| 1 | // © 2016 and later: Unicode, Inc. and others. | 
|---|
| 2 | // License & terms of use: http://www.unicode.org/copyright.html | 
|---|
| 3 | /************************************************************************ | 
|---|
| 4 | * Copyright (C) 1996-2012, International Business Machines Corporation | 
|---|
| 5 | * and others. All Rights Reserved. | 
|---|
| 6 | ************************************************************************ | 
|---|
| 7 | *  2003-nov-07   srl       Port from Java | 
|---|
| 8 | */ | 
|---|
| 9 |  | 
|---|
| 10 | #include "astro.h" | 
|---|
| 11 |  | 
|---|
| 12 | #if !UCONFIG_NO_FORMATTING | 
|---|
| 13 |  | 
|---|
| 14 | #include "unicode/calendar.h" | 
|---|
| 15 | #include <math.h> | 
|---|
| 16 | #include <float.h> | 
|---|
| 17 | #include "unicode/putil.h" | 
|---|
| 18 | #include "uhash.h" | 
|---|
| 19 | #include "umutex.h" | 
|---|
| 20 | #include "ucln_in.h" | 
|---|
| 21 | #include "putilimp.h" | 
|---|
| 22 | #include <stdio.h>  // for toString() | 
|---|
| 23 |  | 
|---|
| 24 | #if defined (PI) | 
|---|
| 25 | #undef PI | 
|---|
| 26 | #endif | 
|---|
| 27 |  | 
|---|
| 28 | #ifdef U_DEBUG_ASTRO | 
|---|
| 29 | # include "uresimp.h" // for debugging | 
|---|
| 30 |  | 
|---|
| 31 | static void debug_astro_loc(const char *f, int32_t l) | 
|---|
| 32 | { | 
|---|
| 33 | fprintf(stderr, "%s:%d: ", f, l); | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | static void debug_astro_msg(const char *pat, ...) | 
|---|
| 37 | { | 
|---|
| 38 | va_list ap; | 
|---|
| 39 | va_start(ap, pat); | 
|---|
| 40 | vfprintf(stderr, pat, ap); | 
|---|
| 41 | fflush(stderr); | 
|---|
| 42 | } | 
|---|
| 43 | #include "unicode/datefmt.h" | 
|---|
| 44 | #include "unicode/ustring.h" | 
|---|
| 45 | static const char * debug_astro_date(UDate d) { | 
|---|
| 46 | static char gStrBuf[1024]; | 
|---|
| 47 | static DateFormat *df = NULL; | 
|---|
| 48 | if(df == NULL) { | 
|---|
| 49 | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); | 
|---|
| 50 | df->adoptTimeZone(TimeZone::getGMT()->clone()); | 
|---|
| 51 | } | 
|---|
| 52 | UnicodeString str; | 
|---|
| 53 | df->format(d,str); | 
|---|
| 54 | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); | 
|---|
| 55 | return gStrBuf; | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4)); | 
|---|
| 59 | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} | 
|---|
| 60 | #else | 
|---|
| 61 | #define U_DEBUG_ASTRO_MSG(x) | 
|---|
| 62 | #endif | 
|---|
| 63 |  | 
|---|
| 64 | static inline UBool isINVALID(double d) { | 
|---|
| 65 | return(uprv_isNaN(d)); | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | static icu::UMutex ccLock; | 
|---|
| 69 |  | 
|---|
| 70 | U_CDECL_BEGIN | 
|---|
| 71 | static UBool calendar_astro_cleanup(void) { | 
|---|
| 72 | return TRUE; | 
|---|
| 73 | } | 
|---|
| 74 | U_CDECL_END | 
|---|
| 75 |  | 
|---|
| 76 | U_NAMESPACE_BEGIN | 
|---|
| 77 |  | 
|---|
| 78 | /** | 
|---|
| 79 | * The number of standard hours in one sidereal day. | 
|---|
| 80 | * Approximately 24.93. | 
|---|
| 81 | * @internal | 
|---|
| 82 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 83 | */ | 
|---|
| 84 | #define SIDEREAL_DAY (23.93446960027) | 
|---|
| 85 |  | 
|---|
| 86 | /** | 
|---|
| 87 | * The number of sidereal hours in one mean solar day. | 
|---|
| 88 | * Approximately 24.07. | 
|---|
| 89 | * @internal | 
|---|
| 90 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 91 | */ | 
|---|
| 92 | #define SOLAR_DAY  (24.065709816) | 
|---|
| 93 |  | 
|---|
| 94 | /** | 
|---|
| 95 | * The average number of solar days from one new moon to the next.  This is the time | 
|---|
| 96 | * it takes for the moon to return the same ecliptic longitude as the sun. | 
|---|
| 97 | * It is longer than the sidereal month because the sun's longitude increases | 
|---|
| 98 | * during the year due to the revolution of the earth around the sun. | 
|---|
| 99 | * Approximately 29.53. | 
|---|
| 100 | * | 
|---|
| 101 | * @see #SIDEREAL_MONTH | 
|---|
| 102 | * @internal | 
|---|
| 103 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 104 | */ | 
|---|
| 105 | const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853; | 
|---|
| 106 |  | 
|---|
| 107 | /** | 
|---|
| 108 | * The average number of days it takes | 
|---|
| 109 | * for the moon to return to the same ecliptic longitude relative to the | 
|---|
| 110 | * stellar background.  This is referred to as the sidereal month. | 
|---|
| 111 | * It is shorter than the synodic month due to | 
|---|
| 112 | * the revolution of the earth around the sun. | 
|---|
| 113 | * Approximately 27.32. | 
|---|
| 114 | * | 
|---|
| 115 | * @see #SYNODIC_MONTH | 
|---|
| 116 | * @internal | 
|---|
| 117 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 118 | */ | 
|---|
| 119 | #define SIDEREAL_MONTH  27.32166 | 
|---|
| 120 |  | 
|---|
| 121 | /** | 
|---|
| 122 | * The average number number of days between successive vernal equinoxes. | 
|---|
| 123 | * Due to the precession of the earth's | 
|---|
| 124 | * axis, this is not precisely the same as the sidereal year. | 
|---|
| 125 | * Approximately 365.24 | 
|---|
| 126 | * | 
|---|
| 127 | * @see #SIDEREAL_YEAR | 
|---|
| 128 | * @internal | 
|---|
| 129 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 130 | */ | 
|---|
| 131 | #define TROPICAL_YEAR  365.242191 | 
|---|
| 132 |  | 
|---|
| 133 | /** | 
|---|
| 134 | * The average number of days it takes | 
|---|
| 135 | * for the sun to return to the same position against the fixed stellar | 
|---|
| 136 | * background.  This is the duration of one orbit of the earth about the sun | 
|---|
| 137 | * as it would appear to an outside observer. | 
|---|
| 138 | * Due to the precession of the earth's | 
|---|
| 139 | * axis, this is not precisely the same as the tropical year. | 
|---|
| 140 | * Approximately 365.25. | 
|---|
| 141 | * | 
|---|
| 142 | * @see #TROPICAL_YEAR | 
|---|
| 143 | * @internal | 
|---|
| 144 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 145 | */ | 
|---|
| 146 | #define SIDEREAL_YEAR  365.25636 | 
|---|
| 147 |  | 
|---|
| 148 | //------------------------------------------------------------------------- | 
|---|
| 149 | // Time-related constants | 
|---|
| 150 | //------------------------------------------------------------------------- | 
|---|
| 151 |  | 
|---|
| 152 | /** | 
|---|
| 153 | * The number of milliseconds in one second. | 
|---|
| 154 | * @internal | 
|---|
| 155 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 156 | */ | 
|---|
| 157 | #define SECOND_MS  U_MILLIS_PER_SECOND | 
|---|
| 158 |  | 
|---|
| 159 | /** | 
|---|
| 160 | * The number of milliseconds in one minute. | 
|---|
| 161 | * @internal | 
|---|
| 162 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 163 | */ | 
|---|
| 164 | #define MINUTE_MS  U_MILLIS_PER_MINUTE | 
|---|
| 165 |  | 
|---|
| 166 | /** | 
|---|
| 167 | * The number of milliseconds in one hour. | 
|---|
| 168 | * @internal | 
|---|
| 169 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 170 | */ | 
|---|
| 171 | #define HOUR_MS   U_MILLIS_PER_HOUR | 
|---|
| 172 |  | 
|---|
| 173 | /** | 
|---|
| 174 | * The number of milliseconds in one day. | 
|---|
| 175 | * @internal | 
|---|
| 176 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 177 | */ | 
|---|
| 178 | #define DAY_MS U_MILLIS_PER_DAY | 
|---|
| 179 |  | 
|---|
| 180 | /** | 
|---|
| 181 | * The start of the julian day numbering scheme used by astronomers, which | 
|---|
| 182 | * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds | 
|---|
| 183 | * since 1/1/1970 AD (Gregorian), a negative number. | 
|---|
| 184 | * Note that julian day numbers and | 
|---|
| 185 | * the Julian calendar are <em>not</em> the same thing.  Also note that | 
|---|
| 186 | * julian days start at <em>noon</em>, not midnight. | 
|---|
| 187 | * @internal | 
|---|
| 188 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 189 | */ | 
|---|
| 190 | #define JULIAN_EPOCH_MS  -210866760000000.0 | 
|---|
| 191 |  | 
|---|
| 192 |  | 
|---|
| 193 | /** | 
|---|
| 194 | * Milliseconds value for 0.0 January 2000 AD. | 
|---|
| 195 | */ | 
|---|
| 196 | #define EPOCH_2000_MS  946598400000.0 | 
|---|
| 197 |  | 
|---|
| 198 | //------------------------------------------------------------------------- | 
|---|
| 199 | // Assorted private data used for conversions | 
|---|
| 200 | //------------------------------------------------------------------------- | 
|---|
| 201 |  | 
|---|
| 202 | // My own copies of these so compilers are more likely to optimize them away | 
|---|
| 203 | const double CalendarAstronomer::PI = 3.14159265358979323846; | 
|---|
| 204 |  | 
|---|
| 205 | #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0) | 
|---|
| 206 | #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours | 
|---|
| 207 | #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians | 
|---|
| 208 | #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees | 
|---|
| 209 |  | 
|---|
| 210 | /*** | 
|---|
| 211 | * Given 'value', add or subtract 'range' until 0 <= 'value' < range. | 
|---|
| 212 | * The modulus operator. | 
|---|
| 213 | */ | 
|---|
| 214 | inline static double normalize(double value, double range)  { | 
|---|
| 215 | return value - range * ClockMath::floorDivide(value, range); | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | /** | 
|---|
| 219 | * Normalize an angle so that it's in the range 0 - 2pi. | 
|---|
| 220 | * For positive angles this is just (angle % 2pi), but the Java | 
|---|
| 221 | * mod operator doesn't work that way for negative numbers.... | 
|---|
| 222 | */ | 
|---|
| 223 | inline static double norm2PI(double angle)  { | 
|---|
| 224 | return normalize(angle, CalendarAstronomer::PI * 2.0); | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | /** | 
|---|
| 228 | * Normalize an angle into the range -PI - PI | 
|---|
| 229 | */ | 
|---|
| 230 | inline static  double normPI(double angle)  { | 
|---|
| 231 | return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; | 
|---|
| 232 | } | 
|---|
| 233 |  | 
|---|
| 234 | //------------------------------------------------------------------------- | 
|---|
| 235 | // Constructors | 
|---|
| 236 | //------------------------------------------------------------------------- | 
|---|
| 237 |  | 
|---|
| 238 | /** | 
|---|
| 239 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | 
|---|
| 240 | * the current date and time. | 
|---|
| 241 | * @internal | 
|---|
| 242 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 243 | */ | 
|---|
| 244 | CalendarAstronomer::CalendarAstronomer(): | 
|---|
| 245 | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | 
|---|
| 246 | clearCache(); | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | /** | 
|---|
| 250 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | 
|---|
| 251 | * the specified date and time. | 
|---|
| 252 | * @internal | 
|---|
| 253 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 254 | */ | 
|---|
| 255 | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | 
|---|
| 256 | clearCache(); | 
|---|
| 257 | } | 
|---|
| 258 |  | 
|---|
| 259 | /** | 
|---|
| 260 | * Construct a new <code>CalendarAstronomer</code> object with the given | 
|---|
| 261 | * latitude and longitude.  The object's time is set to the current | 
|---|
| 262 | * date and time. | 
|---|
| 263 | * <p> | 
|---|
| 264 | * @param longitude The desired longitude, in <em>degrees</em> east of | 
|---|
| 265 | *                  the Greenwich meridian. | 
|---|
| 266 | * | 
|---|
| 267 | * @param latitude  The desired latitude, in <em>degrees</em>.  Positive | 
|---|
| 268 | *                  values signify North, negative South. | 
|---|
| 269 | * | 
|---|
| 270 | * @see java.util.Date#getTime() | 
|---|
| 271 | * @internal | 
|---|
| 272 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 273 | */ | 
|---|
| 274 | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : | 
|---|
| 275 | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { | 
|---|
| 276 | fLongitude = normPI(longitude * (double)DEG_RAD); | 
|---|
| 277 | fLatitude  = normPI(latitude  * (double)DEG_RAD); | 
|---|
| 278 | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); | 
|---|
| 279 | clearCache(); | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | CalendarAstronomer::~CalendarAstronomer() | 
|---|
| 283 | { | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | //------------------------------------------------------------------------- | 
|---|
| 287 | // Time and date getters and setters | 
|---|
| 288 | //------------------------------------------------------------------------- | 
|---|
| 289 |  | 
|---|
| 290 | /** | 
|---|
| 291 | * Set the current date and time of this <code>CalendarAstronomer</code> object.  All | 
|---|
| 292 | * astronomical calculations are performed based on this time setting. | 
|---|
| 293 | * | 
|---|
| 294 | * @param aTime the date and time, expressed as the number of milliseconds since | 
|---|
| 295 | *              1/1/1970 0:00 GMT (Gregorian). | 
|---|
| 296 | * | 
|---|
| 297 | * @see #setDate | 
|---|
| 298 | * @see #getTime | 
|---|
| 299 | * @internal | 
|---|
| 300 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 301 | */ | 
|---|
| 302 | void CalendarAstronomer::setTime(UDate aTime) { | 
|---|
| 303 | fTime = aTime; | 
|---|
| 304 | U_DEBUG_ASTRO_MSG(( "setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); | 
|---|
| 305 | clearCache(); | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 | /** | 
|---|
| 309 | * Set the current date and time of this <code>CalendarAstronomer</code> object.  All | 
|---|
| 310 | * astronomical calculations are performed based on this time setting. | 
|---|
| 311 | * | 
|---|
| 312 | * @param jdn   the desired time, expressed as a "julian day number", | 
|---|
| 313 | *              which is the number of elapsed days since | 
|---|
| 314 | *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day | 
|---|
| 315 | *              numbers start at <em>noon</em>.  To get the jdn for | 
|---|
| 316 | *              the corresponding midnight, subtract 0.5. | 
|---|
| 317 | * | 
|---|
| 318 | * @see #getJulianDay | 
|---|
| 319 | * @see #JULIAN_EPOCH_MS | 
|---|
| 320 | * @internal | 
|---|
| 321 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 322 | */ | 
|---|
| 323 | void CalendarAstronomer::setJulianDay(double jdn) { | 
|---|
| 324 | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; | 
|---|
| 325 | clearCache(); | 
|---|
| 326 | julianDay = jdn; | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | /** | 
|---|
| 330 | * Get the current time of this <code>CalendarAstronomer</code> object, | 
|---|
| 331 | * represented as the number of milliseconds since | 
|---|
| 332 | * 1/1/1970 AD 0:00 GMT (Gregorian). | 
|---|
| 333 | * | 
|---|
| 334 | * @see #setTime | 
|---|
| 335 | * @see #getDate | 
|---|
| 336 | * @internal | 
|---|
| 337 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 338 | */ | 
|---|
| 339 | UDate CalendarAstronomer::getTime() { | 
|---|
| 340 | return fTime; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | /** | 
|---|
| 344 | * Get the current time of this <code>CalendarAstronomer</code> object, | 
|---|
| 345 | * expressed as a "julian day number", which is the number of elapsed | 
|---|
| 346 | * days since 1/1/4713 BC (Julian), 12:00 GMT. | 
|---|
| 347 | * | 
|---|
| 348 | * @see #setJulianDay | 
|---|
| 349 | * @see #JULIAN_EPOCH_MS | 
|---|
| 350 | * @internal | 
|---|
| 351 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 352 | */ | 
|---|
| 353 | double CalendarAstronomer::getJulianDay() { | 
|---|
| 354 | if (isINVALID(julianDay)) { | 
|---|
| 355 | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; | 
|---|
| 356 | } | 
|---|
| 357 | return julianDay; | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | /** | 
|---|
| 361 | * Return this object's time expressed in julian centuries: | 
|---|
| 362 | * the number of centuries after 1/1/1900 AD, 12:00 GMT | 
|---|
| 363 | * | 
|---|
| 364 | * @see #getJulianDay | 
|---|
| 365 | * @internal | 
|---|
| 366 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 367 | */ | 
|---|
| 368 | double CalendarAstronomer::getJulianCentury() { | 
|---|
| 369 | if (isINVALID(julianCentury)) { | 
|---|
| 370 | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; | 
|---|
| 371 | } | 
|---|
| 372 | return julianCentury; | 
|---|
| 373 | } | 
|---|
| 374 |  | 
|---|
| 375 | /** | 
|---|
| 376 | * Returns the current Greenwich sidereal time, measured in hours | 
|---|
| 377 | * @internal | 
|---|
| 378 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 379 | */ | 
|---|
| 380 | double CalendarAstronomer::getGreenwichSidereal() { | 
|---|
| 381 | if (isINVALID(siderealTime)) { | 
|---|
| 382 | // See page 86 of "Practial Astronomy with your Calculator", | 
|---|
| 383 | // by Peter Duffet-Smith, for details on the algorithm. | 
|---|
| 384 |  | 
|---|
| 385 | double UT = normalize(fTime/(double)HOUR_MS, 24.); | 
|---|
| 386 |  | 
|---|
| 387 | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); | 
|---|
| 388 | } | 
|---|
| 389 | return siderealTime; | 
|---|
| 390 | } | 
|---|
| 391 |  | 
|---|
| 392 | double CalendarAstronomer::getSiderealOffset() { | 
|---|
| 393 | if (isINVALID(siderealT0)) { | 
|---|
| 394 | double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5; | 
|---|
| 395 | double S   = JD - 2451545.0; | 
|---|
| 396 | double T   = S / 36525.0; | 
|---|
| 397 | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); | 
|---|
| 398 | } | 
|---|
| 399 | return siderealT0; | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | /** | 
|---|
| 403 | * Returns the current local sidereal time, measured in hours | 
|---|
| 404 | * @internal | 
|---|
| 405 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 406 | */ | 
|---|
| 407 | double CalendarAstronomer::getLocalSidereal() { | 
|---|
| 408 | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 | /** | 
|---|
| 412 | * Converts local sidereal time to Universal Time. | 
|---|
| 413 | * | 
|---|
| 414 | * @param lst   The Local Sidereal Time, in hours since sidereal midnight | 
|---|
| 415 | *              on this object's current date. | 
|---|
| 416 | * | 
|---|
| 417 | * @return      The corresponding Universal Time, in milliseconds since | 
|---|
| 418 | *              1 Jan 1970, GMT. | 
|---|
| 419 | */ | 
|---|
| 420 | double CalendarAstronomer::lstToUT(double lst) { | 
|---|
| 421 | // Convert to local mean time | 
|---|
| 422 | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); | 
|---|
| 423 |  | 
|---|
| 424 | // Then find local midnight on this day | 
|---|
| 425 | double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; | 
|---|
| 426 |  | 
|---|
| 427 | //out("    lt  =" + lt + " hours"); | 
|---|
| 428 | //out("    base=" + new Date(base)); | 
|---|
| 429 |  | 
|---|
| 430 | return base + (long)(lt * HOUR_MS); | 
|---|
| 431 | } | 
|---|
| 432 |  | 
|---|
| 433 |  | 
|---|
| 434 | //------------------------------------------------------------------------- | 
|---|
| 435 | // Coordinate transformations, all based on the current time of this object | 
|---|
| 436 | //------------------------------------------------------------------------- | 
|---|
| 437 |  | 
|---|
| 438 | /** | 
|---|
| 439 | * Convert from ecliptic to equatorial coordinates. | 
|---|
| 440 | * | 
|---|
| 441 | * @param ecliptic  A point in the sky in ecliptic coordinates. | 
|---|
| 442 | * @return          The corresponding point in equatorial coordinates. | 
|---|
| 443 | * @internal | 
|---|
| 444 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 445 | */ | 
|---|
| 446 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) | 
|---|
| 447 | { | 
|---|
| 448 | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); | 
|---|
| 449 | } | 
|---|
| 450 |  | 
|---|
| 451 | /** | 
|---|
| 452 | * Convert from ecliptic to equatorial coordinates. | 
|---|
| 453 | * | 
|---|
| 454 | * @param eclipLong     The ecliptic longitude | 
|---|
| 455 | * @param eclipLat      The ecliptic latitude | 
|---|
| 456 | * | 
|---|
| 457 | * @return              The corresponding point in equatorial coordinates. | 
|---|
| 458 | * @internal | 
|---|
| 459 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 460 | */ | 
|---|
| 461 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) | 
|---|
| 462 | { | 
|---|
| 463 | // See page 42 of "Practial Astronomy with your Calculator", | 
|---|
| 464 | // by Peter Duffet-Smith, for details on the algorithm. | 
|---|
| 465 |  | 
|---|
| 466 | double obliq = eclipticObliquity(); | 
|---|
| 467 | double sinE = ::sin(obliq); | 
|---|
| 468 | double cosE = cos(obliq); | 
|---|
| 469 |  | 
|---|
| 470 | double sinL = ::sin(eclipLong); | 
|---|
| 471 | double cosL = cos(eclipLong); | 
|---|
| 472 |  | 
|---|
| 473 | double sinB = ::sin(eclipLat); | 
|---|
| 474 | double cosB = cos(eclipLat); | 
|---|
| 475 | double tanB = tan(eclipLat); | 
|---|
| 476 |  | 
|---|
| 477 | result.set(atan2(sinL*cosE - tanB*sinE, cosL), | 
|---|
| 478 | asin(sinB*cosE + cosB*sinE*sinL) ); | 
|---|
| 479 | return result; | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | /** | 
|---|
| 483 | * Convert from ecliptic longitude to equatorial coordinates. | 
|---|
| 484 | * | 
|---|
| 485 | * @param eclipLong     The ecliptic longitude | 
|---|
| 486 | * | 
|---|
| 487 | * @return              The corresponding point in equatorial coordinates. | 
|---|
| 488 | * @internal | 
|---|
| 489 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 490 | */ | 
|---|
| 491 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) | 
|---|
| 492 | { | 
|---|
| 493 | return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize | 
|---|
| 494 | } | 
|---|
| 495 |  | 
|---|
| 496 | /** | 
|---|
| 497 | * @internal | 
|---|
| 498 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 499 | */ | 
|---|
| 500 | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) | 
|---|
| 501 | { | 
|---|
| 502 | Equatorial equatorial; | 
|---|
| 503 | eclipticToEquatorial(equatorial, eclipLong); | 
|---|
| 504 |  | 
|---|
| 505 | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle | 
|---|
| 506 |  | 
|---|
| 507 | double sinH = ::sin(H); | 
|---|
| 508 | double cosH = cos(H); | 
|---|
| 509 | double sinD = ::sin(equatorial.declination); | 
|---|
| 510 | double cosD = cos(equatorial.declination); | 
|---|
| 511 | double sinL = ::sin(fLatitude); | 
|---|
| 512 | double cosL = cos(fLatitude); | 
|---|
| 513 |  | 
|---|
| 514 | double altitude = asin(sinD*sinL + cosD*cosL*cosH); | 
|---|
| 515 | double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); | 
|---|
| 516 |  | 
|---|
| 517 | result.set(azimuth, altitude); | 
|---|
| 518 | return result; | 
|---|
| 519 | } | 
|---|
| 520 |  | 
|---|
| 521 |  | 
|---|
| 522 | //------------------------------------------------------------------------- | 
|---|
| 523 | // The Sun | 
|---|
| 524 | //------------------------------------------------------------------------- | 
|---|
| 525 |  | 
|---|
| 526 | // | 
|---|
| 527 | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 | 
|---|
| 528 | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) | 
|---|
| 529 | // | 
|---|
| 530 | #define JD_EPOCH  2447891.5 // Julian day of epoch | 
|---|
| 531 |  | 
|---|
| 532 | #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch | 
|---|
| 533 | #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee | 
|---|
| 534 | #define SUN_E         0.016713          // Eccentricity of orbit | 
|---|
| 535 | //double sunR0        1.495585e8        // Semi-major axis in KM | 
|---|
| 536 | //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 | 
|---|
| 537 |  | 
|---|
| 538 | // The following three methods, which compute the sun parameters | 
|---|
| 539 | // given above for an arbitrary epoch (whatever time the object is | 
|---|
| 540 | // set to), make only a small difference as compared to using the | 
|---|
| 541 | // above constants.  E.g., Sunset times might differ by ~12 | 
|---|
| 542 | // seconds.  Furthermore, the eta-g computation is befuddled by | 
|---|
| 543 | // Duffet-Smith's incorrect coefficients (p.86).  I've corrected | 
|---|
| 544 | // the first-order coefficient but the others may be off too - no | 
|---|
| 545 | // way of knowing without consulting another source. | 
|---|
| 546 |  | 
|---|
| 547 | //  /** | 
|---|
| 548 | //   * Return the sun's ecliptic longitude at perigee for the current time. | 
|---|
| 549 | //   * See Duffett-Smith, p. 86. | 
|---|
| 550 | //   * @return radians | 
|---|
| 551 | //   */ | 
|---|
| 552 | //  private double getSunOmegaG() { | 
|---|
| 553 | //      double T = getJulianCentury(); | 
|---|
| 554 | //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; | 
|---|
| 555 | //  } | 
|---|
| 556 |  | 
|---|
| 557 | //  /** | 
|---|
| 558 | //   * Return the sun's ecliptic longitude for the current time. | 
|---|
| 559 | //   * See Duffett-Smith, p. 86. | 
|---|
| 560 | //   * @return radians | 
|---|
| 561 | //   */ | 
|---|
| 562 | //  private double getSunEtaG() { | 
|---|
| 563 | //      double T = getJulianCentury(); | 
|---|
| 564 | //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; | 
|---|
| 565 | //      // | 
|---|
| 566 | //      // The above line is from Duffett-Smith, and yields manifestly wrong | 
|---|
| 567 | //      // results.  The below constant is derived empirically to match the | 
|---|
| 568 | //      // constant he gives for the 1990 EPOCH. | 
|---|
| 569 | //      // | 
|---|
| 570 | //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; | 
|---|
| 571 | //  } | 
|---|
| 572 |  | 
|---|
| 573 | //  /** | 
|---|
| 574 | //   * Return the sun's eccentricity of orbit for the current time. | 
|---|
| 575 | //   * See Duffett-Smith, p. 86. | 
|---|
| 576 | //   * @return double | 
|---|
| 577 | //   */ | 
|---|
| 578 | //  private double getSunE() { | 
|---|
| 579 | //      double T = getJulianCentury(); | 
|---|
| 580 | //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T; | 
|---|
| 581 | //  } | 
|---|
| 582 |  | 
|---|
| 583 | /** | 
|---|
| 584 | * Find the "true anomaly" (longitude) of an object from | 
|---|
| 585 | * its mean anomaly and the eccentricity of its orbit.  This uses | 
|---|
| 586 | * an iterative solution to Kepler's equation. | 
|---|
| 587 | * | 
|---|
| 588 | * @param meanAnomaly   The object's longitude calculated as if it were in | 
|---|
| 589 | *                      a regular, circular orbit, measured in radians | 
|---|
| 590 | *                      from the point of perigee. | 
|---|
| 591 | * | 
|---|
| 592 | * @param eccentricity  The eccentricity of the orbit | 
|---|
| 593 | * | 
|---|
| 594 | * @return The true anomaly (longitude) measured in radians | 
|---|
| 595 | */ | 
|---|
| 596 | static double trueAnomaly(double meanAnomaly, double eccentricity) | 
|---|
| 597 | { | 
|---|
| 598 | // First, solve Kepler's equation iteratively | 
|---|
| 599 | // Duffett-Smith, p.90 | 
|---|
| 600 | double delta; | 
|---|
| 601 | double E = meanAnomaly; | 
|---|
| 602 | do { | 
|---|
| 603 | delta = E - eccentricity * ::sin(E) - meanAnomaly; | 
|---|
| 604 | E = E - delta / (1 - eccentricity * ::cos(E)); | 
|---|
| 605 | } | 
|---|
| 606 | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad | 
|---|
| 607 |  | 
|---|
| 608 | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) | 
|---|
| 609 | /(1-eccentricity) ) ); | 
|---|
| 610 | } | 
|---|
| 611 |  | 
|---|
| 612 | /** | 
|---|
| 613 | * The longitude of the sun at the time specified by this object. | 
|---|
| 614 | * The longitude is measured in radians along the ecliptic | 
|---|
| 615 | * from the "first point of Aries," the point at which the ecliptic | 
|---|
| 616 | * crosses the earth's equatorial plane at the vernal equinox. | 
|---|
| 617 | * <p> | 
|---|
| 618 | * Currently, this method uses an approximation of the two-body Kepler's | 
|---|
| 619 | * equation for the earth and the sun.  It does not take into account the | 
|---|
| 620 | * perturbations caused by the other planets, the moon, etc. | 
|---|
| 621 | * @internal | 
|---|
| 622 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 623 | */ | 
|---|
| 624 | double CalendarAstronomer::getSunLongitude() | 
|---|
| 625 | { | 
|---|
| 626 | // See page 86 of "Practial Astronomy with your Calculator", | 
|---|
| 627 | // by Peter Duffet-Smith, for details on the algorithm. | 
|---|
| 628 |  | 
|---|
| 629 | if (isINVALID(sunLongitude)) { | 
|---|
| 630 | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); | 
|---|
| 631 | } | 
|---|
| 632 | return sunLongitude; | 
|---|
| 633 | } | 
|---|
| 634 |  | 
|---|
| 635 | /** | 
|---|
| 636 | * TODO Make this public when the entire class is package-private. | 
|---|
| 637 | */ | 
|---|
| 638 | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) | 
|---|
| 639 | { | 
|---|
| 640 | // See page 86 of "Practial Astronomy with your Calculator", | 
|---|
| 641 | // by Peter Duffet-Smith, for details on the algorithm. | 
|---|
| 642 |  | 
|---|
| 643 | double day = jDay - JD_EPOCH;       // Days since epoch | 
|---|
| 644 |  | 
|---|
| 645 | // Find the angular distance the sun in a fictitious | 
|---|
| 646 | // circular orbit has travelled since the epoch. | 
|---|
| 647 | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); | 
|---|
| 648 |  | 
|---|
| 649 | // The epoch wasn't at the sun's perigee; find the angular distance | 
|---|
| 650 | // since perigee, which is called the "mean anomaly" | 
|---|
| 651 | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); | 
|---|
| 652 |  | 
|---|
| 653 | // Now find the "true anomaly", e.g. the real solar longitude | 
|---|
| 654 | // by solving Kepler's equation for an elliptical orbit | 
|---|
| 655 | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different | 
|---|
| 656 | // equations; omega_g is to be correct. | 
|---|
| 657 | longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); | 
|---|
| 658 | } | 
|---|
| 659 |  | 
|---|
| 660 | /** | 
|---|
| 661 | * The position of the sun at this object's current date and time, | 
|---|
| 662 | * in equatorial coordinates. | 
|---|
| 663 | * @internal | 
|---|
| 664 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 665 | */ | 
|---|
| 666 | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { | 
|---|
| 667 | return eclipticToEquatorial(result, getSunLongitude(), 0); | 
|---|
| 668 | } | 
|---|
| 669 |  | 
|---|
| 670 |  | 
|---|
| 671 | /** | 
|---|
| 672 | * Constant representing the vernal equinox. | 
|---|
| 673 | * For use with {@link #getSunTime getSunTime}. | 
|---|
| 674 | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. | 
|---|
| 675 | * @internal | 
|---|
| 676 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 677 | */ | 
|---|
| 678 | /*double CalendarAstronomer::VERNAL_EQUINOX() { | 
|---|
| 679 | return 0; | 
|---|
| 680 | }*/ | 
|---|
| 681 |  | 
|---|
| 682 | /** | 
|---|
| 683 | * Constant representing the summer solstice. | 
|---|
| 684 | * For use with {@link #getSunTime getSunTime}. | 
|---|
| 685 | * Note: In this case, "summer" refers to the northern hemisphere's seasons. | 
|---|
| 686 | * @internal | 
|---|
| 687 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 688 | */ | 
|---|
| 689 | double CalendarAstronomer::SUMMER_SOLSTICE() { | 
|---|
| 690 | return  (CalendarAstronomer::PI/2); | 
|---|
| 691 | } | 
|---|
| 692 |  | 
|---|
| 693 | /** | 
|---|
| 694 | * Constant representing the autumnal equinox. | 
|---|
| 695 | * For use with {@link #getSunTime getSunTime}. | 
|---|
| 696 | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. | 
|---|
| 697 | * @internal | 
|---|
| 698 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 699 | */ | 
|---|
| 700 | /*double CalendarAstronomer::AUTUMN_EQUINOX() { | 
|---|
| 701 | return  (CalendarAstronomer::PI); | 
|---|
| 702 | }*/ | 
|---|
| 703 |  | 
|---|
| 704 | /** | 
|---|
| 705 | * Constant representing the winter solstice. | 
|---|
| 706 | * For use with {@link #getSunTime getSunTime}. | 
|---|
| 707 | * Note: In this case, "winter" refers to the northern hemisphere's seasons. | 
|---|
| 708 | * @internal | 
|---|
| 709 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 710 | */ | 
|---|
| 711 | double CalendarAstronomer::WINTER_SOLSTICE() { | 
|---|
| 712 | return  ((CalendarAstronomer::PI*3)/2); | 
|---|
| 713 | } | 
|---|
| 714 |  | 
|---|
| 715 | CalendarAstronomer::AngleFunc::~AngleFunc() {} | 
|---|
| 716 |  | 
|---|
| 717 | /** | 
|---|
| 718 | * Find the next time at which the sun's ecliptic longitude will have | 
|---|
| 719 | * the desired value. | 
|---|
| 720 | * @internal | 
|---|
| 721 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 722 | */ | 
|---|
| 723 | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { | 
|---|
| 724 | public: | 
|---|
| 725 | virtual ~SunTimeAngleFunc(); | 
|---|
| 726 | virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } | 
|---|
| 727 | }; | 
|---|
| 728 |  | 
|---|
| 729 | SunTimeAngleFunc::~SunTimeAngleFunc() {} | 
|---|
| 730 |  | 
|---|
| 731 | UDate CalendarAstronomer::getSunTime(double desired, UBool next) | 
|---|
| 732 | { | 
|---|
| 733 | SunTimeAngleFunc func; | 
|---|
| 734 | return timeOfAngle( func, | 
|---|
| 735 | desired, | 
|---|
| 736 | TROPICAL_YEAR, | 
|---|
| 737 | MINUTE_MS, | 
|---|
| 738 | next); | 
|---|
| 739 | } | 
|---|
| 740 |  | 
|---|
| 741 | CalendarAstronomer::CoordFunc::~CoordFunc() {} | 
|---|
| 742 |  | 
|---|
| 743 | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | 
|---|
| 744 | public: | 
|---|
| 745 | virtual ~RiseSetCoordFunc(); | 
|---|
| 746 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); } | 
|---|
| 747 | }; | 
|---|
| 748 |  | 
|---|
| 749 | RiseSetCoordFunc::~RiseSetCoordFunc() {} | 
|---|
| 750 |  | 
|---|
| 751 | UDate CalendarAstronomer::getSunRiseSet(UBool rise) | 
|---|
| 752 | { | 
|---|
| 753 | UDate t0 = fTime; | 
|---|
| 754 |  | 
|---|
| 755 | // Make a rough guess: 6am or 6pm local time on the current day | 
|---|
| 756 | double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); | 
|---|
| 757 |  | 
|---|
| 758 | U_DEBUG_ASTRO_MSG(( "Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); | 
|---|
| 759 | setTime(noon +  ((rise ? -6 : 6) * HOUR_MS)); | 
|---|
| 760 | U_DEBUG_ASTRO_MSG(( "added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); | 
|---|
| 761 |  | 
|---|
| 762 | RiseSetCoordFunc func; | 
|---|
| 763 | double t = riseOrSet(func, | 
|---|
| 764 | rise, | 
|---|
| 765 | .533 * DEG_RAD,        // Angular Diameter | 
|---|
| 766 | 34. /60.0 * DEG_RAD,    // Refraction correction | 
|---|
| 767 | MINUTE_MS / 12.);       // Desired accuracy | 
|---|
| 768 |  | 
|---|
| 769 | setTime(t0); | 
|---|
| 770 | return t; | 
|---|
| 771 | } | 
|---|
| 772 |  | 
|---|
| 773 | // Commented out - currently unused. ICU 2.6, Alan | 
|---|
| 774 | //    //------------------------------------------------------------------------- | 
|---|
| 775 | //    // Alternate Sun Rise/Set | 
|---|
| 776 | //    // See Duffett-Smith p.93 | 
|---|
| 777 | //    //------------------------------------------------------------------------- | 
|---|
| 778 | // | 
|---|
| 779 | //    // This yields worse results (as compared to USNO data) than getSunRiseSet(). | 
|---|
| 780 | //    /** | 
|---|
| 781 | //     * TODO Make this when the entire class is package-private. | 
|---|
| 782 | //     */ | 
|---|
| 783 | //    /*public*/ long getSunRiseSet2(boolean rise) { | 
|---|
| 784 | //        // 1. Calculate coordinates of the sun's center for midnight | 
|---|
| 785 | //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | 
|---|
| 786 | //        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0]; | 
|---|
| 787 | //        Equatorial pos1 = eclipticToEquatorial(lambda1, 0); | 
|---|
| 788 | // | 
|---|
| 789 | //        // 2. Add ... to lambda to get position 24 hours later | 
|---|
| 790 | //        double lambda2 = lambda1 + 0.985647*DEG_RAD; | 
|---|
| 791 | //        Equatorial pos2 = eclipticToEquatorial(lambda2, 0); | 
|---|
| 792 | // | 
|---|
| 793 | //        // 3. Calculate LSTs of rising and setting for these two positions | 
|---|
| 794 | //        double tanL = ::tan(fLatitude); | 
|---|
| 795 | //        double H = ::acos(-tanL * ::tan(pos1.declination)); | 
|---|
| 796 | //        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; | 
|---|
| 797 | //        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; | 
|---|
| 798 | //               H = ::acos(-tanL * ::tan(pos2.declination)); | 
|---|
| 799 | //        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | 
|---|
| 800 | //        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | 
|---|
| 801 | //        if (lst1r > 24) lst1r -= 24; | 
|---|
| 802 | //        if (lst1s > 24) lst1s -= 24; | 
|---|
| 803 | //        if (lst2r > 24) lst2r -= 24; | 
|---|
| 804 | //        if (lst2s > 24) lst2s -= 24; | 
|---|
| 805 | // | 
|---|
| 806 | //        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2. | 
|---|
| 807 | //        double gst1r = lstToGst(lst1r); | 
|---|
| 808 | //        double gst1s = lstToGst(lst1s); | 
|---|
| 809 | //        double gst2r = lstToGst(lst2r); | 
|---|
| 810 | //        double gst2s = lstToGst(lst2s); | 
|---|
| 811 | //        if (gst1r > gst2r) gst2r += 24; | 
|---|
| 812 | //        if (gst1s > gst2s) gst2s += 24; | 
|---|
| 813 | // | 
|---|
| 814 | //        // 5. Calculate GST at 0h UT of this date | 
|---|
| 815 | //        double t00 = utToGst(0); | 
|---|
| 816 | // | 
|---|
| 817 | //        // 6. Calculate GST at 0h on the observer's longitude | 
|---|
| 818 | //        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. | 
|---|
| 819 | //        double t00p = t00 - offset*1.002737909; | 
|---|
| 820 | //        if (t00p < 0) t00p += 24; // do NOT normalize | 
|---|
| 821 | // | 
|---|
| 822 | //        // 7. Adjust | 
|---|
| 823 | //        if (gst1r < t00p) { | 
|---|
| 824 | //            gst1r += 24; | 
|---|
| 825 | //            gst2r += 24; | 
|---|
| 826 | //        } | 
|---|
| 827 | //        if (gst1s < t00p) { | 
|---|
| 828 | //            gst1s += 24; | 
|---|
| 829 | //            gst2s += 24; | 
|---|
| 830 | //        } | 
|---|
| 831 | // | 
|---|
| 832 | //        // 8. | 
|---|
| 833 | //        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); | 
|---|
| 834 | //        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); | 
|---|
| 835 | // | 
|---|
| 836 | //        // 9. Correct for parallax, refraction, and sun's diameter | 
|---|
| 837 | //        double dec = (pos1.declination + pos2.declination) / 2; | 
|---|
| 838 | //        double psi = ::acos(sin(fLatitude) / cos(dec)); | 
|---|
| 839 | //        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter | 
|---|
| 840 | //        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; | 
|---|
| 841 | //        double delta_t = 240 * y / cos(dec) / 3600; // hours | 
|---|
| 842 | // | 
|---|
| 843 | //        // 10. Add correction to GSTs, subtract from GSTr | 
|---|
| 844 | //        gstr -= delta_t; | 
|---|
| 845 | //        gsts += delta_t; | 
|---|
| 846 | // | 
|---|
| 847 | //        // 11. Convert GST to UT and then to local civil time | 
|---|
| 848 | //        double ut = gstToUt(rise ? gstr : gsts); | 
|---|
| 849 | //        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); | 
|---|
| 850 | //        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day | 
|---|
| 851 | //        return midnight + (long) (ut * 3600000); | 
|---|
| 852 | //    } | 
|---|
| 853 |  | 
|---|
| 854 | // Commented out - currently unused. ICU 2.6, Alan | 
|---|
| 855 | //    /** | 
|---|
| 856 | //     * Convert local sidereal time to Greenwich sidereal time. | 
|---|
| 857 | //     * Section 15.  Duffett-Smith p.21 | 
|---|
| 858 | //     * @param lst in hours (0..24) | 
|---|
| 859 | //     * @return GST in hours (0..24) | 
|---|
| 860 | //     */ | 
|---|
| 861 | //    double lstToGst(double lst) { | 
|---|
| 862 | //        double delta = fLongitude * 24 / CalendarAstronomer_PI2; | 
|---|
| 863 | //        return normalize(lst - delta, 24); | 
|---|
| 864 | //    } | 
|---|
| 865 |  | 
|---|
| 866 | // Commented out - currently unused. ICU 2.6, Alan | 
|---|
| 867 | //    /** | 
|---|
| 868 | //     * Convert UT to GST on this date. | 
|---|
| 869 | //     * Section 12.  Duffett-Smith p.17 | 
|---|
| 870 | //     * @param ut in hours | 
|---|
| 871 | //     * @return GST in hours | 
|---|
| 872 | //     */ | 
|---|
| 873 | //    double utToGst(double ut) { | 
|---|
| 874 | //        return normalize(getT0() + ut*1.002737909, 24); | 
|---|
| 875 | //    } | 
|---|
| 876 |  | 
|---|
| 877 | // Commented out - currently unused. ICU 2.6, Alan | 
|---|
| 878 | //    /** | 
|---|
| 879 | //     * Convert GST to UT on this date. | 
|---|
| 880 | //     * Section 13.  Duffett-Smith p.18 | 
|---|
| 881 | //     * @param gst in hours | 
|---|
| 882 | //     * @return UT in hours | 
|---|
| 883 | //     */ | 
|---|
| 884 | //    double gstToUt(double gst) { | 
|---|
| 885 | //        return normalize(gst - getT0(), 24) * 0.9972695663; | 
|---|
| 886 | //    } | 
|---|
| 887 |  | 
|---|
| 888 | // Commented out - currently unused. ICU 2.6, Alan | 
|---|
| 889 | //    double getT0() { | 
|---|
| 890 | //        // Common computation for UT <=> GST | 
|---|
| 891 | // | 
|---|
| 892 | //        // Find JD for 0h UT | 
|---|
| 893 | //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | 
|---|
| 894 | // | 
|---|
| 895 | //        double s = jd - 2451545.0; | 
|---|
| 896 | //        double t = s / 36525.0; | 
|---|
| 897 | //        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; | 
|---|
| 898 | //        return t0; | 
|---|
| 899 | //    } | 
|---|
| 900 |  | 
|---|
| 901 | // Commented out - currently unused. ICU 2.6, Alan | 
|---|
| 902 | //    //------------------------------------------------------------------------- | 
|---|
| 903 | //    // Alternate Sun Rise/Set | 
|---|
| 904 | //    // See sci.astro FAQ | 
|---|
| 905 | //    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html | 
|---|
| 906 | //    //------------------------------------------------------------------------- | 
|---|
| 907 | // | 
|---|
| 908 | //    // Note: This method appears to produce inferior accuracy as | 
|---|
| 909 | //    // compared to getSunRiseSet(). | 
|---|
| 910 | // | 
|---|
| 911 | //    /** | 
|---|
| 912 | //     * TODO Make this when the entire class is package-private. | 
|---|
| 913 | //     */ | 
|---|
| 914 | //    /*public*/ long getSunRiseSet3(boolean rise) { | 
|---|
| 915 | // | 
|---|
| 916 | //        // Compute day number for 0.0 Jan 2000 epoch | 
|---|
| 917 | //        double d = (double)(time - EPOCH_2000_MS) / DAY_MS; | 
|---|
| 918 | // | 
|---|
| 919 | //        // Now compute the Local Sidereal Time, LST: | 
|---|
| 920 | //        // | 
|---|
| 921 | //        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/ | 
|---|
| 922 | //            fLongitude*RAD_DEG; | 
|---|
| 923 | //        // | 
|---|
| 924 | //        // (east long. positive).  Note that LST is here expressed in degrees, | 
|---|
| 925 | //        // where 15 degrees corresponds to one hour.  Since LST really is an angle, | 
|---|
| 926 | //        // it's convenient to use one unit---degrees---throughout. | 
|---|
| 927 | // | 
|---|
| 928 | //        //    COMPUTING THE SUN'S POSITION | 
|---|
| 929 | //        //    ---------------------------- | 
|---|
| 930 | //        // | 
|---|
| 931 | //        // To be able to compute the Sun's rise/set times, you need to be able to | 
|---|
| 932 | //        // compute the Sun's position at any time.  First compute the "day | 
|---|
| 933 | //        // number" d as outlined above, for the desired moment.  Next compute: | 
|---|
| 934 | //        // | 
|---|
| 935 | //        double oblecl = 23.4393 - 3.563E-7 * d; | 
|---|
| 936 | //        // | 
|---|
| 937 | //        double w  =  282.9404  +  4.70935E-5   * d; | 
|---|
| 938 | //        double M  =  356.0470  +  0.9856002585 * d; | 
|---|
| 939 | //        double e  =  0.016709  -  1.151E-9     * d; | 
|---|
| 940 | //        // | 
|---|
| 941 | //        // This is the obliquity of the ecliptic, plus some of the elements of | 
|---|
| 942 | //        // the Sun's apparent orbit (i.e., really the Earth's orbit): w = | 
|---|
| 943 | //        // argument of perihelion, M = mean anomaly, e = eccentricity. | 
|---|
| 944 | //        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly | 
|---|
| 945 | //        // true, this is still an accurate approximation).  Next compute E, the | 
|---|
| 946 | //        // eccentric anomaly: | 
|---|
| 947 | //        // | 
|---|
| 948 | //        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); | 
|---|
| 949 | //        // | 
|---|
| 950 | //        // where E and M are in degrees.  This is it---no further iterations are | 
|---|
| 951 | //        // needed because we know e has a sufficiently small value.  Next compute | 
|---|
| 952 | //        // the true anomaly, v, and the distance, r: | 
|---|
| 953 | //        // | 
|---|
| 954 | //        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e; | 
|---|
| 955 | //        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); | 
|---|
| 956 | //        // | 
|---|
| 957 | //        // and | 
|---|
| 958 | //        // | 
|---|
| 959 | //        //      r  =  sqrt( A*A + B*B ) | 
|---|
| 960 | //        double v  =  ::atan2( B, A )*RAD_DEG; | 
|---|
| 961 | //        // | 
|---|
| 962 | //        // The Sun's true longitude, slon, can now be computed: | 
|---|
| 963 | //        // | 
|---|
| 964 | //        double slon  =  v + w; | 
|---|
| 965 | //        // | 
|---|
| 966 | //        // Since the Sun is always at the ecliptic (or at least very very close to | 
|---|
| 967 | //        // it), we can use simplified formulae to convert slon (the Sun's ecliptic | 
|---|
| 968 | //        // longitude) to sRA and sDec (the Sun's RA and Dec): | 
|---|
| 969 | //        // | 
|---|
| 970 | //        //                   ::sin(slon) * cos(oblecl) | 
|---|
| 971 | //        //     tan(sRA)  =  ------------------------- | 
|---|
| 972 | //        //            cos(slon) | 
|---|
| 973 | //        // | 
|---|
| 974 | //        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon) | 
|---|
| 975 | //        // | 
|---|
| 976 | //        // As was the case when computing az, the Azimuth, if possible use an | 
|---|
| 977 | //        // atan2() function to compute sRA. | 
|---|
| 978 | // | 
|---|
| 979 | //        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; | 
|---|
| 980 | // | 
|---|
| 981 | //        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); | 
|---|
| 982 | //        double sDec = ::asin(sin_sDec)*RAD_DEG; | 
|---|
| 983 | // | 
|---|
| 984 | //        //    COMPUTING RISE AND SET TIMES | 
|---|
| 985 | //        //    ---------------------------- | 
|---|
| 986 | //        // | 
|---|
| 987 | //        // To compute when an object rises or sets, you must compute when it | 
|---|
| 988 | //        // passes the meridian and the HA of rise/set.  Then the rise time is | 
|---|
| 989 | //        // the meridian time minus HA for rise/set, and the set time is the | 
|---|
| 990 | //        // meridian time plus the HA for rise/set. | 
|---|
| 991 | //        // | 
|---|
| 992 | //        // To find the meridian time, compute the Local Sidereal Time at 0h local | 
|---|
| 993 | //        // time (or 0h UT if you prefer to work in UT) as outlined above---name | 
|---|
| 994 | //        // that quantity LST0.  The Meridian Time, MT, will now be: | 
|---|
| 995 | //        // | 
|---|
| 996 | //        //     MT  =  RA - LST0 | 
|---|
| 997 | //        double MT = normalize(sRA - LST, 360); | 
|---|
| 998 | //        // | 
|---|
| 999 | //        // where "RA" is the object's Right Ascension (in degrees!).  If negative, | 
|---|
| 1000 | //        // add 360 deg to MT.  If the object is the Sun, leave the time as it is, | 
|---|
| 1001 | //        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from | 
|---|
| 1002 | //        // sidereal to solar time.  Now, compute HA for rise/set, name that | 
|---|
| 1003 | //        // quantity HA0: | 
|---|
| 1004 | //        // | 
|---|
| 1005 | //        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec) | 
|---|
| 1006 | //        // cos(HA0)  =  --------------------------------- | 
|---|
| 1007 | //        //                      cos(lat) * cos(Dec) | 
|---|
| 1008 | //        // | 
|---|
| 1009 | //        // where h0 is the altitude selected to represent rise/set.  For a purely | 
|---|
| 1010 | //        // mathematical horizon, set h0 = 0 and simplify to: | 
|---|
| 1011 | //        // | 
|---|
| 1012 | //        //    cos(HA0)  =  - tan(lat) * tan(Dec) | 
|---|
| 1013 | //        // | 
|---|
| 1014 | //        // If you want to account for refraction on the atmosphere, set h0 = -35/60 | 
|---|
| 1015 | //        // degrees (-35 arc minutes), and if you want to compute the rise/set times | 
|---|
| 1016 | //        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). | 
|---|
| 1017 | //        // | 
|---|
| 1018 | //        double h0 = -50/60 * DEG_RAD; | 
|---|
| 1019 | // | 
|---|
| 1020 | //        double HA0 = ::acos( | 
|---|
| 1021 | //          (sin(h0) - ::sin(fLatitude) * sin_sDec) / | 
|---|
| 1022 | //          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; | 
|---|
| 1023 | // | 
|---|
| 1024 | //        // When HA0 has been computed, leave it as it is for the Sun but multiply | 
|---|
| 1025 | //        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to | 
|---|
| 1026 | //        // solar time.  Finally compute: | 
|---|
| 1027 | //        // | 
|---|
| 1028 | //        //    Rise time  =  MT - HA0 | 
|---|
| 1029 | //        //    Set  time  =  MT + HA0 | 
|---|
| 1030 | //        // | 
|---|
| 1031 | //        // convert the times from degrees to hours by dividing by 15. | 
|---|
| 1032 | //        // | 
|---|
| 1033 | //        // If you'd like to check that your calculations are accurate or just | 
|---|
| 1034 | //        // need a quick result, check the USNO's Sun or Moon Rise/Set Table, | 
|---|
| 1035 | //        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. | 
|---|
| 1036 | // | 
|---|
| 1037 | //        double result = MT + (rise ? -HA0 : HA0); // in degrees | 
|---|
| 1038 | // | 
|---|
| 1039 | //        // Find UT midnight on this day | 
|---|
| 1040 | //        long midnight = DAY_MS * (time / DAY_MS); | 
|---|
| 1041 | // | 
|---|
| 1042 | //        return midnight + (long) (result * 3600000 / 15); | 
|---|
| 1043 | //    } | 
|---|
| 1044 |  | 
|---|
| 1045 | //------------------------------------------------------------------------- | 
|---|
| 1046 | // The Moon | 
|---|
| 1047 | //------------------------------------------------------------------------- | 
|---|
| 1048 |  | 
|---|
| 1049 | #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch | 
|---|
| 1050 | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee | 
|---|
| 1051 | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node | 
|---|
| 1052 | #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit | 
|---|
| 1053 | #define moonE  (   0.054900 )            // Eccentricity of orbit | 
|---|
| 1054 |  | 
|---|
| 1055 | // These aren't used right now | 
|---|
| 1056 | #define moonA  (   3.84401e5 )           // semi-major axis (km) | 
|---|
| 1057 | #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A | 
|---|
| 1058 | #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A | 
|---|
| 1059 |  | 
|---|
| 1060 | /** | 
|---|
| 1061 | * The position of the moon at the time set on this | 
|---|
| 1062 | * object, in equatorial coordinates. | 
|---|
| 1063 | * @internal | 
|---|
| 1064 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1065 | */ | 
|---|
| 1066 | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() | 
|---|
| 1067 | { | 
|---|
| 1068 | // | 
|---|
| 1069 | // See page 142 of "Practial Astronomy with your Calculator", | 
|---|
| 1070 | // by Peter Duffet-Smith, for details on the algorithm. | 
|---|
| 1071 | // | 
|---|
| 1072 | if (moonPositionSet == FALSE) { | 
|---|
| 1073 | // Calculate the solar longitude.  Has the side effect of | 
|---|
| 1074 | // filling in "meanAnomalySun" as well. | 
|---|
| 1075 | getSunLongitude(); | 
|---|
| 1076 |  | 
|---|
| 1077 | // | 
|---|
| 1078 | // Find the # of days since the epoch of our orbital parameters. | 
|---|
| 1079 | // TODO: Convert the time of day portion into ephemeris time | 
|---|
| 1080 | // | 
|---|
| 1081 | double day = getJulianDay() - JD_EPOCH;       // Days since epoch | 
|---|
| 1082 |  | 
|---|
| 1083 | // Calculate the mean longitude and anomaly of the moon, based on | 
|---|
| 1084 | // a circular orbit.  Similar to the corresponding solar calculation. | 
|---|
| 1085 | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); | 
|---|
| 1086 | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); | 
|---|
| 1087 |  | 
|---|
| 1088 | // | 
|---|
| 1089 | // Calculate the following corrections: | 
|---|
| 1090 | //  Evection:   the sun's gravity affects the moon's eccentricity | 
|---|
| 1091 | //  Annual Eqn: variation in the effect due to earth-sun distance | 
|---|
| 1092 | //  A3:         correction factor (for ???) | 
|---|
| 1093 | // | 
|---|
| 1094 | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) | 
|---|
| 1095 | - meanAnomalyMoon); | 
|---|
| 1096 | double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun); | 
|---|
| 1097 | double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun); | 
|---|
| 1098 |  | 
|---|
| 1099 | meanAnomalyMoon += evection - annual - a3; | 
|---|
| 1100 |  | 
|---|
| 1101 | // | 
|---|
| 1102 | // More correction factors: | 
|---|
| 1103 | //  center  equation of the center correction | 
|---|
| 1104 | //  a4      yet another error correction (???) | 
|---|
| 1105 | // | 
|---|
| 1106 | // TODO: Skip the equation of the center correction and solve Kepler's eqn? | 
|---|
| 1107 | // | 
|---|
| 1108 | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); | 
|---|
| 1109 | double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); | 
|---|
| 1110 |  | 
|---|
| 1111 | // Now find the moon's corrected longitude | 
|---|
| 1112 | moonLongitude = meanLongitude + evection + center - annual + a4; | 
|---|
| 1113 |  | 
|---|
| 1114 | // | 
|---|
| 1115 | // And finally, find the variation, caused by the fact that the sun's | 
|---|
| 1116 | // gravitational pull on the moon varies depending on which side of | 
|---|
| 1117 | // the earth the moon is on | 
|---|
| 1118 | // | 
|---|
| 1119 | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); | 
|---|
| 1120 |  | 
|---|
| 1121 | moonLongitude += variation; | 
|---|
| 1122 |  | 
|---|
| 1123 | // | 
|---|
| 1124 | // What we've calculated so far is the moon's longitude in the plane | 
|---|
| 1125 | // of its own orbit.  Now map to the ecliptic to get the latitude | 
|---|
| 1126 | // and longitude.  First we need to find the longitude of the ascending | 
|---|
| 1127 | // node, the position on the ecliptic where it is crossed by the moon's | 
|---|
| 1128 | // orbit as it crosses from the southern to the northern hemisphere. | 
|---|
| 1129 | // | 
|---|
| 1130 | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); | 
|---|
| 1131 |  | 
|---|
| 1132 | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); | 
|---|
| 1133 |  | 
|---|
| 1134 | double y = ::sin(moonLongitude - nodeLongitude); | 
|---|
| 1135 | double x = cos(moonLongitude - nodeLongitude); | 
|---|
| 1136 |  | 
|---|
| 1137 | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; | 
|---|
| 1138 | double moonEclipLat = ::asin(y * ::sin(moonI)); | 
|---|
| 1139 |  | 
|---|
| 1140 | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); | 
|---|
| 1141 | moonPositionSet = TRUE; | 
|---|
| 1142 | } | 
|---|
| 1143 | return moonPosition; | 
|---|
| 1144 | } | 
|---|
| 1145 |  | 
|---|
| 1146 | /** | 
|---|
| 1147 | * The "age" of the moon at the time specified in this object. | 
|---|
| 1148 | * This is really the angle between the | 
|---|
| 1149 | * current ecliptic longitudes of the sun and the moon, | 
|---|
| 1150 | * measured in radians. | 
|---|
| 1151 | * | 
|---|
| 1152 | * @see #getMoonPhase | 
|---|
| 1153 | * @internal | 
|---|
| 1154 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1155 | */ | 
|---|
| 1156 | double CalendarAstronomer::getMoonAge() { | 
|---|
| 1157 | // See page 147 of "Practial Astronomy with your Calculator", | 
|---|
| 1158 | // by Peter Duffet-Smith, for details on the algorithm. | 
|---|
| 1159 | // | 
|---|
| 1160 | // Force the moon's position to be calculated.  We're going to use | 
|---|
| 1161 | // some the intermediate results cached during that calculation. | 
|---|
| 1162 | // | 
|---|
| 1163 | getMoonPosition(); | 
|---|
| 1164 |  | 
|---|
| 1165 | return norm2PI(moonEclipLong - sunLongitude); | 
|---|
| 1166 | } | 
|---|
| 1167 |  | 
|---|
| 1168 | /** | 
|---|
| 1169 | * Calculate the phase of the moon at the time set in this object. | 
|---|
| 1170 | * The returned phase is a <code>double</code> in the range | 
|---|
| 1171 | * <code>0 <= phase < 1</code>, interpreted as follows: | 
|---|
| 1172 | * <ul> | 
|---|
| 1173 | * <li>0.00: New moon | 
|---|
| 1174 | * <li>0.25: First quarter | 
|---|
| 1175 | * <li>0.50: Full moon | 
|---|
| 1176 | * <li>0.75: Last quarter | 
|---|
| 1177 | * </ul> | 
|---|
| 1178 | * | 
|---|
| 1179 | * @see #getMoonAge | 
|---|
| 1180 | * @internal | 
|---|
| 1181 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1182 | */ | 
|---|
| 1183 | double CalendarAstronomer::getMoonPhase() { | 
|---|
| 1184 | // See page 147 of "Practial Astronomy with your Calculator", | 
|---|
| 1185 | // by Peter Duffet-Smith, for details on the algorithm. | 
|---|
| 1186 | return 0.5 * (1 - cos(getMoonAge())); | 
|---|
| 1187 | } | 
|---|
| 1188 |  | 
|---|
| 1189 | /** | 
|---|
| 1190 | * Constant representing a new moon. | 
|---|
| 1191 | * For use with {@link #getMoonTime getMoonTime} | 
|---|
| 1192 | * @internal | 
|---|
| 1193 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1194 | */ | 
|---|
| 1195 | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { | 
|---|
| 1196 | return  CalendarAstronomer::MoonAge(0); | 
|---|
| 1197 | } | 
|---|
| 1198 |  | 
|---|
| 1199 | /** | 
|---|
| 1200 | * Constant representing the moon's first quarter. | 
|---|
| 1201 | * For use with {@link #getMoonTime getMoonTime} | 
|---|
| 1202 | * @internal | 
|---|
| 1203 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1204 | */ | 
|---|
| 1205 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { | 
|---|
| 1206 | return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); | 
|---|
| 1207 | }*/ | 
|---|
| 1208 |  | 
|---|
| 1209 | /** | 
|---|
| 1210 | * Constant representing a full moon. | 
|---|
| 1211 | * For use with {@link #getMoonTime getMoonTime} | 
|---|
| 1212 | * @internal | 
|---|
| 1213 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1214 | */ | 
|---|
| 1215 | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { | 
|---|
| 1216 | return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI); | 
|---|
| 1217 | } | 
|---|
| 1218 | /** | 
|---|
| 1219 | * Constant representing the moon's last quarter. | 
|---|
| 1220 | * For use with {@link #getMoonTime getMoonTime} | 
|---|
| 1221 | * @internal | 
|---|
| 1222 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1223 | */ | 
|---|
| 1224 |  | 
|---|
| 1225 | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { | 
|---|
| 1226 | public: | 
|---|
| 1227 | virtual ~MoonTimeAngleFunc(); | 
|---|
| 1228 | virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } | 
|---|
| 1229 | }; | 
|---|
| 1230 |  | 
|---|
| 1231 | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} | 
|---|
| 1232 |  | 
|---|
| 1233 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { | 
|---|
| 1234 | return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); | 
|---|
| 1235 | }*/ | 
|---|
| 1236 |  | 
|---|
| 1237 | /** | 
|---|
| 1238 | * Find the next or previous time at which the Moon's ecliptic | 
|---|
| 1239 | * longitude will have the desired value. | 
|---|
| 1240 | * <p> | 
|---|
| 1241 | * @param desired   The desired longitude. | 
|---|
| 1242 | * @param next      <tt>true</tt> if the next occurrance of the phase | 
|---|
| 1243 | *                  is desired, <tt>false</tt> for the previous occurrance. | 
|---|
| 1244 | * @internal | 
|---|
| 1245 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1246 | */ | 
|---|
| 1247 | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) | 
|---|
| 1248 | { | 
|---|
| 1249 | MoonTimeAngleFunc func; | 
|---|
| 1250 | return timeOfAngle( func, | 
|---|
| 1251 | desired, | 
|---|
| 1252 | SYNODIC_MONTH, | 
|---|
| 1253 | MINUTE_MS, | 
|---|
| 1254 | next); | 
|---|
| 1255 | } | 
|---|
| 1256 |  | 
|---|
| 1257 | /** | 
|---|
| 1258 | * Find the next or previous time at which the moon will be in the | 
|---|
| 1259 | * desired phase. | 
|---|
| 1260 | * <p> | 
|---|
| 1261 | * @param desired   The desired phase of the moon. | 
|---|
| 1262 | * @param next      <tt>true</tt> if the next occurrance of the phase | 
|---|
| 1263 | *                  is desired, <tt>false</tt> for the previous occurrance. | 
|---|
| 1264 | * @internal | 
|---|
| 1265 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1266 | */ | 
|---|
| 1267 | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { | 
|---|
| 1268 | return getMoonTime(desired.value, next); | 
|---|
| 1269 | } | 
|---|
| 1270 |  | 
|---|
| 1271 | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | 
|---|
| 1272 | public: | 
|---|
| 1273 | virtual ~MoonRiseSetCoordFunc(); | 
|---|
| 1274 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } | 
|---|
| 1275 | }; | 
|---|
| 1276 |  | 
|---|
| 1277 | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} | 
|---|
| 1278 |  | 
|---|
| 1279 | /** | 
|---|
| 1280 | * Returns the time (GMT) of sunrise or sunset on the local date to which | 
|---|
| 1281 | * this calendar is currently set. | 
|---|
| 1282 | * @internal | 
|---|
| 1283 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1284 | */ | 
|---|
| 1285 | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) | 
|---|
| 1286 | { | 
|---|
| 1287 | MoonRiseSetCoordFunc func; | 
|---|
| 1288 | return riseOrSet(func, | 
|---|
| 1289 | rise, | 
|---|
| 1290 | .533 * DEG_RAD,        // Angular Diameter | 
|---|
| 1291 | 34 /60.0 * DEG_RAD,    // Refraction correction | 
|---|
| 1292 | MINUTE_MS);            // Desired accuracy | 
|---|
| 1293 | } | 
|---|
| 1294 |  | 
|---|
| 1295 | //------------------------------------------------------------------------- | 
|---|
| 1296 | // Interpolation methods for finding the time at which a given event occurs | 
|---|
| 1297 | //------------------------------------------------------------------------- | 
|---|
| 1298 |  | 
|---|
| 1299 | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, | 
|---|
| 1300 | double periodDays, double epsilon, UBool next) | 
|---|
| 1301 | { | 
|---|
| 1302 | // Find the value of the function at the current time | 
|---|
| 1303 | double lastAngle = func.eval(*this); | 
|---|
| 1304 |  | 
|---|
| 1305 | // Find out how far we are from the desired angle | 
|---|
| 1306 | double deltaAngle = norm2PI(desired - lastAngle) ; | 
|---|
| 1307 |  | 
|---|
| 1308 | // Using the average period, estimate the next (or previous) time at | 
|---|
| 1309 | // which the desired angle occurs. | 
|---|
| 1310 | double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; | 
|---|
| 1311 |  | 
|---|
| 1312 | double lastDeltaT = deltaT; // Liu | 
|---|
| 1313 | UDate startTime = fTime; // Liu | 
|---|
| 1314 |  | 
|---|
| 1315 | setTime(fTime + uprv_ceil(deltaT)); | 
|---|
| 1316 |  | 
|---|
| 1317 | // Now iterate until we get the error below epsilon.  Throughout | 
|---|
| 1318 | // this loop we use normPI to get values in the range -Pi to Pi, | 
|---|
| 1319 | // since we're using them as correction factors rather than absolute angles. | 
|---|
| 1320 | do { | 
|---|
| 1321 | // Evaluate the function at the time we've estimated | 
|---|
| 1322 | double angle = func.eval(*this); | 
|---|
| 1323 |  | 
|---|
| 1324 | // Find the # of milliseconds per radian at this point on the curve | 
|---|
| 1325 | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); | 
|---|
| 1326 |  | 
|---|
| 1327 | // Correct the time estimate based on how far off the angle is | 
|---|
| 1328 | deltaT = normPI(desired - angle) * factor; | 
|---|
| 1329 |  | 
|---|
| 1330 | // HACK: | 
|---|
| 1331 | // | 
|---|
| 1332 | // If abs(deltaT) begins to diverge we need to quit this loop. | 
|---|
| 1333 | // This only appears to happen when attempting to locate, for | 
|---|
| 1334 | // example, a new moon on the day of the new moon.  E.g.: | 
|---|
| 1335 | // | 
|---|
| 1336 | // This result is correct: | 
|---|
| 1337 | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= | 
|---|
| 1338 | //   Sun Jul 22 10:57:41 CST 1990 | 
|---|
| 1339 | // | 
|---|
| 1340 | // But attempting to make the same call a day earlier causes deltaT | 
|---|
| 1341 | // to diverge: | 
|---|
| 1342 | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> | 
|---|
| 1343 | //   1.3649828540224032E9 | 
|---|
| 1344 | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= | 
|---|
| 1345 | //   Sun Jul 08 13:56:15 CST 1990 | 
|---|
| 1346 | // | 
|---|
| 1347 | // As a temporary solution, we catch this specific condition and | 
|---|
| 1348 | // adjust our start time by one eighth period days (either forward | 
|---|
| 1349 | // or backward) and try again. | 
|---|
| 1350 | // Liu 11/9/00 | 
|---|
| 1351 | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { | 
|---|
| 1352 | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); | 
|---|
| 1353 | setTime(startTime + (next ? delta : -delta)); | 
|---|
| 1354 | return timeOfAngle(func, desired, periodDays, epsilon, next); | 
|---|
| 1355 | } | 
|---|
| 1356 |  | 
|---|
| 1357 | lastDeltaT = deltaT; | 
|---|
| 1358 | lastAngle = angle; | 
|---|
| 1359 |  | 
|---|
| 1360 | setTime(fTime + uprv_ceil(deltaT)); | 
|---|
| 1361 | } | 
|---|
| 1362 | while (uprv_fabs(deltaT) > epsilon); | 
|---|
| 1363 |  | 
|---|
| 1364 | return fTime; | 
|---|
| 1365 | } | 
|---|
| 1366 |  | 
|---|
| 1367 | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, | 
|---|
| 1368 | double diameter, double refraction, | 
|---|
| 1369 | double epsilon) | 
|---|
| 1370 | { | 
|---|
| 1371 | Equatorial pos; | 
|---|
| 1372 | double      tanL   = ::tan(fLatitude); | 
|---|
| 1373 | double     deltaT = 0; | 
|---|
| 1374 | int32_t         count = 0; | 
|---|
| 1375 |  | 
|---|
| 1376 | // | 
|---|
| 1377 | // Calculate the object's position at the current time, then use that | 
|---|
| 1378 | // position to calculate the time of rising or setting.  The position | 
|---|
| 1379 | // will be different at that time, so iterate until the error is allowable. | 
|---|
| 1380 | // | 
|---|
| 1381 | U_DEBUG_ASTRO_MSG(( "setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", | 
|---|
| 1382 | rise? "T": "F", diameter, refraction, epsilon)); | 
|---|
| 1383 | do { | 
|---|
| 1384 | // See "Practical Astronomy With Your Calculator, section 33. | 
|---|
| 1385 | func.eval(pos, *this); | 
|---|
| 1386 | double angle = ::acos(-tanL * ::tan(pos.declination)); | 
|---|
| 1387 | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; | 
|---|
| 1388 |  | 
|---|
| 1389 | // Convert from LST to Universal Time. | 
|---|
| 1390 | UDate newTime = lstToUT( lst ); | 
|---|
| 1391 |  | 
|---|
| 1392 | deltaT = newTime - fTime; | 
|---|
| 1393 | setTime(newTime); | 
|---|
| 1394 | U_DEBUG_ASTRO_MSG(( "%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n", | 
|---|
| 1395 | count, deltaT, angle, lst, pos.ascension, pos.declination)); | 
|---|
| 1396 | } | 
|---|
| 1397 | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); | 
|---|
| 1398 |  | 
|---|
| 1399 | // Calculate the correction due to refraction and the object's angular diameter | 
|---|
| 1400 | double cosD  = ::cos(pos.declination); | 
|---|
| 1401 | double psi   = ::acos(sin(fLatitude) / cosD); | 
|---|
| 1402 | double x     = diameter / 2 + refraction; | 
|---|
| 1403 | double y     = ::asin(sin(x) / ::sin(psi)); | 
|---|
| 1404 | long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); | 
|---|
| 1405 |  | 
|---|
| 1406 | return fTime + (rise ? -delta : delta); | 
|---|
| 1407 | } | 
|---|
| 1408 | /** | 
|---|
| 1409 | * Return the obliquity of the ecliptic (the angle between the ecliptic | 
|---|
| 1410 | * and the earth's equator) at the current time.  This varies due to | 
|---|
| 1411 | * the precession of the earth's axis. | 
|---|
| 1412 | * | 
|---|
| 1413 | * @return  the obliquity of the ecliptic relative to the equator, | 
|---|
| 1414 | *          measured in radians. | 
|---|
| 1415 | */ | 
|---|
| 1416 | double CalendarAstronomer::eclipticObliquity() { | 
|---|
| 1417 | if (isINVALID(eclipObliquity)) { | 
|---|
| 1418 | const double epoch = 2451545.0;     // 2000 AD, January 1.5 | 
|---|
| 1419 |  | 
|---|
| 1420 | double T = (getJulianDay() - epoch) / 36525; | 
|---|
| 1421 |  | 
|---|
| 1422 | eclipObliquity = 23.439292 | 
|---|
| 1423 | - 46.815/3600 * T | 
|---|
| 1424 | - 0.0006/3600 * T*T | 
|---|
| 1425 | + 0.00181/3600 * T*T*T; | 
|---|
| 1426 |  | 
|---|
| 1427 | eclipObliquity *= DEG_RAD; | 
|---|
| 1428 | } | 
|---|
| 1429 | return eclipObliquity; | 
|---|
| 1430 | } | 
|---|
| 1431 |  | 
|---|
| 1432 |  | 
|---|
| 1433 | //------------------------------------------------------------------------- | 
|---|
| 1434 | // Private data | 
|---|
| 1435 | //------------------------------------------------------------------------- | 
|---|
| 1436 | void CalendarAstronomer::clearCache() { | 
|---|
| 1437 | const double INVALID = uprv_getNaN(); | 
|---|
| 1438 |  | 
|---|
| 1439 | julianDay       = INVALID; | 
|---|
| 1440 | julianCentury   = INVALID; | 
|---|
| 1441 | sunLongitude    = INVALID; | 
|---|
| 1442 | meanAnomalySun  = INVALID; | 
|---|
| 1443 | moonLongitude   = INVALID; | 
|---|
| 1444 | moonEclipLong   = INVALID; | 
|---|
| 1445 | meanAnomalyMoon = INVALID; | 
|---|
| 1446 | eclipObliquity  = INVALID; | 
|---|
| 1447 | siderealTime    = INVALID; | 
|---|
| 1448 | siderealT0      = INVALID; | 
|---|
| 1449 | moonPositionSet = FALSE; | 
|---|
| 1450 | } | 
|---|
| 1451 |  | 
|---|
| 1452 | //private static void out(String s) { | 
|---|
| 1453 | //    System.out.println(s); | 
|---|
| 1454 | //} | 
|---|
| 1455 |  | 
|---|
| 1456 | //private static String deg(double rad) { | 
|---|
| 1457 | //    return Double.toString(rad * RAD_DEG); | 
|---|
| 1458 | //} | 
|---|
| 1459 |  | 
|---|
| 1460 | //private static String hours(long ms) { | 
|---|
| 1461 | //    return Double.toString((double)ms / HOUR_MS) + " hours"; | 
|---|
| 1462 | //} | 
|---|
| 1463 |  | 
|---|
| 1464 | /** | 
|---|
| 1465 | * @internal | 
|---|
| 1466 | * @deprecated ICU 2.4. This class may be removed or modified. | 
|---|
| 1467 | */ | 
|---|
| 1468 | /*UDate CalendarAstronomer::local(UDate localMillis) { | 
|---|
| 1469 | // TODO - srl ? | 
|---|
| 1470 | TimeZone *tz = TimeZone::createDefault(); | 
|---|
| 1471 | int32_t rawOffset; | 
|---|
| 1472 | int32_t dstOffset; | 
|---|
| 1473 | UErrorCode status = U_ZERO_ERROR; | 
|---|
| 1474 | tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); | 
|---|
| 1475 | delete tz; | 
|---|
| 1476 | return localMillis - rawOffset; | 
|---|
| 1477 | }*/ | 
|---|
| 1478 |  | 
|---|
| 1479 | // Debugging functions | 
|---|
| 1480 | UnicodeString CalendarAstronomer::Ecliptic::toString() const | 
|---|
| 1481 | { | 
|---|
| 1482 | #ifdef U_DEBUG_ASTRO | 
|---|
| 1483 | char tmp[800]; | 
|---|
| 1484 | sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); | 
|---|
| 1485 | return UnicodeString(tmp, ""); | 
|---|
| 1486 | #else | 
|---|
| 1487 | return UnicodeString(); | 
|---|
| 1488 | #endif | 
|---|
| 1489 | } | 
|---|
| 1490 |  | 
|---|
| 1491 | UnicodeString CalendarAstronomer::Equatorial::toString() const | 
|---|
| 1492 | { | 
|---|
| 1493 | #ifdef U_DEBUG_ASTRO | 
|---|
| 1494 | char tmp[400]; | 
|---|
| 1495 | sprintf(tmp, "%f,%f", | 
|---|
| 1496 | (ascension*RAD_DEG), (declination*RAD_DEG)); | 
|---|
| 1497 | return UnicodeString(tmp, ""); | 
|---|
| 1498 | #else | 
|---|
| 1499 | return UnicodeString(); | 
|---|
| 1500 | #endif | 
|---|
| 1501 | } | 
|---|
| 1502 |  | 
|---|
| 1503 | UnicodeString CalendarAstronomer::Horizon::toString() const | 
|---|
| 1504 | { | 
|---|
| 1505 | #ifdef U_DEBUG_ASTRO | 
|---|
| 1506 | char tmp[800]; | 
|---|
| 1507 | sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); | 
|---|
| 1508 | return UnicodeString(tmp, ""); | 
|---|
| 1509 | #else | 
|---|
| 1510 | return UnicodeString(); | 
|---|
| 1511 | #endif | 
|---|
| 1512 | } | 
|---|
| 1513 |  | 
|---|
| 1514 |  | 
|---|
| 1515 | //  static private String radToHms(double angle) { | 
|---|
| 1516 | //    int hrs = (int) (angle*RAD_HOUR); | 
|---|
| 1517 | //    int min = (int)((angle*RAD_HOUR - hrs) * 60); | 
|---|
| 1518 | //    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); | 
|---|
| 1519 |  | 
|---|
| 1520 | //    return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; | 
|---|
| 1521 | //  } | 
|---|
| 1522 |  | 
|---|
| 1523 | //  static private String radToDms(double angle) { | 
|---|
| 1524 | //    int deg = (int) (angle*RAD_DEG); | 
|---|
| 1525 | //    int min = (int)((angle*RAD_DEG - deg) * 60); | 
|---|
| 1526 | //    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); | 
|---|
| 1527 |  | 
|---|
| 1528 | //    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; | 
|---|
| 1529 | //  } | 
|---|
| 1530 |  | 
|---|
| 1531 | // =============== Calendar Cache ================ | 
|---|
| 1532 |  | 
|---|
| 1533 | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { | 
|---|
| 1534 | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); | 
|---|
| 1535 | if(cache == NULL) { | 
|---|
| 1536 | status = U_MEMORY_ALLOCATION_ERROR; | 
|---|
| 1537 | } else { | 
|---|
| 1538 | *cache = new CalendarCache(32, status); | 
|---|
| 1539 | if(U_FAILURE(status)) { | 
|---|
| 1540 | delete *cache; | 
|---|
| 1541 | *cache = NULL; | 
|---|
| 1542 | } | 
|---|
| 1543 | } | 
|---|
| 1544 | } | 
|---|
| 1545 |  | 
|---|
| 1546 | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { | 
|---|
| 1547 | int32_t res; | 
|---|
| 1548 |  | 
|---|
| 1549 | if(U_FAILURE(status)) { | 
|---|
| 1550 | return 0; | 
|---|
| 1551 | } | 
|---|
| 1552 | umtx_lock(&ccLock); | 
|---|
| 1553 |  | 
|---|
| 1554 | if(*cache == NULL) { | 
|---|
| 1555 | createCache(cache, status); | 
|---|
| 1556 | if(U_FAILURE(status)) { | 
|---|
| 1557 | umtx_unlock(&ccLock); | 
|---|
| 1558 | return 0; | 
|---|
| 1559 | } | 
|---|
| 1560 | } | 
|---|
| 1561 |  | 
|---|
| 1562 | res = uhash_igeti((*cache)->fTable, key); | 
|---|
| 1563 | U_DEBUG_ASTRO_MSG(( "%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); | 
|---|
| 1564 |  | 
|---|
| 1565 | umtx_unlock(&ccLock); | 
|---|
| 1566 | return res; | 
|---|
| 1567 | } | 
|---|
| 1568 |  | 
|---|
| 1569 | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { | 
|---|
| 1570 | if(U_FAILURE(status)) { | 
|---|
| 1571 | return; | 
|---|
| 1572 | } | 
|---|
| 1573 | umtx_lock(&ccLock); | 
|---|
| 1574 |  | 
|---|
| 1575 | if(*cache == NULL) { | 
|---|
| 1576 | createCache(cache, status); | 
|---|
| 1577 | if(U_FAILURE(status)) { | 
|---|
| 1578 | umtx_unlock(&ccLock); | 
|---|
| 1579 | return; | 
|---|
| 1580 | } | 
|---|
| 1581 | } | 
|---|
| 1582 |  | 
|---|
| 1583 | uhash_iputi((*cache)->fTable, key, value, &status); | 
|---|
| 1584 | U_DEBUG_ASTRO_MSG(( "%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); | 
|---|
| 1585 |  | 
|---|
| 1586 | umtx_unlock(&ccLock); | 
|---|
| 1587 | } | 
|---|
| 1588 |  | 
|---|
| 1589 | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { | 
|---|
| 1590 | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); | 
|---|
| 1591 | U_DEBUG_ASTRO_MSG(( "%p: Opening.\n", fTable)); | 
|---|
| 1592 | } | 
|---|
| 1593 |  | 
|---|
| 1594 | CalendarCache::~CalendarCache() { | 
|---|
| 1595 | if(fTable != NULL) { | 
|---|
| 1596 | U_DEBUG_ASTRO_MSG(( "%p: Closing.\n", fTable)); | 
|---|
| 1597 | uhash_close(fTable); | 
|---|
| 1598 | } | 
|---|
| 1599 | } | 
|---|
| 1600 |  | 
|---|
| 1601 | U_NAMESPACE_END | 
|---|
| 1602 |  | 
|---|
| 1603 | #endif //  !UCONFIG_NO_FORMATTING | 
|---|
| 1604 |  | 
|---|