| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ******************************************************************************* |
| 5 | * |
| 6 | * Copyright (C) 2005-2016, International Business Machines |
| 7 | * Corporation and others. All Rights Reserved. |
| 8 | * |
| 9 | ******************************************************************************* |
| 10 | * file name: utext.cpp |
| 11 | * encoding: UTF-8 |
| 12 | * tab size: 8 (not used) |
| 13 | * indentation:4 |
| 14 | * |
| 15 | * created on: 2005apr12 |
| 16 | * created by: Markus W. Scherer |
| 17 | */ |
| 18 | |
| 19 | #include "unicode/utypes.h" |
| 20 | #include "unicode/ustring.h" |
| 21 | #include "unicode/unistr.h" |
| 22 | #include "unicode/chariter.h" |
| 23 | #include "unicode/utext.h" |
| 24 | #include "unicode/utf.h" |
| 25 | #include "unicode/utf8.h" |
| 26 | #include "unicode/utf16.h" |
| 27 | #include "ustr_imp.h" |
| 28 | #include "cmemory.h" |
| 29 | #include "cstring.h" |
| 30 | #include "uassert.h" |
| 31 | #include "putilimp.h" |
| 32 | |
| 33 | U_NAMESPACE_USE |
| 34 | |
| 35 | #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) |
| 36 | |
| 37 | |
| 38 | static UBool |
| 39 | utext_access(UText *ut, int64_t index, UBool forward) { |
| 40 | return ut->pFuncs->access(ut, index, forward); |
| 41 | } |
| 42 | |
| 43 | |
| 44 | |
| 45 | U_CAPI UBool U_EXPORT2 |
| 46 | utext_moveIndex32(UText *ut, int32_t delta) { |
| 47 | UChar32 c; |
| 48 | if (delta > 0) { |
| 49 | do { |
| 50 | if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) { |
| 51 | return FALSE; |
| 52 | } |
| 53 | c = ut->chunkContents[ut->chunkOffset]; |
| 54 | if (U16_IS_SURROGATE(c)) { |
| 55 | c = utext_next32(ut); |
| 56 | if (c == U_SENTINEL) { |
| 57 | return FALSE; |
| 58 | } |
| 59 | } else { |
| 60 | ut->chunkOffset++; |
| 61 | } |
| 62 | } while(--delta>0); |
| 63 | |
| 64 | } else if (delta<0) { |
| 65 | do { |
| 66 | if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) { |
| 67 | return FALSE; |
| 68 | } |
| 69 | c = ut->chunkContents[ut->chunkOffset-1]; |
| 70 | if (U16_IS_SURROGATE(c)) { |
| 71 | c = utext_previous32(ut); |
| 72 | if (c == U_SENTINEL) { |
| 73 | return FALSE; |
| 74 | } |
| 75 | } else { |
| 76 | ut->chunkOffset--; |
| 77 | } |
| 78 | } while(++delta<0); |
| 79 | } |
| 80 | |
| 81 | return TRUE; |
| 82 | } |
| 83 | |
| 84 | |
| 85 | U_CAPI int64_t U_EXPORT2 |
| 86 | utext_nativeLength(UText *ut) { |
| 87 | return ut->pFuncs->nativeLength(ut); |
| 88 | } |
| 89 | |
| 90 | |
| 91 | U_CAPI UBool U_EXPORT2 |
| 92 | utext_isLengthExpensive(const UText *ut) { |
| 93 | UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; |
| 94 | return r; |
| 95 | } |
| 96 | |
| 97 | |
| 98 | U_CAPI int64_t U_EXPORT2 |
| 99 | utext_getNativeIndex(const UText *ut) { |
| 100 | if(ut->chunkOffset <= ut->nativeIndexingLimit) { |
| 101 | return ut->chunkNativeStart+ut->chunkOffset; |
| 102 | } else { |
| 103 | return ut->pFuncs->mapOffsetToNative(ut); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | |
| 108 | U_CAPI void U_EXPORT2 |
| 109 | utext_setNativeIndex(UText *ut, int64_t index) { |
| 110 | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
| 111 | // The desired position is outside of the current chunk. |
| 112 | // Access the new position. Assume a forward iteration from here, |
| 113 | // which will also be optimimum for a single random access. |
| 114 | // Reverse iterations may suffer slightly. |
| 115 | ut->pFuncs->access(ut, index, TRUE); |
| 116 | } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { |
| 117 | // utf-16 indexing. |
| 118 | ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); |
| 119 | } else { |
| 120 | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| 121 | } |
| 122 | // The convention is that the index must always be on a code point boundary. |
| 123 | // Adjust the index position if it is in the middle of a surrogate pair. |
| 124 | if (ut->chunkOffset<ut->chunkLength) { |
| 125 | UChar c= ut->chunkContents[ut->chunkOffset]; |
| 126 | if (U16_IS_TRAIL(c)) { |
| 127 | if (ut->chunkOffset==0) { |
| 128 | ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE); |
| 129 | } |
| 130 | if (ut->chunkOffset>0) { |
| 131 | UChar lead = ut->chunkContents[ut->chunkOffset-1]; |
| 132 | if (U16_IS_LEAD(lead)) { |
| 133 | ut->chunkOffset--; |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | |
| 141 | |
| 142 | U_CAPI int64_t U_EXPORT2 |
| 143 | utext_getPreviousNativeIndex(UText *ut) { |
| 144 | // |
| 145 | // Fast-path the common case. |
| 146 | // Common means current position is not at the beginning of a chunk |
| 147 | // and the preceding character is not supplementary. |
| 148 | // |
| 149 | int32_t i = ut->chunkOffset - 1; |
| 150 | int64_t result; |
| 151 | if (i >= 0) { |
| 152 | UChar c = ut->chunkContents[i]; |
| 153 | if (U16_IS_TRAIL(c) == FALSE) { |
| 154 | if (i <= ut->nativeIndexingLimit) { |
| 155 | result = ut->chunkNativeStart + i; |
| 156 | } else { |
| 157 | ut->chunkOffset = i; |
| 158 | result = ut->pFuncs->mapOffsetToNative(ut); |
| 159 | ut->chunkOffset++; |
| 160 | } |
| 161 | return result; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | // If at the start of text, simply return 0. |
| 166 | if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { |
| 167 | return 0; |
| 168 | } |
| 169 | |
| 170 | // Harder, less common cases. We are at a chunk boundary, or on a surrogate. |
| 171 | // Keep it simple, use other functions to handle the edges. |
| 172 | // |
| 173 | utext_previous32(ut); |
| 174 | result = UTEXT_GETNATIVEINDEX(ut); |
| 175 | utext_next32(ut); |
| 176 | return result; |
| 177 | } |
| 178 | |
| 179 | |
| 180 | // |
| 181 | // utext_current32. Get the UChar32 at the current position. |
| 182 | // UText iteration position is always on a code point boundary, |
| 183 | // never on the trail half of a surrogate pair. |
| 184 | // |
| 185 | U_CAPI UChar32 U_EXPORT2 |
| 186 | utext_current32(UText *ut) { |
| 187 | UChar32 c; |
| 188 | if (ut->chunkOffset==ut->chunkLength) { |
| 189 | // Current position is just off the end of the chunk. |
| 190 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| 191 | // Off the end of the text. |
| 192 | return U_SENTINEL; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | c = ut->chunkContents[ut->chunkOffset]; |
| 197 | if (U16_IS_LEAD(c) == FALSE) { |
| 198 | // Normal, non-supplementary case. |
| 199 | return c; |
| 200 | } |
| 201 | |
| 202 | // |
| 203 | // Possible supplementary char. |
| 204 | // |
| 205 | UChar32 trail = 0; |
| 206 | UChar32 supplementaryC = c; |
| 207 | if ((ut->chunkOffset+1) < ut->chunkLength) { |
| 208 | // The trail surrogate is in the same chunk. |
| 209 | trail = ut->chunkContents[ut->chunkOffset+1]; |
| 210 | } else { |
| 211 | // The trail surrogate is in a different chunk. |
| 212 | // Because we must maintain the iteration position, we need to switch forward |
| 213 | // into the new chunk, get the trail surrogate, then revert the chunk back to the |
| 214 | // original one. |
| 215 | // An edge case to be careful of: the entire text may end with an unpaired |
| 216 | // leading surrogate. The attempt to access the trail will fail, but |
| 217 | // the original position before the unpaired lead still needs to be restored. |
| 218 | int64_t nativePosition = ut->chunkNativeLimit; |
| 219 | int32_t originalOffset = ut->chunkOffset; |
| 220 | if (ut->pFuncs->access(ut, nativePosition, TRUE)) { |
| 221 | trail = ut->chunkContents[ut->chunkOffset]; |
| 222 | } |
| 223 | UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk |
| 224 | U_ASSERT(r==TRUE); |
| 225 | ut->chunkOffset = originalOffset; |
| 226 | if(!r) { |
| 227 | return U_SENTINEL; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | if (U16_IS_TRAIL(trail)) { |
| 232 | supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); |
| 233 | } |
| 234 | return supplementaryC; |
| 235 | |
| 236 | } |
| 237 | |
| 238 | |
| 239 | U_CAPI UChar32 U_EXPORT2 |
| 240 | utext_char32At(UText *ut, int64_t nativeIndex) { |
| 241 | UChar32 c = U_SENTINEL; |
| 242 | |
| 243 | // Fast path the common case. |
| 244 | if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { |
| 245 | ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); |
| 246 | c = ut->chunkContents[ut->chunkOffset]; |
| 247 | if (U16_IS_SURROGATE(c) == FALSE) { |
| 248 | return c; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | |
| 253 | utext_setNativeIndex(ut, nativeIndex); |
| 254 | if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { |
| 255 | c = ut->chunkContents[ut->chunkOffset]; |
| 256 | if (U16_IS_SURROGATE(c)) { |
| 257 | // For surrogates, let current32() deal with the complications |
| 258 | // of supplementaries that may span chunk boundaries. |
| 259 | c = utext_current32(ut); |
| 260 | } |
| 261 | } |
| 262 | return c; |
| 263 | } |
| 264 | |
| 265 | |
| 266 | U_CAPI UChar32 U_EXPORT2 |
| 267 | utext_next32(UText *ut) { |
| 268 | UChar32 c; |
| 269 | |
| 270 | if (ut->chunkOffset >= ut->chunkLength) { |
| 271 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| 272 | return U_SENTINEL; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | c = ut->chunkContents[ut->chunkOffset++]; |
| 277 | if (U16_IS_LEAD(c) == FALSE) { |
| 278 | // Normal case, not supplementary. |
| 279 | // (A trail surrogate seen here is just returned as is, as a surrogate value. |
| 280 | // It cannot be part of a pair.) |
| 281 | return c; |
| 282 | } |
| 283 | |
| 284 | if (ut->chunkOffset >= ut->chunkLength) { |
| 285 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| 286 | // c is an unpaired lead surrogate at the end of the text. |
| 287 | // return it as it is. |
| 288 | return c; |
| 289 | } |
| 290 | } |
| 291 | UChar32 trail = ut->chunkContents[ut->chunkOffset]; |
| 292 | if (U16_IS_TRAIL(trail) == FALSE) { |
| 293 | // c was an unpaired lead surrogate, not at the end of the text. |
| 294 | // return it as it is (unpaired). Iteration position is on the |
| 295 | // following character, possibly in the next chunk, where the |
| 296 | // trail surrogate would have been if it had existed. |
| 297 | return c; |
| 298 | } |
| 299 | |
| 300 | UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); |
| 301 | ut->chunkOffset++; // move iteration position over the trail surrogate. |
| 302 | return supplementary; |
| 303 | } |
| 304 | |
| 305 | |
| 306 | U_CAPI UChar32 U_EXPORT2 |
| 307 | utext_previous32(UText *ut) { |
| 308 | UChar32 c; |
| 309 | |
| 310 | if (ut->chunkOffset <= 0) { |
| 311 | if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
| 312 | return U_SENTINEL; |
| 313 | } |
| 314 | } |
| 315 | ut->chunkOffset--; |
| 316 | c = ut->chunkContents[ut->chunkOffset]; |
| 317 | if (U16_IS_TRAIL(c) == FALSE) { |
| 318 | // Normal case, not supplementary. |
| 319 | // (A lead surrogate seen here is just returned as is, as a surrogate value. |
| 320 | // It cannot be part of a pair.) |
| 321 | return c; |
| 322 | } |
| 323 | |
| 324 | if (ut->chunkOffset <= 0) { |
| 325 | if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
| 326 | // c is an unpaired trail surrogate at the start of the text. |
| 327 | // return it as it is. |
| 328 | return c; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; |
| 333 | if (U16_IS_LEAD(lead) == FALSE) { |
| 334 | // c was an unpaired trail surrogate, not at the end of the text. |
| 335 | // return it as it is (unpaired). Iteration position is at c |
| 336 | return c; |
| 337 | } |
| 338 | |
| 339 | UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); |
| 340 | ut->chunkOffset--; // move iteration position over the lead surrogate. |
| 341 | return supplementary; |
| 342 | } |
| 343 | |
| 344 | |
| 345 | |
| 346 | U_CAPI UChar32 U_EXPORT2 |
| 347 | utext_next32From(UText *ut, int64_t index) { |
| 348 | UChar32 c = U_SENTINEL; |
| 349 | |
| 350 | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
| 351 | // Desired position is outside of the current chunk. |
| 352 | if(!ut->pFuncs->access(ut, index, TRUE)) { |
| 353 | // no chunk available here |
| 354 | return U_SENTINEL; |
| 355 | } |
| 356 | } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
| 357 | // Desired position is in chunk, with direct 1:1 native to UTF16 indexing |
| 358 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| 359 | } else { |
| 360 | // Desired position is in chunk, with non-UTF16 indexing. |
| 361 | ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| 362 | } |
| 363 | |
| 364 | c = ut->chunkContents[ut->chunkOffset++]; |
| 365 | if (U16_IS_SURROGATE(c)) { |
| 366 | // Surrogates. Many edge cases. Use other functions that already |
| 367 | // deal with the problems. |
| 368 | utext_setNativeIndex(ut, index); |
| 369 | c = utext_next32(ut); |
| 370 | } |
| 371 | return c; |
| 372 | } |
| 373 | |
| 374 | |
| 375 | U_CAPI UChar32 U_EXPORT2 |
| 376 | utext_previous32From(UText *ut, int64_t index) { |
| 377 | // |
| 378 | // Return the character preceding the specified index. |
| 379 | // Leave the iteration position at the start of the character that was returned. |
| 380 | // |
| 381 | UChar32 cPrev; // The character preceding cCurr, which is what we will return. |
| 382 | |
| 383 | // Address the chunk containg the position preceding the incoming index |
| 384 | // A tricky edge case: |
| 385 | // We try to test the requested native index against the chunkNativeStart to determine |
| 386 | // whether the character preceding the one at the index is in the current chunk. |
| 387 | // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the |
| 388 | // requested index is on something other than the first position of the first char. |
| 389 | // |
| 390 | if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { |
| 391 | // Requested native index is outside of the current chunk. |
| 392 | if(!ut->pFuncs->access(ut, index, FALSE)) { |
| 393 | // no chunk available here |
| 394 | return U_SENTINEL; |
| 395 | } |
| 396 | } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
| 397 | // Direct UTF-16 indexing. |
| 398 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| 399 | } else { |
| 400 | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| 401 | if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) { |
| 402 | // no chunk available here |
| 403 | return U_SENTINEL; |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | // |
| 408 | // Simple case with no surrogates. |
| 409 | // |
| 410 | ut->chunkOffset--; |
| 411 | cPrev = ut->chunkContents[ut->chunkOffset]; |
| 412 | |
| 413 | if (U16_IS_SURROGATE(cPrev)) { |
| 414 | // Possible supplementary. Many edge cases. |
| 415 | // Let other functions do the heavy lifting. |
| 416 | utext_setNativeIndex(ut, index); |
| 417 | cPrev = utext_previous32(ut); |
| 418 | } |
| 419 | return cPrev; |
| 420 | } |
| 421 | |
| 422 | |
| 423 | U_CAPI int32_t U_EXPORT2 |
| 424 | utext_extract(UText *ut, |
| 425 | int64_t start, int64_t limit, |
| 426 | UChar *dest, int32_t destCapacity, |
| 427 | UErrorCode *status) { |
| 428 | return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); |
| 429 | } |
| 430 | |
| 431 | |
| 432 | |
| 433 | U_CAPI UBool U_EXPORT2 |
| 434 | utext_equals(const UText *a, const UText *b) { |
| 435 | if (a==NULL || b==NULL || |
| 436 | a->magic != UTEXT_MAGIC || |
| 437 | b->magic != UTEXT_MAGIC) { |
| 438 | // Null or invalid arguments don't compare equal to anything. |
| 439 | return FALSE; |
| 440 | } |
| 441 | |
| 442 | if (a->pFuncs != b->pFuncs) { |
| 443 | // Different types of text providers. |
| 444 | return FALSE; |
| 445 | } |
| 446 | |
| 447 | if (a->context != b->context) { |
| 448 | // Different sources (different strings) |
| 449 | return FALSE; |
| 450 | } |
| 451 | if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { |
| 452 | // Different current position in the string. |
| 453 | return FALSE; |
| 454 | } |
| 455 | |
| 456 | return TRUE; |
| 457 | } |
| 458 | |
| 459 | U_CAPI UBool U_EXPORT2 |
| 460 | utext_isWritable(const UText *ut) |
| 461 | { |
| 462 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; |
| 463 | return b; |
| 464 | } |
| 465 | |
| 466 | |
| 467 | U_CAPI void U_EXPORT2 |
| 468 | utext_freeze(UText *ut) { |
| 469 | // Zero out the WRITABLE flag. |
| 470 | ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); |
| 471 | } |
| 472 | |
| 473 | |
| 474 | U_CAPI UBool U_EXPORT2 |
| 475 | utext_hasMetaData(const UText *ut) |
| 476 | { |
| 477 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; |
| 478 | return b; |
| 479 | } |
| 480 | |
| 481 | |
| 482 | |
| 483 | U_CAPI int32_t U_EXPORT2 |
| 484 | utext_replace(UText *ut, |
| 485 | int64_t nativeStart, int64_t nativeLimit, |
| 486 | const UChar *replacementText, int32_t replacementLength, |
| 487 | UErrorCode *status) |
| 488 | { |
| 489 | if (U_FAILURE(*status)) { |
| 490 | return 0; |
| 491 | } |
| 492 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
| 493 | *status = U_NO_WRITE_PERMISSION; |
| 494 | return 0; |
| 495 | } |
| 496 | int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); |
| 497 | return i; |
| 498 | } |
| 499 | |
| 500 | U_CAPI void U_EXPORT2 |
| 501 | utext_copy(UText *ut, |
| 502 | int64_t nativeStart, int64_t nativeLimit, |
| 503 | int64_t destIndex, |
| 504 | UBool move, |
| 505 | UErrorCode *status) |
| 506 | { |
| 507 | if (U_FAILURE(*status)) { |
| 508 | return; |
| 509 | } |
| 510 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
| 511 | *status = U_NO_WRITE_PERMISSION; |
| 512 | return; |
| 513 | } |
| 514 | ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); |
| 515 | } |
| 516 | |
| 517 | |
| 518 | |
| 519 | U_CAPI UText * U_EXPORT2 |
| 520 | utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { |
| 521 | if (U_FAILURE(*status)) { |
| 522 | return dest; |
| 523 | } |
| 524 | UText *result = src->pFuncs->clone(dest, src, deep, status); |
| 525 | if (U_FAILURE(*status)) { |
| 526 | return result; |
| 527 | } |
| 528 | if (result == NULL) { |
| 529 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 530 | return result; |
| 531 | } |
| 532 | if (readOnly) { |
| 533 | utext_freeze(result); |
| 534 | } |
| 535 | return result; |
| 536 | } |
| 537 | |
| 538 | |
| 539 | |
| 540 | //------------------------------------------------------------------------------ |
| 541 | // |
| 542 | // UText common functions implementation |
| 543 | // |
| 544 | //------------------------------------------------------------------------------ |
| 545 | |
| 546 | // |
| 547 | // UText.flags bit definitions |
| 548 | // |
| 549 | enum { |
| 550 | UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. |
| 551 | // 0 if caller provided storage for the UText. |
| 552 | |
| 553 | = 2, // 1 if ICU has allocated extra storage as a separate |
| 554 | // heap block. |
| 555 | // 0 if there is no separate allocation. Either no extra |
| 556 | // storage was requested, or it is appended to the end |
| 557 | // of the main UText storage. |
| 558 | |
| 559 | UTEXT_OPEN = 4 // 1 if this UText is currently open |
| 560 | // 0 if this UText is not open. |
| 561 | }; |
| 562 | |
| 563 | |
| 564 | // |
| 565 | // Extended form of a UText. The purpose is to aid in computing the total size required |
| 566 | // when a provider asks for a UText to be allocated with extra storage. |
| 567 | |
| 568 | struct ExtendedUText { |
| 569 | UText ut; |
| 570 | max_align_t extension; |
| 571 | }; |
| 572 | |
| 573 | static const UText emptyText = UTEXT_INITIALIZER; |
| 574 | |
| 575 | U_CAPI UText * U_EXPORT2 |
| 576 | utext_setup(UText *ut, int32_t , UErrorCode *status) { |
| 577 | if (U_FAILURE(*status)) { |
| 578 | return ut; |
| 579 | } |
| 580 | |
| 581 | if (ut == NULL) { |
| 582 | // We need to heap-allocate storage for the new UText |
| 583 | int32_t spaceRequired = sizeof(UText); |
| 584 | if (extraSpace > 0) { |
| 585 | spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(max_align_t); |
| 586 | } |
| 587 | ut = (UText *)uprv_malloc(spaceRequired); |
| 588 | if (ut == NULL) { |
| 589 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 590 | return NULL; |
| 591 | } else { |
| 592 | *ut = emptyText; |
| 593 | ut->flags |= UTEXT_HEAP_ALLOCATED; |
| 594 | if (spaceRequired>0) { |
| 595 | ut->extraSize = extraSpace; |
| 596 | ut->pExtra = &((ExtendedUText *)ut)->extension; |
| 597 | } |
| 598 | } |
| 599 | } else { |
| 600 | // We have been supplied with an already existing UText. |
| 601 | // Verify that it really appears to be a UText. |
| 602 | if (ut->magic != UTEXT_MAGIC) { |
| 603 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 604 | return ut; |
| 605 | } |
| 606 | // If the ut is already open and there's a provider supplied close |
| 607 | // function, call it. |
| 608 | if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) { |
| 609 | ut->pFuncs->close(ut); |
| 610 | } |
| 611 | ut->flags &= ~UTEXT_OPEN; |
| 612 | |
| 613 | // If extra space was requested by our caller, check whether |
| 614 | // sufficient already exists, and allocate new if needed. |
| 615 | if (extraSpace > ut->extraSize) { |
| 616 | // Need more space. If there is existing separately allocated space, |
| 617 | // delete it first, then allocate new space. |
| 618 | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
| 619 | uprv_free(ut->pExtra); |
| 620 | ut->extraSize = 0; |
| 621 | } |
| 622 | ut->pExtra = uprv_malloc(extraSpace); |
| 623 | if (ut->pExtra == NULL) { |
| 624 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 625 | } else { |
| 626 | ut->extraSize = extraSpace; |
| 627 | ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | if (U_SUCCESS(*status)) { |
| 632 | ut->flags |= UTEXT_OPEN; |
| 633 | |
| 634 | // Initialize all remaining fields of the UText. |
| 635 | // |
| 636 | ut->context = NULL; |
| 637 | ut->chunkContents = NULL; |
| 638 | ut->p = NULL; |
| 639 | ut->q = NULL; |
| 640 | ut->r = NULL; |
| 641 | ut->a = 0; |
| 642 | ut->b = 0; |
| 643 | ut->c = 0; |
| 644 | ut->chunkOffset = 0; |
| 645 | ut->chunkLength = 0; |
| 646 | ut->chunkNativeStart = 0; |
| 647 | ut->chunkNativeLimit = 0; |
| 648 | ut->nativeIndexingLimit = 0; |
| 649 | ut->providerProperties = 0; |
| 650 | ut->privA = 0; |
| 651 | ut->privB = 0; |
| 652 | ut->privC = 0; |
| 653 | ut->privP = NULL; |
| 654 | if (ut->pExtra!=NULL && ut->extraSize>0) |
| 655 | uprv_memset(ut->pExtra, 0, ut->extraSize); |
| 656 | |
| 657 | } |
| 658 | return ut; |
| 659 | } |
| 660 | |
| 661 | |
| 662 | U_CAPI UText * U_EXPORT2 |
| 663 | utext_close(UText *ut) { |
| 664 | if (ut==NULL || |
| 665 | ut->magic != UTEXT_MAGIC || |
| 666 | (ut->flags & UTEXT_OPEN) == 0) |
| 667 | { |
| 668 | // The supplied ut is not an open UText. |
| 669 | // Do nothing. |
| 670 | return ut; |
| 671 | } |
| 672 | |
| 673 | // If the provider gave us a close function, call it now. |
| 674 | // This will clean up anything allocated specifically by the provider. |
| 675 | if (ut->pFuncs->close != NULL) { |
| 676 | ut->pFuncs->close(ut); |
| 677 | } |
| 678 | ut->flags &= ~UTEXT_OPEN; |
| 679 | |
| 680 | // If we (the framework) allocated the UText or subsidiary storage, |
| 681 | // delete it. |
| 682 | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
| 683 | uprv_free(ut->pExtra); |
| 684 | ut->pExtra = NULL; |
| 685 | ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; |
| 686 | ut->extraSize = 0; |
| 687 | } |
| 688 | |
| 689 | // Zero out function table of the closed UText. This is a defensive move, |
| 690 | // inteded to cause applications that inadvertantly use a closed |
| 691 | // utext to crash with null pointer errors. |
| 692 | ut->pFuncs = NULL; |
| 693 | |
| 694 | if (ut->flags & UTEXT_HEAP_ALLOCATED) { |
| 695 | // This UText was allocated by UText setup. We need to free it. |
| 696 | // Clear magic, so we can detect if the user messes up and immediately |
| 697 | // tries to reopen another UText using the deleted storage. |
| 698 | ut->magic = 0; |
| 699 | uprv_free(ut); |
| 700 | ut = NULL; |
| 701 | } |
| 702 | return ut; |
| 703 | } |
| 704 | |
| 705 | |
| 706 | |
| 707 | |
| 708 | // |
| 709 | // invalidateChunk Reset a chunk to have no contents, so that the next call |
| 710 | // to access will cause new data to load. |
| 711 | // This is needed when copy/move/replace operate directly on the |
| 712 | // backing text, potentially putting it out of sync with the |
| 713 | // contents in the chunk. |
| 714 | // |
| 715 | static void |
| 716 | invalidateChunk(UText *ut) { |
| 717 | ut->chunkLength = 0; |
| 718 | ut->chunkNativeLimit = 0; |
| 719 | ut->chunkNativeStart = 0; |
| 720 | ut->chunkOffset = 0; |
| 721 | ut->nativeIndexingLimit = 0; |
| 722 | } |
| 723 | |
| 724 | // |
| 725 | // pinIndex Do range pinning on a native index parameter. |
| 726 | // 64 bit pinning is done in place. |
| 727 | // 32 bit truncated result is returned as a convenience for |
| 728 | // use in providers that don't need 64 bits. |
| 729 | static int32_t |
| 730 | pinIndex(int64_t &index, int64_t limit) { |
| 731 | if (index<0) { |
| 732 | index = 0; |
| 733 | } else if (index > limit) { |
| 734 | index = limit; |
| 735 | } |
| 736 | return (int32_t)index; |
| 737 | } |
| 738 | |
| 739 | |
| 740 | U_CDECL_BEGIN |
| 741 | |
| 742 | // |
| 743 | // Pointer relocation function, |
| 744 | // a utility used by shallow clone. |
| 745 | // Adjust a pointer that refers to something within one UText (the source) |
| 746 | // to refer to the same relative offset within a another UText (the target) |
| 747 | // |
| 748 | static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { |
| 749 | // convert all pointers to (char *) so that byte address arithmetic will work. |
| 750 | char *dptr = (char *)*destPtr; |
| 751 | char *dUText = (char *)dest; |
| 752 | char *sUText = (char *)src; |
| 753 | |
| 754 | if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { |
| 755 | // target ptr was to something within the src UText's pExtra storage. |
| 756 | // relocate it into the target UText's pExtra region. |
| 757 | *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); |
| 758 | } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { |
| 759 | // target ptr was pointing to somewhere within the source UText itself. |
| 760 | // Move it to the same offset within the target UText. |
| 761 | *destPtr = dUText + (dptr-sUText); |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | |
| 766 | // |
| 767 | // Clone. This is a generic copy-the-utext-by-value clone function that can be |
| 768 | // used as-is with some utext types, and as a helper by other clones. |
| 769 | // |
| 770 | static UText * U_CALLCONV |
| 771 | shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { |
| 772 | if (U_FAILURE(*status)) { |
| 773 | return NULL; |
| 774 | } |
| 775 | int32_t = src->extraSize; |
| 776 | |
| 777 | // |
| 778 | // Use the generic text_setup to allocate storage if required. |
| 779 | // |
| 780 | dest = utext_setup(dest, srcExtraSize, status); |
| 781 | if (U_FAILURE(*status)) { |
| 782 | return dest; |
| 783 | } |
| 784 | |
| 785 | // |
| 786 | // flags (how the UText was allocated) and the pointer to the |
| 787 | // extra storage must retain the values in the cloned utext that |
| 788 | // were set up by utext_setup. Save them separately before |
| 789 | // copying the whole struct. |
| 790 | // |
| 791 | void * = dest->pExtra; |
| 792 | int32_t flags = dest->flags; |
| 793 | |
| 794 | |
| 795 | // |
| 796 | // Copy the whole UText struct by value. |
| 797 | // Any "Extra" storage is copied also. |
| 798 | // |
| 799 | int sizeToCopy = src->sizeOfStruct; |
| 800 | if (sizeToCopy > dest->sizeOfStruct) { |
| 801 | sizeToCopy = dest->sizeOfStruct; |
| 802 | } |
| 803 | uprv_memcpy(dest, src, sizeToCopy); |
| 804 | dest->pExtra = destExtra; |
| 805 | dest->flags = flags; |
| 806 | if (srcExtraSize > 0) { |
| 807 | uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); |
| 808 | } |
| 809 | |
| 810 | // |
| 811 | // Relocate any pointers in the target that refer to the UText itself |
| 812 | // to point to the cloned copy rather than the original source. |
| 813 | // |
| 814 | adjustPointer(dest, &dest->context, src); |
| 815 | adjustPointer(dest, &dest->p, src); |
| 816 | adjustPointer(dest, &dest->q, src); |
| 817 | adjustPointer(dest, &dest->r, src); |
| 818 | adjustPointer(dest, (const void **)&dest->chunkContents, src); |
| 819 | |
| 820 | // The newly shallow-cloned UText does _not_ own the underlying storage for the text. |
| 821 | // (The source for the clone may or may not have owned the text.) |
| 822 | |
| 823 | dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 824 | |
| 825 | return dest; |
| 826 | } |
| 827 | |
| 828 | |
| 829 | U_CDECL_END |
| 830 | |
| 831 | |
| 832 | |
| 833 | //------------------------------------------------------------------------------ |
| 834 | // |
| 835 | // UText implementation for UTF-8 char * strings (read-only) |
| 836 | // Limitation: string length must be <= 0x7fffffff in length. |
| 837 | // (length must for in an int32_t variable) |
| 838 | // |
| 839 | // Use of UText data members: |
| 840 | // context pointer to UTF-8 string |
| 841 | // utext.b is the input string length (bytes). |
| 842 | // utext.c Length scanned so far in string |
| 843 | // (for optimizing finding length of zero terminated strings.) |
| 844 | // utext.p pointer to the current buffer |
| 845 | // utext.q pointer to the other buffer. |
| 846 | // |
| 847 | //------------------------------------------------------------------------------ |
| 848 | |
| 849 | // Chunk size. |
| 850 | // Must be less than 85 (256/3), because of byte mapping from UChar indexes to native indexes. |
| 851 | // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes |
| 852 | // to two UChars.) |
| 853 | // The longest illegal byte sequence treated as a single error (and converted to U+FFFD) |
| 854 | // is a three-byte sequence (truncated four-byte sequence). |
| 855 | // |
| 856 | enum { UTF8_TEXT_CHUNK_SIZE=32 }; |
| 857 | |
| 858 | // |
| 859 | // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. |
| 860 | // Each contains the UChar chunk buffer, the to and from native maps, and |
| 861 | // header info. |
| 862 | // |
| 863 | // because backwards iteration fills the buffers starting at the end and |
| 864 | // working towards the front, the filled part of the buffers may not begin |
| 865 | // at the start of the available storage for the buffers. |
| 866 | // |
| 867 | // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for |
| 868 | // the last character added being a supplementary, and thus requiring a surrogate |
| 869 | // pair. Doing this is simpler than checking for the edge case. |
| 870 | // |
| 871 | |
| 872 | struct UTF8Buf { |
| 873 | int32_t bufNativeStart; // Native index of first char in UChar buf |
| 874 | int32_t bufNativeLimit; // Native index following last char in buf. |
| 875 | int32_t bufStartIdx; // First filled position in buf. |
| 876 | int32_t bufLimitIdx; // Limit of filled range in buf. |
| 877 | int32_t bufNILimit; // Limit of native indexing part of buf |
| 878 | int32_t toUCharsMapStart; // Native index corresponding to |
| 879 | // mapToUChars[0]. |
| 880 | // Set to bufNativeStart when filling forwards. |
| 881 | // Set to computed value when filling backwards. |
| 882 | |
| 883 | UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the |
| 884 | // the chunk size, to allow for surrogate at the end. |
| 885 | // Length must be identical to mapToNative array, below, |
| 886 | // because of the way indexing works when the array is |
| 887 | // filled backwards during a reverse iteration. Thus, |
| 888 | // the additional extra size. |
| 889 | uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to |
| 890 | // native offset from bufNativeStart. |
| 891 | // Requires two extra slots, |
| 892 | // one for a supplementary starting in the last normal position, |
| 893 | // and one for an entry for the buffer limit position. |
| 894 | uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to |
| 895 | // correspoding offset in filled part of buf. |
| 896 | int32_t align; |
| 897 | }; |
| 898 | |
| 899 | U_CDECL_BEGIN |
| 900 | |
| 901 | // |
| 902 | // utf8TextLength |
| 903 | // |
| 904 | // Get the length of the string. If we don't already know it, |
| 905 | // we'll need to scan for the trailing nul. |
| 906 | // |
| 907 | static int64_t U_CALLCONV |
| 908 | utf8TextLength(UText *ut) { |
| 909 | if (ut->b < 0) { |
| 910 | // Zero terminated string, and we haven't scanned to the end yet. |
| 911 | // Scan it now. |
| 912 | const char *r = (const char *)ut->context + ut->c; |
| 913 | while (*r != 0) { |
| 914 | r++; |
| 915 | } |
| 916 | if ((r - (const char *)ut->context) < 0x7fffffff) { |
| 917 | ut->b = (int32_t)(r - (const char *)ut->context); |
| 918 | } else { |
| 919 | // Actual string was bigger (more than 2 gig) than we |
| 920 | // can handle. Clip it to 2 GB. |
| 921 | ut->b = 0x7fffffff; |
| 922 | } |
| 923 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 924 | } |
| 925 | return ut->b; |
| 926 | } |
| 927 | |
| 928 | |
| 929 | |
| 930 | |
| 931 | |
| 932 | |
| 933 | static UBool U_CALLCONV |
| 934 | utf8TextAccess(UText *ut, int64_t index, UBool forward) { |
| 935 | // |
| 936 | // Apologies to those who are allergic to goto statements. |
| 937 | // Consider each goto to a labelled block to be the equivalent of |
| 938 | // call the named block as if it were a function(); |
| 939 | // return; |
| 940 | // |
| 941 | const uint8_t *s8=(const uint8_t *)ut->context; |
| 942 | UTF8Buf *u8b = NULL; |
| 943 | int32_t length = ut->b; // Length of original utf-8 |
| 944 | int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. |
| 945 | int32_t mapIndex = 0; |
| 946 | if (index<0) { |
| 947 | ix=0; |
| 948 | } else if (index > 0x7fffffff) { |
| 949 | // Strings with 64 bit lengths not supported by this UTF-8 provider. |
| 950 | ix = 0x7fffffff; |
| 951 | } |
| 952 | |
| 953 | // Pin requested index to the string length. |
| 954 | if (ix>length) { |
| 955 | if (length>=0) { |
| 956 | ix=length; |
| 957 | } else if (ix>=ut->c) { |
| 958 | // Zero terminated string, and requested index is beyond |
| 959 | // the region that has already been scanned. |
| 960 | // Scan up to either the end of the string or to the |
| 961 | // requested position, whichever comes first. |
| 962 | while (ut->c<ix && s8[ut->c]!=0) { |
| 963 | ut->c++; |
| 964 | } |
| 965 | // TODO: support for null terminated string length > 32 bits. |
| 966 | if (s8[ut->c] == 0) { |
| 967 | // We just found the actual length of the string. |
| 968 | // Trim the requested index back to that. |
| 969 | ix = ut->c; |
| 970 | ut->b = ut->c; |
| 971 | length = ut->c; |
| 972 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 973 | } |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | // |
| 978 | // Dispatch to the appropriate action for a forward iteration request. |
| 979 | // |
| 980 | if (forward) { |
| 981 | if (ix==ut->chunkNativeLimit) { |
| 982 | // Check for normal sequential iteration cases first. |
| 983 | if (ix==length) { |
| 984 | // Just reached end of string |
| 985 | // Don't swap buffers, but do set the |
| 986 | // current buffer position. |
| 987 | ut->chunkOffset = ut->chunkLength; |
| 988 | return FALSE; |
| 989 | } else { |
| 990 | // End of current buffer. |
| 991 | // check whether other buffer already has what we need. |
| 992 | UTF8Buf *altB = (UTF8Buf *)ut->q; |
| 993 | if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { |
| 994 | goto swapBuffers; |
| 995 | } |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | // A random access. Desired index could be in either or niether buf. |
| 1000 | // For optimizing the order of testing, first check for the index |
| 1001 | // being in the other buffer. This will be the case for uses that |
| 1002 | // move back and forth over a fairly limited range |
| 1003 | { |
| 1004 | u8b = (UTF8Buf *)ut->q; // the alternate buffer |
| 1005 | if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { |
| 1006 | // Requested index is in the other buffer. |
| 1007 | goto swapBuffers; |
| 1008 | } |
| 1009 | if (ix == length) { |
| 1010 | // Requested index is end-of-string. |
| 1011 | // (this is the case of randomly seeking to the end. |
| 1012 | // The case of iterating off the end is handled earlier.) |
| 1013 | if (ix == ut->chunkNativeLimit) { |
| 1014 | // Current buffer extends up to the end of the string. |
| 1015 | // Leave it as the current buffer. |
| 1016 | ut->chunkOffset = ut->chunkLength; |
| 1017 | return FALSE; |
| 1018 | } |
| 1019 | if (ix == u8b->bufNativeLimit) { |
| 1020 | // Alternate buffer extends to the end of string. |
| 1021 | // Swap it in as the current buffer. |
| 1022 | goto swapBuffersAndFail; |
| 1023 | } |
| 1024 | |
| 1025 | // Neither existing buffer extends to the end of the string. |
| 1026 | goto makeStubBuffer; |
| 1027 | } |
| 1028 | |
| 1029 | if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { |
| 1030 | // Requested index is in neither buffer. |
| 1031 | goto fillForward; |
| 1032 | } |
| 1033 | |
| 1034 | // Requested index is in this buffer. |
| 1035 | u8b = (UTF8Buf *)ut->p; // the current buffer |
| 1036 | mapIndex = ix - u8b->toUCharsMapStart; |
| 1037 | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
| 1038 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1039 | return TRUE; |
| 1040 | |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | |
| 1045 | // |
| 1046 | // Dispatch to the appropriate action for a |
| 1047 | // Backwards Diretion iteration request. |
| 1048 | // |
| 1049 | if (ix==ut->chunkNativeStart) { |
| 1050 | // Check for normal sequential iteration cases first. |
| 1051 | if (ix==0) { |
| 1052 | // Just reached the start of string |
| 1053 | // Don't swap buffers, but do set the |
| 1054 | // current buffer position. |
| 1055 | ut->chunkOffset = 0; |
| 1056 | return FALSE; |
| 1057 | } else { |
| 1058 | // Start of current buffer. |
| 1059 | // check whether other buffer already has what we need. |
| 1060 | UTF8Buf *altB = (UTF8Buf *)ut->q; |
| 1061 | if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { |
| 1062 | goto swapBuffers; |
| 1063 | } |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | // A random access. Desired index could be in either or niether buf. |
| 1068 | // For optimizing the order of testing, |
| 1069 | // Most likely case: in the other buffer. |
| 1070 | // Second most likely: in neither buffer. |
| 1071 | // Unlikely, but must work: in the current buffer. |
| 1072 | u8b = (UTF8Buf *)ut->q; // the alternate buffer |
| 1073 | if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { |
| 1074 | // Requested index is in the other buffer. |
| 1075 | goto swapBuffers; |
| 1076 | } |
| 1077 | // Requested index is start-of-string. |
| 1078 | // (this is the case of randomly seeking to the start. |
| 1079 | // The case of iterating off the start is handled earlier.) |
| 1080 | if (ix==0) { |
| 1081 | if (u8b->bufNativeStart==0) { |
| 1082 | // Alternate buffer contains the data for the start string. |
| 1083 | // Make it be the current buffer. |
| 1084 | goto swapBuffersAndFail; |
| 1085 | } else { |
| 1086 | // Request for data before the start of string, |
| 1087 | // neither buffer is usable. |
| 1088 | // set up a zero-length buffer. |
| 1089 | goto makeStubBuffer; |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { |
| 1094 | // Requested index is in neither buffer. |
| 1095 | goto fillReverse; |
| 1096 | } |
| 1097 | |
| 1098 | // Requested index is in this buffer. |
| 1099 | // Set the utf16 buffer index. |
| 1100 | u8b = (UTF8Buf *)ut->p; |
| 1101 | mapIndex = ix - u8b->toUCharsMapStart; |
| 1102 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1103 | if (ut->chunkOffset==0) { |
| 1104 | // This occurs when the first character in the text is |
| 1105 | // a multi-byte UTF-8 char, and the requested index is to |
| 1106 | // one of the trailing bytes. Because there is no preceding , |
| 1107 | // character, this access fails. We can't pick up on the |
| 1108 | // situation sooner because the requested index is not zero. |
| 1109 | return FALSE; |
| 1110 | } else { |
| 1111 | return TRUE; |
| 1112 | } |
| 1113 | |
| 1114 | |
| 1115 | |
| 1116 | swapBuffers: |
| 1117 | // The alternate buffer (ut->q) has the string data that was requested. |
| 1118 | // Swap the primary and alternate buffers, and set the |
| 1119 | // chunk index into the new primary buffer. |
| 1120 | { |
| 1121 | u8b = (UTF8Buf *)ut->q; |
| 1122 | ut->q = ut->p; |
| 1123 | ut->p = u8b; |
| 1124 | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
| 1125 | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| 1126 | ut->chunkNativeStart = u8b->bufNativeStart; |
| 1127 | ut->chunkNativeLimit = u8b->bufNativeLimit; |
| 1128 | ut->nativeIndexingLimit = u8b->bufNILimit; |
| 1129 | |
| 1130 | // Index into the (now current) chunk |
| 1131 | // Use the map to set the chunk index. It's more trouble than it's worth |
| 1132 | // to check whether native indexing can be used. |
| 1133 | U_ASSERT(ix>=u8b->bufNativeStart); |
| 1134 | U_ASSERT(ix<=u8b->bufNativeLimit); |
| 1135 | mapIndex = ix - u8b->toUCharsMapStart; |
| 1136 | U_ASSERT(mapIndex>=0); |
| 1137 | U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); |
| 1138 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1139 | |
| 1140 | return TRUE; |
| 1141 | } |
| 1142 | |
| 1143 | |
| 1144 | swapBuffersAndFail: |
| 1145 | // We got a request for either the start or end of the string, |
| 1146 | // with iteration continuing in the out-of-bounds direction. |
| 1147 | // The alternate buffer already contains the data up to the |
| 1148 | // start/end. |
| 1149 | // Swap the buffers, then return failure, indicating that we couldn't |
| 1150 | // make things correct for continuing the iteration in the requested |
| 1151 | // direction. The position & buffer are correct should the |
| 1152 | // user decide to iterate in the opposite direction. |
| 1153 | u8b = (UTF8Buf *)ut->q; |
| 1154 | ut->q = ut->p; |
| 1155 | ut->p = u8b; |
| 1156 | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
| 1157 | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| 1158 | ut->chunkNativeStart = u8b->bufNativeStart; |
| 1159 | ut->chunkNativeLimit = u8b->bufNativeLimit; |
| 1160 | ut->nativeIndexingLimit = u8b->bufNILimit; |
| 1161 | |
| 1162 | // Index into the (now current) chunk |
| 1163 | // For this function (swapBuffersAndFail), the requested index |
| 1164 | // will always be at either the start or end of the chunk. |
| 1165 | if (ix==u8b->bufNativeLimit) { |
| 1166 | ut->chunkOffset = ut->chunkLength; |
| 1167 | } else { |
| 1168 | ut->chunkOffset = 0; |
| 1169 | U_ASSERT(ix == u8b->bufNativeStart); |
| 1170 | } |
| 1171 | return FALSE; |
| 1172 | |
| 1173 | makeStubBuffer: |
| 1174 | // The user has done a seek/access past the start or end |
| 1175 | // of the string. Rather than loading data that is likely |
| 1176 | // to never be used, just set up a zero-length buffer at |
| 1177 | // the position. |
| 1178 | u8b = (UTF8Buf *)ut->q; |
| 1179 | u8b->bufNativeStart = ix; |
| 1180 | u8b->bufNativeLimit = ix; |
| 1181 | u8b->bufStartIdx = 0; |
| 1182 | u8b->bufLimitIdx = 0; |
| 1183 | u8b->bufNILimit = 0; |
| 1184 | u8b->toUCharsMapStart = ix; |
| 1185 | u8b->mapToNative[0] = 0; |
| 1186 | u8b->mapToUChars[0] = 0; |
| 1187 | goto swapBuffersAndFail; |
| 1188 | |
| 1189 | |
| 1190 | |
| 1191 | fillForward: |
| 1192 | { |
| 1193 | // Move the incoming index to a code point boundary. |
| 1194 | U8_SET_CP_START(s8, 0, ix); |
| 1195 | |
| 1196 | // Swap the UText buffers. |
| 1197 | // We want to fill what was previously the alternate buffer, |
| 1198 | // and make what was the current buffer be the new alternate. |
| 1199 | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
| 1200 | ut->q = ut->p; |
| 1201 | ut->p = u8b_swap; |
| 1202 | |
| 1203 | int32_t strLen = ut->b; |
| 1204 | UBool nulTerminated = FALSE; |
| 1205 | if (strLen < 0) { |
| 1206 | strLen = 0x7fffffff; |
| 1207 | nulTerminated = TRUE; |
| 1208 | } |
| 1209 | |
| 1210 | UChar *buf = u8b_swap->buf; |
| 1211 | uint8_t *mapToNative = u8b_swap->mapToNative; |
| 1212 | uint8_t *mapToUChars = u8b_swap->mapToUChars; |
| 1213 | int32_t destIx = 0; |
| 1214 | int32_t srcIx = ix; |
| 1215 | UBool seenNonAscii = FALSE; |
| 1216 | UChar32 c = 0; |
| 1217 | |
| 1218 | // Fill the chunk buffer and mapping arrays. |
| 1219 | while (destIx<UTF8_TEXT_CHUNK_SIZE) { |
| 1220 | c = s8[srcIx]; |
| 1221 | if (c>0 && c<0x80) { |
| 1222 | // Special case ASCII range for speed. |
| 1223 | // zero is excluded to simplify bounds checking. |
| 1224 | buf[destIx] = (UChar)c; |
| 1225 | mapToNative[destIx] = (uint8_t)(srcIx - ix); |
| 1226 | mapToUChars[srcIx-ix] = (uint8_t)destIx; |
| 1227 | srcIx++; |
| 1228 | destIx++; |
| 1229 | } else { |
| 1230 | // General case, handle everything. |
| 1231 | if (seenNonAscii == FALSE) { |
| 1232 | seenNonAscii = TRUE; |
| 1233 | u8b_swap->bufNILimit = destIx; |
| 1234 | } |
| 1235 | |
| 1236 | int32_t cIx = srcIx; |
| 1237 | int32_t dIx = destIx; |
| 1238 | int32_t dIxSaved = destIx; |
| 1239 | U8_NEXT_OR_FFFD(s8, srcIx, strLen, c); |
| 1240 | if (c==0 && nulTerminated) { |
| 1241 | srcIx--; |
| 1242 | break; |
| 1243 | } |
| 1244 | |
| 1245 | U16_APPEND_UNSAFE(buf, destIx, c); |
| 1246 | do { |
| 1247 | mapToNative[dIx++] = (uint8_t)(cIx - ix); |
| 1248 | } while (dIx < destIx); |
| 1249 | |
| 1250 | do { |
| 1251 | mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; |
| 1252 | } while (cIx < srcIx); |
| 1253 | } |
| 1254 | if (srcIx>=strLen) { |
| 1255 | break; |
| 1256 | } |
| 1257 | |
| 1258 | } |
| 1259 | |
| 1260 | // store Native <--> Chunk Map entries for the end of the buffer. |
| 1261 | // There is no actual character here, but the index position is valid. |
| 1262 | mapToNative[destIx] = (uint8_t)(srcIx - ix); |
| 1263 | mapToUChars[srcIx - ix] = (uint8_t)destIx; |
| 1264 | |
| 1265 | // fill in Buffer descriptor |
| 1266 | u8b_swap->bufNativeStart = ix; |
| 1267 | u8b_swap->bufNativeLimit = srcIx; |
| 1268 | u8b_swap->bufStartIdx = 0; |
| 1269 | u8b_swap->bufLimitIdx = destIx; |
| 1270 | if (seenNonAscii == FALSE) { |
| 1271 | u8b_swap->bufNILimit = destIx; |
| 1272 | } |
| 1273 | u8b_swap->toUCharsMapStart = u8b_swap->bufNativeStart; |
| 1274 | |
| 1275 | // Set UText chunk to refer to this buffer. |
| 1276 | ut->chunkContents = buf; |
| 1277 | ut->chunkOffset = 0; |
| 1278 | ut->chunkLength = u8b_swap->bufLimitIdx; |
| 1279 | ut->chunkNativeStart = u8b_swap->bufNativeStart; |
| 1280 | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; |
| 1281 | ut->nativeIndexingLimit = u8b_swap->bufNILimit; |
| 1282 | |
| 1283 | // For zero terminated strings, keep track of the maximum point |
| 1284 | // scanned so far. |
| 1285 | if (nulTerminated && srcIx>ut->c) { |
| 1286 | ut->c = srcIx; |
| 1287 | if (c==0) { |
| 1288 | // We scanned to the end. |
| 1289 | // Remember the actual length. |
| 1290 | ut->b = srcIx; |
| 1291 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 1292 | } |
| 1293 | } |
| 1294 | return TRUE; |
| 1295 | } |
| 1296 | |
| 1297 | |
| 1298 | fillReverse: |
| 1299 | { |
| 1300 | // Move the incoming index to a code point boundary. |
| 1301 | // Can only do this if the incoming index is somewhere in the interior of the string. |
| 1302 | // If index is at the end, there is no character there to look at. |
| 1303 | if (ix != ut->b) { |
| 1304 | // Note: this function will only move the index back if it is on a trail byte |
| 1305 | // and there is a preceding lead byte and the sequence from the lead |
| 1306 | // through this trail could be part of a valid UTF-8 sequence |
| 1307 | // Otherwise the index remains unchanged. |
| 1308 | U8_SET_CP_START(s8, 0, ix); |
| 1309 | } |
| 1310 | |
| 1311 | // Swap the UText buffers. |
| 1312 | // We want to fill what was previously the alternate buffer, |
| 1313 | // and make what was the current buffer be the new alternate. |
| 1314 | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
| 1315 | ut->q = ut->p; |
| 1316 | ut->p = u8b_swap; |
| 1317 | |
| 1318 | UChar *buf = u8b_swap->buf; |
| 1319 | uint8_t *mapToNative = u8b_swap->mapToNative; |
| 1320 | uint8_t *mapToUChars = u8b_swap->mapToUChars; |
| 1321 | int32_t toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1; |
| 1322 | // Note that toUCharsMapStart can be negative. Happens when the remaining |
| 1323 | // text from current position to the beginning is less than the buffer size. |
| 1324 | // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry. |
| 1325 | int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region |
| 1326 | // at end of buffer to leave room |
| 1327 | // for a surrogate pair at the |
| 1328 | // buffer start. |
| 1329 | int32_t srcIx = ix; |
| 1330 | int32_t bufNILimit = destIx; |
| 1331 | UChar32 c; |
| 1332 | |
| 1333 | // Map to/from Native Indexes, fill in for the position at the end of |
| 1334 | // the buffer. |
| 1335 | // |
| 1336 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1337 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
| 1338 | |
| 1339 | // Fill the chunk buffer |
| 1340 | // Work backwards, filling from the end of the buffer towards the front. |
| 1341 | // |
| 1342 | while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { |
| 1343 | srcIx--; |
| 1344 | destIx--; |
| 1345 | |
| 1346 | // Get last byte of the UTF-8 character |
| 1347 | c = s8[srcIx]; |
| 1348 | if (c<0x80) { |
| 1349 | // Special case ASCII range for speed. |
| 1350 | buf[destIx] = (UChar)c; |
| 1351 | U_ASSERT(toUCharsMapStart <= srcIx); |
| 1352 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
| 1353 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1354 | } else { |
| 1355 | // General case, handle everything non-ASCII. |
| 1356 | |
| 1357 | int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char |
| 1358 | |
| 1359 | // Get the full character from the UTF8 string. |
| 1360 | // use code derived from tbe macros in utf8.h |
| 1361 | // Leaves srcIx pointing at the first byte of the UTF-8 char. |
| 1362 | // |
| 1363 | c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3); |
| 1364 | // leaves srcIx at first byte of the multi-byte char. |
| 1365 | |
| 1366 | // Store the character in UTF-16 buffer. |
| 1367 | if (c<0x10000) { |
| 1368 | buf[destIx] = (UChar)c; |
| 1369 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1370 | } else { |
| 1371 | buf[destIx] = U16_TRAIL(c); |
| 1372 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1373 | buf[--destIx] = U16_LEAD(c); |
| 1374 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1375 | } |
| 1376 | |
| 1377 | // Fill in the map from native indexes to UChars buf index. |
| 1378 | do { |
| 1379 | mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; |
| 1380 | } while (sIx >= srcIx); |
| 1381 | U_ASSERT(toUCharsMapStart <= (srcIx+1)); |
| 1382 | |
| 1383 | // Set native indexing limit to be the current position. |
| 1384 | // We are processing a non-ascii, non-native-indexing char now; |
| 1385 | // the limit will be here if the rest of the chars to be |
| 1386 | // added to this buffer are ascii. |
| 1387 | bufNILimit = destIx; |
| 1388 | } |
| 1389 | } |
| 1390 | u8b_swap->bufNativeStart = srcIx; |
| 1391 | u8b_swap->bufNativeLimit = ix; |
| 1392 | u8b_swap->bufStartIdx = destIx; |
| 1393 | u8b_swap->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; |
| 1394 | u8b_swap->bufNILimit = bufNILimit - u8b_swap->bufStartIdx; |
| 1395 | u8b_swap->toUCharsMapStart = toUCharsMapStart; |
| 1396 | |
| 1397 | ut->chunkContents = &buf[u8b_swap->bufStartIdx]; |
| 1398 | ut->chunkLength = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx; |
| 1399 | ut->chunkOffset = ut->chunkLength; |
| 1400 | ut->chunkNativeStart = u8b_swap->bufNativeStart; |
| 1401 | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; |
| 1402 | ut->nativeIndexingLimit = u8b_swap->bufNILimit; |
| 1403 | return TRUE; |
| 1404 | } |
| 1405 | |
| 1406 | } |
| 1407 | |
| 1408 | |
| 1409 | |
| 1410 | // |
| 1411 | // This is a slightly modified copy of u_strFromUTF8, |
| 1412 | // Inserts a Replacement Char rather than failing on invalid UTF-8 |
| 1413 | // Removes unnecessary features. |
| 1414 | // |
| 1415 | static UChar* |
| 1416 | utext_strFromUTF8(UChar *dest, |
| 1417 | int32_t destCapacity, |
| 1418 | int32_t *pDestLength, |
| 1419 | const char* src, |
| 1420 | int32_t srcLength, // required. NUL terminated not supported. |
| 1421 | UErrorCode *pErrorCode |
| 1422 | ) |
| 1423 | { |
| 1424 | |
| 1425 | UChar *pDest = dest; |
| 1426 | UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL; |
| 1427 | UChar32 ch=0; |
| 1428 | int32_t index = 0; |
| 1429 | int32_t reqLength = 0; |
| 1430 | uint8_t* pSrc = (uint8_t*) src; |
| 1431 | |
| 1432 | |
| 1433 | while((index < srcLength)&&(pDest<pDestLimit)){ |
| 1434 | ch = pSrc[index++]; |
| 1435 | if(ch <=0x7f){ |
| 1436 | *pDest++=(UChar)ch; |
| 1437 | }else{ |
| 1438 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
| 1439 | if(U_IS_BMP(ch)){ |
| 1440 | *(pDest++)=(UChar)ch; |
| 1441 | }else{ |
| 1442 | *(pDest++)=U16_LEAD(ch); |
| 1443 | if(pDest<pDestLimit){ |
| 1444 | *(pDest++)=U16_TRAIL(ch); |
| 1445 | }else{ |
| 1446 | reqLength++; |
| 1447 | break; |
| 1448 | } |
| 1449 | } |
| 1450 | } |
| 1451 | } |
| 1452 | /* donot fill the dest buffer just count the UChars needed */ |
| 1453 | while(index < srcLength){ |
| 1454 | ch = pSrc[index++]; |
| 1455 | if(ch <= 0x7f){ |
| 1456 | reqLength++; |
| 1457 | }else{ |
| 1458 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
| 1459 | reqLength+=U16_LENGTH(ch); |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | reqLength+=(int32_t)(pDest - dest); |
| 1464 | |
| 1465 | if(pDestLength){ |
| 1466 | *pDestLength = reqLength; |
| 1467 | } |
| 1468 | |
| 1469 | /* Terminate the buffer */ |
| 1470 | u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); |
| 1471 | |
| 1472 | return dest; |
| 1473 | } |
| 1474 | |
| 1475 | |
| 1476 | |
| 1477 | static int32_t U_CALLCONV |
| 1478 | (UText *ut, |
| 1479 | int64_t start, int64_t limit, |
| 1480 | UChar *dest, int32_t destCapacity, |
| 1481 | UErrorCode *pErrorCode) { |
| 1482 | if(U_FAILURE(*pErrorCode)) { |
| 1483 | return 0; |
| 1484 | } |
| 1485 | if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| 1486 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 1487 | return 0; |
| 1488 | } |
| 1489 | int32_t length = ut->b; |
| 1490 | int32_t start32 = pinIndex(start, length); |
| 1491 | int32_t limit32 = pinIndex(limit, length); |
| 1492 | |
| 1493 | if(start32>limit32) { |
| 1494 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1495 | return 0; |
| 1496 | } |
| 1497 | |
| 1498 | |
| 1499 | // adjust the incoming indexes to land on code point boundaries if needed. |
| 1500 | // adjust by no more than three, because that is the largest number of trail bytes |
| 1501 | // in a well formed UTF8 character. |
| 1502 | const uint8_t *buf = (const uint8_t *)ut->context; |
| 1503 | int i; |
| 1504 | if (start32 < ut->chunkNativeLimit) { |
| 1505 | for (i=0; i<3; i++) { |
| 1506 | if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { |
| 1507 | break; |
| 1508 | } |
| 1509 | start32--; |
| 1510 | } |
| 1511 | } |
| 1512 | |
| 1513 | if (limit32 < ut->chunkNativeLimit) { |
| 1514 | for (i=0; i<3; i++) { |
| 1515 | if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { |
| 1516 | break; |
| 1517 | } |
| 1518 | limit32--; |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | // Do the actual extract. |
| 1523 | int32_t destLength=0; |
| 1524 | utext_strFromUTF8(dest, destCapacity, &destLength, |
| 1525 | (const char *)ut->context+start32, limit32-start32, |
| 1526 | pErrorCode); |
| 1527 | utf8TextAccess(ut, limit32, TRUE); |
| 1528 | return destLength; |
| 1529 | } |
| 1530 | |
| 1531 | // |
| 1532 | // utf8TextMapOffsetToNative |
| 1533 | // |
| 1534 | // Map a chunk (UTF-16) offset to a native index. |
| 1535 | static int64_t U_CALLCONV |
| 1536 | utf8TextMapOffsetToNative(const UText *ut) { |
| 1537 | // |
| 1538 | UTF8Buf *u8b = (UTF8Buf *)ut->p; |
| 1539 | U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); |
| 1540 | int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; |
| 1541 | U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); |
| 1542 | return nativeOffset; |
| 1543 | } |
| 1544 | |
| 1545 | // |
| 1546 | // Map a native index to the corrsponding chunk offset |
| 1547 | // |
| 1548 | static int32_t U_CALLCONV |
| 1549 | utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { |
| 1550 | U_ASSERT(index64 <= 0x7fffffff); |
| 1551 | int32_t index = (int32_t)index64; |
| 1552 | UTF8Buf *u8b = (UTF8Buf *)ut->p; |
| 1553 | U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); |
| 1554 | U_ASSERT(index<=ut->chunkNativeLimit); |
| 1555 | int32_t mapIndex = index - u8b->toUCharsMapStart; |
| 1556 | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
| 1557 | int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1558 | U_ASSERT(offset>=0 && offset<=ut->chunkLength); |
| 1559 | return offset; |
| 1560 | } |
| 1561 | |
| 1562 | static UText * U_CALLCONV |
| 1563 | utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) |
| 1564 | { |
| 1565 | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
| 1566 | dest = shallowTextClone(dest, src, status); |
| 1567 | |
| 1568 | // For deep clones, make a copy of the string. |
| 1569 | // The copied storage is owned by the newly created clone. |
| 1570 | // |
| 1571 | // TODO: There is an isssue with using utext_nativeLength(). |
| 1572 | // That function is non-const in cases where the input was NUL terminated |
| 1573 | // and the length has not yet been determined. |
| 1574 | // This function (clone()) is const. |
| 1575 | // There potentially a thread safety issue lurking here. |
| 1576 | // |
| 1577 | if (deep && U_SUCCESS(*status)) { |
| 1578 | int32_t len = (int32_t)utext_nativeLength((UText *)src); |
| 1579 | char *copyStr = (char *)uprv_malloc(len+1); |
| 1580 | if (copyStr == NULL) { |
| 1581 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 1582 | } else { |
| 1583 | uprv_memcpy(copyStr, src->context, len+1); |
| 1584 | dest->context = copyStr; |
| 1585 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 1586 | } |
| 1587 | } |
| 1588 | return dest; |
| 1589 | } |
| 1590 | |
| 1591 | |
| 1592 | static void U_CALLCONV |
| 1593 | utf8TextClose(UText *ut) { |
| 1594 | // Most of the work of close is done by the generic UText framework close. |
| 1595 | // All that needs to be done here is to delete the UTF8 string if the UText |
| 1596 | // owns it. This occurs if the UText was created by cloning. |
| 1597 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 1598 | char *s = (char *)ut->context; |
| 1599 | uprv_free(s); |
| 1600 | ut->context = NULL; |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | U_CDECL_END |
| 1605 | |
| 1606 | |
| 1607 | static const struct UTextFuncs utf8Funcs = |
| 1608 | { |
| 1609 | sizeof(UTextFuncs), |
| 1610 | 0, 0, 0, // Reserved alignment padding |
| 1611 | utf8TextClone, |
| 1612 | utf8TextLength, |
| 1613 | utf8TextAccess, |
| 1614 | utf8TextExtract, |
| 1615 | NULL, /* replace*/ |
| 1616 | NULL, /* copy */ |
| 1617 | utf8TextMapOffsetToNative, |
| 1618 | utf8TextMapIndexToUTF16, |
| 1619 | utf8TextClose, |
| 1620 | NULL, // spare 1 |
| 1621 | NULL, // spare 2 |
| 1622 | NULL // spare 3 |
| 1623 | }; |
| 1624 | |
| 1625 | |
| 1626 | static const char gEmptyString[] = {0}; |
| 1627 | |
| 1628 | U_CAPI UText * U_EXPORT2 |
| 1629 | utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { |
| 1630 | if(U_FAILURE(*status)) { |
| 1631 | return NULL; |
| 1632 | } |
| 1633 | if(s==NULL && length==0) { |
| 1634 | s = gEmptyString; |
| 1635 | } |
| 1636 | |
| 1637 | if(s==NULL || length<-1 || length>INT32_MAX) { |
| 1638 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 1639 | return NULL; |
| 1640 | } |
| 1641 | |
| 1642 | ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); |
| 1643 | if (U_FAILURE(*status)) { |
| 1644 | return ut; |
| 1645 | } |
| 1646 | |
| 1647 | ut->pFuncs = &utf8Funcs; |
| 1648 | ut->context = s; |
| 1649 | ut->b = (int32_t)length; |
| 1650 | ut->c = (int32_t)length; |
| 1651 | if (ut->c < 0) { |
| 1652 | ut->c = 0; |
| 1653 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 1654 | } |
| 1655 | ut->p = ut->pExtra; |
| 1656 | ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); |
| 1657 | return ut; |
| 1658 | |
| 1659 | } |
| 1660 | |
| 1661 | |
| 1662 | |
| 1663 | |
| 1664 | |
| 1665 | |
| 1666 | |
| 1667 | |
| 1668 | //------------------------------------------------------------------------------ |
| 1669 | // |
| 1670 | // UText implementation wrapper for Replaceable (read/write) |
| 1671 | // |
| 1672 | // Use of UText data members: |
| 1673 | // context pointer to Replaceable. |
| 1674 | // p pointer to Replaceable if it is owned by the UText. |
| 1675 | // |
| 1676 | //------------------------------------------------------------------------------ |
| 1677 | |
| 1678 | |
| 1679 | |
| 1680 | // minimum chunk size for this implementation: 3 |
| 1681 | // to allow for possible trimming for code point boundaries |
| 1682 | enum { REP_TEXT_CHUNK_SIZE=10 }; |
| 1683 | |
| 1684 | struct { |
| 1685 | /* |
| 1686 | * Chunk UChars. |
| 1687 | * +1 to simplify filling with surrogate pair at the end. |
| 1688 | */ |
| 1689 | UChar [REP_TEXT_CHUNK_SIZE+1]; |
| 1690 | }; |
| 1691 | |
| 1692 | |
| 1693 | U_CDECL_BEGIN |
| 1694 | |
| 1695 | static UText * U_CALLCONV |
| 1696 | repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
| 1697 | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
| 1698 | dest = shallowTextClone(dest, src, status); |
| 1699 | |
| 1700 | // For deep clones, make a copy of the Replaceable. |
| 1701 | // The copied Replaceable storage is owned by the newly created UText clone. |
| 1702 | // A non-NULL pointer in UText.p is the signal to the close() function to delete |
| 1703 | // it. |
| 1704 | // |
| 1705 | if (deep && U_SUCCESS(*status)) { |
| 1706 | const Replaceable *replSrc = (const Replaceable *)src->context; |
| 1707 | dest->context = replSrc->clone(); |
| 1708 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 1709 | |
| 1710 | // with deep clone, the copy is writable, even when the source is not. |
| 1711 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 1712 | } |
| 1713 | return dest; |
| 1714 | } |
| 1715 | |
| 1716 | |
| 1717 | static void U_CALLCONV |
| 1718 | repTextClose(UText *ut) { |
| 1719 | // Most of the work of close is done by the generic UText framework close. |
| 1720 | // All that needs to be done here is delete the Replaceable if the UText |
| 1721 | // owns it. This occurs if the UText was created by cloning. |
| 1722 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 1723 | Replaceable *rep = (Replaceable *)ut->context; |
| 1724 | delete rep; |
| 1725 | ut->context = NULL; |
| 1726 | } |
| 1727 | } |
| 1728 | |
| 1729 | |
| 1730 | static int64_t U_CALLCONV |
| 1731 | repTextLength(UText *ut) { |
| 1732 | const Replaceable *replSrc = (const Replaceable *)ut->context; |
| 1733 | int32_t len = replSrc->length(); |
| 1734 | return len; |
| 1735 | } |
| 1736 | |
| 1737 | |
| 1738 | static UBool U_CALLCONV |
| 1739 | repTextAccess(UText *ut, int64_t index, UBool forward) { |
| 1740 | const Replaceable *rep=(const Replaceable *)ut->context; |
| 1741 | int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) |
| 1742 | |
| 1743 | // clip the requested index to the limits of the text. |
| 1744 | int32_t index32 = pinIndex(index, length); |
| 1745 | U_ASSERT(index<=INT32_MAX); |
| 1746 | |
| 1747 | |
| 1748 | /* |
| 1749 | * Compute start/limit boundaries around index, for a segment of text |
| 1750 | * to be extracted. |
| 1751 | * To allow for the possibility that our user gave an index to the trailing |
| 1752 | * half of a surrogate pair, we must request one extra preceding UChar when |
| 1753 | * going in the forward direction. This will ensure that the buffer has the |
| 1754 | * entire code point at the specified index. |
| 1755 | */ |
| 1756 | if(forward) { |
| 1757 | |
| 1758 | if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { |
| 1759 | // Buffer already contains the requested position. |
| 1760 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| 1761 | return TRUE; |
| 1762 | } |
| 1763 | if (index32>=length && ut->chunkNativeLimit==length) { |
| 1764 | // Request for end of string, and buffer already extends up to it. |
| 1765 | // Can't get the data, but don't change the buffer. |
| 1766 | ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; |
| 1767 | return FALSE; |
| 1768 | } |
| 1769 | |
| 1770 | ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; |
| 1771 | // Going forward, so we want to have the buffer with stuff at and beyond |
| 1772 | // the requested index. The -1 gets us one code point before the |
| 1773 | // requested index also, to handle the case of the index being on |
| 1774 | // a trail surrogate of a surrogate pair. |
| 1775 | if(ut->chunkNativeLimit > length) { |
| 1776 | ut->chunkNativeLimit = length; |
| 1777 | } |
| 1778 | // unless buffer ran off end, start is index-1. |
| 1779 | ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; |
| 1780 | if(ut->chunkNativeStart < 0) { |
| 1781 | ut->chunkNativeStart = 0; |
| 1782 | } |
| 1783 | } else { |
| 1784 | // Reverse iteration. Fill buffer with data preceding the requested index. |
| 1785 | if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { |
| 1786 | // Requested position already in buffer. |
| 1787 | ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; |
| 1788 | return TRUE; |
| 1789 | } |
| 1790 | if (index32==0 && ut->chunkNativeStart==0) { |
| 1791 | // Request for start, buffer already begins at start. |
| 1792 | // No data, but keep the buffer as is. |
| 1793 | ut->chunkOffset = 0; |
| 1794 | return FALSE; |
| 1795 | } |
| 1796 | |
| 1797 | // Figure out the bounds of the chunk to extract for reverse iteration. |
| 1798 | // Need to worry about chunk not splitting surrogate pairs, and while still |
| 1799 | // containing the data we need. |
| 1800 | // Fix by requesting a chunk that includes an extra UChar at the end. |
| 1801 | // If this turns out to be a lead surrogate, we can lop it off and still have |
| 1802 | // the data we wanted. |
| 1803 | ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; |
| 1804 | if (ut->chunkNativeStart < 0) { |
| 1805 | ut->chunkNativeStart = 0; |
| 1806 | } |
| 1807 | |
| 1808 | ut->chunkNativeLimit = index32 + 1; |
| 1809 | if (ut->chunkNativeLimit > length) { |
| 1810 | ut->chunkNativeLimit = length; |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | // Extract the new chunk of text from the Replaceable source. |
| 1815 | ReplExtra *ex = (ReplExtra *)ut->pExtra; |
| 1816 | // UnicodeString with its buffer a writable alias to the chunk buffer |
| 1817 | UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); |
| 1818 | rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); |
| 1819 | |
| 1820 | ut->chunkContents = ex->s; |
| 1821 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); |
| 1822 | ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); |
| 1823 | |
| 1824 | // Surrogate pairs from the input text must not span chunk boundaries. |
| 1825 | // If end of chunk could be the start of a surrogate, trim it off. |
| 1826 | if (ut->chunkNativeLimit < length && |
| 1827 | U16_IS_LEAD(ex->s[ut->chunkLength-1])) { |
| 1828 | ut->chunkLength--; |
| 1829 | ut->chunkNativeLimit--; |
| 1830 | if (ut->chunkOffset > ut->chunkLength) { |
| 1831 | ut->chunkOffset = ut->chunkLength; |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | // if the first UChar in the chunk could be the trailing half of a surrogate pair, |
| 1836 | // trim it off. |
| 1837 | if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { |
| 1838 | ++(ut->chunkContents); |
| 1839 | ++(ut->chunkNativeStart); |
| 1840 | --(ut->chunkLength); |
| 1841 | --(ut->chunkOffset); |
| 1842 | } |
| 1843 | |
| 1844 | // adjust the index/chunkOffset to a code point boundary |
| 1845 | U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); |
| 1846 | |
| 1847 | // Use fast indexing for get/setNativeIndex() |
| 1848 | ut->nativeIndexingLimit = ut->chunkLength; |
| 1849 | |
| 1850 | return TRUE; |
| 1851 | } |
| 1852 | |
| 1853 | |
| 1854 | |
| 1855 | static int32_t U_CALLCONV |
| 1856 | (UText *ut, |
| 1857 | int64_t start, int64_t limit, |
| 1858 | UChar *dest, int32_t destCapacity, |
| 1859 | UErrorCode *status) { |
| 1860 | const Replaceable *rep=(const Replaceable *)ut->context; |
| 1861 | int32_t length=rep->length(); |
| 1862 | |
| 1863 | if(U_FAILURE(*status)) { |
| 1864 | return 0; |
| 1865 | } |
| 1866 | if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| 1867 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 1868 | } |
| 1869 | if(start>limit) { |
| 1870 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1871 | return 0; |
| 1872 | } |
| 1873 | |
| 1874 | int32_t start32 = pinIndex(start, length); |
| 1875 | int32_t limit32 = pinIndex(limit, length); |
| 1876 | |
| 1877 | // adjust start, limit if they point to trail half of surrogates |
| 1878 | if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && |
| 1879 | U_IS_SUPPLEMENTARY(rep->char32At(start32))){ |
| 1880 | start32--; |
| 1881 | } |
| 1882 | if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && |
| 1883 | U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ |
| 1884 | limit32--; |
| 1885 | } |
| 1886 | |
| 1887 | length=limit32-start32; |
| 1888 | if(length>destCapacity) { |
| 1889 | limit32 = start32 + destCapacity; |
| 1890 | } |
| 1891 | UnicodeString buffer(dest, 0, destCapacity); // writable alias |
| 1892 | rep->extractBetween(start32, limit32, buffer); |
| 1893 | repTextAccess(ut, limit32, TRUE); |
| 1894 | |
| 1895 | return u_terminateUChars(dest, destCapacity, length, status); |
| 1896 | } |
| 1897 | |
| 1898 | static int32_t U_CALLCONV |
| 1899 | repTextReplace(UText *ut, |
| 1900 | int64_t start, int64_t limit, |
| 1901 | const UChar *src, int32_t length, |
| 1902 | UErrorCode *status) { |
| 1903 | Replaceable *rep=(Replaceable *)ut->context; |
| 1904 | int32_t oldLength; |
| 1905 | |
| 1906 | if(U_FAILURE(*status)) { |
| 1907 | return 0; |
| 1908 | } |
| 1909 | if(src==NULL && length!=0) { |
| 1910 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 1911 | return 0; |
| 1912 | } |
| 1913 | oldLength=rep->length(); // will subtract from new length |
| 1914 | if(start>limit ) { |
| 1915 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1916 | return 0; |
| 1917 | } |
| 1918 | |
| 1919 | int32_t start32 = pinIndex(start, oldLength); |
| 1920 | int32_t limit32 = pinIndex(limit, oldLength); |
| 1921 | |
| 1922 | // Snap start & limit to code point boundaries. |
| 1923 | if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && |
| 1924 | start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) |
| 1925 | { |
| 1926 | start32--; |
| 1927 | } |
| 1928 | if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && |
| 1929 | U16_IS_TRAIL(rep->charAt(limit32))) |
| 1930 | { |
| 1931 | limit32++; |
| 1932 | } |
| 1933 | |
| 1934 | // Do the actual replace operation using methods of the Replaceable class |
| 1935 | UnicodeString replStr((UBool)(length<0), src, length); // read-only alias |
| 1936 | rep->handleReplaceBetween(start32, limit32, replStr); |
| 1937 | int32_t newLength = rep->length(); |
| 1938 | int32_t lengthDelta = newLength - oldLength; |
| 1939 | |
| 1940 | // Is the UText chunk buffer OK? |
| 1941 | if (ut->chunkNativeLimit > start32) { |
| 1942 | // this replace operation may have impacted the current chunk. |
| 1943 | // invalidate it, which will force a reload on the next access. |
| 1944 | invalidateChunk(ut); |
| 1945 | } |
| 1946 | |
| 1947 | // set the iteration position to the end of the newly inserted replacement text. |
| 1948 | int32_t newIndexPos = limit32 + lengthDelta; |
| 1949 | repTextAccess(ut, newIndexPos, TRUE); |
| 1950 | |
| 1951 | return lengthDelta; |
| 1952 | } |
| 1953 | |
| 1954 | |
| 1955 | static void U_CALLCONV |
| 1956 | repTextCopy(UText *ut, |
| 1957 | int64_t start, int64_t limit, |
| 1958 | int64_t destIndex, |
| 1959 | UBool move, |
| 1960 | UErrorCode *status) |
| 1961 | { |
| 1962 | Replaceable *rep=(Replaceable *)ut->context; |
| 1963 | int32_t length=rep->length(); |
| 1964 | |
| 1965 | if(U_FAILURE(*status)) { |
| 1966 | return; |
| 1967 | } |
| 1968 | if (start>limit || (start<destIndex && destIndex<limit)) |
| 1969 | { |
| 1970 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1971 | return; |
| 1972 | } |
| 1973 | |
| 1974 | int32_t start32 = pinIndex(start, length); |
| 1975 | int32_t limit32 = pinIndex(limit, length); |
| 1976 | int32_t destIndex32 = pinIndex(destIndex, length); |
| 1977 | |
| 1978 | // TODO: snap input parameters to code point boundaries. |
| 1979 | |
| 1980 | if(move) { |
| 1981 | // move: copy to destIndex, then replace original with nothing |
| 1982 | int32_t segLength=limit32-start32; |
| 1983 | rep->copy(start32, limit32, destIndex32); |
| 1984 | if(destIndex32<start32) { |
| 1985 | start32+=segLength; |
| 1986 | limit32+=segLength; |
| 1987 | } |
| 1988 | rep->handleReplaceBetween(start32, limit32, UnicodeString()); |
| 1989 | } else { |
| 1990 | // copy |
| 1991 | rep->copy(start32, limit32, destIndex32); |
| 1992 | } |
| 1993 | |
| 1994 | // If the change to the text touched the region in the chunk buffer, |
| 1995 | // invalidate the buffer. |
| 1996 | int32_t firstAffectedIndex = destIndex32; |
| 1997 | if (move && start32<firstAffectedIndex) { |
| 1998 | firstAffectedIndex = start32; |
| 1999 | } |
| 2000 | if (firstAffectedIndex < ut->chunkNativeLimit) { |
| 2001 | // changes may have affected range covered by the chunk |
| 2002 | invalidateChunk(ut); |
| 2003 | } |
| 2004 | |
| 2005 | // Put iteration position at the newly inserted (moved) block, |
| 2006 | int32_t nativeIterIndex = destIndex32 + limit32 - start32; |
| 2007 | if (move && destIndex32>start32) { |
| 2008 | // moved a block of text towards the end of the string. |
| 2009 | nativeIterIndex = destIndex32; |
| 2010 | } |
| 2011 | |
| 2012 | // Set position, reload chunk if needed. |
| 2013 | repTextAccess(ut, nativeIterIndex, TRUE); |
| 2014 | } |
| 2015 | |
| 2016 | static const struct UTextFuncs repFuncs = |
| 2017 | { |
| 2018 | sizeof(UTextFuncs), |
| 2019 | 0, 0, 0, // Reserved alignment padding |
| 2020 | repTextClone, |
| 2021 | repTextLength, |
| 2022 | repTextAccess, |
| 2023 | repTextExtract, |
| 2024 | repTextReplace, |
| 2025 | repTextCopy, |
| 2026 | NULL, // MapOffsetToNative, |
| 2027 | NULL, // MapIndexToUTF16, |
| 2028 | repTextClose, |
| 2029 | NULL, // spare 1 |
| 2030 | NULL, // spare 2 |
| 2031 | NULL // spare 3 |
| 2032 | }; |
| 2033 | |
| 2034 | |
| 2035 | U_CAPI UText * U_EXPORT2 |
| 2036 | utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) |
| 2037 | { |
| 2038 | if(U_FAILURE(*status)) { |
| 2039 | return NULL; |
| 2040 | } |
| 2041 | if(rep==NULL) { |
| 2042 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 2043 | return NULL; |
| 2044 | } |
| 2045 | ut = utext_setup(ut, sizeof(ReplExtra), status); |
| 2046 | if(U_FAILURE(*status)) { |
| 2047 | return ut; |
| 2048 | } |
| 2049 | |
| 2050 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 2051 | if(rep->hasMetaData()) { |
| 2052 | ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); |
| 2053 | } |
| 2054 | |
| 2055 | ut->pFuncs = &repFuncs; |
| 2056 | ut->context = rep; |
| 2057 | return ut; |
| 2058 | } |
| 2059 | |
| 2060 | U_CDECL_END |
| 2061 | |
| 2062 | |
| 2063 | |
| 2064 | |
| 2065 | |
| 2066 | |
| 2067 | |
| 2068 | |
| 2069 | //------------------------------------------------------------------------------ |
| 2070 | // |
| 2071 | // UText implementation for UnicodeString (read/write) and |
| 2072 | // for const UnicodeString (read only) |
| 2073 | // (same implementation, only the flags are different) |
| 2074 | // |
| 2075 | // Use of UText data members: |
| 2076 | // context pointer to UnicodeString |
| 2077 | // p pointer to UnicodeString IF this UText owns the string |
| 2078 | // and it must be deleted on close(). NULL otherwise. |
| 2079 | // |
| 2080 | //------------------------------------------------------------------------------ |
| 2081 | |
| 2082 | U_CDECL_BEGIN |
| 2083 | |
| 2084 | |
| 2085 | static UText * U_CALLCONV |
| 2086 | unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
| 2087 | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
| 2088 | dest = shallowTextClone(dest, src, status); |
| 2089 | |
| 2090 | // For deep clones, make a copy of the UnicodeSring. |
| 2091 | // The copied UnicodeString storage is owned by the newly created UText clone. |
| 2092 | // A non-NULL pointer in UText.p is the signal to the close() function to delete |
| 2093 | // the UText. |
| 2094 | // |
| 2095 | if (deep && U_SUCCESS(*status)) { |
| 2096 | const UnicodeString *srcString = (const UnicodeString *)src->context; |
| 2097 | dest->context = new UnicodeString(*srcString); |
| 2098 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 2099 | |
| 2100 | // with deep clone, the copy is writable, even when the source is not. |
| 2101 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 2102 | } |
| 2103 | return dest; |
| 2104 | } |
| 2105 | |
| 2106 | static void U_CALLCONV |
| 2107 | unistrTextClose(UText *ut) { |
| 2108 | // Most of the work of close is done by the generic UText framework close. |
| 2109 | // All that needs to be done here is delete the UnicodeString if the UText |
| 2110 | // owns it. This occurs if the UText was created by cloning. |
| 2111 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 2112 | UnicodeString *str = (UnicodeString *)ut->context; |
| 2113 | delete str; |
| 2114 | ut->context = NULL; |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | |
| 2119 | static int64_t U_CALLCONV |
| 2120 | unistrTextLength(UText *t) { |
| 2121 | return ((const UnicodeString *)t->context)->length(); |
| 2122 | } |
| 2123 | |
| 2124 | |
| 2125 | static UBool U_CALLCONV |
| 2126 | unistrTextAccess(UText *ut, int64_t index, UBool forward) { |
| 2127 | int32_t length = ut->chunkLength; |
| 2128 | ut->chunkOffset = pinIndex(index, length); |
| 2129 | |
| 2130 | // Check whether request is at the start or end |
| 2131 | UBool retVal = (forward && index<length) || (!forward && index>0); |
| 2132 | return retVal; |
| 2133 | } |
| 2134 | |
| 2135 | |
| 2136 | |
| 2137 | static int32_t U_CALLCONV |
| 2138 | (UText *t, |
| 2139 | int64_t start, int64_t limit, |
| 2140 | UChar *dest, int32_t destCapacity, |
| 2141 | UErrorCode *pErrorCode) { |
| 2142 | const UnicodeString *us=(const UnicodeString *)t->context; |
| 2143 | int32_t length=us->length(); |
| 2144 | |
| 2145 | if(U_FAILURE(*pErrorCode)) { |
| 2146 | return 0; |
| 2147 | } |
| 2148 | if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| 2149 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 2150 | } |
| 2151 | if(start<0 || start>limit) { |
| 2152 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2153 | return 0; |
| 2154 | } |
| 2155 | |
| 2156 | int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length; |
| 2157 | int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length; |
| 2158 | |
| 2159 | length=limit32-start32; |
| 2160 | if (destCapacity>0 && dest!=NULL) { |
| 2161 | int32_t trimmedLength = length; |
| 2162 | if(trimmedLength>destCapacity) { |
| 2163 | trimmedLength=destCapacity; |
| 2164 | } |
| 2165 | us->extract(start32, trimmedLength, dest); |
| 2166 | t->chunkOffset = start32+trimmedLength; |
| 2167 | } else { |
| 2168 | t->chunkOffset = start32; |
| 2169 | } |
| 2170 | u_terminateUChars(dest, destCapacity, length, pErrorCode); |
| 2171 | return length; |
| 2172 | } |
| 2173 | |
| 2174 | static int32_t U_CALLCONV |
| 2175 | unistrTextReplace(UText *ut, |
| 2176 | int64_t start, int64_t limit, |
| 2177 | const UChar *src, int32_t length, |
| 2178 | UErrorCode *pErrorCode) { |
| 2179 | UnicodeString *us=(UnicodeString *)ut->context; |
| 2180 | int32_t oldLength; |
| 2181 | |
| 2182 | if(U_FAILURE(*pErrorCode)) { |
| 2183 | return 0; |
| 2184 | } |
| 2185 | if(src==NULL && length!=0) { |
| 2186 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 2187 | } |
| 2188 | if(start>limit) { |
| 2189 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2190 | return 0; |
| 2191 | } |
| 2192 | oldLength=us->length(); |
| 2193 | int32_t start32 = pinIndex(start, oldLength); |
| 2194 | int32_t limit32 = pinIndex(limit, oldLength); |
| 2195 | if (start32 < oldLength) { |
| 2196 | start32 = us->getChar32Start(start32); |
| 2197 | } |
| 2198 | if (limit32 < oldLength) { |
| 2199 | limit32 = us->getChar32Start(limit32); |
| 2200 | } |
| 2201 | |
| 2202 | // replace |
| 2203 | us->replace(start32, limit32-start32, src, length); |
| 2204 | int32_t newLength = us->length(); |
| 2205 | |
| 2206 | // Update the chunk description. |
| 2207 | ut->chunkContents = us->getBuffer(); |
| 2208 | ut->chunkLength = newLength; |
| 2209 | ut->chunkNativeLimit = newLength; |
| 2210 | ut->nativeIndexingLimit = newLength; |
| 2211 | |
| 2212 | // Set iteration position to the point just following the newly inserted text. |
| 2213 | int32_t lengthDelta = newLength - oldLength; |
| 2214 | ut->chunkOffset = limit32 + lengthDelta; |
| 2215 | |
| 2216 | return lengthDelta; |
| 2217 | } |
| 2218 | |
| 2219 | static void U_CALLCONV |
| 2220 | unistrTextCopy(UText *ut, |
| 2221 | int64_t start, int64_t limit, |
| 2222 | int64_t destIndex, |
| 2223 | UBool move, |
| 2224 | UErrorCode *pErrorCode) { |
| 2225 | UnicodeString *us=(UnicodeString *)ut->context; |
| 2226 | int32_t length=us->length(); |
| 2227 | |
| 2228 | if(U_FAILURE(*pErrorCode)) { |
| 2229 | return; |
| 2230 | } |
| 2231 | int32_t start32 = pinIndex(start, length); |
| 2232 | int32_t limit32 = pinIndex(limit, length); |
| 2233 | int32_t destIndex32 = pinIndex(destIndex, length); |
| 2234 | |
| 2235 | if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { |
| 2236 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2237 | return; |
| 2238 | } |
| 2239 | |
| 2240 | if(move) { |
| 2241 | // move: copy to destIndex, then remove original |
| 2242 | int32_t segLength=limit32-start32; |
| 2243 | us->copy(start32, limit32, destIndex32); |
| 2244 | if(destIndex32<start32) { |
| 2245 | start32+=segLength; |
| 2246 | } |
| 2247 | us->remove(start32, segLength); |
| 2248 | } else { |
| 2249 | // copy |
| 2250 | us->copy(start32, limit32, destIndex32); |
| 2251 | } |
| 2252 | |
| 2253 | // update chunk description, set iteration position. |
| 2254 | ut->chunkContents = us->getBuffer(); |
| 2255 | if (move==FALSE) { |
| 2256 | // copy operation, string length grows |
| 2257 | ut->chunkLength += limit32-start32; |
| 2258 | ut->chunkNativeLimit = ut->chunkLength; |
| 2259 | ut->nativeIndexingLimit = ut->chunkLength; |
| 2260 | } |
| 2261 | |
| 2262 | // Iteration position to end of the newly inserted text. |
| 2263 | ut->chunkOffset = destIndex32+limit32-start32; |
| 2264 | if (move && destIndex32>start32) { |
| 2265 | ut->chunkOffset = destIndex32; |
| 2266 | } |
| 2267 | |
| 2268 | } |
| 2269 | |
| 2270 | static const struct UTextFuncs unistrFuncs = |
| 2271 | { |
| 2272 | sizeof(UTextFuncs), |
| 2273 | 0, 0, 0, // Reserved alignment padding |
| 2274 | unistrTextClone, |
| 2275 | unistrTextLength, |
| 2276 | unistrTextAccess, |
| 2277 | unistrTextExtract, |
| 2278 | unistrTextReplace, |
| 2279 | unistrTextCopy, |
| 2280 | NULL, // MapOffsetToNative, |
| 2281 | NULL, // MapIndexToUTF16, |
| 2282 | unistrTextClose, |
| 2283 | NULL, // spare 1 |
| 2284 | NULL, // spare 2 |
| 2285 | NULL // spare 3 |
| 2286 | }; |
| 2287 | |
| 2288 | |
| 2289 | |
| 2290 | U_CDECL_END |
| 2291 | |
| 2292 | |
| 2293 | U_CAPI UText * U_EXPORT2 |
| 2294 | utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
| 2295 | ut = utext_openConstUnicodeString(ut, s, status); |
| 2296 | if (U_SUCCESS(*status)) { |
| 2297 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 2298 | } |
| 2299 | return ut; |
| 2300 | } |
| 2301 | |
| 2302 | |
| 2303 | |
| 2304 | U_CAPI UText * U_EXPORT2 |
| 2305 | utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { |
| 2306 | if (U_SUCCESS(*status) && s->isBogus()) { |
| 2307 | // The UnicodeString is bogus, but we still need to detach the UText |
| 2308 | // from whatever it was hooked to before, if anything. |
| 2309 | utext_openUChars(ut, NULL, 0, status); |
| 2310 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 2311 | return ut; |
| 2312 | } |
| 2313 | ut = utext_setup(ut, 0, status); |
| 2314 | // note: use the standard (writable) function table for UnicodeString. |
| 2315 | // The flag settings disable writing, so having the functions in |
| 2316 | // the table is harmless. |
| 2317 | if (U_SUCCESS(*status)) { |
| 2318 | ut->pFuncs = &unistrFuncs; |
| 2319 | ut->context = s; |
| 2320 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
| 2321 | ut->chunkContents = s->getBuffer(); |
| 2322 | ut->chunkLength = s->length(); |
| 2323 | ut->chunkNativeStart = 0; |
| 2324 | ut->chunkNativeLimit = ut->chunkLength; |
| 2325 | ut->nativeIndexingLimit = ut->chunkLength; |
| 2326 | } |
| 2327 | return ut; |
| 2328 | } |
| 2329 | |
| 2330 | //------------------------------------------------------------------------------ |
| 2331 | // |
| 2332 | // UText implementation for const UChar * strings |
| 2333 | // |
| 2334 | // Use of UText data members: |
| 2335 | // context pointer to UnicodeString |
| 2336 | // a length. -1 if not yet known. |
| 2337 | // |
| 2338 | // TODO: support 64 bit lengths. |
| 2339 | // |
| 2340 | //------------------------------------------------------------------------------ |
| 2341 | |
| 2342 | U_CDECL_BEGIN |
| 2343 | |
| 2344 | |
| 2345 | static UText * U_CALLCONV |
| 2346 | ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { |
| 2347 | // First do a generic shallow clone. |
| 2348 | dest = shallowTextClone(dest, src, status); |
| 2349 | |
| 2350 | // For deep clones, make a copy of the string. |
| 2351 | // The copied storage is owned by the newly created clone. |
| 2352 | // A non-NULL pointer in UText.p is the signal to the close() function to delete |
| 2353 | // it. |
| 2354 | // |
| 2355 | if (deep && U_SUCCESS(*status)) { |
| 2356 | U_ASSERT(utext_nativeLength(dest) < INT32_MAX); |
| 2357 | int32_t len = (int32_t)utext_nativeLength(dest); |
| 2358 | |
| 2359 | // The cloned string IS going to be NUL terminated, whether or not the original was. |
| 2360 | const UChar *srcStr = (const UChar *)src->context; |
| 2361 | UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); |
| 2362 | if (copyStr == NULL) { |
| 2363 | *status = U_MEMORY_ALLOCATION_ERROR; |
| 2364 | } else { |
| 2365 | int64_t i; |
| 2366 | for (i=0; i<len; i++) { |
| 2367 | copyStr[i] = srcStr[i]; |
| 2368 | } |
| 2369 | copyStr[len] = 0; |
| 2370 | dest->context = copyStr; |
| 2371 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 2372 | } |
| 2373 | } |
| 2374 | return dest; |
| 2375 | } |
| 2376 | |
| 2377 | |
| 2378 | static void U_CALLCONV |
| 2379 | ucstrTextClose(UText *ut) { |
| 2380 | // Most of the work of close is done by the generic UText framework close. |
| 2381 | // All that needs to be done here is delete the string if the UText |
| 2382 | // owns it. This occurs if the UText was created by cloning. |
| 2383 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 2384 | UChar *s = (UChar *)ut->context; |
| 2385 | uprv_free(s); |
| 2386 | ut->context = NULL; |
| 2387 | } |
| 2388 | } |
| 2389 | |
| 2390 | |
| 2391 | |
| 2392 | static int64_t U_CALLCONV |
| 2393 | ucstrTextLength(UText *ut) { |
| 2394 | if (ut->a < 0) { |
| 2395 | // null terminated, we don't yet know the length. Scan for it. |
| 2396 | // Access is not convenient for doing this |
| 2397 | // because the current interation postion can't be changed. |
| 2398 | const UChar *str = (const UChar *)ut->context; |
| 2399 | for (;;) { |
| 2400 | if (str[ut->chunkNativeLimit] == 0) { |
| 2401 | break; |
| 2402 | } |
| 2403 | ut->chunkNativeLimit++; |
| 2404 | } |
| 2405 | ut->a = ut->chunkNativeLimit; |
| 2406 | ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
| 2407 | ut->nativeIndexingLimit = ut->chunkLength; |
| 2408 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 2409 | } |
| 2410 | return ut->a; |
| 2411 | } |
| 2412 | |
| 2413 | |
| 2414 | static UBool U_CALLCONV |
| 2415 | ucstrTextAccess(UText *ut, int64_t index, UBool forward) { |
| 2416 | const UChar *str = (const UChar *)ut->context; |
| 2417 | |
| 2418 | // pin the requested index to the bounds of the string, |
| 2419 | // and set current iteration position. |
| 2420 | if (index<0) { |
| 2421 | index = 0; |
| 2422 | } else if (index < ut->chunkNativeLimit) { |
| 2423 | // The request data is within the chunk as it is known so far. |
| 2424 | // Put index on a code point boundary. |
| 2425 | U16_SET_CP_START(str, 0, index); |
| 2426 | } else if (ut->a >= 0) { |
| 2427 | // We know the length of this string, and the user is requesting something |
| 2428 | // at or beyond the length. Pin the requested index to the length. |
| 2429 | index = ut->a; |
| 2430 | } else { |
| 2431 | // Null terminated string, length not yet known, and the requested index |
| 2432 | // is beyond where we have scanned so far. |
| 2433 | // Scan to 32 UChars beyond the requested index. The strategy here is |
| 2434 | // to avoid fully scanning a long string when the caller only wants to |
| 2435 | // see a few characters at its beginning. |
| 2436 | int32_t scanLimit = (int32_t)index + 32; |
| 2437 | if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression |
| 2438 | scanLimit = INT32_MAX; |
| 2439 | } |
| 2440 | |
| 2441 | int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; |
| 2442 | for (; chunkLimit<scanLimit; chunkLimit++) { |
| 2443 | if (str[chunkLimit] == 0) { |
| 2444 | // We found the end of the string. Remember it, pin the requested index to it, |
| 2445 | // and bail out of here. |
| 2446 | ut->a = chunkLimit; |
| 2447 | ut->chunkLength = chunkLimit; |
| 2448 | ut->nativeIndexingLimit = chunkLimit; |
| 2449 | if (index >= chunkLimit) { |
| 2450 | index = chunkLimit; |
| 2451 | } else { |
| 2452 | U16_SET_CP_START(str, 0, index); |
| 2453 | } |
| 2454 | |
| 2455 | ut->chunkNativeLimit = chunkLimit; |
| 2456 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 2457 | goto breakout; |
| 2458 | } |
| 2459 | } |
| 2460 | // We scanned through the next batch of UChars without finding the end. |
| 2461 | U16_SET_CP_START(str, 0, index); |
| 2462 | if (chunkLimit == INT32_MAX) { |
| 2463 | // Scanned to the limit of a 32 bit length. |
| 2464 | // Forceably trim the overlength string back so length fits in int32 |
| 2465 | // TODO: add support for 64 bit strings. |
| 2466 | ut->a = chunkLimit; |
| 2467 | ut->chunkLength = chunkLimit; |
| 2468 | ut->nativeIndexingLimit = chunkLimit; |
| 2469 | if (index > chunkLimit) { |
| 2470 | index = chunkLimit; |
| 2471 | } |
| 2472 | ut->chunkNativeLimit = chunkLimit; |
| 2473 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 2474 | } else { |
| 2475 | // The endpoint of a chunk must not be left in the middle of a surrogate pair. |
| 2476 | // If the current end is on a lead surrogate, back the end up by one. |
| 2477 | // It doesn't matter if the end char happens to be an unpaired surrogate, |
| 2478 | // and it's simpler not to worry about it. |
| 2479 | if (U16_IS_LEAD(str[chunkLimit-1])) { |
| 2480 | --chunkLimit; |
| 2481 | } |
| 2482 | // Null-terminated chunk with end still unknown. |
| 2483 | // Update the chunk length to reflect what has been scanned thus far. |
| 2484 | // That the full length is still unknown is (still) flagged by |
| 2485 | // ut->a being < 0. |
| 2486 | ut->chunkNativeLimit = chunkLimit; |
| 2487 | ut->nativeIndexingLimit = chunkLimit; |
| 2488 | ut->chunkLength = chunkLimit; |
| 2489 | } |
| 2490 | |
| 2491 | } |
| 2492 | breakout: |
| 2493 | U_ASSERT(index<=INT32_MAX); |
| 2494 | ut->chunkOffset = (int32_t)index; |
| 2495 | |
| 2496 | // Check whether request is at the start or end |
| 2497 | UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0); |
| 2498 | return retVal; |
| 2499 | } |
| 2500 | |
| 2501 | |
| 2502 | |
| 2503 | static int32_t U_CALLCONV |
| 2504 | (UText *ut, |
| 2505 | int64_t start, int64_t limit, |
| 2506 | UChar *dest, int32_t destCapacity, |
| 2507 | UErrorCode *pErrorCode) |
| 2508 | { |
| 2509 | if(U_FAILURE(*pErrorCode)) { |
| 2510 | return 0; |
| 2511 | } |
| 2512 | if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { |
| 2513 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 2514 | return 0; |
| 2515 | } |
| 2516 | |
| 2517 | //const UChar *s=(const UChar *)ut->context; |
| 2518 | int32_t si, di; |
| 2519 | |
| 2520 | int32_t start32; |
| 2521 | int32_t limit32; |
| 2522 | |
| 2523 | // Access the start. Does two things we need: |
| 2524 | // Pins 'start' to the length of the string, if it came in out-of-bounds. |
| 2525 | // Snaps 'start' to the beginning of a code point. |
| 2526 | ucstrTextAccess(ut, start, TRUE); |
| 2527 | const UChar *s=ut->chunkContents; |
| 2528 | start32 = ut->chunkOffset; |
| 2529 | |
| 2530 | int32_t strLength=(int32_t)ut->a; |
| 2531 | if (strLength >= 0) { |
| 2532 | limit32 = pinIndex(limit, strLength); |
| 2533 | } else { |
| 2534 | limit32 = pinIndex(limit, INT32_MAX); |
| 2535 | } |
| 2536 | di = 0; |
| 2537 | for (si=start32; si<limit32; si++) { |
| 2538 | if (strLength<0 && s[si]==0) { |
| 2539 | // Just hit the end of a null-terminated string. |
| 2540 | ut->a = si; // set string length for this UText |
| 2541 | ut->chunkNativeLimit = si; |
| 2542 | ut->chunkLength = si; |
| 2543 | ut->nativeIndexingLimit = si; |
| 2544 | strLength = si; |
| 2545 | limit32 = si; |
| 2546 | break; |
| 2547 | } |
| 2548 | U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */ |
| 2549 | if (di<destCapacity) { |
| 2550 | // only store if there is space. |
| 2551 | dest[di] = s[si]; |
| 2552 | } else { |
| 2553 | if (strLength>=0) { |
| 2554 | // We have filled the destination buffer, and the string length is known. |
| 2555 | // Cut the loop short. There is no need to scan string termination. |
| 2556 | di = limit32 - start32; |
| 2557 | si = limit32; |
| 2558 | break; |
| 2559 | } |
| 2560 | } |
| 2561 | di++; |
| 2562 | } |
| 2563 | |
| 2564 | // If the limit index points to a lead surrogate of a pair, |
| 2565 | // add the corresponding trail surrogate to the destination. |
| 2566 | if (si>0 && U16_IS_LEAD(s[si-1]) && |
| 2567 | ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) |
| 2568 | { |
| 2569 | if (di<destCapacity) { |
| 2570 | // store only if there is space in the output buffer. |
| 2571 | dest[di++] = s[si]; |
| 2572 | } |
| 2573 | si++; |
| 2574 | } |
| 2575 | |
| 2576 | // Put iteration position at the point just following the extracted text |
| 2577 | if (si <= ut->chunkNativeLimit) { |
| 2578 | ut->chunkOffset = si; |
| 2579 | } else { |
| 2580 | ucstrTextAccess(ut, si, TRUE); |
| 2581 | } |
| 2582 | |
| 2583 | // Add a terminating NUL if space in the buffer permits, |
| 2584 | // and set the error status as required. |
| 2585 | u_terminateUChars(dest, destCapacity, di, pErrorCode); |
| 2586 | return di; |
| 2587 | } |
| 2588 | |
| 2589 | static const struct UTextFuncs ucstrFuncs = |
| 2590 | { |
| 2591 | sizeof(UTextFuncs), |
| 2592 | 0, 0, 0, // Reserved alignment padding |
| 2593 | ucstrTextClone, |
| 2594 | ucstrTextLength, |
| 2595 | ucstrTextAccess, |
| 2596 | ucstrTextExtract, |
| 2597 | NULL, // Replace |
| 2598 | NULL, // Copy |
| 2599 | NULL, // MapOffsetToNative, |
| 2600 | NULL, // MapIndexToUTF16, |
| 2601 | ucstrTextClose, |
| 2602 | NULL, // spare 1 |
| 2603 | NULL, // spare 2 |
| 2604 | NULL, // spare 3 |
| 2605 | }; |
| 2606 | |
| 2607 | U_CDECL_END |
| 2608 | |
| 2609 | static const UChar gEmptyUString[] = {0}; |
| 2610 | |
| 2611 | U_CAPI UText * U_EXPORT2 |
| 2612 | utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) { |
| 2613 | if (U_FAILURE(*status)) { |
| 2614 | return NULL; |
| 2615 | } |
| 2616 | if(s==NULL && length==0) { |
| 2617 | s = gEmptyUString; |
| 2618 | } |
| 2619 | if (s==NULL || length < -1 || length>INT32_MAX) { |
| 2620 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 2621 | return NULL; |
| 2622 | } |
| 2623 | ut = utext_setup(ut, 0, status); |
| 2624 | if (U_SUCCESS(*status)) { |
| 2625 | ut->pFuncs = &ucstrFuncs; |
| 2626 | ut->context = s; |
| 2627 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
| 2628 | if (length==-1) { |
| 2629 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 2630 | } |
| 2631 | ut->a = length; |
| 2632 | ut->chunkContents = s; |
| 2633 | ut->chunkNativeStart = 0; |
| 2634 | ut->chunkNativeLimit = length>=0? length : 0; |
| 2635 | ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
| 2636 | ut->chunkOffset = 0; |
| 2637 | ut->nativeIndexingLimit = ut->chunkLength; |
| 2638 | } |
| 2639 | return ut; |
| 2640 | } |
| 2641 | |
| 2642 | |
| 2643 | //------------------------------------------------------------------------------ |
| 2644 | // |
| 2645 | // UText implementation for text from ICU CharacterIterators |
| 2646 | // |
| 2647 | // Use of UText data members: |
| 2648 | // context pointer to the CharacterIterator |
| 2649 | // a length of the full text. |
| 2650 | // p pointer to buffer 1 |
| 2651 | // b start index of local buffer 1 contents |
| 2652 | // q pointer to buffer 2 |
| 2653 | // c start index of local buffer 2 contents |
| 2654 | // r pointer to the character iterator if the UText owns it. |
| 2655 | // Null otherwise. |
| 2656 | // |
| 2657 | //------------------------------------------------------------------------------ |
| 2658 | #define CIBufSize 16 |
| 2659 | |
| 2660 | U_CDECL_BEGIN |
| 2661 | static void U_CALLCONV |
| 2662 | charIterTextClose(UText *ut) { |
| 2663 | // Most of the work of close is done by the generic UText framework close. |
| 2664 | // All that needs to be done here is delete the CharacterIterator if the UText |
| 2665 | // owns it. This occurs if the UText was created by cloning. |
| 2666 | CharacterIterator *ci = (CharacterIterator *)ut->r; |
| 2667 | delete ci; |
| 2668 | ut->r = NULL; |
| 2669 | } |
| 2670 | |
| 2671 | static int64_t U_CALLCONV |
| 2672 | charIterTextLength(UText *ut) { |
| 2673 | return (int32_t)ut->a; |
| 2674 | } |
| 2675 | |
| 2676 | static UBool U_CALLCONV |
| 2677 | charIterTextAccess(UText *ut, int64_t index, UBool forward) { |
| 2678 | CharacterIterator *ci = (CharacterIterator *)ut->context; |
| 2679 | |
| 2680 | int32_t clippedIndex = (int32_t)index; |
| 2681 | if (clippedIndex<0) { |
| 2682 | clippedIndex=0; |
| 2683 | } else if (clippedIndex>=ut->a) { |
| 2684 | clippedIndex=(int32_t)ut->a; |
| 2685 | } |
| 2686 | int32_t neededIndex = clippedIndex; |
| 2687 | if (!forward && neededIndex>0) { |
| 2688 | // reverse iteration, want the position just before what was asked for. |
| 2689 | neededIndex--; |
| 2690 | } else if (forward && neededIndex==ut->a && neededIndex>0) { |
| 2691 | // Forward iteration, don't ask for something past the end of the text. |
| 2692 | neededIndex--; |
| 2693 | } |
| 2694 | |
| 2695 | // Find the native index of the start of the buffer containing what we want. |
| 2696 | neededIndex -= neededIndex % CIBufSize; |
| 2697 | |
| 2698 | UChar *buf = NULL; |
| 2699 | UBool needChunkSetup = TRUE; |
| 2700 | int i; |
| 2701 | if (ut->chunkNativeStart == neededIndex) { |
| 2702 | // The buffer we want is already the current chunk. |
| 2703 | needChunkSetup = FALSE; |
| 2704 | } else if (ut->b == neededIndex) { |
| 2705 | // The first buffer (buffer p) has what we need. |
| 2706 | buf = (UChar *)ut->p; |
| 2707 | } else if (ut->c == neededIndex) { |
| 2708 | // The second buffer (buffer q) has what we need. |
| 2709 | buf = (UChar *)ut->q; |
| 2710 | } else { |
| 2711 | // Neither buffer already has what we need. |
| 2712 | // Load new data from the character iterator. |
| 2713 | // Use the buf that is not the current buffer. |
| 2714 | buf = (UChar *)ut->p; |
| 2715 | if (ut->p == ut->chunkContents) { |
| 2716 | buf = (UChar *)ut->q; |
| 2717 | } |
| 2718 | ci->setIndex(neededIndex); |
| 2719 | for (i=0; i<CIBufSize; i++) { |
| 2720 | buf[i] = ci->nextPostInc(); |
| 2721 | if (i+neededIndex > ut->a) { |
| 2722 | break; |
| 2723 | } |
| 2724 | } |
| 2725 | } |
| 2726 | |
| 2727 | // We have a buffer with the data we need. |
| 2728 | // Set it up as the current chunk, if it wasn't already. |
| 2729 | if (needChunkSetup) { |
| 2730 | ut->chunkContents = buf; |
| 2731 | ut->chunkLength = CIBufSize; |
| 2732 | ut->chunkNativeStart = neededIndex; |
| 2733 | ut->chunkNativeLimit = neededIndex + CIBufSize; |
| 2734 | if (ut->chunkNativeLimit > ut->a) { |
| 2735 | ut->chunkNativeLimit = ut->a; |
| 2736 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart); |
| 2737 | } |
| 2738 | ut->nativeIndexingLimit = ut->chunkLength; |
| 2739 | U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); |
| 2740 | } |
| 2741 | ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; |
| 2742 | UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0); |
| 2743 | return success; |
| 2744 | } |
| 2745 | |
| 2746 | static UText * U_CALLCONV |
| 2747 | charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) { |
| 2748 | if (U_FAILURE(*status)) { |
| 2749 | return NULL; |
| 2750 | } |
| 2751 | |
| 2752 | if (deep) { |
| 2753 | // There is no CharacterIterator API for cloning the underlying text storage. |
| 2754 | *status = U_UNSUPPORTED_ERROR; |
| 2755 | return NULL; |
| 2756 | } else { |
| 2757 | CharacterIterator *srcCI =(CharacterIterator *)src->context; |
| 2758 | srcCI = srcCI->clone(); |
| 2759 | dest = utext_openCharacterIterator(dest, srcCI, status); |
| 2760 | if (U_FAILURE(*status)) { |
| 2761 | return dest; |
| 2762 | } |
| 2763 | // cast off const on getNativeIndex. |
| 2764 | // For CharacterIterator based UTexts, this is safe, the operation is const. |
| 2765 | int64_t ix = utext_getNativeIndex((UText *)src); |
| 2766 | utext_setNativeIndex(dest, ix); |
| 2767 | dest->r = srcCI; // flags that this UText owns the CharacterIterator |
| 2768 | } |
| 2769 | return dest; |
| 2770 | } |
| 2771 | |
| 2772 | static int32_t U_CALLCONV |
| 2773 | (UText *ut, |
| 2774 | int64_t start, int64_t limit, |
| 2775 | UChar *dest, int32_t destCapacity, |
| 2776 | UErrorCode *status) |
| 2777 | { |
| 2778 | if(U_FAILURE(*status)) { |
| 2779 | return 0; |
| 2780 | } |
| 2781 | if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { |
| 2782 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 2783 | return 0; |
| 2784 | } |
| 2785 | int32_t length = (int32_t)ut->a; |
| 2786 | int32_t start32 = pinIndex(start, length); |
| 2787 | int32_t limit32 = pinIndex(limit, length); |
| 2788 | int32_t desti = 0; |
| 2789 | int32_t srci; |
| 2790 | int32_t copyLimit; |
| 2791 | |
| 2792 | CharacterIterator *ci = (CharacterIterator *)ut->context; |
| 2793 | ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. |
| 2794 | srci = ci->getIndex(); |
| 2795 | copyLimit = srci; |
| 2796 | while (srci<limit32) { |
| 2797 | UChar32 c = ci->next32PostInc(); |
| 2798 | int32_t len = U16_LENGTH(c); |
| 2799 | U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */ |
| 2800 | if (desti+len <= destCapacity) { |
| 2801 | U16_APPEND_UNSAFE(dest, desti, c); |
| 2802 | copyLimit = srci+len; |
| 2803 | } else { |
| 2804 | desti += len; |
| 2805 | *status = U_BUFFER_OVERFLOW_ERROR; |
| 2806 | } |
| 2807 | srci += len; |
| 2808 | } |
| 2809 | |
| 2810 | charIterTextAccess(ut, copyLimit, TRUE); |
| 2811 | |
| 2812 | u_terminateUChars(dest, destCapacity, desti, status); |
| 2813 | return desti; |
| 2814 | } |
| 2815 | |
| 2816 | static const struct UTextFuncs charIterFuncs = |
| 2817 | { |
| 2818 | sizeof(UTextFuncs), |
| 2819 | 0, 0, 0, // Reserved alignment padding |
| 2820 | charIterTextClone, |
| 2821 | charIterTextLength, |
| 2822 | charIterTextAccess, |
| 2823 | charIterTextExtract, |
| 2824 | NULL, // Replace |
| 2825 | NULL, // Copy |
| 2826 | NULL, // MapOffsetToNative, |
| 2827 | NULL, // MapIndexToUTF16, |
| 2828 | charIterTextClose, |
| 2829 | NULL, // spare 1 |
| 2830 | NULL, // spare 2 |
| 2831 | NULL // spare 3 |
| 2832 | }; |
| 2833 | U_CDECL_END |
| 2834 | |
| 2835 | |
| 2836 | U_CAPI UText * U_EXPORT2 |
| 2837 | utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) { |
| 2838 | if (U_FAILURE(*status)) { |
| 2839 | return NULL; |
| 2840 | } |
| 2841 | |
| 2842 | if (ci->startIndex() > 0) { |
| 2843 | // No support for CharacterIterators that do not start indexing from zero. |
| 2844 | *status = U_UNSUPPORTED_ERROR; |
| 2845 | return NULL; |
| 2846 | } |
| 2847 | |
| 2848 | // Extra space in UText for 2 buffers of CIBufSize UChars each. |
| 2849 | int32_t = 2 * CIBufSize * sizeof(UChar); |
| 2850 | ut = utext_setup(ut, extraSpace, status); |
| 2851 | if (U_SUCCESS(*status)) { |
| 2852 | ut->pFuncs = &charIterFuncs; |
| 2853 | ut->context = ci; |
| 2854 | ut->providerProperties = 0; |
| 2855 | ut->a = ci->endIndex(); // Length of text |
| 2856 | ut->p = ut->pExtra; // First buffer |
| 2857 | ut->b = -1; // Native index of first buffer contents |
| 2858 | ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer |
| 2859 | ut->c = -1; // Native index of second buffer contents |
| 2860 | |
| 2861 | // Initialize current chunk contents to be empty. |
| 2862 | // First access will fault something in. |
| 2863 | // Note: The initial nativeStart and chunkOffset must sum to zero |
| 2864 | // so that getNativeIndex() will correctly compute to zero |
| 2865 | // if no call to Access() has ever been made. They can't be both |
| 2866 | // zero without Access() thinking that the chunk is valid. |
| 2867 | ut->chunkContents = (UChar *)ut->p; |
| 2868 | ut->chunkNativeStart = -1; |
| 2869 | ut->chunkOffset = 1; |
| 2870 | ut->chunkNativeLimit = 0; |
| 2871 | ut->chunkLength = 0; |
| 2872 | ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing |
| 2873 | } |
| 2874 | return ut; |
| 2875 | } |
| 2876 | |