorted_array_t; |
160 | |
161 | struct |
162 | { |
163 | template <typename T> hb_iter_type<T> |
164 | operator () (T&& c) const |
165 | { return hb_deref (hb_forward<T> (c)).iter (); } |
166 | |
167 | /* Specialization for C arrays. */ |
168 | |
169 | template <typename Type> inline hb_array_t<Type> |
170 | operator () (Type *array, unsigned int length) const |
171 | { return hb_array_t<Type> (array, length); } |
172 | |
173 | template <typename Type, unsigned int length> hb_array_t<Type> |
174 | operator () (Type (&array)[length]) const |
175 | { return hb_array_t<Type> (array, length); } |
176 | |
177 | } |
178 | HB_FUNCOBJ (hb_iter); |
179 | struct |
180 | { |
181 | template <typename T> unsigned |
182 | operator () (T&& c) const |
183 | { return c.len (); } |
184 | |
185 | } |
186 | HB_FUNCOBJ (hb_len); |
187 | |
188 | /* Mixin to fill in what the subclass doesn't provide. */ |
189 | template <typename iter_t, typename item_t = typename iter_t::__item_t__> |
190 | struct hb_iter_fallback_mixin_t |
191 | { |
192 | private: |
193 | /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ |
194 | const iter_t* thiz () const { return static_cast<const iter_t *> (this); } |
195 | iter_t* thiz () { return static_cast< iter_t *> (this); } |
196 | public: |
197 | |
198 | /* Access: Implement __item__(), or __item_at__() if random-access. */ |
199 | item_t __item__ () const { return (*thiz())[0]; } |
200 | item_t __item_at__ (unsigned i) const { return *(*thiz() + i); } |
201 | |
202 | /* Termination: Implement __more__(), or __len__() if random-access. */ |
203 | bool __more__ () const { return bool (thiz()->len ()); } |
204 | unsigned __len__ () const |
205 | { iter_t c (*thiz()); unsigned l = 0; while (c) { c++; l++; } return l; } |
206 | |
207 | /* Advancing: Implement __next__(), or __forward__() if random-access. */ |
208 | void __next__ () { *thiz() += 1; } |
209 | void __forward__ (unsigned n) { while (*thiz() && n--) ++*thiz(); } |
210 | |
211 | /* Rewinding: Implement __prev__() or __rewind__() if bidirectional. */ |
212 | void __prev__ () { *thiz() -= 1; } |
213 | void __rewind__ (unsigned n) { while (*thiz() && n--) --*thiz(); } |
214 | |
215 | /* Range-based for: Implement __end__() if can be done faster, |
216 | * and operator!=. */ |
217 | iter_t __end__ () const |
218 | { |
219 | if (thiz()->is_random_access_iterator) |
220 | return *thiz() + thiz()->len (); |
221 | /* Above expression loops twice. Following loops once. */ |
222 | auto it = *thiz(); |
223 | while (it) ++it; |
224 | return it; |
225 | } |
226 | |
227 | protected: |
228 | hb_iter_fallback_mixin_t () = default; |
229 | hb_iter_fallback_mixin_t (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; |
230 | hb_iter_fallback_mixin_t (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; |
231 | hb_iter_fallback_mixin_t& operator = (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; |
232 | hb_iter_fallback_mixin_t& operator = (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; |
233 | }; |
234 | |
235 | template <typename iter_t, typename item_t = typename iter_t::__item_t__> |
236 | struct hb_iter_with_fallback_t : |
237 | hb_iter_t<iter_t, item_t>, |
238 | hb_iter_fallback_mixin_t<iter_t, item_t> |
239 | { |
240 | protected: |
241 | hb_iter_with_fallback_t () = default; |
242 | hb_iter_with_fallback_t (const hb_iter_with_fallback_t &o HB_UNUSED) = default; |
243 | hb_iter_with_fallback_t (hb_iter_with_fallback_t &&o HB_UNUSED) = default; |
244 | hb_iter_with_fallback_t& operator = (const hb_iter_with_fallback_t &o HB_UNUSED) = default; |
245 | hb_iter_with_fallback_t& operator = (hb_iter_with_fallback_t &&o HB_UNUSED) = default; |
246 | }; |
247 | |
248 | /* |
249 | * Meta-programming predicates. |
250 | */ |
251 | |
252 | /* hb_is_iterator() / hb_is_iterator_of() */ |
253 | |
254 | template<typename Iter, typename Item> |
255 | struct hb_is_iterator_of |
256 | { |
257 | template <typename Item2 = Item> |
258 | static hb_true_type impl (hb_priority<2>, hb_iter_t<Iter, hb_type_identity<Item2>> *); |
259 | static hb_false_type impl (hb_priority<0>, const void *); |
260 | |
261 | public: |
262 | static constexpr bool value = decltype (impl (hb_prioritize, hb_declval (Iter*)))::value; |
263 | }; |
264 | #define hb_is_iterator_of(Iter, Item) hb_is_iterator_of<Iter, Item>::value |
265 | #define hb_is_iterator(Iter) hb_is_iterator_of (Iter, typename Iter::item_t) |
266 | |
267 | /* hb_is_iterable() */ |
268 | |
269 | template <typename T> |
270 | struct hb_is_iterable |
271 | { |
272 | private: |
273 | |
274 | template <typename U> |
275 | static auto impl (hb_priority<1>) -> decltype (hb_declval (U).iter (), hb_true_type ()); |
276 | |
277 | template <typename> |
278 | static hb_false_type impl (hb_priority<0>); |
279 | |
280 | public: |
281 | static constexpr bool value = decltype (impl<T> (hb_prioritize))::value; |
282 | }; |
283 | #define hb_is_iterable(Iterable) hb_is_iterable<Iterable>::value |
284 | |
285 | /* hb_is_source_of() / hb_is_sink_of() */ |
286 | |
287 | template<typename Iter, typename Item> |
288 | struct hb_is_source_of |
289 | { |
290 | private: |
291 | template <typename Iter2 = Iter, |
292 | hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<hb_add_const<Item>>))> |
293 | static hb_true_type impl (hb_priority<2>); |
294 | template <typename Iter2 = Iter> |
295 | static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) >> hb_declval (Item &), hb_true_type ()); |
296 | static hb_false_type impl (hb_priority<0>); |
297 | |
298 | public: |
299 | static constexpr bool value = decltype (impl (hb_prioritize))::value; |
300 | }; |
301 | #define hb_is_source_of(Iter, Item) hb_is_source_of<Iter, Item>::value |
302 | |
303 | template<typename Iter, typename Item> |
304 | struct hb_is_sink_of |
305 | { |
306 | private: |
307 | template <typename Iter2 = Iter, |
308 | hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<Item>))> |
309 | static hb_true_type impl (hb_priority<2>); |
310 | template <typename Iter2 = Iter> |
311 | static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) << hb_declval (Item), hb_true_type ()); |
312 | static hb_false_type impl (hb_priority<0>); |
313 | |
314 | public: |
315 | static constexpr bool value = decltype (impl (hb_prioritize))::value; |
316 | }; |
317 | #define hb_is_sink_of(Iter, Item) hb_is_sink_of<Iter, Item>::value |
318 | |
319 | /* This is commonly used, so define: */ |
320 | #define hb_is_sorted_source_of(Iter, Item) \ |
321 | (hb_is_source_of(Iter, Item) && Iter::is_sorted_iterator) |
322 | |
323 | |
324 | /* Range-based 'for' for iterables. */ |
325 | |
326 | template <typename Iterable, |
327 | hb_requires (hb_is_iterable (Iterable))> |
328 | static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) |
329 | |
330 | template <typename Iterable, |
331 | hb_requires (hb_is_iterable (Iterable))> |
332 | static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) |
333 | |
334 | /* begin()/end() are NOT looked up non-ADL. So each namespace must declare them. |
335 | * Do it for namespace OT. */ |
336 | namespace OT { |
337 | |
338 | template <typename Iterable, |
339 | hb_requires (hb_is_iterable (Iterable))> |
340 | static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) |
341 | |
342 | template <typename Iterable, |
343 | hb_requires (hb_is_iterable (Iterable))> |
344 | static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) |
345 | |
346 | } |
347 | |
348 | |
349 | /* |
350 | * Adaptors, combiners, etc. |
351 | */ |
352 | |
353 | template <typename Lhs, typename Rhs, |
354 | hb_requires (hb_is_iterator (Lhs))> |
355 | static inline auto |
356 | operator | (Lhs&& lhs, Rhs&& rhs) HB_AUTO_RETURN (hb_forward<Rhs> (rhs) (hb_forward<Lhs> (lhs))) |
357 | |
358 | /* hb_map(), hb_filter(), hb_reduce() */ |
359 | |
360 | enum class hb_function_sortedness_t { |
361 | NOT_SORTED, |
362 | RETAINS_SORTING, |
363 | SORTED, |
364 | }; |
365 | |
366 | template <typename Iter, typename Proj, hb_function_sortedness_t Sorted, |
367 | hb_requires (hb_is_iterator (Iter))> |
368 | struct hb_map_iter_t : |
369 | hb_iter_t<hb_map_iter_t<Iter, Proj, Sorted>, |
370 | decltype (hb_get (hb_declval (Proj), *hb_declval (Iter)))> |
371 | { |
372 | hb_map_iter_t (const Iter& it, Proj f_) : it (it), f (f_) {} |
373 | |
374 | typedef decltype (hb_get (hb_declval (Proj), *hb_declval (Iter))) __item_t__; |
375 | static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator; |
376 | static constexpr bool is_sorted_iterator = |
377 | Sorted == hb_function_sortedness_t::SORTED ? true : |
378 | Sorted == hb_function_sortedness_t::RETAINS_SORTING ? Iter::is_sorted_iterator : |
379 | false; |
380 | __item_t__ __item__ () const { return hb_get (f.get (), *it); } |
381 | __item_t__ __item_at__ (unsigned i) const { return hb_get (f.get (), it[i]); } |
382 | bool __more__ () const { return bool (it); } |
383 | unsigned __len__ () const { return it.len (); } |
384 | void __next__ () { ++it; } |
385 | void __forward__ (unsigned n) { it += n; } |
386 | void __prev__ () { --it; } |
387 | void __rewind__ (unsigned n) { it -= n; } |
388 | hb_map_iter_t __end__ () const { return hb_map_iter_t (it.end (), f); } |
389 | bool operator != (const hb_map_iter_t& o) const |
390 | { return it != o.it; } |
391 | |
392 | private: |
393 | Iter it; |
394 | hb_reference_wrapper<Proj> f; |
395 | }; |
396 | |
397 | template <typename Proj, hb_function_sortedness_t Sorted> |
398 | struct hb_map_iter_factory_t |
399 | { |
400 | hb_map_iter_factory_t (Proj f) : f (f) {} |
401 | |
402 | template <typename Iter, |
403 | hb_requires (hb_is_iterator (Iter))> |
404 | hb_map_iter_t<Iter, Proj, Sorted> |
405 | operator () (Iter it) |
406 | { return hb_map_iter_t<Iter, Proj, Sorted> (it, f); } |
407 | |
408 | private: |
409 | Proj f; |
410 | }; |
411 | struct |
412 | { |
413 | template <typename Proj> |
414 | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> |
415 | operator () (Proj&& f) const |
416 | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> (f); } |
417 | } |
418 | HB_FUNCOBJ (hb_map); |
419 | struct |
420 | { |
421 | template <typename Proj> |
422 | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> |
423 | operator () (Proj&& f) const |
424 | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> (f); } |
425 | } |
426 | HB_FUNCOBJ (hb_map_retains_sorting); |
427 | struct |
428 | { |
429 | template <typename Proj> |
430 | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> |
431 | operator () (Proj&& f) const |
432 | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> (f); } |
433 | } |
434 | HB_FUNCOBJ (hb_map_sorted); |
435 | |
436 | template <typename Iter, typename Pred, typename Proj, |
437 | hb_requires (hb_is_iterator (Iter))> |
438 | struct hb_filter_iter_t : |
439 | hb_iter_with_fallback_t<hb_filter_iter_t<Iter, Pred, Proj>, |
440 | typename Iter::item_t> |
441 | { |
442 | hb_filter_iter_t (const Iter& it_, Pred p_, Proj f_) : it (it_), p (p_), f (f_) |
443 | { while (it && !hb_has (p.get (), hb_get (f.get (), *it))) ++it; } |
444 | |
445 | typedef typename Iter::item_t __item_t__; |
446 | static constexpr bool is_sorted_iterator = Iter::is_sorted_iterator; |
447 | __item_t__ __item__ () const { return *it; } |
448 | bool __more__ () const { return bool (it); } |
449 | void __next__ () { do ++it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } |
450 | void __prev__ () { do --it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } |
451 | hb_filter_iter_t __end__ () const { return hb_filter_iter_t (it.end (), p, f); } |
452 | bool operator != (const hb_filter_iter_t& o) const |
453 | { return it != o.it; } |
454 | |
455 | private: |
456 | Iter it; |
457 | hb_reference_wrapper<Pred> p; |
458 | hb_reference_wrapper<Proj> f; |
459 | }; |
460 | template <typename Pred, typename Proj> |
461 | struct hb_filter_iter_factory_t |
462 | { |
463 | hb_filter_iter_factory_t (Pred p, Proj f) : p (p), f (f) {} |
464 | |
465 | template <typename Iter, |
466 | hb_requires (hb_is_iterator (Iter))> |
467 | hb_filter_iter_t<Iter, Pred, Proj> |
468 | operator () (Iter it) |
469 | { return hb_filter_iter_t<Iter, Pred, Proj> (it, p, f); } |
470 | |
471 | private: |
472 | Pred p; |
473 | Proj f; |
474 | }; |
475 | struct |
476 | { |
477 | template <typename Pred = decltype ((hb_identity)), |
478 | typename Proj = decltype ((hb_identity))> |
479 | hb_filter_iter_factory_t<Pred, Proj> |
480 | operator () (Pred&& p = hb_identity, Proj&& f = hb_identity) const |
481 | { return hb_filter_iter_factory_t<Pred, Proj> (p, f); } |
482 | } |
483 | HB_FUNCOBJ (hb_filter); |
484 | |
485 | template <typename Redu, typename InitT> |
486 | struct hb_reduce_t |
487 | { |
488 | hb_reduce_t (Redu r, InitT init_value) : r (r), init_value (init_value) {} |
489 | |
490 | template <typename Iter, |
491 | hb_requires (hb_is_iterator (Iter)), |
492 | typename AccuT = hb_decay<decltype (hb_declval (Redu) (hb_declval (InitT), hb_declval (typename Iter::item_t)))>> |
493 | AccuT |
494 | operator () (Iter it) |
495 | { |
496 | AccuT value = init_value; |
497 | for (; it; ++it) |
498 | value = r (value, *it); |
499 | return value; |
500 | } |
501 | |
502 | private: |
503 | Redu r; |
504 | InitT init_value; |
505 | }; |
506 | struct |
507 | { |
508 | template <typename Redu, typename InitT> |
509 | hb_reduce_t<Redu, InitT> |
510 | operator () (Redu&& r, InitT init_value) const |
511 | { return hb_reduce_t<Redu, InitT> (r, init_value); } |
512 | } |
513 | HB_FUNCOBJ (hb_reduce); |
514 | |
515 | |
516 | /* hb_zip() */ |
517 | |
518 | template <typename A, typename B> |
519 | struct hb_zip_iter_t : |
520 | hb_iter_t<hb_zip_iter_t<A, B>, |
521 | hb_pair_t<typename A::item_t, typename B::item_t>> |
522 | { |
523 | hb_zip_iter_t () {} |
524 | hb_zip_iter_t (const A& a, const B& b) : a (a), b (b) {} |
525 | |
526 | typedef hb_pair_t<typename A::item_t, typename B::item_t> __item_t__; |
527 | static constexpr bool is_random_access_iterator = |
528 | A::is_random_access_iterator && |
529 | B::is_random_access_iterator; |
530 | /* Note. The following categorization is only valid if A is strictly sorted, |
531 | * ie. does NOT have duplicates. Previously I tried to categorize sortedness |
532 | * more granularly, see commits: |
533 | * |
534 | * 513762849a683914fc266a17ddf38f133cccf072 |
535 | * 4d3cf2adb669c345cc43832d11689271995e160a |
536 | * |
537 | * However, that was not enough, since hb_sorted_array_t, hb_sorted_vector_t, |
538 | * SortedArrayOf, etc all needed to be updated to add more variants. At that |
539 | * point I saw it not worth the effort, and instead we now deem all sorted |
540 | * collections as essentially strictly-sorted for the purposes of zip. |
541 | * |
542 | * The above assumption is not as bad as it sounds. Our "sorted" comes with |
543 | * no guarantees. It's just a contract, put in place to help you remember, |
544 | * and think about, whether an iterator you receive is expected to be |
545 | * sorted or not. As such, it's not perfect by definition, and should not |
546 | * be treated so. The inaccuracy here just errs in the direction of being |
547 | * more permissive, so your code compiles instead of erring on the side of |
548 | * marking your zipped iterator unsorted in which case your code won't |
549 | * compile. |
550 | * |
551 | * This semantical limitation does NOT affect logic in any other place I |
552 | * know of as of this writing. |
553 | */ |
554 | static constexpr bool is_sorted_iterator = A::is_sorted_iterator; |
555 | |
556 | __item_t__ __item__ () const { return __item_t__ (*a, *b); } |
557 | __item_t__ __item_at__ (unsigned i) const { return __item_t__ (a[i], b[i]); } |
558 | bool __more__ () const { return bool (a) && bool (b); } |
559 | unsigned __len__ () const { return hb_min (a.len (), b.len ()); } |
560 | void __next__ () { ++a; ++b; } |
561 | void __forward__ (unsigned n) { a += n; b += n; } |
562 | void __prev__ () { --a; --b; } |
563 | void __rewind__ (unsigned n) { a -= n; b -= n; } |
564 | hb_zip_iter_t __end__ () const { return hb_zip_iter_t (a.end (), b.end ()); } |
565 | /* Note, we should stop if ANY of the iters reaches end. As such two compare |
566 | * unequal if both items are unequal, NOT if either is unequal. */ |
567 | bool operator != (const hb_zip_iter_t& o) const |
568 | { return a != o.a && b != o.b; } |
569 | |
570 | private: |
571 | A a; |
572 | B b; |
573 | }; |
574 | struct |
575 | { HB_PARTIALIZE(2); |
576 | template <typename A, typename B, |
577 | hb_requires (hb_is_iterable (A) && hb_is_iterable (B))> |
578 | hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> |
579 | operator () (A&& a, B&& b) const |
580 | { return hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); } |
581 | } |
582 | HB_FUNCOBJ (hb_zip); |
583 | |
584 | /* hb_apply() */ |
585 | |
586 | template <typename Appl> |
587 | struct hb_apply_t |
588 | { |
589 | hb_apply_t (Appl a) : a (a) {} |
590 | |
591 | template <typename Iter, |
592 | hb_requires (hb_is_iterator (Iter))> |
593 | void operator () (Iter it) |
594 | { |
595 | for (; it; ++it) |
596 | (void) hb_invoke (a, *it); |
597 | } |
598 | |
599 | private: |
600 | Appl a; |
601 | }; |
602 | struct |
603 | { |
604 | template <typename Appl> hb_apply_t<Appl> |
605 | operator () (Appl&& a) const |
606 | { return hb_apply_t<Appl> (a); } |
607 | |
608 | template <typename Appl> hb_apply_t<Appl&> |
609 | operator () (Appl *a) const |
610 | { return hb_apply_t<Appl&> (*a); } |
611 | } |
612 | HB_FUNCOBJ (hb_apply); |
613 | |
614 | /* hb_range()/hb_iota()/hb_repeat() */ |
615 | |
616 | template <typename T, typename S> |
617 | struct hb_range_iter_t : |
618 | hb_iter_t<hb_range_iter_t<T, S>, T> |
619 | { |
620 | hb_range_iter_t (T start, T end_, S step) : v (start), end_ (end_for (start, end_, step)), step (step) {} |
621 | |
622 | typedef T __item_t__; |
623 | static constexpr bool is_random_access_iterator = true; |
624 | static constexpr bool is_sorted_iterator = true; |
625 | __item_t__ __item__ () const { return hb_ridentity (v); } |
626 | __item_t__ __item_at__ (unsigned j) const { return v + j * step; } |
627 | bool __more__ () const { return v != end_; } |
628 | unsigned __len__ () const { return !step ? UINT_MAX : (end_ - v) / step; } |
629 | void __next__ () { v += step; } |
630 | void __forward__ (unsigned n) { v += n * step; } |
631 | void __prev__ () { v -= step; } |
632 | void __rewind__ (unsigned n) { v -= n * step; } |
633 | hb_range_iter_t __end__ () const { return hb_range_iter_t (end_, end_, step); } |
634 | bool operator != (const hb_range_iter_t& o) const |
635 | { return v != o.v; } |
636 | |
637 | private: |
638 | static inline T end_for (T start, T end_, S step) |
639 | { |
640 | if (!step) |
641 | return end_; |
642 | auto res = (end_ - start) % step; |
643 | if (!res) |
644 | return end_; |
645 | end_ += step - res; |
646 | return end_; |
647 | } |
648 | |
649 | private: |
650 | T v; |
651 | T end_; |
652 | S step; |
653 | }; |
654 | struct |
655 | { |
656 | template <typename T = unsigned> hb_range_iter_t<T, unsigned> |
657 | operator () (T end = (unsigned) -1) const |
658 | { return hb_range_iter_t<T, unsigned> (0, end, 1u); } |
659 | |
660 | template <typename T, typename S = unsigned> hb_range_iter_t<T, S> |
661 | operator () (T start, T end, S step = 1u) const |
662 | { return hb_range_iter_t<T, S> (start, end, step); } |
663 | } |
664 | HB_FUNCOBJ (hb_range); |
665 | |
666 | template <typename T, typename S> |
667 | struct hb_iota_iter_t : |
668 | hb_iter_with_fallback_t<hb_iota_iter_t<T, S>, T> |
669 | { |
670 | hb_iota_iter_t (T start, S step) : v (start), step (step) {} |
671 | |
672 | private: |
673 | |
674 | template <typename S2 = S> |
675 | auto |
676 | inc (hb_type_identity<S2> s, hb_priority<1>) |
677 | -> hb_void_t<decltype (hb_invoke (hb_forward<S2> (s), hb_declval<T&> ()))> |
678 | { v = hb_invoke (hb_forward<S2> (s), v); } |
679 | |
680 | void |
681 | inc (S s, hb_priority<0>) |
682 | { v += s; } |
683 | |
684 | public: |
685 | |
686 | typedef T __item_t__; |
687 | static constexpr bool is_random_access_iterator = true; |
688 | static constexpr bool is_sorted_iterator = true; |
689 | __item_t__ __item__ () const { return hb_ridentity (v); } |
690 | bool __more__ () const { return true; } |
691 | unsigned __len__ () const { return UINT_MAX; } |
692 | void __next__ () { inc (step, hb_prioritize); } |
693 | void __prev__ () { v -= step; } |
694 | hb_iota_iter_t __end__ () const { return *this; } |
695 | bool operator != (const hb_iota_iter_t& o) const { return true; } |
696 | |
697 | private: |
698 | T v; |
699 | S step; |
700 | }; |
701 | struct |
702 | { |
703 | template <typename T = unsigned, typename S = unsigned> hb_iota_iter_t<T, S> |
704 | operator () (T start = 0u, S step = 1u) const |
705 | { return hb_iota_iter_t<T, S> (start, step); } |
706 | } |
707 | HB_FUNCOBJ (hb_iota); |
708 | |
709 | template <typename T> |
710 | struct hb_repeat_iter_t : |
711 | hb_iter_t<hb_repeat_iter_t<T>, T> |
712 | { |
713 | hb_repeat_iter_t (T value) : v (value) {} |
714 | |
715 | typedef T __item_t__; |
716 | static constexpr bool is_random_access_iterator = true; |
717 | static constexpr bool is_sorted_iterator = true; |
718 | __item_t__ __item__ () const { return v; } |
719 | __item_t__ __item_at__ (unsigned j) const { return v; } |
720 | bool __more__ () const { return true; } |
721 | unsigned __len__ () const { return UINT_MAX; } |
722 | void __next__ () {} |
723 | void __forward__ (unsigned) {} |
724 | void __prev__ () {} |
725 | void __rewind__ (unsigned) {} |
726 | hb_repeat_iter_t __end__ () const { return *this; } |
727 | bool operator != (const hb_repeat_iter_t& o) const { return true; } |
728 | |
729 | private: |
730 | T v; |
731 | }; |
732 | struct |
733 | { |
734 | template <typename T> hb_repeat_iter_t<T> |
735 | operator () (T value) const |
736 | { return hb_repeat_iter_t<T> (value); } |
737 | } |
738 | HB_FUNCOBJ (hb_repeat); |
739 | |
740 | /* hb_enumerate()/hb_take() */ |
741 | |
742 | struct |
743 | { |
744 | template <typename Iterable, |
745 | typename Index = unsigned, |
746 | hb_requires (hb_is_iterable (Iterable))> |
747 | auto operator () (Iterable&& it, Index start = 0u) const HB_AUTO_RETURN |
748 | ( hb_zip (hb_iota (start), it) ) |
749 | } |
750 | HB_FUNCOBJ (hb_enumerate); |
751 | |
752 | struct |
753 | { HB_PARTIALIZE(2); |
754 | template <typename Iterable, |
755 | hb_requires (hb_is_iterable (Iterable))> |
756 | auto operator () (Iterable&& it, unsigned count) const HB_AUTO_RETURN |
757 | ( hb_zip (hb_range (count), it) | hb_map (hb_second) ) |
758 | |
759 | /* Specialization arrays. */ |
760 | |
761 | template <typename Type> inline hb_array_t<Type> |
762 | operator () (hb_array_t<Type> array, unsigned count) const |
763 | { return array.sub_array (0, count); } |
764 | |
765 | template <typename Type> inline hb_sorted_array_t<Type> |
766 | operator () (hb_sorted_array_t<Type> array, unsigned count) const |
767 | { return array.sub_array (0, count); } |
768 | } |
769 | HB_FUNCOBJ (hb_take); |
770 | |
771 | struct |
772 | { HB_PARTIALIZE(2); |
773 | template <typename Iter, |
774 | hb_requires (hb_is_iterator (Iter))> |
775 | auto operator () (Iter it, unsigned count) const HB_AUTO_RETURN |
776 | ( |
777 | + hb_iota (it, hb_add (count)) |
778 | | hb_map (hb_take (count)) |
779 | | hb_take ((hb_len (it) + count - 1) / count) |
780 | ) |
781 | } |
782 | HB_FUNCOBJ (hb_chop); |
783 | |
784 | /* hb_sink() */ |
785 | |
786 | template <typename Sink> |
787 | struct hb_sink_t |
788 | { |
789 | hb_sink_t (Sink s) : s (s) {} |
790 | |
791 | template <typename Iter, |
792 | hb_requires (hb_is_iterator (Iter))> |
793 | void operator () (Iter it) |
794 | { |
795 | for (; it; ++it) |
796 | s << *it; |
797 | } |
798 | |
799 | private: |
800 | Sink s; |
801 | }; |
802 | struct |
803 | { |
804 | template <typename Sink> hb_sink_t<Sink> |
805 | operator () (Sink&& s) const |
806 | { return hb_sink_t<Sink> (s); } |
807 | |
808 | template <typename Sink> hb_sink_t<Sink&> |
809 | operator () (Sink *s) const |
810 | { return hb_sink_t<Sink&> (*s); } |
811 | } |
812 | HB_FUNCOBJ (hb_sink); |
813 | |
814 | /* hb-drain: hb_sink to void / blackhole / /dev/null. */ |
815 | |
816 | struct |
817 | { |
818 | template <typename Iter, |
819 | hb_requires (hb_is_iterator (Iter))> |
820 | void operator () (Iter it) const |
821 | { |
822 | for (; it; ++it) |
823 | (void) *it; |
824 | } |
825 | } |
826 | HB_FUNCOBJ (hb_drain); |
827 | |
828 | /* hb_unzip(): unzip and sink to two sinks. */ |
829 | |
830 | template <typename Sink1, typename Sink2> |
831 | struct hb_unzip_t |
832 | { |
833 | hb_unzip_t (Sink1 s1, Sink2 s2) : s1 (s1), s2 (s2) {} |
834 | |
835 | template <typename Iter, |
836 | hb_requires (hb_is_iterator (Iter))> |
837 | void operator () (Iter it) |
838 | { |
839 | for (; it; ++it) |
840 | { |
841 | const auto &v = *it; |
842 | s1 << v.first; |
843 | s2 << v.second; |
844 | } |
845 | } |
846 | |
847 | private: |
848 | Sink1 s1; |
849 | Sink2 s2; |
850 | }; |
851 | struct |
852 | { |
853 | template <typename Sink1, typename Sink2> hb_unzip_t<Sink1, Sink2> |
854 | operator () (Sink1&& s1, Sink2&& s2) const |
855 | { return hb_unzip_t<Sink1, Sink2> (s1, s2); } |
856 | |
857 | template <typename Sink1, typename Sink2> hb_unzip_t<Sink1&, Sink2&> |
858 | operator () (Sink1 *s1, Sink2 *s2) const |
859 | { return hb_unzip_t<Sink1&, Sink2&> (*s1, *s2); } |
860 | } |
861 | HB_FUNCOBJ (hb_unzip); |
862 | |
863 | |
864 | /* hb-all, hb-any, hb-none. */ |
865 | |
866 | struct |
867 | { |
868 | template <typename Iterable, |
869 | typename Pred = decltype ((hb_identity)), |
870 | typename Proj = decltype ((hb_identity)), |
871 | hb_requires (hb_is_iterable (Iterable))> |
872 | bool operator () (Iterable&& c, |
873 | Pred&& p = hb_identity, |
874 | Proj&& f = hb_identity) const |
875 | { |
876 | for (auto it = hb_iter (c); it; ++it) |
877 | if (!hb_match (hb_forward<Pred> (p), hb_get (hb_forward<Proj> (f), *it))) |
878 | return false; |
879 | return true; |
880 | } |
881 | } |
882 | HB_FUNCOBJ (hb_all); |
883 | struct |
884 | { |
885 | template <typename Iterable, |
886 | typename Pred = decltype ((hb_identity)), |
887 | typename Proj = decltype ((hb_identity)), |
888 | hb_requires (hb_is_iterable (Iterable))> |
889 | bool operator () (Iterable&& c, |
890 | Pred&& p = hb_identity, |
891 | Proj&& f = hb_identity) const |
892 | { |
893 | for (auto it = hb_iter (c); it; ++it) |
894 | if (hb_match (hb_forward<Pred> (p), hb_get (hb_forward<Proj> (f), *it))) |
895 | return true; |
896 | return false; |
897 | } |
898 | } |
899 | HB_FUNCOBJ (hb_any); |
900 | struct |
901 | { |
902 | template <typename Iterable, |
903 | typename Pred = decltype ((hb_identity)), |
904 | typename Proj = decltype ((hb_identity)), |
905 | hb_requires (hb_is_iterable (Iterable))> |
906 | bool operator () (Iterable&& c, |
907 | Pred&& p = hb_identity, |
908 | Proj&& f = hb_identity) const |
909 | { |
910 | for (auto it = hb_iter (c); it; ++it) |
911 | if (hb_match (hb_forward<Pred> (p), hb_get (hb_forward<Proj> (f), *it))) |
912 | return false; |
913 | return true; |
914 | } |
915 | } |
916 | HB_FUNCOBJ (hb_none); |
917 | |
918 | /* |
919 | * Algorithms operating on iterators. |
920 | */ |
921 | |
922 | template <typename C, typename V, |
923 | hb_requires (hb_is_iterable (C))> |
924 | inline void |
925 | hb_fill (C& c, const V &v) |
926 | { |
927 | for (auto i = hb_iter (c); i; i++) |
928 | *i = v; |
929 | } |
930 | |
931 | template <typename S, typename D> |
932 | inline void |
933 | hb_copy (S&& is, D&& id) |
934 | { |
935 | hb_iter (is) | hb_sink (id); |
936 | } |
937 | |
938 | |
939 | #endif /* HB_ITER_HH */ |
940 | |