1 | // © 2018 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | // |
4 | // From the double-conversion library. Original license: |
5 | // |
6 | // Copyright 2010 the V8 project authors. All rights reserved. |
7 | // Redistribution and use in source and binary forms, with or without |
8 | // modification, are permitted provided that the following conditions are |
9 | // met: |
10 | // |
11 | // * Redistributions of source code must retain the above copyright |
12 | // notice, this list of conditions and the following disclaimer. |
13 | // * Redistributions in binary form must reproduce the above |
14 | // copyright notice, this list of conditions and the following |
15 | // disclaimer in the documentation and/or other materials provided |
16 | // with the distribution. |
17 | // * Neither the name of Google Inc. nor the names of its |
18 | // contributors may be used to endorse or promote products derived |
19 | // from this software without specific prior written permission. |
20 | // |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | |
33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING |
34 | #include "unicode/utypes.h" |
35 | #if !UCONFIG_NO_FORMATTING |
36 | |
37 | #ifndef DOUBLE_CONVERSION_UTILS_H_ |
38 | #define DOUBLE_CONVERSION_UTILS_H_ |
39 | |
40 | #include <cstdlib> |
41 | #include <cstring> |
42 | |
43 | // ICU PATCH: Use U_ASSERT instead of <assert.h> |
44 | #include "uassert.h" |
45 | #ifndef DOUBLE_CONVERSION_ASSERT |
46 | #define DOUBLE_CONVERSION_ASSERT(condition) \ |
47 | U_ASSERT(condition); |
48 | #endif |
49 | #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED |
50 | #define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort()) |
51 | #endif |
52 | #ifndef DOUBLE_CONVERSION_NO_RETURN |
53 | #ifdef _MSC_VER |
54 | #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn) |
55 | #else |
56 | #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn)) |
57 | #endif |
58 | #endif |
59 | #ifndef DOUBLE_CONVERSION_UNREACHABLE |
60 | #ifdef _MSC_VER |
61 | void DOUBLE_CONVERSION_NO_RETURN abort_noreturn(); |
62 | inline void abort_noreturn() { abort(); } |
63 | #define DOUBLE_CONVERSION_UNREACHABLE() (abort_noreturn()) |
64 | #else |
65 | #define DOUBLE_CONVERSION_UNREACHABLE() (abort()) |
66 | #endif |
67 | #endif |
68 | |
69 | #ifndef DOUBLE_CONVERSION_UNUSED |
70 | #ifdef __GNUC__ |
71 | #define DOUBLE_CONVERSION_UNUSED __attribute__((unused)) |
72 | #else |
73 | #define DOUBLE_CONVERSION_UNUSED |
74 | #endif |
75 | #endif |
76 | |
77 | // Double operations detection based on target architecture. |
78 | // Linux uses a 80bit wide floating point stack on x86. This induces double |
79 | // rounding, which in turn leads to wrong results. |
80 | // An easy way to test if the floating-point operations are correct is to |
81 | // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then |
82 | // the result is equal to 89255e-22. |
83 | // The best way to test this, is to create a division-function and to compare |
84 | // the output of the division with the expected result. (Inlining must be |
85 | // disabled.) |
86 | // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) |
87 | // |
88 | // For example: |
89 | /* |
90 | // -- in div.c |
91 | double Div_double(double x, double y) { return x / y; } |
92 | |
93 | // -- in main.c |
94 | double Div_double(double x, double y); // Forward declaration. |
95 | |
96 | int main(int argc, char** argv) { |
97 | return Div_double(89255.0, 1e22) == 89255e-22; |
98 | } |
99 | */ |
100 | // Run as follows ./main || echo "correct" |
101 | // |
102 | // If it prints "correct" then the architecture should be here, in the "correct" section. |
103 | #if defined(_M_X64) || defined(__x86_64__) || \ |
104 | defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \ |
105 | defined(__hppa__) || defined(__ia64__) || \ |
106 | defined(__mips__) || \ |
107 | defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ |
108 | defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \ |
109 | defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ |
110 | defined(__SH4__) || defined(__alpha__) || \ |
111 | defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\ |
112 | defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \ |
113 | defined(__riscv) || defined(__e2k__) || \ |
114 | defined(__or1k__) || defined(__arc__) || \ |
115 | defined(__EMSCRIPTEN__) |
116 | #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
117 | #elif defined(__mc68000__) || \ |
118 | defined(__pnacl__) || defined(__native_client__) |
119 | #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
120 | #elif defined(_M_IX86) || defined(__i386__) || defined(__i386) |
121 | #if defined(_WIN32) |
122 | // Windows uses a 64bit wide floating point stack. |
123 | #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
124 | #else |
125 | #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
126 | #endif // _WIN32 |
127 | #elif U_PLATFORM == U_PF_BROWSER_NATIVE_CLIENT |
128 | #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
129 | #else |
130 | #error Target architecture was not detected as supported by Double-Conversion. |
131 | #endif |
132 | |
133 | #if defined(_WIN32) && !defined(__MINGW32__) |
134 | |
135 | typedef signed char int8_t; |
136 | typedef unsigned char uint8_t; |
137 | typedef short int16_t; // NOLINT |
138 | typedef unsigned short uint16_t; // NOLINT |
139 | typedef int int32_t; |
140 | typedef unsigned int uint32_t; |
141 | typedef __int64 int64_t; |
142 | typedef unsigned __int64 uint64_t; |
143 | // intptr_t and friends are defined in crtdefs.h through stdio.h. |
144 | |
145 | #else |
146 | |
147 | #include <stdint.h> |
148 | |
149 | #endif |
150 | |
151 | typedef uint16_t uc16; |
152 | |
153 | // The following macro works on both 32 and 64-bit platforms. |
154 | // Usage: instead of writing 0x1234567890123456 |
155 | // write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456); |
156 | #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
157 | |
158 | |
159 | // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type |
160 | // size_t which represents the number of elements of the given |
161 | // array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated |
162 | // arrays. |
163 | #ifndef DOUBLE_CONVERSION_ARRAY_SIZE |
164 | #define DOUBLE_CONVERSION_ARRAY_SIZE(a) \ |
165 | ((sizeof(a) / sizeof(*(a))) / \ |
166 | static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
167 | #endif |
168 | |
169 | // A macro to disallow the evil copy constructor and operator= functions |
170 | // This should be used in the private: declarations for a class |
171 | #ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN |
172 | #define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
173 | TypeName(const TypeName&); \ |
174 | void operator=(const TypeName&) |
175 | #endif |
176 | |
177 | // A macro to disallow all the implicit constructors, namely the |
178 | // default constructor, copy constructor and operator= functions. |
179 | // |
180 | // This should be used in the private: declarations for a class |
181 | // that wants to prevent anyone from instantiating it. This is |
182 | // especially useful for classes containing only static methods. |
183 | #ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS |
184 | #define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
185 | TypeName(); \ |
186 | DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) |
187 | #endif |
188 | |
189 | // ICU PATCH: Wrap in ICU namespace |
190 | U_NAMESPACE_BEGIN |
191 | |
192 | namespace double_conversion { |
193 | |
194 | inline int StrLength(const char* string) { |
195 | size_t length = strlen(string); |
196 | DOUBLE_CONVERSION_ASSERT(length == static_cast<size_t>(static_cast<int>(length))); |
197 | return static_cast<int>(length); |
198 | } |
199 | |
200 | // This is a simplified version of V8's Vector class. |
201 | template <typename T> |
202 | class Vector { |
203 | public: |
204 | Vector() : start_(NULL), length_(0) {} |
205 | Vector(T* data, int len) : start_(data), length_(len) { |
206 | DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL)); |
207 | } |
208 | |
209 | // Returns a vector using the same backing storage as this one, |
210 | // spanning from and including 'from', to but not including 'to'. |
211 | Vector<T> SubVector(int from, int to) { |
212 | DOUBLE_CONVERSION_ASSERT(to <= length_); |
213 | DOUBLE_CONVERSION_ASSERT(from < to); |
214 | DOUBLE_CONVERSION_ASSERT(0 <= from); |
215 | return Vector<T>(start() + from, to - from); |
216 | } |
217 | |
218 | // Returns the length of the vector. |
219 | int length() const { return length_; } |
220 | |
221 | // Returns whether or not the vector is empty. |
222 | bool is_empty() const { return length_ == 0; } |
223 | |
224 | // Returns the pointer to the start of the data in the vector. |
225 | T* start() const { return start_; } |
226 | |
227 | // Access individual vector elements - checks bounds in debug mode. |
228 | T& operator[](int index) const { |
229 | DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_); |
230 | return start_[index]; |
231 | } |
232 | |
233 | T& first() { return start_[0]; } |
234 | |
235 | T& last() { return start_[length_ - 1]; } |
236 | |
237 | void pop_back() { |
238 | DOUBLE_CONVERSION_ASSERT(!is_empty()); |
239 | --length_; |
240 | } |
241 | |
242 | private: |
243 | T* start_; |
244 | int length_; |
245 | }; |
246 | |
247 | |
248 | // Helper class for building result strings in a character buffer. The |
249 | // purpose of the class is to use safe operations that checks the |
250 | // buffer bounds on all operations in debug mode. |
251 | class StringBuilder { |
252 | public: |
253 | StringBuilder(char* buffer, int buffer_size) |
254 | : buffer_(buffer, buffer_size), position_(0) { } |
255 | |
256 | ~StringBuilder() { if (!is_finalized()) Finalize(); } |
257 | |
258 | int size() const { return buffer_.length(); } |
259 | |
260 | // Get the current position in the builder. |
261 | int position() const { |
262 | DOUBLE_CONVERSION_ASSERT(!is_finalized()); |
263 | return position_; |
264 | } |
265 | |
266 | // Reset the position. |
267 | void Reset() { position_ = 0; } |
268 | |
269 | // Add a single character to the builder. It is not allowed to add |
270 | // 0-characters; use the Finalize() method to terminate the string |
271 | // instead. |
272 | void AddCharacter(char c) { |
273 | DOUBLE_CONVERSION_ASSERT(c != '\0'); |
274 | DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length()); |
275 | buffer_[position_++] = c; |
276 | } |
277 | |
278 | // Add an entire string to the builder. Uses strlen() internally to |
279 | // compute the length of the input string. |
280 | void AddString(const char* s) { |
281 | AddSubstring(s, StrLength(s)); |
282 | } |
283 | |
284 | // Add the first 'n' characters of the given string 's' to the |
285 | // builder. The input string must have enough characters. |
286 | void AddSubstring(const char* s, int n) { |
287 | DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length()); |
288 | DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s)); |
289 | memmove(&buffer_[position_], s, n); |
290 | position_ += n; |
291 | } |
292 | |
293 | |
294 | // Add character padding to the builder. If count is non-positive, |
295 | // nothing is added to the builder. |
296 | void AddPadding(char c, int count) { |
297 | for (int i = 0; i < count; i++) { |
298 | AddCharacter(c); |
299 | } |
300 | } |
301 | |
302 | // Finalize the string by 0-terminating it and returning the buffer. |
303 | char* Finalize() { |
304 | DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length()); |
305 | buffer_[position_] = '\0'; |
306 | // Make sure nobody managed to add a 0-character to the |
307 | // buffer while building the string. |
308 | DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); |
309 | position_ = -1; |
310 | DOUBLE_CONVERSION_ASSERT(is_finalized()); |
311 | return buffer_.start(); |
312 | } |
313 | |
314 | private: |
315 | Vector<char> buffer_; |
316 | int position_; |
317 | |
318 | bool is_finalized() const { return position_ < 0; } |
319 | |
320 | DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); |
321 | }; |
322 | |
323 | // The type-based aliasing rule allows the compiler to assume that pointers of |
324 | // different types (for some definition of different) never alias each other. |
325 | // Thus the following code does not work: |
326 | // |
327 | // float f = foo(); |
328 | // int fbits = *(int*)(&f); |
329 | // |
330 | // The compiler 'knows' that the int pointer can't refer to f since the types |
331 | // don't match, so the compiler may cache f in a register, leaving random data |
332 | // in fbits. Using C++ style casts makes no difference, however a pointer to |
333 | // char data is assumed to alias any other pointer. This is the 'memcpy |
334 | // exception'. |
335 | // |
336 | // Bit_cast uses the memcpy exception to move the bits from a variable of one |
337 | // type of a variable of another type. Of course the end result is likely to |
338 | // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) |
339 | // will completely optimize BitCast away. |
340 | // |
341 | // There is an additional use for BitCast. |
342 | // Recent gccs will warn when they see casts that may result in breakage due to |
343 | // the type-based aliasing rule. If you have checked that there is no breakage |
344 | // you can use BitCast to cast one pointer type to another. This confuses gcc |
345 | // enough that it can no longer see that you have cast one pointer type to |
346 | // another thus avoiding the warning. |
347 | template <class Dest, class Source> |
348 | Dest BitCast(const Source& source) { |
349 | // Compile time assertion: sizeof(Dest) == sizeof(Source) |
350 | // A compile error here means your Dest and Source have different sizes. |
351 | #if __cplusplus >= 201103L |
352 | static_assert(sizeof(Dest) == sizeof(Source), |
353 | "source and destination size mismatch" ); |
354 | #else |
355 | DOUBLE_CONVERSION_UNUSED |
356 | typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; |
357 | #endif |
358 | |
359 | Dest dest; |
360 | memmove(&dest, &source, sizeof(dest)); |
361 | return dest; |
362 | } |
363 | |
364 | template <class Dest, class Source> |
365 | Dest BitCast(Source* source) { |
366 | return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); |
367 | } |
368 | |
369 | } // namespace double_conversion |
370 | |
371 | // ICU PATCH: Close ICU namespace |
372 | U_NAMESPACE_END |
373 | |
374 | #endif // DOUBLE_CONVERSION_UTILS_H_ |
375 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |
376 | |