1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ******************************************************************************* |
5 | * |
6 | * Copyright (C) 2009-2014, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ******************************************************************************* |
10 | * file name: normalizer2impl.cpp |
11 | * encoding: UTF-8 |
12 | * tab size: 8 (not used) |
13 | * indentation:4 |
14 | * |
15 | * created on: 2009nov22 |
16 | * created by: Markus W. Scherer |
17 | */ |
18 | |
19 | // #define UCPTRIE_DEBUG |
20 | |
21 | #include "unicode/utypes.h" |
22 | |
23 | #if !UCONFIG_NO_NORMALIZATION |
24 | |
25 | #include "unicode/bytestream.h" |
26 | #include "unicode/edits.h" |
27 | #include "unicode/normalizer2.h" |
28 | #include "unicode/stringoptions.h" |
29 | #include "unicode/ucptrie.h" |
30 | #include "unicode/udata.h" |
31 | #include "unicode/umutablecptrie.h" |
32 | #include "unicode/ustring.h" |
33 | #include "unicode/utf16.h" |
34 | #include "unicode/utf8.h" |
35 | #include "bytesinkutil.h" |
36 | #include "cmemory.h" |
37 | #include "mutex.h" |
38 | #include "normalizer2impl.h" |
39 | #include "putilimp.h" |
40 | #include "uassert.h" |
41 | #include "ucptrie_impl.h" |
42 | #include "uset_imp.h" |
43 | #include "uvector.h" |
44 | |
45 | U_NAMESPACE_BEGIN |
46 | |
47 | namespace { |
48 | |
49 | /** |
50 | * UTF-8 lead byte for minNoMaybeCP. |
51 | * Can be lower than the actual lead byte for c. |
52 | * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold. |
53 | */ |
54 | inline uint8_t leadByteForCP(UChar32 c) { |
55 | if (c <= 0x7f) { |
56 | return (uint8_t)c; |
57 | } else if (c <= 0x7ff) { |
58 | return (uint8_t)(0xc0+(c>>6)); |
59 | } else { |
60 | // Should not occur because ccc(U+0300)!=0. |
61 | return 0xe0; |
62 | } |
63 | } |
64 | |
65 | /** |
66 | * Returns the code point from one single well-formed UTF-8 byte sequence |
67 | * between cpStart and cpLimit. |
68 | * |
69 | * Trie UTF-8 macros do not assemble whole code points (for efficiency). |
70 | * When we do need the code point, we call this function. |
71 | * We should not need it for normalization-inert data (norm16==0). |
72 | * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points. |
73 | */ |
74 | UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) { |
75 | // Similar to U8_NEXT_UNSAFE(s, i, c). |
76 | U_ASSERT(cpStart < cpLimit); |
77 | uint8_t c = *cpStart; |
78 | switch(cpLimit-cpStart) { |
79 | case 1: |
80 | return c; |
81 | case 2: |
82 | return ((c&0x1f)<<6) | (cpStart[1]&0x3f); |
83 | case 3: |
84 | // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (UChar) |
85 | return (UChar)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f)); |
86 | case 4: |
87 | return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f); |
88 | default: |
89 | UPRV_UNREACHABLE; // Should not occur. |
90 | } |
91 | } |
92 | |
93 | /** |
94 | * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF. |
95 | * Otherwise returns a negative value. |
96 | */ |
97 | UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) { |
98 | if ((p - start) >= 3) { |
99 | p -= 3; |
100 | uint8_t l = *p; |
101 | uint8_t t1, t2; |
102 | if (0xe1 <= l && l <= 0xed && |
103 | (t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f && |
104 | (t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f && |
105 | (l < 0xed || t1 <= 0x1f)) { |
106 | return ((l & 0xf) << 12) | (t1 << 6) | t2; |
107 | } |
108 | } |
109 | return U_SENTINEL; |
110 | } |
111 | |
112 | /** |
113 | * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point. |
114 | * Otherwise returns a negative value. |
115 | */ |
116 | int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) { |
117 | // Jamo T: E1 86 A8..E1 87 82 |
118 | if ((limit - src) >= 3 && *src == 0xe1) { |
119 | if (src[1] == 0x86) { |
120 | uint8_t t = src[2]; |
121 | // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7. |
122 | // Offset 0 does not correspond to any conjoining Jamo. |
123 | if (0xa8 <= t && t <= 0xbf) { |
124 | return t - 0xa7; |
125 | } |
126 | } else if (src[1] == 0x87) { |
127 | uint8_t t = src[2]; |
128 | if ((int8_t)t <= (int8_t)0x82u) { |
129 | return t - (0xa7 - 0x40); |
130 | } |
131 | } |
132 | } |
133 | return -1; |
134 | } |
135 | |
136 | void |
137 | appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta, |
138 | ByteSink &sink, Edits *edits) { |
139 | char buffer[U8_MAX_LENGTH]; |
140 | int32_t length; |
141 | int32_t cpLength = (int32_t)(cpLimit - cpStart); |
142 | if (cpLength == 1) { |
143 | // The builder makes ASCII map to ASCII. |
144 | buffer[0] = (uint8_t)(*cpStart + delta); |
145 | length = 1; |
146 | } else { |
147 | int32_t trail = *(cpLimit-1) + delta; |
148 | if (0x80 <= trail && trail <= 0xbf) { |
149 | // The delta only changes the last trail byte. |
150 | --cpLimit; |
151 | length = 0; |
152 | do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit); |
153 | buffer[length++] = (uint8_t)trail; |
154 | } else { |
155 | // Decode the code point, add the delta, re-encode. |
156 | UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta; |
157 | length = 0; |
158 | U8_APPEND_UNSAFE(buffer, length, c); |
159 | } |
160 | } |
161 | if (edits != nullptr) { |
162 | edits->addReplace(cpLength, length); |
163 | } |
164 | sink.Append(buffer, length); |
165 | } |
166 | |
167 | } // namespace |
168 | |
169 | // ReorderingBuffer -------------------------------------------------------- *** |
170 | |
171 | ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest, |
172 | UErrorCode &errorCode) : |
173 | impl(ni), str(dest), |
174 | start(str.getBuffer(8)), reorderStart(start), limit(start), |
175 | remainingCapacity(str.getCapacity()), lastCC(0) { |
176 | if (start == nullptr && U_SUCCESS(errorCode)) { |
177 | // getBuffer() already did str.setToBogus() |
178 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
179 | } |
180 | } |
181 | |
182 | UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { |
183 | int32_t length=str.length(); |
184 | start=str.getBuffer(destCapacity); |
185 | if(start==NULL) { |
186 | // getBuffer() already did str.setToBogus() |
187 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
188 | return FALSE; |
189 | } |
190 | limit=start+length; |
191 | remainingCapacity=str.getCapacity()-length; |
192 | reorderStart=start; |
193 | if(start==limit) { |
194 | lastCC=0; |
195 | } else { |
196 | setIterator(); |
197 | lastCC=previousCC(); |
198 | // Set reorderStart after the last code point with cc<=1 if there is one. |
199 | if(lastCC>1) { |
200 | while(previousCC()>1) {} |
201 | } |
202 | reorderStart=codePointLimit; |
203 | } |
204 | return TRUE; |
205 | } |
206 | |
207 | UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { |
208 | int32_t length=(int32_t)(limit-start); |
209 | return |
210 | length==(int32_t)(otherLimit-otherStart) && |
211 | 0==u_memcmp(start, otherStart, length); |
212 | } |
213 | |
214 | UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const { |
215 | U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller |
216 | int32_t length = (int32_t)(limit - start); |
217 | int32_t otherLength = (int32_t)(otherLimit - otherStart); |
218 | // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long. |
219 | if (otherLength < length || (otherLength / 3) > length) { |
220 | return FALSE; |
221 | } |
222 | // Compare valid strings from between normalization boundaries. |
223 | // (Invalid sequences are normalization-inert.) |
224 | for (int32_t i = 0, j = 0;;) { |
225 | if (i >= length) { |
226 | return j >= otherLength; |
227 | } else if (j >= otherLength) { |
228 | return FALSE; |
229 | } |
230 | // Not at the end of either string yet. |
231 | UChar32 c, other; |
232 | U16_NEXT_UNSAFE(start, i, c); |
233 | U8_NEXT_UNSAFE(otherStart, j, other); |
234 | if (c != other) { |
235 | return FALSE; |
236 | } |
237 | } |
238 | } |
239 | |
240 | UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { |
241 | if(remainingCapacity<2 && !resize(2, errorCode)) { |
242 | return FALSE; |
243 | } |
244 | if(lastCC<=cc || cc==0) { |
245 | limit[0]=U16_LEAD(c); |
246 | limit[1]=U16_TRAIL(c); |
247 | limit+=2; |
248 | lastCC=cc; |
249 | if(cc<=1) { |
250 | reorderStart=limit; |
251 | } |
252 | } else { |
253 | insert(c, cc); |
254 | } |
255 | remainingCapacity-=2; |
256 | return TRUE; |
257 | } |
258 | |
259 | UBool ReorderingBuffer::append(const UChar *s, int32_t length, UBool isNFD, |
260 | uint8_t leadCC, uint8_t trailCC, |
261 | UErrorCode &errorCode) { |
262 | if(length==0) { |
263 | return TRUE; |
264 | } |
265 | if(remainingCapacity<length && !resize(length, errorCode)) { |
266 | return FALSE; |
267 | } |
268 | remainingCapacity-=length; |
269 | if(lastCC<=leadCC || leadCC==0) { |
270 | if(trailCC<=1) { |
271 | reorderStart=limit+length; |
272 | } else if(leadCC<=1) { |
273 | reorderStart=limit+1; // Ok if not a code point boundary. |
274 | } |
275 | const UChar *sLimit=s+length; |
276 | do { *limit++=*s++; } while(s!=sLimit); |
277 | lastCC=trailCC; |
278 | } else { |
279 | int32_t i=0; |
280 | UChar32 c; |
281 | U16_NEXT(s, i, length, c); |
282 | insert(c, leadCC); // insert first code point |
283 | while(i<length) { |
284 | U16_NEXT(s, i, length, c); |
285 | if(i<length) { |
286 | if (isNFD) { |
287 | leadCC = Normalizer2Impl::getCCFromYesOrMaybe(impl.getRawNorm16(c)); |
288 | } else { |
289 | leadCC = impl.getCC(impl.getNorm16(c)); |
290 | } |
291 | } else { |
292 | leadCC=trailCC; |
293 | } |
294 | append(c, leadCC, errorCode); |
295 | } |
296 | } |
297 | return TRUE; |
298 | } |
299 | |
300 | UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { |
301 | int32_t cpLength=U16_LENGTH(c); |
302 | if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { |
303 | return FALSE; |
304 | } |
305 | remainingCapacity-=cpLength; |
306 | if(cpLength==1) { |
307 | *limit++=(UChar)c; |
308 | } else { |
309 | limit[0]=U16_LEAD(c); |
310 | limit[1]=U16_TRAIL(c); |
311 | limit+=2; |
312 | } |
313 | lastCC=0; |
314 | reorderStart=limit; |
315 | return TRUE; |
316 | } |
317 | |
318 | UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { |
319 | if(s==sLimit) { |
320 | return TRUE; |
321 | } |
322 | int32_t length=(int32_t)(sLimit-s); |
323 | if(remainingCapacity<length && !resize(length, errorCode)) { |
324 | return FALSE; |
325 | } |
326 | u_memcpy(limit, s, length); |
327 | limit+=length; |
328 | remainingCapacity-=length; |
329 | lastCC=0; |
330 | reorderStart=limit; |
331 | return TRUE; |
332 | } |
333 | |
334 | void ReorderingBuffer::remove() { |
335 | reorderStart=limit=start; |
336 | remainingCapacity=str.getCapacity(); |
337 | lastCC=0; |
338 | } |
339 | |
340 | void ReorderingBuffer::removeSuffix(int32_t suffixLength) { |
341 | if(suffixLength<(limit-start)) { |
342 | limit-=suffixLength; |
343 | remainingCapacity+=suffixLength; |
344 | } else { |
345 | limit=start; |
346 | remainingCapacity=str.getCapacity(); |
347 | } |
348 | lastCC=0; |
349 | reorderStart=limit; |
350 | } |
351 | |
352 | UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { |
353 | int32_t reorderStartIndex=(int32_t)(reorderStart-start); |
354 | int32_t length=(int32_t)(limit-start); |
355 | str.releaseBuffer(length); |
356 | int32_t newCapacity=length+appendLength; |
357 | int32_t doubleCapacity=2*str.getCapacity(); |
358 | if(newCapacity<doubleCapacity) { |
359 | newCapacity=doubleCapacity; |
360 | } |
361 | if(newCapacity<256) { |
362 | newCapacity=256; |
363 | } |
364 | start=str.getBuffer(newCapacity); |
365 | if(start==NULL) { |
366 | // getBuffer() already did str.setToBogus() |
367 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
368 | return FALSE; |
369 | } |
370 | reorderStart=start+reorderStartIndex; |
371 | limit=start+length; |
372 | remainingCapacity=str.getCapacity()-length; |
373 | return TRUE; |
374 | } |
375 | |
376 | void ReorderingBuffer::skipPrevious() { |
377 | codePointLimit=codePointStart; |
378 | UChar c=*--codePointStart; |
379 | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { |
380 | --codePointStart; |
381 | } |
382 | } |
383 | |
384 | uint8_t ReorderingBuffer::previousCC() { |
385 | codePointLimit=codePointStart; |
386 | if(reorderStart>=codePointStart) { |
387 | return 0; |
388 | } |
389 | UChar32 c=*--codePointStart; |
390 | UChar c2; |
391 | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { |
392 | --codePointStart; |
393 | c=U16_GET_SUPPLEMENTARY(c2, c); |
394 | } |
395 | return impl.getCCFromYesOrMaybeCP(c); |
396 | } |
397 | |
398 | // Inserts c somewhere before the last character. |
399 | // Requires 0<cc<lastCC which implies reorderStart<limit. |
400 | void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { |
401 | for(setIterator(), skipPrevious(); previousCC()>cc;) {} |
402 | // insert c at codePointLimit, after the character with prevCC<=cc |
403 | UChar *q=limit; |
404 | UChar *r=limit+=U16_LENGTH(c); |
405 | do { |
406 | *--r=*--q; |
407 | } while(codePointLimit!=q); |
408 | writeCodePoint(q, c); |
409 | if(cc<=1) { |
410 | reorderStart=r; |
411 | } |
412 | } |
413 | |
414 | // Normalizer2Impl --------------------------------------------------------- *** |
415 | |
416 | struct CanonIterData : public UMemory { |
417 | CanonIterData(UErrorCode &errorCode); |
418 | ~CanonIterData(); |
419 | void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); |
420 | UMutableCPTrie *mutableTrie; |
421 | UCPTrie *trie; |
422 | UVector canonStartSets; // contains UnicodeSet * |
423 | }; |
424 | |
425 | Normalizer2Impl::~Normalizer2Impl() { |
426 | delete fCanonIterData; |
427 | } |
428 | |
429 | void |
430 | Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie, |
431 | const uint16_t *, const uint8_t *inSmallFCD) { |
432 | minDecompNoCP = static_cast<UChar>(inIndexes[IX_MIN_DECOMP_NO_CP]); |
433 | minCompNoMaybeCP = static_cast<UChar>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]); |
434 | minLcccCP = static_cast<UChar>(inIndexes[IX_MIN_LCCC_CP]); |
435 | |
436 | minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]); |
437 | minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]); |
438 | minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]); |
439 | minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]); |
440 | minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]); |
441 | minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]); |
442 | limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]); |
443 | minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]); |
444 | U_ASSERT((minMaybeYes & 7) == 0); // 8-aligned for noNoDelta bit fields |
445 | centerNoNoDelta = (minMaybeYes >> DELTA_SHIFT) - MAX_DELTA - 1; |
446 | |
447 | normTrie=inTrie; |
448 | |
449 | maybeYesCompositions=inExtraData; |
450 | extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT); |
451 | |
452 | smallFCD=inSmallFCD; |
453 | } |
454 | |
455 | U_CDECL_BEGIN |
456 | |
457 | static uint32_t U_CALLCONV |
458 | segmentStarterMapper(const void * /*context*/, uint32_t value) { |
459 | return value&CANON_NOT_SEGMENT_STARTER; |
460 | } |
461 | |
462 | U_CDECL_END |
463 | |
464 | void |
465 | Normalizer2Impl::addLcccChars(UnicodeSet &set) const { |
466 | UChar32 start = 0, end; |
467 | uint32_t norm16; |
468 | while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT, |
469 | nullptr, nullptr, &norm16)) >= 0) { |
470 | if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES && |
471 | norm16 != Normalizer2Impl::JAMO_VT) { |
472 | set.add(start, end); |
473 | } else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) { |
474 | uint16_t fcd16 = getFCD16(start); |
475 | if (fcd16 > 0xff) { set.add(start, end); } |
476 | } |
477 | start = end + 1; |
478 | } |
479 | } |
480 | |
481 | void |
482 | Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { |
483 | // Add the start code point of each same-value range of the trie. |
484 | UChar32 start = 0, end; |
485 | uint32_t value; |
486 | while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT, |
487 | nullptr, nullptr, &value)) >= 0) { |
488 | sa->add(sa->set, start); |
489 | if (start != end && isAlgorithmicNoNo((uint16_t)value) && |
490 | (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) { |
491 | // Range of code points with same-norm16-value algorithmic decompositions. |
492 | // They might have different non-zero FCD16 values. |
493 | uint16_t prevFCD16 = getFCD16(start); |
494 | while (++start <= end) { |
495 | uint16_t fcd16 = getFCD16(start); |
496 | if (fcd16 != prevFCD16) { |
497 | sa->add(sa->set, start); |
498 | prevFCD16 = fcd16; |
499 | } |
500 | } |
501 | } |
502 | start = end + 1; |
503 | } |
504 | |
505 | /* add Hangul LV syllables and LV+1 because of skippables */ |
506 | for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { |
507 | sa->add(sa->set, c); |
508 | sa->add(sa->set, c+1); |
509 | } |
510 | sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ |
511 | } |
512 | |
513 | void |
514 | Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { |
515 | // Add the start code point of each same-value range of the canonical iterator data trie. |
516 | if (!ensureCanonIterData(errorCode)) { return; } |
517 | // Currently only used for the SEGMENT_STARTER property. |
518 | UChar32 start = 0, end; |
519 | uint32_t value; |
520 | while ((end = ucptrie_getRange(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0, |
521 | segmentStarterMapper, nullptr, &value)) >= 0) { |
522 | sa->add(sa->set, start); |
523 | start = end + 1; |
524 | } |
525 | } |
526 | |
527 | const UChar * |
528 | Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, |
529 | UChar32 minNeedDataCP, |
530 | ReorderingBuffer *buffer, |
531 | UErrorCode &errorCode) const { |
532 | // Make some effort to support NUL-terminated strings reasonably. |
533 | // Take the part of the fast quick check loop that does not look up |
534 | // data and check the first part of the string. |
535 | // After this prefix, determine the string length to simplify the rest |
536 | // of the code. |
537 | const UChar *prevSrc=src; |
538 | UChar c; |
539 | while((c=*src++)<minNeedDataCP && c!=0) {} |
540 | // Back out the last character for full processing. |
541 | // Copy this prefix. |
542 | if(--src!=prevSrc) { |
543 | if(buffer!=NULL) { |
544 | buffer->appendZeroCC(prevSrc, src, errorCode); |
545 | } |
546 | } |
547 | return src; |
548 | } |
549 | |
550 | UnicodeString & |
551 | Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest, |
552 | UErrorCode &errorCode) const { |
553 | if(U_FAILURE(errorCode)) { |
554 | dest.setToBogus(); |
555 | return dest; |
556 | } |
557 | const UChar *sArray=src.getBuffer(); |
558 | if(&dest==&src || sArray==NULL) { |
559 | errorCode=U_ILLEGAL_ARGUMENT_ERROR; |
560 | dest.setToBogus(); |
561 | return dest; |
562 | } |
563 | decompose(sArray, sArray+src.length(), dest, src.length(), errorCode); |
564 | return dest; |
565 | } |
566 | |
567 | void |
568 | Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
569 | UnicodeString &dest, |
570 | int32_t destLengthEstimate, |
571 | UErrorCode &errorCode) const { |
572 | if(destLengthEstimate<0 && limit!=NULL) { |
573 | destLengthEstimate=(int32_t)(limit-src); |
574 | } |
575 | dest.remove(); |
576 | ReorderingBuffer buffer(*this, dest); |
577 | if(buffer.init(destLengthEstimate, errorCode)) { |
578 | decompose(src, limit, &buffer, errorCode); |
579 | } |
580 | } |
581 | |
582 | // Dual functionality: |
583 | // buffer!=NULL: normalize |
584 | // buffer==NULL: isNormalized/spanQuickCheckYes |
585 | const UChar * |
586 | Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
587 | ReorderingBuffer *buffer, |
588 | UErrorCode &errorCode) const { |
589 | UChar32 minNoCP=minDecompNoCP; |
590 | if(limit==NULL) { |
591 | src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); |
592 | if(U_FAILURE(errorCode)) { |
593 | return src; |
594 | } |
595 | limit=u_strchr(src, 0); |
596 | } |
597 | |
598 | const UChar *prevSrc; |
599 | UChar32 c=0; |
600 | uint16_t norm16=0; |
601 | |
602 | // only for quick check |
603 | const UChar *prevBoundary=src; |
604 | uint8_t prevCC=0; |
605 | |
606 | for(;;) { |
607 | // count code units below the minimum or with irrelevant data for the quick check |
608 | for(prevSrc=src; src!=limit;) { |
609 | if( (c=*src)<minNoCP || |
610 | isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)) |
611 | ) { |
612 | ++src; |
613 | } else if(!U16_IS_LEAD(c)) { |
614 | break; |
615 | } else { |
616 | UChar c2; |
617 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
618 | c=U16_GET_SUPPLEMENTARY(c, c2); |
619 | norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c); |
620 | if(isMostDecompYesAndZeroCC(norm16)) { |
621 | src+=2; |
622 | } else { |
623 | break; |
624 | } |
625 | } else { |
626 | ++src; // unpaired lead surrogate: inert |
627 | } |
628 | } |
629 | } |
630 | // copy these code units all at once |
631 | if(src!=prevSrc) { |
632 | if(buffer!=NULL) { |
633 | if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { |
634 | break; |
635 | } |
636 | } else { |
637 | prevCC=0; |
638 | prevBoundary=src; |
639 | } |
640 | } |
641 | if(src==limit) { |
642 | break; |
643 | } |
644 | |
645 | // Check one above-minimum, relevant code point. |
646 | src+=U16_LENGTH(c); |
647 | if(buffer!=NULL) { |
648 | if(!decompose(c, norm16, *buffer, errorCode)) { |
649 | break; |
650 | } |
651 | } else { |
652 | if(isDecompYes(norm16)) { |
653 | uint8_t cc=getCCFromYesOrMaybe(norm16); |
654 | if(prevCC<=cc || cc==0) { |
655 | prevCC=cc; |
656 | if(cc<=1) { |
657 | prevBoundary=src; |
658 | } |
659 | continue; |
660 | } |
661 | } |
662 | return prevBoundary; // "no" or cc out of order |
663 | } |
664 | } |
665 | return src; |
666 | } |
667 | |
668 | // Decompose a short piece of text which is likely to contain characters that |
669 | // fail the quick check loop and/or where the quick check loop's overhead |
670 | // is unlikely to be amortized. |
671 | // Called by the compose() and makeFCD() implementations. |
672 | const UChar * |
673 | Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, |
674 | UBool stopAtCompBoundary, UBool onlyContiguous, |
675 | ReorderingBuffer &buffer, UErrorCode &errorCode) const { |
676 | if (U_FAILURE(errorCode)) { |
677 | return nullptr; |
678 | } |
679 | while(src<limit) { |
680 | if (stopAtCompBoundary && *src < minCompNoMaybeCP) { |
681 | return src; |
682 | } |
683 | const UChar *prevSrc = src; |
684 | UChar32 c; |
685 | uint16_t norm16; |
686 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16); |
687 | if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) { |
688 | return prevSrc; |
689 | } |
690 | if(!decompose(c, norm16, buffer, errorCode)) { |
691 | return nullptr; |
692 | } |
693 | if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
694 | return src; |
695 | } |
696 | } |
697 | return src; |
698 | } |
699 | |
700 | UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, |
701 | ReorderingBuffer &buffer, |
702 | UErrorCode &errorCode) const { |
703 | // get the decomposition and the lead and trail cc's |
704 | if (norm16 >= limitNoNo) { |
705 | if (isMaybeOrNonZeroCC(norm16)) { |
706 | return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); |
707 | } |
708 | // Maps to an isCompYesAndZeroCC. |
709 | c=mapAlgorithmic(c, norm16); |
710 | norm16=getRawNorm16(c); |
711 | } |
712 | if (norm16 < minYesNo) { |
713 | // c does not decompose |
714 | return buffer.append(c, 0, errorCode); |
715 | } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
716 | // Hangul syllable: decompose algorithmically |
717 | UChar jamos[3]; |
718 | return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); |
719 | } |
720 | // c decomposes, get everything from the variable-length extra data |
721 | const uint16_t *mapping=getMapping(norm16); |
722 | uint16_t firstUnit=*mapping; |
723 | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
724 | uint8_t leadCC, trailCC; |
725 | trailCC=(uint8_t)(firstUnit>>8); |
726 | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
727 | leadCC=(uint8_t)(*(mapping-1)>>8); |
728 | } else { |
729 | leadCC=0; |
730 | } |
731 | return buffer.append((const UChar *)mapping+1, length, TRUE, leadCC, trailCC, errorCode); |
732 | } |
733 | |
734 | const uint8_t * |
735 | Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit, |
736 | UBool stopAtCompBoundary, UBool onlyContiguous, |
737 | ReorderingBuffer &buffer, UErrorCode &errorCode) const { |
738 | if (U_FAILURE(errorCode)) { |
739 | return nullptr; |
740 | } |
741 | while (src < limit) { |
742 | const uint8_t *prevSrc = src; |
743 | uint16_t norm16; |
744 | UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16); |
745 | // Get the decomposition and the lead and trail cc's. |
746 | UChar32 c = U_SENTINEL; |
747 | if (norm16 >= limitNoNo) { |
748 | if (isMaybeOrNonZeroCC(norm16)) { |
749 | // No boundaries around this character. |
750 | c = codePointFromValidUTF8(prevSrc, src); |
751 | if (!buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode)) { |
752 | return nullptr; |
753 | } |
754 | continue; |
755 | } |
756 | // Maps to an isCompYesAndZeroCC. |
757 | if (stopAtCompBoundary) { |
758 | return prevSrc; |
759 | } |
760 | c = codePointFromValidUTF8(prevSrc, src); |
761 | c = mapAlgorithmic(c, norm16); |
762 | norm16 = getRawNorm16(c); |
763 | } else if (stopAtCompBoundary && norm16 < minNoNoCompNoMaybeCC) { |
764 | return prevSrc; |
765 | } |
766 | // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8. |
767 | // We do not see invalid UTF-8 here because |
768 | // its norm16==INERT is normalization-inert, |
769 | // so it gets copied unchanged in the fast path, |
770 | // and we stop the slow path where invalid UTF-8 begins. |
771 | U_ASSERT(norm16 != INERT); |
772 | if (norm16 < minYesNo) { |
773 | if (c < 0) { |
774 | c = codePointFromValidUTF8(prevSrc, src); |
775 | } |
776 | // does not decompose |
777 | if (!buffer.append(c, 0, errorCode)) { |
778 | return nullptr; |
779 | } |
780 | } else if (isHangulLV(norm16) || isHangulLVT(norm16)) { |
781 | // Hangul syllable: decompose algorithmically |
782 | if (c < 0) { |
783 | c = codePointFromValidUTF8(prevSrc, src); |
784 | } |
785 | char16_t jamos[3]; |
786 | if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) { |
787 | return nullptr; |
788 | } |
789 | } else { |
790 | // The character decomposes, get everything from the variable-length extra data. |
791 | const uint16_t *mapping = getMapping(norm16); |
792 | uint16_t firstUnit = *mapping; |
793 | int32_t length = firstUnit & MAPPING_LENGTH_MASK; |
794 | uint8_t trailCC = (uint8_t)(firstUnit >> 8); |
795 | uint8_t leadCC; |
796 | if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) { |
797 | leadCC = (uint8_t)(*(mapping-1) >> 8); |
798 | } else { |
799 | leadCC = 0; |
800 | } |
801 | if (!buffer.append((const char16_t *)mapping+1, length, TRUE, leadCC, trailCC, errorCode)) { |
802 | return nullptr; |
803 | } |
804 | } |
805 | if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
806 | return src; |
807 | } |
808 | } |
809 | return src; |
810 | } |
811 | |
812 | const UChar * |
813 | Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { |
814 | uint16_t norm16; |
815 | if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) { |
816 | // c does not decompose |
817 | return nullptr; |
818 | } |
819 | const UChar *decomp = nullptr; |
820 | if(isDecompNoAlgorithmic(norm16)) { |
821 | // Maps to an isCompYesAndZeroCC. |
822 | c=mapAlgorithmic(c, norm16); |
823 | decomp=buffer; |
824 | length=0; |
825 | U16_APPEND_UNSAFE(buffer, length, c); |
826 | // The mapping might decompose further. |
827 | norm16 = getRawNorm16(c); |
828 | } |
829 | if (norm16 < minYesNo) { |
830 | return decomp; |
831 | } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
832 | // Hangul syllable: decompose algorithmically |
833 | length=Hangul::decompose(c, buffer); |
834 | return buffer; |
835 | } |
836 | // c decomposes, get everything from the variable-length extra data |
837 | const uint16_t *mapping=getMapping(norm16); |
838 | length=*mapping&MAPPING_LENGTH_MASK; |
839 | return (const UChar *)mapping+1; |
840 | } |
841 | |
842 | // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 |
843 | // so that a raw mapping fits that consists of one unit ("rm0") |
844 | // plus all but the first two code units of the normal mapping. |
845 | // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. |
846 | const UChar * |
847 | Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { |
848 | uint16_t norm16; |
849 | if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
850 | // c does not decompose |
851 | return NULL; |
852 | } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
853 | // Hangul syllable: decompose algorithmically |
854 | Hangul::getRawDecomposition(c, buffer); |
855 | length=2; |
856 | return buffer; |
857 | } else if(isDecompNoAlgorithmic(norm16)) { |
858 | c=mapAlgorithmic(c, norm16); |
859 | length=0; |
860 | U16_APPEND_UNSAFE(buffer, length, c); |
861 | return buffer; |
862 | } |
863 | // c decomposes, get everything from the variable-length extra data |
864 | const uint16_t *mapping=getMapping(norm16); |
865 | uint16_t firstUnit=*mapping; |
866 | int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping |
867 | if(firstUnit&MAPPING_HAS_RAW_MAPPING) { |
868 | // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. |
869 | // Bit 7=MAPPING_HAS_CCC_LCCC_WORD |
870 | const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; |
871 | uint16_t rm0=*rawMapping; |
872 | if(rm0<=MAPPING_LENGTH_MASK) { |
873 | length=rm0; |
874 | return (const UChar *)rawMapping-rm0; |
875 | } else { |
876 | // Copy the normal mapping and replace its first two code units with rm0. |
877 | buffer[0]=(UChar)rm0; |
878 | u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); |
879 | length=mLength-1; |
880 | return buffer; |
881 | } |
882 | } else { |
883 | length=mLength; |
884 | return (const UChar *)mapping+1; |
885 | } |
886 | } |
887 | |
888 | void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, |
889 | UBool doDecompose, |
890 | UnicodeString &safeMiddle, |
891 | ReorderingBuffer &buffer, |
892 | UErrorCode &errorCode) const { |
893 | buffer.copyReorderableSuffixTo(safeMiddle); |
894 | if(doDecompose) { |
895 | decompose(src, limit, &buffer, errorCode); |
896 | return; |
897 | } |
898 | // Just merge the strings at the boundary. |
899 | bool isFirst = true; |
900 | uint8_t firstCC = 0, prevCC = 0, cc; |
901 | const UChar *p = src; |
902 | while (p != limit) { |
903 | const UChar *codePointStart = p; |
904 | UChar32 c; |
905 | uint16_t norm16; |
906 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
907 | if ((cc = getCC(norm16)) == 0) { |
908 | p = codePointStart; |
909 | break; |
910 | } |
911 | if (isFirst) { |
912 | firstCC = cc; |
913 | isFirst = false; |
914 | } |
915 | prevCC = cc; |
916 | } |
917 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
918 | limit=u_strchr(p, 0); |
919 | } |
920 | |
921 | if (buffer.append(src, (int32_t)(p - src), FALSE, firstCC, prevCC, errorCode)) { |
922 | buffer.appendZeroCC(p, limit, errorCode); |
923 | } |
924 | } |
925 | |
926 | UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const { |
927 | return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) || |
928 | norm16HasDecompBoundaryBefore(getNorm16(c)); |
929 | } |
930 | |
931 | UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const { |
932 | if (norm16 < minNoNoCompNoMaybeCC) { |
933 | return TRUE; |
934 | } |
935 | if (norm16 >= limitNoNo) { |
936 | return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT; |
937 | } |
938 | // c decomposes, get everything from the variable-length extra data |
939 | const uint16_t *mapping=getMapping(norm16); |
940 | uint16_t firstUnit=*mapping; |
941 | // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
942 | return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
943 | } |
944 | |
945 | UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const { |
946 | if (c < minDecompNoCP) { |
947 | return TRUE; |
948 | } |
949 | if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) { |
950 | return TRUE; |
951 | } |
952 | return norm16HasDecompBoundaryAfter(getNorm16(c)); |
953 | } |
954 | |
955 | UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const { |
956 | if(norm16 <= minYesNo || isHangulLVT(norm16)) { |
957 | return TRUE; |
958 | } |
959 | if (norm16 >= limitNoNo) { |
960 | if (isMaybeOrNonZeroCC(norm16)) { |
961 | return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT; |
962 | } |
963 | // Maps to an isCompYesAndZeroCC. |
964 | return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1; |
965 | } |
966 | // c decomposes, get everything from the variable-length extra data |
967 | const uint16_t *mapping=getMapping(norm16); |
968 | uint16_t firstUnit=*mapping; |
969 | // decomp after-boundary: same as hasFCDBoundaryAfter(), |
970 | // fcd16<=1 || trailCC==0 |
971 | if(firstUnit>0x1ff) { |
972 | return FALSE; // trailCC>1 |
973 | } |
974 | if(firstUnit<=0xff) { |
975 | return TRUE; // trailCC==0 |
976 | } |
977 | // if(trailCC==1) test leadCC==0, same as checking for before-boundary |
978 | // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
979 | return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
980 | } |
981 | |
982 | /* |
983 | * Finds the recomposition result for |
984 | * a forward-combining "lead" character, |
985 | * specified with a pointer to its compositions list, |
986 | * and a backward-combining "trail" character. |
987 | * |
988 | * If the lead and trail characters combine, then this function returns |
989 | * the following "compositeAndFwd" value: |
990 | * Bits 21..1 composite character |
991 | * Bit 0 set if the composite is a forward-combining starter |
992 | * otherwise it returns -1. |
993 | * |
994 | * The compositions list has (trail, compositeAndFwd) pair entries, |
995 | * encoded as either pairs or triples of 16-bit units. |
996 | * The last entry has the high bit of its first unit set. |
997 | * |
998 | * The list is sorted by ascending trail characters (there are no duplicates). |
999 | * A linear search is used. |
1000 | * |
1001 | * See normalizer2impl.h for a more detailed description |
1002 | * of the compositions list format. |
1003 | */ |
1004 | int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { |
1005 | uint16_t key1, firstUnit; |
1006 | if(trail<COMP_1_TRAIL_LIMIT) { |
1007 | // trail character is 0..33FF |
1008 | // result entry may have 2 or 3 units |
1009 | key1=(uint16_t)(trail<<1); |
1010 | while(key1>(firstUnit=*list)) { |
1011 | list+=2+(firstUnit&COMP_1_TRIPLE); |
1012 | } |
1013 | if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
1014 | if(firstUnit&COMP_1_TRIPLE) { |
1015 | return ((int32_t)list[1]<<16)|list[2]; |
1016 | } else { |
1017 | return list[1]; |
1018 | } |
1019 | } |
1020 | } else { |
1021 | // trail character is 3400..10FFFF |
1022 | // result entry has 3 units |
1023 | key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ |
1024 | (((trail>>COMP_1_TRAIL_SHIFT))& |
1025 | ~COMP_1_TRIPLE)); |
1026 | uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); |
1027 | uint16_t secondUnit; |
1028 | for(;;) { |
1029 | if(key1>(firstUnit=*list)) { |
1030 | list+=2+(firstUnit&COMP_1_TRIPLE); |
1031 | } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
1032 | if(key2>(secondUnit=list[1])) { |
1033 | if(firstUnit&COMP_1_LAST_TUPLE) { |
1034 | break; |
1035 | } else { |
1036 | list+=3; |
1037 | } |
1038 | } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { |
1039 | return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
1040 | } else { |
1041 | break; |
1042 | } |
1043 | } else { |
1044 | break; |
1045 | } |
1046 | } |
1047 | } |
1048 | return -1; |
1049 | } |
1050 | |
1051 | /** |
1052 | * @param list some character's compositions list |
1053 | * @param set recursively receives the composites from these compositions |
1054 | */ |
1055 | void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { |
1056 | uint16_t firstUnit; |
1057 | int32_t compositeAndFwd; |
1058 | do { |
1059 | firstUnit=*list; |
1060 | if((firstUnit&COMP_1_TRIPLE)==0) { |
1061 | compositeAndFwd=list[1]; |
1062 | list+=2; |
1063 | } else { |
1064 | compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
1065 | list+=3; |
1066 | } |
1067 | UChar32 composite=compositeAndFwd>>1; |
1068 | if((compositeAndFwd&1)!=0) { |
1069 | addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set); |
1070 | } |
1071 | set.add(composite); |
1072 | } while((firstUnit&COMP_1_LAST_TUPLE)==0); |
1073 | } |
1074 | |
1075 | /* |
1076 | * Recomposes the buffer text starting at recomposeStartIndex |
1077 | * (which is in NFD - decomposed and canonically ordered), |
1078 | * and truncates the buffer contents. |
1079 | * |
1080 | * Note that recomposition never lengthens the text: |
1081 | * Any character consists of either one or two code units; |
1082 | * a composition may contain at most one more code unit than the original starter, |
1083 | * while the combining mark that is removed has at least one code unit. |
1084 | */ |
1085 | void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, |
1086 | UBool onlyContiguous) const { |
1087 | UChar *p=buffer.getStart()+recomposeStartIndex; |
1088 | UChar *limit=buffer.getLimit(); |
1089 | if(p==limit) { |
1090 | return; |
1091 | } |
1092 | |
1093 | UChar *starter, *pRemove, *q, *r; |
1094 | const uint16_t *compositionsList; |
1095 | UChar32 c, compositeAndFwd; |
1096 | uint16_t norm16; |
1097 | uint8_t cc, prevCC; |
1098 | UBool starterIsSupplementary; |
1099 | |
1100 | // Some of the following variables are not used until we have a forward-combining starter |
1101 | // and are only initialized now to avoid compiler warnings. |
1102 | compositionsList=NULL; // used as indicator for whether we have a forward-combining starter |
1103 | starter=NULL; |
1104 | starterIsSupplementary=FALSE; |
1105 | prevCC=0; |
1106 | |
1107 | for(;;) { |
1108 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
1109 | cc=getCCFromYesOrMaybe(norm16); |
1110 | if( // this character combines backward and |
1111 | isMaybe(norm16) && |
1112 | // we have seen a starter that combines forward and |
1113 | compositionsList!=NULL && |
1114 | // the backward-combining character is not blocked |
1115 | (prevCC<cc || prevCC==0) |
1116 | ) { |
1117 | if(isJamoVT(norm16)) { |
1118 | // c is a Jamo V/T, see if we can compose it with the previous character. |
1119 | if(c<Hangul::JAMO_T_BASE) { |
1120 | // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
1121 | UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); |
1122 | if(prev<Hangul::JAMO_L_COUNT) { |
1123 | pRemove=p-1; |
1124 | UChar syllable=(UChar) |
1125 | (Hangul::HANGUL_BASE+ |
1126 | (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
1127 | Hangul::JAMO_T_COUNT); |
1128 | UChar t; |
1129 | if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
1130 | ++p; |
1131 | syllable+=t; // The next character was a Jamo T. |
1132 | } |
1133 | *starter=syllable; |
1134 | // remove the Jamo V/T |
1135 | q=pRemove; |
1136 | r=p; |
1137 | while(r<limit) { |
1138 | *q++=*r++; |
1139 | } |
1140 | limit=q; |
1141 | p=pRemove; |
1142 | } |
1143 | } |
1144 | /* |
1145 | * No "else" for Jamo T: |
1146 | * Since the input is in NFD, there are no Hangul LV syllables that |
1147 | * a Jamo T could combine with. |
1148 | * All Jamo Ts are combined above when handling Jamo Vs. |
1149 | */ |
1150 | if(p==limit) { |
1151 | break; |
1152 | } |
1153 | compositionsList=NULL; |
1154 | continue; |
1155 | } else if((compositeAndFwd=combine(compositionsList, c))>=0) { |
1156 | // The starter and the combining mark (c) do combine. |
1157 | UChar32 composite=compositeAndFwd>>1; |
1158 | |
1159 | // Replace the starter with the composite, remove the combining mark. |
1160 | pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark |
1161 | if(starterIsSupplementary) { |
1162 | if(U_IS_SUPPLEMENTARY(composite)) { |
1163 | // both are supplementary |
1164 | starter[0]=U16_LEAD(composite); |
1165 | starter[1]=U16_TRAIL(composite); |
1166 | } else { |
1167 | *starter=(UChar)composite; |
1168 | // The composite is shorter than the starter, |
1169 | // move the intermediate characters forward one. |
1170 | starterIsSupplementary=FALSE; |
1171 | q=starter+1; |
1172 | r=q+1; |
1173 | while(r<pRemove) { |
1174 | *q++=*r++; |
1175 | } |
1176 | --pRemove; |
1177 | } |
1178 | } else if(U_IS_SUPPLEMENTARY(composite)) { |
1179 | // The composite is longer than the starter, |
1180 | // move the intermediate characters back one. |
1181 | starterIsSupplementary=TRUE; |
1182 | ++starter; // temporarily increment for the loop boundary |
1183 | q=pRemove; |
1184 | r=++pRemove; |
1185 | while(starter<q) { |
1186 | *--r=*--q; |
1187 | } |
1188 | *starter=U16_TRAIL(composite); |
1189 | *--starter=U16_LEAD(composite); // undo the temporary increment |
1190 | } else { |
1191 | // both are on the BMP |
1192 | *starter=(UChar)composite; |
1193 | } |
1194 | |
1195 | /* remove the combining mark by moving the following text over it */ |
1196 | if(pRemove<p) { |
1197 | q=pRemove; |
1198 | r=p; |
1199 | while(r<limit) { |
1200 | *q++=*r++; |
1201 | } |
1202 | limit=q; |
1203 | p=pRemove; |
1204 | } |
1205 | // Keep prevCC because we removed the combining mark. |
1206 | |
1207 | if(p==limit) { |
1208 | break; |
1209 | } |
1210 | // Is the composite a starter that combines forward? |
1211 | if(compositeAndFwd&1) { |
1212 | compositionsList= |
1213 | getCompositionsListForComposite(getRawNorm16(composite)); |
1214 | } else { |
1215 | compositionsList=NULL; |
1216 | } |
1217 | |
1218 | // We combined; continue with looking for compositions. |
1219 | continue; |
1220 | } |
1221 | } |
1222 | |
1223 | // no combination this time |
1224 | prevCC=cc; |
1225 | if(p==limit) { |
1226 | break; |
1227 | } |
1228 | |
1229 | // If c did not combine, then check if it is a starter. |
1230 | if(cc==0) { |
1231 | // Found a new starter. |
1232 | if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { |
1233 | // It may combine with something, prepare for it. |
1234 | if(U_IS_BMP(c)) { |
1235 | starterIsSupplementary=FALSE; |
1236 | starter=p-1; |
1237 | } else { |
1238 | starterIsSupplementary=TRUE; |
1239 | starter=p-2; |
1240 | } |
1241 | } |
1242 | } else if(onlyContiguous) { |
1243 | // FCC: no discontiguous compositions; any intervening character blocks. |
1244 | compositionsList=NULL; |
1245 | } |
1246 | } |
1247 | buffer.setReorderingLimit(limit); |
1248 | } |
1249 | |
1250 | UChar32 |
1251 | Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { |
1252 | uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16 |
1253 | const uint16_t *list; |
1254 | if(isInert(norm16)) { |
1255 | return U_SENTINEL; |
1256 | } else if(norm16<minYesNoMappingsOnly) { |
1257 | // a combines forward. |
1258 | if(isJamoL(norm16)) { |
1259 | b-=Hangul::JAMO_V_BASE; |
1260 | if(0<=b && b<Hangul::JAMO_V_COUNT) { |
1261 | return |
1262 | (Hangul::HANGUL_BASE+ |
1263 | ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* |
1264 | Hangul::JAMO_T_COUNT); |
1265 | } else { |
1266 | return U_SENTINEL; |
1267 | } |
1268 | } else if(isHangulLV(norm16)) { |
1269 | b-=Hangul::JAMO_T_BASE; |
1270 | if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! |
1271 | return a+b; |
1272 | } else { |
1273 | return U_SENTINEL; |
1274 | } |
1275 | } else { |
1276 | // 'a' has a compositions list in extraData |
1277 | list=getMapping(norm16); |
1278 | if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list |
1279 | list+= // mapping pointer |
1280 | 1+ // +1 to skip the first unit with the mapping length |
1281 | (*list&MAPPING_LENGTH_MASK); // + mapping length |
1282 | } |
1283 | } |
1284 | } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { |
1285 | return U_SENTINEL; |
1286 | } else { |
1287 | list=getCompositionsListForMaybe(norm16); |
1288 | } |
1289 | if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b |
1290 | return U_SENTINEL; |
1291 | } |
1292 | #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC |
1293 | return combine(list, b)>>1; |
1294 | #else |
1295 | int32_t compositeAndFwd=combine(list, b); |
1296 | return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; |
1297 | #endif |
1298 | } |
1299 | |
1300 | // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. |
1301 | // doCompose: normalize |
1302 | // !doCompose: isNormalized (buffer must be empty and initialized) |
1303 | UBool |
1304 | Normalizer2Impl::compose(const UChar *src, const UChar *limit, |
1305 | UBool onlyContiguous, |
1306 | UBool doCompose, |
1307 | ReorderingBuffer &buffer, |
1308 | UErrorCode &errorCode) const { |
1309 | const UChar *prevBoundary=src; |
1310 | UChar32 minNoMaybeCP=minCompNoMaybeCP; |
1311 | if(limit==NULL) { |
1312 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, |
1313 | doCompose ? &buffer : NULL, |
1314 | errorCode); |
1315 | if(U_FAILURE(errorCode)) { |
1316 | return FALSE; |
1317 | } |
1318 | limit=u_strchr(src, 0); |
1319 | if (prevBoundary != src) { |
1320 | if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) { |
1321 | prevBoundary = src; |
1322 | } else { |
1323 | buffer.removeSuffix(1); |
1324 | prevBoundary = --src; |
1325 | } |
1326 | } |
1327 | } |
1328 | |
1329 | for (;;) { |
1330 | // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
1331 | // or with (compYes && ccc==0) properties. |
1332 | const UChar *prevSrc; |
1333 | UChar32 c = 0; |
1334 | uint16_t norm16 = 0; |
1335 | for (;;) { |
1336 | if (src == limit) { |
1337 | if (prevBoundary != limit && doCompose) { |
1338 | buffer.appendZeroCC(prevBoundary, limit, errorCode); |
1339 | } |
1340 | return TRUE; |
1341 | } |
1342 | if( (c=*src)<minNoMaybeCP || |
1343 | isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)) |
1344 | ) { |
1345 | ++src; |
1346 | } else { |
1347 | prevSrc = src++; |
1348 | if(!U16_IS_LEAD(c)) { |
1349 | break; |
1350 | } else { |
1351 | UChar c2; |
1352 | if(src!=limit && U16_IS_TRAIL(c2=*src)) { |
1353 | ++src; |
1354 | c=U16_GET_SUPPLEMENTARY(c, c2); |
1355 | norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c); |
1356 | if(!isCompYesAndZeroCC(norm16)) { |
1357 | break; |
1358 | } |
1359 | } |
1360 | } |
1361 | } |
1362 | } |
1363 | // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1364 | // The current character is either a "noNo" (has a mapping) |
1365 | // or a "maybeYes" (combines backward) |
1366 | // or a "yesYes" with ccc!=0. |
1367 | // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
1368 | |
1369 | // Medium-fast path: Handle cases that do not require full decomposition and recomposition. |
1370 | if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes |
1371 | if (!doCompose) { |
1372 | return FALSE; |
1373 | } |
1374 | // Fast path for mapping a character that is immediately surrounded by boundaries. |
1375 | // In this case, we need not decompose around the current character. |
1376 | if (isDecompNoAlgorithmic(norm16)) { |
1377 | // Maps to a single isCompYesAndZeroCC character |
1378 | // which also implies hasCompBoundaryBefore. |
1379 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1380 | hasCompBoundaryBefore(src, limit)) { |
1381 | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1382 | break; |
1383 | } |
1384 | if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) { |
1385 | break; |
1386 | } |
1387 | prevBoundary = src; |
1388 | continue; |
1389 | } |
1390 | } else if (norm16 < minNoNoCompBoundaryBefore) { |
1391 | // The mapping is comp-normalized which also implies hasCompBoundaryBefore. |
1392 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1393 | hasCompBoundaryBefore(src, limit)) { |
1394 | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1395 | break; |
1396 | } |
1397 | const UChar *mapping = reinterpret_cast<const UChar *>(getMapping(norm16)); |
1398 | int32_t length = *mapping++ & MAPPING_LENGTH_MASK; |
1399 | if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) { |
1400 | break; |
1401 | } |
1402 | prevBoundary = src; |
1403 | continue; |
1404 | } |
1405 | } else if (norm16 >= minNoNoEmpty) { |
1406 | // The current character maps to nothing. |
1407 | // Simply omit it from the output if there is a boundary before _or_ after it. |
1408 | // The character itself implies no boundaries. |
1409 | if (hasCompBoundaryBefore(src, limit) || |
1410 | hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) { |
1411 | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1412 | break; |
1413 | } |
1414 | prevBoundary = src; |
1415 | continue; |
1416 | } |
1417 | } |
1418 | // Other "noNo" type, or need to examine more text around this character: |
1419 | // Fall through to the slow path. |
1420 | } else if (isJamoVT(norm16) && prevBoundary != prevSrc) { |
1421 | UChar prev=*(prevSrc-1); |
1422 | if(c<Hangul::JAMO_T_BASE) { |
1423 | // The current character is a Jamo Vowel, |
1424 | // compose with previous Jamo L and following Jamo T. |
1425 | UChar l = (UChar)(prev-Hangul::JAMO_L_BASE); |
1426 | if(l<Hangul::JAMO_L_COUNT) { |
1427 | if (!doCompose) { |
1428 | return FALSE; |
1429 | } |
1430 | int32_t t; |
1431 | if (src != limit && |
1432 | 0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) && |
1433 | t < Hangul::JAMO_T_COUNT) { |
1434 | // The next character is a Jamo T. |
1435 | ++src; |
1436 | } else if (hasCompBoundaryBefore(src, limit)) { |
1437 | // No Jamo T follows, not even via decomposition. |
1438 | t = 0; |
1439 | } else { |
1440 | t = -1; |
1441 | } |
1442 | if (t >= 0) { |
1443 | UChar32 syllable = Hangul::HANGUL_BASE + |
1444 | (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) * |
1445 | Hangul::JAMO_T_COUNT + t; |
1446 | --prevSrc; // Replace the Jamo L as well. |
1447 | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1448 | break; |
1449 | } |
1450 | if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) { |
1451 | break; |
1452 | } |
1453 | prevBoundary = src; |
1454 | continue; |
1455 | } |
1456 | // If we see L+V+x where x!=T then we drop to the slow path, |
1457 | // decompose and recompose. |
1458 | // This is to deal with NFKC finding normal L and V but a |
1459 | // compatibility variant of a T. |
1460 | // We need to either fully compose that combination here |
1461 | // (which would complicate the code and may not work with strange custom data) |
1462 | // or use the slow path. |
1463 | } |
1464 | } else if (Hangul::isHangulLV(prev)) { |
1465 | // The current character is a Jamo Trailing consonant, |
1466 | // compose with previous Hangul LV that does not contain a Jamo T. |
1467 | if (!doCompose) { |
1468 | return FALSE; |
1469 | } |
1470 | UChar32 syllable = prev + c - Hangul::JAMO_T_BASE; |
1471 | --prevSrc; // Replace the Hangul LV as well. |
1472 | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1473 | break; |
1474 | } |
1475 | if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) { |
1476 | break; |
1477 | } |
1478 | prevBoundary = src; |
1479 | continue; |
1480 | } |
1481 | // No matching context, or may need to decompose surrounding text first: |
1482 | // Fall through to the slow path. |
1483 | } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC |
1484 | // One or more combining marks that do not combine-back: |
1485 | // Check for canonical order, copy unchanged if ok and |
1486 | // if followed by a character with a boundary-before. |
1487 | uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0 |
1488 | if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) { |
1489 | // Fails FCD test, need to decompose and contiguously recompose. |
1490 | if (!doCompose) { |
1491 | return FALSE; |
1492 | } |
1493 | } else { |
1494 | // If !onlyContiguous (not FCC), then we ignore the tccc of |
1495 | // the previous character which passed the quick check "yes && ccc==0" test. |
1496 | const UChar *nextSrc; |
1497 | uint16_t n16; |
1498 | for (;;) { |
1499 | if (src == limit) { |
1500 | if (doCompose) { |
1501 | buffer.appendZeroCC(prevBoundary, limit, errorCode); |
1502 | } |
1503 | return TRUE; |
1504 | } |
1505 | uint8_t prevCC = cc; |
1506 | nextSrc = src; |
1507 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16); |
1508 | if (n16 >= MIN_YES_YES_WITH_CC) { |
1509 | cc = getCCFromNormalYesOrMaybe(n16); |
1510 | if (prevCC > cc) { |
1511 | if (!doCompose) { |
1512 | return FALSE; |
1513 | } |
1514 | break; |
1515 | } |
1516 | } else { |
1517 | break; |
1518 | } |
1519 | src = nextSrc; |
1520 | } |
1521 | // src is after the last in-order combining mark. |
1522 | // If there is a boundary here, then we continue with no change. |
1523 | if (norm16HasCompBoundaryBefore(n16)) { |
1524 | if (isCompYesAndZeroCC(n16)) { |
1525 | src = nextSrc; |
1526 | } |
1527 | continue; |
1528 | } |
1529 | // Use the slow path. There is no boundary in [prevSrc, src[. |
1530 | } |
1531 | } |
1532 | |
1533 | // Slow path: Find the nearest boundaries around the current character, |
1534 | // decompose and recompose. |
1535 | if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) { |
1536 | const UChar *p = prevSrc; |
1537 | UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16); |
1538 | if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
1539 | prevSrc = p; |
1540 | } |
1541 | } |
1542 | if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1543 | break; |
1544 | } |
1545 | int32_t recomposeStartIndex=buffer.length(); |
1546 | // We know there is not a boundary here. |
1547 | decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous, |
1548 | buffer, errorCode); |
1549 | // Decompose until the next boundary. |
1550 | src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous, |
1551 | buffer, errorCode); |
1552 | if (U_FAILURE(errorCode)) { |
1553 | break; |
1554 | } |
1555 | if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals() |
1556 | errorCode = U_INDEX_OUTOFBOUNDS_ERROR; |
1557 | return TRUE; |
1558 | } |
1559 | recompose(buffer, recomposeStartIndex, onlyContiguous); |
1560 | if(!doCompose) { |
1561 | if(!buffer.equals(prevSrc, src)) { |
1562 | return FALSE; |
1563 | } |
1564 | buffer.remove(); |
1565 | } |
1566 | prevBoundary=src; |
1567 | } |
1568 | return TRUE; |
1569 | } |
1570 | |
1571 | // Very similar to compose(): Make the same changes in both places if relevant. |
1572 | // pQCResult==NULL: spanQuickCheckYes |
1573 | // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) |
1574 | const UChar * |
1575 | Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, |
1576 | UBool onlyContiguous, |
1577 | UNormalizationCheckResult *pQCResult) const { |
1578 | const UChar *prevBoundary=src; |
1579 | UChar32 minNoMaybeCP=minCompNoMaybeCP; |
1580 | if(limit==NULL) { |
1581 | UErrorCode errorCode=U_ZERO_ERROR; |
1582 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); |
1583 | limit=u_strchr(src, 0); |
1584 | if (prevBoundary != src) { |
1585 | if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) { |
1586 | prevBoundary = src; |
1587 | } else { |
1588 | prevBoundary = --src; |
1589 | } |
1590 | } |
1591 | } |
1592 | |
1593 | for(;;) { |
1594 | // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
1595 | // or with (compYes && ccc==0) properties. |
1596 | const UChar *prevSrc; |
1597 | UChar32 c = 0; |
1598 | uint16_t norm16 = 0; |
1599 | for (;;) { |
1600 | if(src==limit) { |
1601 | return src; |
1602 | } |
1603 | if( (c=*src)<minNoMaybeCP || |
1604 | isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)) |
1605 | ) { |
1606 | ++src; |
1607 | } else { |
1608 | prevSrc = src++; |
1609 | if(!U16_IS_LEAD(c)) { |
1610 | break; |
1611 | } else { |
1612 | UChar c2; |
1613 | if(src!=limit && U16_IS_TRAIL(c2=*src)) { |
1614 | ++src; |
1615 | c=U16_GET_SUPPLEMENTARY(c, c2); |
1616 | norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c); |
1617 | if(!isCompYesAndZeroCC(norm16)) { |
1618 | break; |
1619 | } |
1620 | } |
1621 | } |
1622 | } |
1623 | } |
1624 | // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1625 | // The current character is either a "noNo" (has a mapping) |
1626 | // or a "maybeYes" (combines backward) |
1627 | // or a "yesYes" with ccc!=0. |
1628 | // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
1629 | |
1630 | uint16_t prevNorm16 = INERT; |
1631 | if (prevBoundary != prevSrc) { |
1632 | if (norm16HasCompBoundaryBefore(norm16)) { |
1633 | prevBoundary = prevSrc; |
1634 | } else { |
1635 | const UChar *p = prevSrc; |
1636 | uint16_t n16; |
1637 | UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16); |
1638 | if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) { |
1639 | prevBoundary = prevSrc; |
1640 | } else { |
1641 | prevBoundary = p; |
1642 | prevNorm16 = n16; |
1643 | } |
1644 | } |
1645 | } |
1646 | |
1647 | if(isMaybeOrNonZeroCC(norm16)) { |
1648 | uint8_t cc=getCCFromYesOrMaybe(norm16); |
1649 | if (onlyContiguous /* FCC */ && cc != 0 && |
1650 | getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) { |
1651 | // The [prevBoundary..prevSrc[ character |
1652 | // passed the quick check "yes && ccc==0" test |
1653 | // but is out of canonical order with the current combining mark. |
1654 | } else { |
1655 | // If !onlyContiguous (not FCC), then we ignore the tccc of |
1656 | // the previous character which passed the quick check "yes && ccc==0" test. |
1657 | const UChar *nextSrc; |
1658 | for (;;) { |
1659 | if (norm16 < MIN_YES_YES_WITH_CC) { |
1660 | if (pQCResult != nullptr) { |
1661 | *pQCResult = UNORM_MAYBE; |
1662 | } else { |
1663 | return prevBoundary; |
1664 | } |
1665 | } |
1666 | if (src == limit) { |
1667 | return src; |
1668 | } |
1669 | uint8_t prevCC = cc; |
1670 | nextSrc = src; |
1671 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16); |
1672 | if (isMaybeOrNonZeroCC(norm16)) { |
1673 | cc = getCCFromYesOrMaybe(norm16); |
1674 | if (!(prevCC <= cc || cc == 0)) { |
1675 | break; |
1676 | } |
1677 | } else { |
1678 | break; |
1679 | } |
1680 | src = nextSrc; |
1681 | } |
1682 | // src is after the last in-order combining mark. |
1683 | if (isCompYesAndZeroCC(norm16)) { |
1684 | prevBoundary = src; |
1685 | src = nextSrc; |
1686 | continue; |
1687 | } |
1688 | } |
1689 | } |
1690 | if(pQCResult!=NULL) { |
1691 | *pQCResult=UNORM_NO; |
1692 | } |
1693 | return prevBoundary; |
1694 | } |
1695 | } |
1696 | |
1697 | void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, |
1698 | UBool doCompose, |
1699 | UBool onlyContiguous, |
1700 | UnicodeString &safeMiddle, |
1701 | ReorderingBuffer &buffer, |
1702 | UErrorCode &errorCode) const { |
1703 | if(!buffer.isEmpty()) { |
1704 | const UChar *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous); |
1705 | if(src!=firstStarterInSrc) { |
1706 | const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), |
1707 | buffer.getLimit(), onlyContiguous); |
1708 | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); |
1709 | UnicodeString middle(lastStarterInDest, destSuffixLength); |
1710 | buffer.removeSuffix(destSuffixLength); |
1711 | safeMiddle=middle; |
1712 | middle.append(src, (int32_t)(firstStarterInSrc-src)); |
1713 | const UChar *middleStart=middle.getBuffer(); |
1714 | compose(middleStart, middleStart+middle.length(), onlyContiguous, |
1715 | TRUE, buffer, errorCode); |
1716 | if(U_FAILURE(errorCode)) { |
1717 | return; |
1718 | } |
1719 | src=firstStarterInSrc; |
1720 | } |
1721 | } |
1722 | if(doCompose) { |
1723 | compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); |
1724 | } else { |
1725 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
1726 | limit=u_strchr(src, 0); |
1727 | } |
1728 | buffer.appendZeroCC(src, limit, errorCode); |
1729 | } |
1730 | } |
1731 | |
1732 | UBool |
1733 | Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous, |
1734 | const uint8_t *src, const uint8_t *limit, |
1735 | ByteSink *sink, Edits *edits, UErrorCode &errorCode) const { |
1736 | U_ASSERT(limit != nullptr); |
1737 | UnicodeString s16; |
1738 | uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP); |
1739 | const uint8_t *prevBoundary = src; |
1740 | |
1741 | for (;;) { |
1742 | // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
1743 | // or with (compYes && ccc==0) properties. |
1744 | const uint8_t *prevSrc; |
1745 | uint16_t norm16 = 0; |
1746 | for (;;) { |
1747 | if (src == limit) { |
1748 | if (prevBoundary != limit && sink != nullptr) { |
1749 | ByteSinkUtil::appendUnchanged(prevBoundary, limit, |
1750 | *sink, options, edits, errorCode); |
1751 | } |
1752 | return TRUE; |
1753 | } |
1754 | if (*src < minNoMaybeLead) { |
1755 | ++src; |
1756 | } else { |
1757 | prevSrc = src; |
1758 | UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16); |
1759 | if (!isCompYesAndZeroCC(norm16)) { |
1760 | break; |
1761 | } |
1762 | } |
1763 | } |
1764 | // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1765 | // The current character is either a "noNo" (has a mapping) |
1766 | // or a "maybeYes" (combines backward) |
1767 | // or a "yesYes" with ccc!=0. |
1768 | // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
1769 | |
1770 | // Medium-fast path: Handle cases that do not require full decomposition and recomposition. |
1771 | if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes |
1772 | if (sink == nullptr) { |
1773 | return FALSE; |
1774 | } |
1775 | // Fast path for mapping a character that is immediately surrounded by boundaries. |
1776 | // In this case, we need not decompose around the current character. |
1777 | if (isDecompNoAlgorithmic(norm16)) { |
1778 | // Maps to a single isCompYesAndZeroCC character |
1779 | // which also implies hasCompBoundaryBefore. |
1780 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1781 | hasCompBoundaryBefore(src, limit)) { |
1782 | if (prevBoundary != prevSrc && |
1783 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1784 | *sink, options, edits, errorCode)) { |
1785 | break; |
1786 | } |
1787 | appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits); |
1788 | prevBoundary = src; |
1789 | continue; |
1790 | } |
1791 | } else if (norm16 < minNoNoCompBoundaryBefore) { |
1792 | // The mapping is comp-normalized which also implies hasCompBoundaryBefore. |
1793 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1794 | hasCompBoundaryBefore(src, limit)) { |
1795 | if (prevBoundary != prevSrc && |
1796 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1797 | *sink, options, edits, errorCode)) { |
1798 | break; |
1799 | } |
1800 | const uint16_t *mapping = getMapping(norm16); |
1801 | int32_t length = *mapping++ & MAPPING_LENGTH_MASK; |
1802 | if (!ByteSinkUtil::appendChange(prevSrc, src, (const UChar *)mapping, length, |
1803 | *sink, edits, errorCode)) { |
1804 | break; |
1805 | } |
1806 | prevBoundary = src; |
1807 | continue; |
1808 | } |
1809 | } else if (norm16 >= minNoNoEmpty) { |
1810 | // The current character maps to nothing. |
1811 | // Simply omit it from the output if there is a boundary before _or_ after it. |
1812 | // The character itself implies no boundaries. |
1813 | if (hasCompBoundaryBefore(src, limit) || |
1814 | hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) { |
1815 | if (prevBoundary != prevSrc && |
1816 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1817 | *sink, options, edits, errorCode)) { |
1818 | break; |
1819 | } |
1820 | if (edits != nullptr) { |
1821 | edits->addReplace((int32_t)(src - prevSrc), 0); |
1822 | } |
1823 | prevBoundary = src; |
1824 | continue; |
1825 | } |
1826 | } |
1827 | // Other "noNo" type, or need to examine more text around this character: |
1828 | // Fall through to the slow path. |
1829 | } else if (isJamoVT(norm16)) { |
1830 | // Jamo L: E1 84 80..92 |
1831 | // Jamo V: E1 85 A1..B5 |
1832 | // Jamo T: E1 86 A8..E1 87 82 |
1833 | U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1); |
1834 | UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc); |
1835 | if (prevSrc[1] == 0x85) { |
1836 | // The current character is a Jamo Vowel, |
1837 | // compose with previous Jamo L and following Jamo T. |
1838 | UChar32 l = prev - Hangul::JAMO_L_BASE; |
1839 | if ((uint32_t)l < Hangul::JAMO_L_COUNT) { |
1840 | if (sink == nullptr) { |
1841 | return FALSE; |
1842 | } |
1843 | int32_t t = getJamoTMinusBase(src, limit); |
1844 | if (t >= 0) { |
1845 | // The next character is a Jamo T. |
1846 | src += 3; |
1847 | } else if (hasCompBoundaryBefore(src, limit)) { |
1848 | // No Jamo T follows, not even via decomposition. |
1849 | t = 0; |
1850 | } |
1851 | if (t >= 0) { |
1852 | UChar32 syllable = Hangul::HANGUL_BASE + |
1853 | (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) * |
1854 | Hangul::JAMO_T_COUNT + t; |
1855 | prevSrc -= 3; // Replace the Jamo L as well. |
1856 | if (prevBoundary != prevSrc && |
1857 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1858 | *sink, options, edits, errorCode)) { |
1859 | break; |
1860 | } |
1861 | ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits); |
1862 | prevBoundary = src; |
1863 | continue; |
1864 | } |
1865 | // If we see L+V+x where x!=T then we drop to the slow path, |
1866 | // decompose and recompose. |
1867 | // This is to deal with NFKC finding normal L and V but a |
1868 | // compatibility variant of a T. |
1869 | // We need to either fully compose that combination here |
1870 | // (which would complicate the code and may not work with strange custom data) |
1871 | // or use the slow path. |
1872 | } |
1873 | } else if (Hangul::isHangulLV(prev)) { |
1874 | // The current character is a Jamo Trailing consonant, |
1875 | // compose with previous Hangul LV that does not contain a Jamo T. |
1876 | if (sink == nullptr) { |
1877 | return FALSE; |
1878 | } |
1879 | UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src); |
1880 | prevSrc -= 3; // Replace the Hangul LV as well. |
1881 | if (prevBoundary != prevSrc && |
1882 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1883 | *sink, options, edits, errorCode)) { |
1884 | break; |
1885 | } |
1886 | ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits); |
1887 | prevBoundary = src; |
1888 | continue; |
1889 | } |
1890 | // No matching context, or may need to decompose surrounding text first: |
1891 | // Fall through to the slow path. |
1892 | } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC |
1893 | // One or more combining marks that do not combine-back: |
1894 | // Check for canonical order, copy unchanged if ok and |
1895 | // if followed by a character with a boundary-before. |
1896 | uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0 |
1897 | if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) { |
1898 | // Fails FCD test, need to decompose and contiguously recompose. |
1899 | if (sink == nullptr) { |
1900 | return FALSE; |
1901 | } |
1902 | } else { |
1903 | // If !onlyContiguous (not FCC), then we ignore the tccc of |
1904 | // the previous character which passed the quick check "yes && ccc==0" test. |
1905 | const uint8_t *nextSrc; |
1906 | uint16_t n16; |
1907 | for (;;) { |
1908 | if (src == limit) { |
1909 | if (sink != nullptr) { |
1910 | ByteSinkUtil::appendUnchanged(prevBoundary, limit, |
1911 | *sink, options, edits, errorCode); |
1912 | } |
1913 | return TRUE; |
1914 | } |
1915 | uint8_t prevCC = cc; |
1916 | nextSrc = src; |
1917 | UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16); |
1918 | if (n16 >= MIN_YES_YES_WITH_CC) { |
1919 | cc = getCCFromNormalYesOrMaybe(n16); |
1920 | if (prevCC > cc) { |
1921 | if (sink == nullptr) { |
1922 | return FALSE; |
1923 | } |
1924 | break; |
1925 | } |
1926 | } else { |
1927 | break; |
1928 | } |
1929 | src = nextSrc; |
1930 | } |
1931 | // src is after the last in-order combining mark. |
1932 | // If there is a boundary here, then we continue with no change. |
1933 | if (norm16HasCompBoundaryBefore(n16)) { |
1934 | if (isCompYesAndZeroCC(n16)) { |
1935 | src = nextSrc; |
1936 | } |
1937 | continue; |
1938 | } |
1939 | // Use the slow path. There is no boundary in [prevSrc, src[. |
1940 | } |
1941 | } |
1942 | |
1943 | // Slow path: Find the nearest boundaries around the current character, |
1944 | // decompose and recompose. |
1945 | if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) { |
1946 | const uint8_t *p = prevSrc; |
1947 | UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16); |
1948 | if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
1949 | prevSrc = p; |
1950 | } |
1951 | } |
1952 | ReorderingBuffer buffer(*this, s16, errorCode); |
1953 | if (U_FAILURE(errorCode)) { |
1954 | break; |
1955 | } |
1956 | // We know there is not a boundary here. |
1957 | decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous, |
1958 | buffer, errorCode); |
1959 | // Decompose until the next boundary. |
1960 | src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous, |
1961 | buffer, errorCode); |
1962 | if (U_FAILURE(errorCode)) { |
1963 | break; |
1964 | } |
1965 | if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals() |
1966 | errorCode = U_INDEX_OUTOFBOUNDS_ERROR; |
1967 | return TRUE; |
1968 | } |
1969 | recompose(buffer, 0, onlyContiguous); |
1970 | if (!buffer.equals(prevSrc, src)) { |
1971 | if (sink == nullptr) { |
1972 | return FALSE; |
1973 | } |
1974 | if (prevBoundary != prevSrc && |
1975 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1976 | *sink, options, edits, errorCode)) { |
1977 | break; |
1978 | } |
1979 | if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(), |
1980 | *sink, edits, errorCode)) { |
1981 | break; |
1982 | } |
1983 | prevBoundary = src; |
1984 | } |
1985 | } |
1986 | return TRUE; |
1987 | } |
1988 | |
1989 | UBool Normalizer2Impl::hasCompBoundaryBefore(const UChar *src, const UChar *limit) const { |
1990 | if (src == limit || *src < minCompNoMaybeCP) { |
1991 | return TRUE; |
1992 | } |
1993 | UChar32 c; |
1994 | uint16_t norm16; |
1995 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16); |
1996 | return norm16HasCompBoundaryBefore(norm16); |
1997 | } |
1998 | |
1999 | UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const { |
2000 | if (src == limit) { |
2001 | return TRUE; |
2002 | } |
2003 | uint16_t norm16; |
2004 | UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16); |
2005 | return norm16HasCompBoundaryBefore(norm16); |
2006 | } |
2007 | |
2008 | UBool Normalizer2Impl::hasCompBoundaryAfter(const UChar *start, const UChar *p, |
2009 | UBool onlyContiguous) const { |
2010 | if (start == p) { |
2011 | return TRUE; |
2012 | } |
2013 | UChar32 c; |
2014 | uint16_t norm16; |
2015 | UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16); |
2016 | return norm16HasCompBoundaryAfter(norm16, onlyContiguous); |
2017 | } |
2018 | |
2019 | UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p, |
2020 | UBool onlyContiguous) const { |
2021 | if (start == p) { |
2022 | return TRUE; |
2023 | } |
2024 | uint16_t norm16; |
2025 | UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16); |
2026 | return norm16HasCompBoundaryAfter(norm16, onlyContiguous); |
2027 | } |
2028 | |
2029 | const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p, |
2030 | UBool onlyContiguous) const { |
2031 | while (p != start) { |
2032 | const UChar *codePointLimit = p; |
2033 | UChar32 c; |
2034 | uint16_t norm16; |
2035 | UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16); |
2036 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
2037 | return codePointLimit; |
2038 | } |
2039 | if (hasCompBoundaryBefore(c, norm16)) { |
2040 | return p; |
2041 | } |
2042 | } |
2043 | return p; |
2044 | } |
2045 | |
2046 | const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit, |
2047 | UBool onlyContiguous) const { |
2048 | while (p != limit) { |
2049 | const UChar *codePointStart = p; |
2050 | UChar32 c; |
2051 | uint16_t norm16; |
2052 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
2053 | if (hasCompBoundaryBefore(c, norm16)) { |
2054 | return codePointStart; |
2055 | } |
2056 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
2057 | return p; |
2058 | } |
2059 | } |
2060 | return p; |
2061 | } |
2062 | |
2063 | uint8_t Normalizer2Impl::getPreviousTrailCC(const UChar *start, const UChar *p) const { |
2064 | if (start == p) { |
2065 | return 0; |
2066 | } |
2067 | int32_t i = (int32_t)(p - start); |
2068 | UChar32 c; |
2069 | U16_PREV(start, 0, i, c); |
2070 | return (uint8_t)getFCD16(c); |
2071 | } |
2072 | |
2073 | uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const { |
2074 | if (start == p) { |
2075 | return 0; |
2076 | } |
2077 | int32_t i = (int32_t)(p - start); |
2078 | UChar32 c; |
2079 | U8_PREV(start, 0, i, c); |
2080 | return (uint8_t)getFCD16(c); |
2081 | } |
2082 | |
2083 | // Note: normalizer2impl.cpp r30982 (2011-nov-27) |
2084 | // still had getFCDTrie() which built and cached an FCD trie. |
2085 | // That provided faster access to FCD data than getFCD16FromNormData() |
2086 | // but required synchronization and consumed some 10kB of heap memory |
2087 | // in any process that uses FCD (e.g., via collation). |
2088 | // minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance, |
2089 | // at least for ASCII & CJK. |
2090 | |
2091 | // Gets the FCD value from the regular normalization data. |
2092 | uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { |
2093 | uint16_t norm16=getNorm16(c); |
2094 | if (norm16 >= limitNoNo) { |
2095 | if(norm16>=MIN_NORMAL_MAYBE_YES) { |
2096 | // combining mark |
2097 | norm16=getCCFromNormalYesOrMaybe(norm16); |
2098 | return norm16|(norm16<<8); |
2099 | } else if(norm16>=minMaybeYes) { |
2100 | return 0; |
2101 | } else { // isDecompNoAlgorithmic(norm16) |
2102 | uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK; |
2103 | if (deltaTrailCC <= DELTA_TCCC_1) { |
2104 | return deltaTrailCC >> OFFSET_SHIFT; |
2105 | } |
2106 | // Maps to an isCompYesAndZeroCC. |
2107 | c=mapAlgorithmic(c, norm16); |
2108 | norm16=getRawNorm16(c); |
2109 | } |
2110 | } |
2111 | if(norm16<=minYesNo || isHangulLVT(norm16)) { |
2112 | // no decomposition or Hangul syllable, all zeros |
2113 | return 0; |
2114 | } |
2115 | // c decomposes, get everything from the variable-length extra data |
2116 | const uint16_t *mapping=getMapping(norm16); |
2117 | uint16_t firstUnit=*mapping; |
2118 | norm16=firstUnit>>8; // tccc |
2119 | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
2120 | norm16|=*(mapping-1)&0xff00; // lccc |
2121 | } |
2122 | return norm16; |
2123 | } |
2124 | |
2125 | // Dual functionality: |
2126 | // buffer!=NULL: normalize |
2127 | // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes |
2128 | const UChar * |
2129 | Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, |
2130 | ReorderingBuffer *buffer, |
2131 | UErrorCode &errorCode) const { |
2132 | // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. |
2133 | // Similar to the prevBoundary in the compose() implementation. |
2134 | const UChar *prevBoundary=src; |
2135 | int32_t prevFCD16=0; |
2136 | if(limit==NULL) { |
2137 | src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode); |
2138 | if(U_FAILURE(errorCode)) { |
2139 | return src; |
2140 | } |
2141 | if(prevBoundary<src) { |
2142 | prevBoundary=src; |
2143 | // We know that the previous character's lccc==0. |
2144 | // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
2145 | prevFCD16=getFCD16(*(src-1)); |
2146 | if(prevFCD16>1) { |
2147 | --prevBoundary; |
2148 | } |
2149 | } |
2150 | limit=u_strchr(src, 0); |
2151 | } |
2152 | |
2153 | // Note: In this function we use buffer->appendZeroCC() because we track |
2154 | // the lead and trail combining classes here, rather than leaving it to |
2155 | // the ReorderingBuffer. |
2156 | // The exception is the call to decomposeShort() which uses the buffer |
2157 | // in the normal way. |
2158 | |
2159 | const UChar *prevSrc; |
2160 | UChar32 c=0; |
2161 | uint16_t fcd16=0; |
2162 | |
2163 | for(;;) { |
2164 | // count code units with lccc==0 |
2165 | for(prevSrc=src; src!=limit;) { |
2166 | if((c=*src)<minLcccCP) { |
2167 | prevFCD16=~c; |
2168 | ++src; |
2169 | } else if(!singleLeadMightHaveNonZeroFCD16(c)) { |
2170 | prevFCD16=0; |
2171 | ++src; |
2172 | } else { |
2173 | if(U16_IS_LEAD(c)) { |
2174 | UChar c2; |
2175 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
2176 | c=U16_GET_SUPPLEMENTARY(c, c2); |
2177 | } |
2178 | } |
2179 | if((fcd16=getFCD16FromNormData(c))<=0xff) { |
2180 | prevFCD16=fcd16; |
2181 | src+=U16_LENGTH(c); |
2182 | } else { |
2183 | break; |
2184 | } |
2185 | } |
2186 | } |
2187 | // copy these code units all at once |
2188 | if(src!=prevSrc) { |
2189 | if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { |
2190 | break; |
2191 | } |
2192 | if(src==limit) { |
2193 | break; |
2194 | } |
2195 | prevBoundary=src; |
2196 | // We know that the previous character's lccc==0. |
2197 | if(prevFCD16<0) { |
2198 | // Fetching the fcd16 value was deferred for this below-minLcccCP code point. |
2199 | UChar32 prev=~prevFCD16; |
2200 | if(prev<minDecompNoCP) { |
2201 | prevFCD16=0; |
2202 | } else { |
2203 | prevFCD16=getFCD16FromNormData(prev); |
2204 | if(prevFCD16>1) { |
2205 | --prevBoundary; |
2206 | } |
2207 | } |
2208 | } else { |
2209 | const UChar *p=src-1; |
2210 | if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { |
2211 | --p; |
2212 | // Need to fetch the previous character's FCD value because |
2213 | // prevFCD16 was just for the trail surrogate code point. |
2214 | prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); |
2215 | // Still known to have lccc==0 because its lead surrogate unit had lccc==0. |
2216 | } |
2217 | if(prevFCD16>1) { |
2218 | prevBoundary=p; |
2219 | } |
2220 | } |
2221 | // The start of the current character (c). |
2222 | prevSrc=src; |
2223 | } else if(src==limit) { |
2224 | break; |
2225 | } |
2226 | |
2227 | src+=U16_LENGTH(c); |
2228 | // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. |
2229 | // Check for proper order, and decompose locally if necessary. |
2230 | if((prevFCD16&0xff)<=(fcd16>>8)) { |
2231 | // proper order: prev tccc <= current lccc |
2232 | if((fcd16&0xff)<=1) { |
2233 | prevBoundary=src; |
2234 | } |
2235 | if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { |
2236 | break; |
2237 | } |
2238 | prevFCD16=fcd16; |
2239 | continue; |
2240 | } else if(buffer==NULL) { |
2241 | return prevBoundary; // quick check "no" |
2242 | } else { |
2243 | /* |
2244 | * Back out the part of the source that we copied or appended |
2245 | * already but is now going to be decomposed. |
2246 | * prevSrc is set to after what was copied/appended. |
2247 | */ |
2248 | buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); |
2249 | /* |
2250 | * Find the part of the source that needs to be decomposed, |
2251 | * up to the next safe boundary. |
2252 | */ |
2253 | src=findNextFCDBoundary(src, limit); |
2254 | /* |
2255 | * The source text does not fulfill the conditions for FCD. |
2256 | * Decompose and reorder a limited piece of the text. |
2257 | */ |
2258 | decomposeShort(prevBoundary, src, FALSE, FALSE, *buffer, errorCode); |
2259 | if (U_FAILURE(errorCode)) { |
2260 | break; |
2261 | } |
2262 | prevBoundary=src; |
2263 | prevFCD16=0; |
2264 | } |
2265 | } |
2266 | return src; |
2267 | } |
2268 | |
2269 | void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, |
2270 | UBool doMakeFCD, |
2271 | UnicodeString &safeMiddle, |
2272 | ReorderingBuffer &buffer, |
2273 | UErrorCode &errorCode) const { |
2274 | if(!buffer.isEmpty()) { |
2275 | const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); |
2276 | if(src!=firstBoundaryInSrc) { |
2277 | const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), |
2278 | buffer.getLimit()); |
2279 | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); |
2280 | UnicodeString middle(lastBoundaryInDest, destSuffixLength); |
2281 | buffer.removeSuffix(destSuffixLength); |
2282 | safeMiddle=middle; |
2283 | middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
2284 | const UChar *middleStart=middle.getBuffer(); |
2285 | makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); |
2286 | if(U_FAILURE(errorCode)) { |
2287 | return; |
2288 | } |
2289 | src=firstBoundaryInSrc; |
2290 | } |
2291 | } |
2292 | if(doMakeFCD) { |
2293 | makeFCD(src, limit, &buffer, errorCode); |
2294 | } else { |
2295 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
2296 | limit=u_strchr(src, 0); |
2297 | } |
2298 | buffer.appendZeroCC(src, limit, errorCode); |
2299 | } |
2300 | } |
2301 | |
2302 | const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { |
2303 | while(start<p) { |
2304 | const UChar *codePointLimit = p; |
2305 | UChar32 c; |
2306 | uint16_t norm16; |
2307 | UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16); |
2308 | if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) { |
2309 | return codePointLimit; |
2310 | } |
2311 | if (norm16HasDecompBoundaryBefore(norm16)) { |
2312 | return p; |
2313 | } |
2314 | } |
2315 | return p; |
2316 | } |
2317 | |
2318 | const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { |
2319 | while(p<limit) { |
2320 | const UChar *codePointStart=p; |
2321 | UChar32 c; |
2322 | uint16_t norm16; |
2323 | UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
2324 | if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) { |
2325 | return codePointStart; |
2326 | } |
2327 | if (norm16HasDecompBoundaryAfter(norm16)) { |
2328 | return p; |
2329 | } |
2330 | } |
2331 | return p; |
2332 | } |
2333 | |
2334 | // CanonicalIterator data -------------------------------------------------- *** |
2335 | |
2336 | CanonIterData::CanonIterData(UErrorCode &errorCode) : |
2337 | mutableTrie(umutablecptrie_open(0, 0, &errorCode)), trie(nullptr), |
2338 | canonStartSets(uprv_deleteUObject, NULL, errorCode) {} |
2339 | |
2340 | CanonIterData::~CanonIterData() { |
2341 | umutablecptrie_close(mutableTrie); |
2342 | ucptrie_close(trie); |
2343 | } |
2344 | |
2345 | void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { |
2346 | uint32_t canonValue = umutablecptrie_get(mutableTrie, decompLead); |
2347 | if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { |
2348 | // origin is the first character whose decomposition starts with |
2349 | // the character for which we are setting the value. |
2350 | umutablecptrie_set(mutableTrie, decompLead, canonValue|origin, &errorCode); |
2351 | } else { |
2352 | // origin is not the first character, or it is U+0000. |
2353 | UnicodeSet *set; |
2354 | if((canonValue&CANON_HAS_SET)==0) { |
2355 | set=new UnicodeSet; |
2356 | if(set==NULL) { |
2357 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
2358 | return; |
2359 | } |
2360 | UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); |
2361 | canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); |
2362 | umutablecptrie_set(mutableTrie, decompLead, canonValue, &errorCode); |
2363 | canonStartSets.addElement(set, errorCode); |
2364 | if(firstOrigin!=0) { |
2365 | set->add(firstOrigin); |
2366 | } |
2367 | } else { |
2368 | set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; |
2369 | } |
2370 | set->add(origin); |
2371 | } |
2372 | } |
2373 | |
2374 | // C++ class for friend access to private Normalizer2Impl members. |
2375 | class InitCanonIterData { |
2376 | public: |
2377 | static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode); |
2378 | }; |
2379 | |
2380 | U_CDECL_BEGIN |
2381 | |
2382 | // UInitOnce instantiation function for CanonIterData |
2383 | static void U_CALLCONV |
2384 | initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) { |
2385 | InitCanonIterData::doInit(impl, errorCode); |
2386 | } |
2387 | |
2388 | U_CDECL_END |
2389 | |
2390 | void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) { |
2391 | U_ASSERT(impl->fCanonIterData == NULL); |
2392 | impl->fCanonIterData = new CanonIterData(errorCode); |
2393 | if (impl->fCanonIterData == NULL) { |
2394 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
2395 | } |
2396 | if (U_SUCCESS(errorCode)) { |
2397 | UChar32 start = 0, end; |
2398 | uint32_t value; |
2399 | while ((end = ucptrie_getRange(impl->normTrie, start, |
2400 | UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT, |
2401 | nullptr, nullptr, &value)) >= 0) { |
2402 | // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. |
2403 | if (value != Normalizer2Impl::INERT) { |
2404 | impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode); |
2405 | } |
2406 | start = end + 1; |
2407 | } |
2408 | #ifdef UCPTRIE_DEBUG |
2409 | umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData" ); |
2410 | #endif |
2411 | impl->fCanonIterData->trie = umutablecptrie_buildImmutable( |
2412 | impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode); |
2413 | umutablecptrie_close(impl->fCanonIterData->mutableTrie); |
2414 | impl->fCanonIterData->mutableTrie = nullptr; |
2415 | } |
2416 | if (U_FAILURE(errorCode)) { |
2417 | delete impl->fCanonIterData; |
2418 | impl->fCanonIterData = NULL; |
2419 | } |
2420 | } |
2421 | |
2422 | void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16, |
2423 | CanonIterData &newData, |
2424 | UErrorCode &errorCode) const { |
2425 | if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) { |
2426 | // Inert, or 2-way mapping (including Hangul syllable). |
2427 | // We do not write a canonStartSet for any yesNo character. |
2428 | // Composites from 2-way mappings are added at runtime from the |
2429 | // starter's compositions list, and the other characters in |
2430 | // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are |
2431 | // "maybe" characters. |
2432 | return; |
2433 | } |
2434 | for(UChar32 c=start; c<=end; ++c) { |
2435 | uint32_t oldValue = umutablecptrie_get(newData.mutableTrie, c); |
2436 | uint32_t newValue=oldValue; |
2437 | if(isMaybeOrNonZeroCC(norm16)) { |
2438 | // not a segment starter if it occurs in a decomposition or has cc!=0 |
2439 | newValue|=CANON_NOT_SEGMENT_STARTER; |
2440 | if(norm16<MIN_NORMAL_MAYBE_YES) { |
2441 | newValue|=CANON_HAS_COMPOSITIONS; |
2442 | } |
2443 | } else if(norm16<minYesNo) { |
2444 | newValue|=CANON_HAS_COMPOSITIONS; |
2445 | } else { |
2446 | // c has a one-way decomposition |
2447 | UChar32 c2=c; |
2448 | // Do not modify the whole-range norm16 value. |
2449 | uint16_t norm16_2=norm16; |
2450 | if (isDecompNoAlgorithmic(norm16_2)) { |
2451 | // Maps to an isCompYesAndZeroCC. |
2452 | c2 = mapAlgorithmic(c2, norm16_2); |
2453 | norm16_2 = getRawNorm16(c2); |
2454 | // No compatibility mappings for the CanonicalIterator. |
2455 | U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2))); |
2456 | } |
2457 | if (norm16_2 > minYesNo) { |
2458 | // c decomposes, get everything from the variable-length extra data |
2459 | const uint16_t *mapping=getMapping(norm16_2); |
2460 | uint16_t firstUnit=*mapping; |
2461 | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
2462 | if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { |
2463 | if(c==c2 && (*(mapping-1)&0xff)!=0) { |
2464 | newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 |
2465 | } |
2466 | } |
2467 | // Skip empty mappings (no characters in the decomposition). |
2468 | if(length!=0) { |
2469 | ++mapping; // skip over the firstUnit |
2470 | // add c to first code point's start set |
2471 | int32_t i=0; |
2472 | U16_NEXT_UNSAFE(mapping, i, c2); |
2473 | newData.addToStartSet(c, c2, errorCode); |
2474 | // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a |
2475 | // one-way mapping. A 2-way mapping is possible here after |
2476 | // intermediate algorithmic mapping. |
2477 | if(norm16_2>=minNoNo) { |
2478 | while(i<length) { |
2479 | U16_NEXT_UNSAFE(mapping, i, c2); |
2480 | uint32_t c2Value = umutablecptrie_get(newData.mutableTrie, c2); |
2481 | if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { |
2482 | umutablecptrie_set(newData.mutableTrie, c2, |
2483 | c2Value|CANON_NOT_SEGMENT_STARTER, &errorCode); |
2484 | } |
2485 | } |
2486 | } |
2487 | } |
2488 | } else { |
2489 | // c decomposed to c2 algorithmically; c has cc==0 |
2490 | newData.addToStartSet(c, c2, errorCode); |
2491 | } |
2492 | } |
2493 | if(newValue!=oldValue) { |
2494 | umutablecptrie_set(newData.mutableTrie, c, newValue, &errorCode); |
2495 | } |
2496 | } |
2497 | } |
2498 | |
2499 | UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { |
2500 | // Logically const: Synchronized instantiation. |
2501 | Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
2502 | umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode); |
2503 | return U_SUCCESS(errorCode); |
2504 | } |
2505 | |
2506 | int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { |
2507 | return (int32_t)ucptrie_get(fCanonIterData->trie, c); |
2508 | } |
2509 | |
2510 | const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { |
2511 | return *(const UnicodeSet *)fCanonIterData->canonStartSets[n]; |
2512 | } |
2513 | |
2514 | UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { |
2515 | return getCanonValue(c)>=0; |
2516 | } |
2517 | |
2518 | UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { |
2519 | int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; |
2520 | if(canonValue==0) { |
2521 | return FALSE; |
2522 | } |
2523 | set.clear(); |
2524 | int32_t value=canonValue&CANON_VALUE_MASK; |
2525 | if((canonValue&CANON_HAS_SET)!=0) { |
2526 | set.addAll(getCanonStartSet(value)); |
2527 | } else if(value!=0) { |
2528 | set.add(value); |
2529 | } |
2530 | if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { |
2531 | uint16_t norm16=getRawNorm16(c); |
2532 | if(norm16==JAMO_L) { |
2533 | UChar32 syllable= |
2534 | (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); |
2535 | set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); |
2536 | } else { |
2537 | addComposites(getCompositionsList(norm16), set); |
2538 | } |
2539 | } |
2540 | return TRUE; |
2541 | } |
2542 | |
2543 | U_NAMESPACE_END |
2544 | |
2545 | // Normalizer2 data swapping ----------------------------------------------- *** |
2546 | |
2547 | U_NAMESPACE_USE |
2548 | |
2549 | U_CAPI int32_t U_EXPORT2 |
2550 | unorm2_swap(const UDataSwapper *ds, |
2551 | const void *inData, int32_t length, void *outData, |
2552 | UErrorCode *pErrorCode) { |
2553 | const UDataInfo *pInfo; |
2554 | int32_t ; |
2555 | |
2556 | const uint8_t *inBytes; |
2557 | uint8_t *outBytes; |
2558 | |
2559 | const int32_t *inIndexes; |
2560 | int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1]; |
2561 | |
2562 | int32_t i, offset, nextOffset, size; |
2563 | |
2564 | /* udata_swapDataHeader checks the arguments */ |
2565 | headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); |
2566 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
2567 | return 0; |
2568 | } |
2569 | |
2570 | /* check data format and format version */ |
2571 | pInfo=(const UDataInfo *)((const char *)inData+4); |
2572 | uint8_t formatVersion0=pInfo->formatVersion[0]; |
2573 | if(!( |
2574 | pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
2575 | pInfo->dataFormat[1]==0x72 && |
2576 | pInfo->dataFormat[2]==0x6d && |
2577 | pInfo->dataFormat[3]==0x32 && |
2578 | (1<=formatVersion0 && formatVersion0<=4) |
2579 | )) { |
2580 | udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n" , |
2581 | pInfo->dataFormat[0], pInfo->dataFormat[1], |
2582 | pInfo->dataFormat[2], pInfo->dataFormat[3], |
2583 | pInfo->formatVersion[0]); |
2584 | *pErrorCode=U_UNSUPPORTED_ERROR; |
2585 | return 0; |
2586 | } |
2587 | |
2588 | inBytes=(const uint8_t *)inData+headerSize; |
2589 | outBytes=(uint8_t *)outData+headerSize; |
2590 | |
2591 | inIndexes=(const int32_t *)inBytes; |
2592 | int32_t minIndexesLength; |
2593 | if(formatVersion0==1) { |
2594 | minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1; |
2595 | } else if(formatVersion0==2) { |
2596 | minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1; |
2597 | } else { |
2598 | minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1; |
2599 | } |
2600 | |
2601 | if(length>=0) { |
2602 | length-=headerSize; |
2603 | if(length<minIndexesLength*4) { |
2604 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n" , |
2605 | length); |
2606 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2607 | return 0; |
2608 | } |
2609 | } |
2610 | |
2611 | /* read the first few indexes */ |
2612 | for(i=0; i<UPRV_LENGTHOF(indexes); ++i) { |
2613 | indexes[i]=udata_readInt32(ds, inIndexes[i]); |
2614 | } |
2615 | |
2616 | /* get the total length of the data */ |
2617 | size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; |
2618 | |
2619 | if(length>=0) { |
2620 | if(length<size) { |
2621 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n" , |
2622 | length); |
2623 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2624 | return 0; |
2625 | } |
2626 | |
2627 | /* copy the data for inaccessible bytes */ |
2628 | if(inBytes!=outBytes) { |
2629 | uprv_memcpy(outBytes, inBytes, size); |
2630 | } |
2631 | |
2632 | offset=0; |
2633 | |
2634 | /* swap the int32_t indexes[] */ |
2635 | nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; |
2636 | ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); |
2637 | offset=nextOffset; |
2638 | |
2639 | /* swap the trie */ |
2640 | nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; |
2641 | utrie_swapAnyVersion(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
2642 | offset=nextOffset; |
2643 | |
2644 | /* swap the uint16_t extraData[] */ |
2645 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]; |
2646 | ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
2647 | offset=nextOffset; |
2648 | |
2649 | /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */ |
2650 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1]; |
2651 | offset=nextOffset; |
2652 | |
2653 | U_ASSERT(offset==size); |
2654 | } |
2655 | |
2656 | return headerSize+size; |
2657 | } |
2658 | |
2659 | #endif // !UCONFIG_NO_NORMALIZATION |
2660 | |