1 | // © 2017 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | |
4 | #include "unicode/utypes.h" |
5 | |
6 | #if !UCONFIG_NO_FORMATTING |
7 | |
8 | #include <cstdlib> |
9 | #include <cmath> |
10 | #include <limits> |
11 | #include <stdlib.h> |
12 | |
13 | #include "unicode/plurrule.h" |
14 | #include "cmemory.h" |
15 | #include "number_decnum.h" |
16 | #include "putilimp.h" |
17 | #include "number_decimalquantity.h" |
18 | #include "number_roundingutils.h" |
19 | #include "double-conversion.h" |
20 | #include "charstr.h" |
21 | #include "number_utils.h" |
22 | #include "uassert.h" |
23 | |
24 | using namespace icu; |
25 | using namespace icu::number; |
26 | using namespace icu::number::impl; |
27 | |
28 | using icu::double_conversion::DoubleToStringConverter; |
29 | using icu::double_conversion::StringToDoubleConverter; |
30 | |
31 | namespace { |
32 | |
33 | int8_t NEGATIVE_FLAG = 1; |
34 | int8_t INFINITY_FLAG = 2; |
35 | int8_t NAN_FLAG = 4; |
36 | |
37 | /** Helper function for safe subtraction (no overflow). */ |
38 | inline int32_t safeSubtract(int32_t a, int32_t b) { |
39 | // Note: In C++, signed integer subtraction is undefined behavior. |
40 | int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b)); |
41 | if (b < 0 && diff < a) { return INT32_MAX; } |
42 | if (b > 0 && diff > a) { return INT32_MIN; } |
43 | return diff; |
44 | } |
45 | |
46 | static double DOUBLE_MULTIPLIERS[] = { |
47 | 1e0, |
48 | 1e1, |
49 | 1e2, |
50 | 1e3, |
51 | 1e4, |
52 | 1e5, |
53 | 1e6, |
54 | 1e7, |
55 | 1e8, |
56 | 1e9, |
57 | 1e10, |
58 | 1e11, |
59 | 1e12, |
60 | 1e13, |
61 | 1e14, |
62 | 1e15, |
63 | 1e16, |
64 | 1e17, |
65 | 1e18, |
66 | 1e19, |
67 | 1e20, |
68 | 1e21}; |
69 | |
70 | } // namespace |
71 | |
72 | icu::IFixedDecimal::~IFixedDecimal() = default; |
73 | |
74 | DecimalQuantity::DecimalQuantity() { |
75 | setBcdToZero(); |
76 | flags = 0; |
77 | } |
78 | |
79 | DecimalQuantity::~DecimalQuantity() { |
80 | if (usingBytes) { |
81 | uprv_free(fBCD.bcdBytes.ptr); |
82 | fBCD.bcdBytes.ptr = nullptr; |
83 | usingBytes = false; |
84 | } |
85 | } |
86 | |
87 | DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) { |
88 | *this = other; |
89 | } |
90 | |
91 | DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT { |
92 | *this = std::move(src); |
93 | } |
94 | |
95 | DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) { |
96 | if (this == &other) { |
97 | return *this; |
98 | } |
99 | copyBcdFrom(other); |
100 | copyFieldsFrom(other); |
101 | return *this; |
102 | } |
103 | |
104 | DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT { |
105 | if (this == &src) { |
106 | return *this; |
107 | } |
108 | moveBcdFrom(src); |
109 | copyFieldsFrom(src); |
110 | return *this; |
111 | } |
112 | |
113 | void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) { |
114 | bogus = other.bogus; |
115 | lReqPos = other.lReqPos; |
116 | rReqPos = other.rReqPos; |
117 | scale = other.scale; |
118 | precision = other.precision; |
119 | flags = other.flags; |
120 | origDouble = other.origDouble; |
121 | origDelta = other.origDelta; |
122 | isApproximate = other.isApproximate; |
123 | } |
124 | |
125 | void DecimalQuantity::clear() { |
126 | lReqPos = 0; |
127 | rReqPos = 0; |
128 | flags = 0; |
129 | setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data |
130 | } |
131 | |
132 | void DecimalQuantity::setMinInteger(int32_t minInt) { |
133 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
134 | U_ASSERT(minInt >= 0); |
135 | |
136 | // Special behavior: do not set minInt to be less than what is already set. |
137 | // This is so significant digits rounding can set the integer length. |
138 | if (minInt < lReqPos) { |
139 | minInt = lReqPos; |
140 | } |
141 | |
142 | // Save values into internal state |
143 | lReqPos = minInt; |
144 | } |
145 | |
146 | void DecimalQuantity::setMinFraction(int32_t minFrac) { |
147 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
148 | U_ASSERT(minFrac >= 0); |
149 | |
150 | // Save values into internal state |
151 | // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE |
152 | rReqPos = -minFrac; |
153 | } |
154 | |
155 | void DecimalQuantity::applyMaxInteger(int32_t maxInt) { |
156 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
157 | U_ASSERT(maxInt >= 0); |
158 | |
159 | if (precision == 0) { |
160 | return; |
161 | } |
162 | |
163 | if (maxInt <= scale) { |
164 | setBcdToZero(); |
165 | return; |
166 | } |
167 | |
168 | int32_t magnitude = getMagnitude(); |
169 | if (maxInt <= magnitude) { |
170 | popFromLeft(magnitude - maxInt + 1); |
171 | compact(); |
172 | } |
173 | } |
174 | |
175 | uint64_t DecimalQuantity::getPositionFingerprint() const { |
176 | uint64_t fingerprint = 0; |
177 | fingerprint ^= (lReqPos << 16); |
178 | fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32); |
179 | return fingerprint; |
180 | } |
181 | |
182 | void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode, |
183 | UErrorCode& status) { |
184 | // Do not call this method with an increment having only a 1 or a 5 digit! |
185 | // Use a more efficient call to either roundToMagnitude() or roundToNickel(). |
186 | // Check a few popular rounding increments; a more thorough check is in Java. |
187 | U_ASSERT(roundingIncrement != 0.01); |
188 | U_ASSERT(roundingIncrement != 0.05); |
189 | U_ASSERT(roundingIncrement != 0.1); |
190 | U_ASSERT(roundingIncrement != 0.5); |
191 | U_ASSERT(roundingIncrement != 1); |
192 | U_ASSERT(roundingIncrement != 5); |
193 | |
194 | DecNum incrementDN; |
195 | incrementDN.setTo(roundingIncrement, status); |
196 | if (U_FAILURE(status)) { return; } |
197 | |
198 | // Divide this DecimalQuantity by the increment, round, then multiply back. |
199 | divideBy(incrementDN, status); |
200 | if (U_FAILURE(status)) { return; } |
201 | roundToMagnitude(0, roundingMode, status); |
202 | if (U_FAILURE(status)) { return; } |
203 | multiplyBy(incrementDN, status); |
204 | if (U_FAILURE(status)) { return; } |
205 | } |
206 | |
207 | void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) { |
208 | if (isZeroish()) { |
209 | return; |
210 | } |
211 | // Convert to DecNum, multiply, and convert back. |
212 | DecNum decnum; |
213 | toDecNum(decnum, status); |
214 | if (U_FAILURE(status)) { return; } |
215 | decnum.multiplyBy(multiplicand, status); |
216 | if (U_FAILURE(status)) { return; } |
217 | setToDecNum(decnum, status); |
218 | } |
219 | |
220 | void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) { |
221 | if (isZeroish()) { |
222 | return; |
223 | } |
224 | // Convert to DecNum, multiply, and convert back. |
225 | DecNum decnum; |
226 | toDecNum(decnum, status); |
227 | if (U_FAILURE(status)) { return; } |
228 | decnum.divideBy(divisor, status); |
229 | if (U_FAILURE(status)) { return; } |
230 | setToDecNum(decnum, status); |
231 | } |
232 | |
233 | void DecimalQuantity::negate() { |
234 | flags ^= NEGATIVE_FLAG; |
235 | } |
236 | |
237 | int32_t DecimalQuantity::getMagnitude() const { |
238 | U_ASSERT(precision != 0); |
239 | return scale + precision - 1; |
240 | } |
241 | |
242 | bool DecimalQuantity::adjustMagnitude(int32_t delta) { |
243 | if (precision != 0) { |
244 | // i.e., scale += delta; origDelta += delta |
245 | bool overflow = uprv_add32_overflow(scale, delta, &scale); |
246 | overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow; |
247 | // Make sure that precision + scale won't overflow, either |
248 | int32_t dummy; |
249 | overflow = overflow || uprv_add32_overflow(scale, precision, &dummy); |
250 | return overflow; |
251 | } |
252 | return false; |
253 | } |
254 | |
255 | double DecimalQuantity::getPluralOperand(PluralOperand operand) const { |
256 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
257 | // See the comment at the top of this file explaining the "isApproximate" field. |
258 | U_ASSERT(!isApproximate); |
259 | |
260 | switch (operand) { |
261 | case PLURAL_OPERAND_I: |
262 | // Invert the negative sign if necessary |
263 | return static_cast<double>(isNegative() ? -toLong(true) : toLong(true)); |
264 | case PLURAL_OPERAND_F: |
265 | return static_cast<double>(toFractionLong(true)); |
266 | case PLURAL_OPERAND_T: |
267 | return static_cast<double>(toFractionLong(false)); |
268 | case PLURAL_OPERAND_V: |
269 | return fractionCount(); |
270 | case PLURAL_OPERAND_W: |
271 | return fractionCountWithoutTrailingZeros(); |
272 | default: |
273 | return std::abs(toDouble()); |
274 | } |
275 | } |
276 | |
277 | bool DecimalQuantity::hasIntegerValue() const { |
278 | return scale >= 0; |
279 | } |
280 | |
281 | int32_t DecimalQuantity::getUpperDisplayMagnitude() const { |
282 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
283 | // See the comment in the header file explaining the "isApproximate" field. |
284 | U_ASSERT(!isApproximate); |
285 | |
286 | int32_t magnitude = scale + precision; |
287 | int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude; |
288 | return result - 1; |
289 | } |
290 | |
291 | int32_t DecimalQuantity::getLowerDisplayMagnitude() const { |
292 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
293 | // See the comment in the header file explaining the "isApproximate" field. |
294 | U_ASSERT(!isApproximate); |
295 | |
296 | int32_t magnitude = scale; |
297 | int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude; |
298 | return result; |
299 | } |
300 | |
301 | int8_t DecimalQuantity::getDigit(int32_t magnitude) const { |
302 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
303 | // See the comment at the top of this file explaining the "isApproximate" field. |
304 | U_ASSERT(!isApproximate); |
305 | |
306 | return getDigitPos(magnitude - scale); |
307 | } |
308 | |
309 | int32_t DecimalQuantity::fractionCount() const { |
310 | return -getLowerDisplayMagnitude(); |
311 | } |
312 | |
313 | int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const { |
314 | return -scale > 0 ? -scale : 0; // max(-scale, 0) |
315 | } |
316 | |
317 | bool DecimalQuantity::isNegative() const { |
318 | return (flags & NEGATIVE_FLAG) != 0; |
319 | } |
320 | |
321 | Signum DecimalQuantity::signum() const { |
322 | if (isNegative()) { |
323 | return SIGNUM_NEG; |
324 | } else if (isZeroish() && !isInfinite()) { |
325 | return SIGNUM_ZERO; |
326 | } else { |
327 | return SIGNUM_POS; |
328 | } |
329 | } |
330 | |
331 | bool DecimalQuantity::isInfinite() const { |
332 | return (flags & INFINITY_FLAG) != 0; |
333 | } |
334 | |
335 | bool DecimalQuantity::isNaN() const { |
336 | return (flags & NAN_FLAG) != 0; |
337 | } |
338 | |
339 | bool DecimalQuantity::isZeroish() const { |
340 | return precision == 0; |
341 | } |
342 | |
343 | DecimalQuantity &DecimalQuantity::setToInt(int32_t n) { |
344 | setBcdToZero(); |
345 | flags = 0; |
346 | if (n == INT32_MIN) { |
347 | flags |= NEGATIVE_FLAG; |
348 | // leave as INT32_MIN; handled below in _setToInt() |
349 | } else if (n < 0) { |
350 | flags |= NEGATIVE_FLAG; |
351 | n = -n; |
352 | } |
353 | if (n != 0) { |
354 | _setToInt(n); |
355 | compact(); |
356 | } |
357 | return *this; |
358 | } |
359 | |
360 | void DecimalQuantity::_setToInt(int32_t n) { |
361 | if (n == INT32_MIN) { |
362 | readLongToBcd(-static_cast<int64_t>(n)); |
363 | } else { |
364 | readIntToBcd(n); |
365 | } |
366 | } |
367 | |
368 | DecimalQuantity &DecimalQuantity::setToLong(int64_t n) { |
369 | setBcdToZero(); |
370 | flags = 0; |
371 | if (n < 0 && n > INT64_MIN) { |
372 | flags |= NEGATIVE_FLAG; |
373 | n = -n; |
374 | } |
375 | if (n != 0) { |
376 | _setToLong(n); |
377 | compact(); |
378 | } |
379 | return *this; |
380 | } |
381 | |
382 | void DecimalQuantity::_setToLong(int64_t n) { |
383 | if (n == INT64_MIN) { |
384 | DecNum decnum; |
385 | UErrorCode localStatus = U_ZERO_ERROR; |
386 | decnum.setTo("9.223372036854775808E+18" , localStatus); |
387 | if (U_FAILURE(localStatus)) { return; } // unexpected |
388 | flags |= NEGATIVE_FLAG; |
389 | readDecNumberToBcd(decnum); |
390 | } else if (n <= INT32_MAX) { |
391 | readIntToBcd(static_cast<int32_t>(n)); |
392 | } else { |
393 | readLongToBcd(n); |
394 | } |
395 | } |
396 | |
397 | DecimalQuantity &DecimalQuantity::setToDouble(double n) { |
398 | setBcdToZero(); |
399 | flags = 0; |
400 | // signbit() from <math.h> handles +0.0 vs -0.0 |
401 | if (std::signbit(n)) { |
402 | flags |= NEGATIVE_FLAG; |
403 | n = -n; |
404 | } |
405 | if (std::isnan(n) != 0) { |
406 | flags |= NAN_FLAG; |
407 | } else if (std::isfinite(n) == 0) { |
408 | flags |= INFINITY_FLAG; |
409 | } else if (n != 0) { |
410 | _setToDoubleFast(n); |
411 | compact(); |
412 | } |
413 | return *this; |
414 | } |
415 | |
416 | void DecimalQuantity::_setToDoubleFast(double n) { |
417 | isApproximate = true; |
418 | origDouble = n; |
419 | origDelta = 0; |
420 | |
421 | // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now. |
422 | // TODO: Make a fast path for other types of doubles. |
423 | if (!std::numeric_limits<double>::is_iec559) { |
424 | convertToAccurateDouble(); |
425 | // Turn off the approximate double flag, since the value is now exact. |
426 | isApproximate = false; |
427 | origDouble = 0.0; |
428 | return; |
429 | } |
430 | |
431 | // To get the bits from the double, use memcpy, which takes care of endianness. |
432 | uint64_t ieeeBits; |
433 | uprv_memcpy(&ieeeBits, &n, sizeof(n)); |
434 | int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff; |
435 | |
436 | // Not all integers can be represented exactly for exponent > 52 |
437 | if (exponent <= 52 && static_cast<int64_t>(n) == n) { |
438 | _setToLong(static_cast<int64_t>(n)); |
439 | return; |
440 | } |
441 | |
442 | // 3.3219... is log2(10) |
443 | auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809489); |
444 | if (fracLength >= 0) { |
445 | int32_t i = fracLength; |
446 | // 1e22 is the largest exact double. |
447 | for (; i >= 22; i -= 22) n *= 1e22; |
448 | n *= DOUBLE_MULTIPLIERS[i]; |
449 | } else { |
450 | int32_t i = fracLength; |
451 | // 1e22 is the largest exact double. |
452 | for (; i <= -22; i += 22) n /= 1e22; |
453 | n /= DOUBLE_MULTIPLIERS[-i]; |
454 | } |
455 | auto result = static_cast<int64_t>(std::round(n)); |
456 | if (result != 0) { |
457 | _setToLong(result); |
458 | scale -= fracLength; |
459 | } |
460 | } |
461 | |
462 | void DecimalQuantity::convertToAccurateDouble() { |
463 | U_ASSERT(origDouble != 0); |
464 | int32_t delta = origDelta; |
465 | |
466 | // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++). |
467 | char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; |
468 | bool sign; // unused; always positive |
469 | int32_t length; |
470 | int32_t point; |
471 | DoubleToStringConverter::DoubleToAscii( |
472 | origDouble, |
473 | DoubleToStringConverter::DtoaMode::SHORTEST, |
474 | 0, |
475 | buffer, |
476 | sizeof(buffer), |
477 | &sign, |
478 | &length, |
479 | &point |
480 | ); |
481 | |
482 | setBcdToZero(); |
483 | readDoubleConversionToBcd(buffer, length, point); |
484 | scale += delta; |
485 | explicitExactDouble = true; |
486 | } |
487 | |
488 | DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) { |
489 | setBcdToZero(); |
490 | flags = 0; |
491 | |
492 | // Compute the decNumber representation |
493 | DecNum decnum; |
494 | decnum.setTo(n, status); |
495 | |
496 | _setToDecNum(decnum, status); |
497 | return *this; |
498 | } |
499 | |
500 | DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) { |
501 | setBcdToZero(); |
502 | flags = 0; |
503 | |
504 | _setToDecNum(decnum, status); |
505 | return *this; |
506 | } |
507 | |
508 | void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) { |
509 | if (U_FAILURE(status)) { return; } |
510 | if (decnum.isNegative()) { |
511 | flags |= NEGATIVE_FLAG; |
512 | } |
513 | if (!decnum.isZero()) { |
514 | readDecNumberToBcd(decnum); |
515 | compact(); |
516 | } |
517 | } |
518 | |
519 | int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const { |
520 | // NOTE: Call sites should be guarded by fitsInLong(), like this: |
521 | // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ } |
522 | // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits. |
523 | uint64_t result = 0L; |
524 | int32_t upperMagnitude = scale + precision - 1; |
525 | if (truncateIfOverflow) { |
526 | upperMagnitude = std::min(upperMagnitude, 17); |
527 | } |
528 | for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) { |
529 | result = result * 10 + getDigitPos(magnitude - scale); |
530 | } |
531 | if (isNegative()) { |
532 | return static_cast<int64_t>(0LL - result); // i.e., -result |
533 | } |
534 | return static_cast<int64_t>(result); |
535 | } |
536 | |
537 | uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const { |
538 | uint64_t result = 0L; |
539 | int32_t magnitude = -1; |
540 | int32_t lowerMagnitude = scale; |
541 | if (includeTrailingZeros) { |
542 | lowerMagnitude = std::min(lowerMagnitude, rReqPos); |
543 | } |
544 | for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) { |
545 | result = result * 10 + getDigitPos(magnitude - scale); |
546 | } |
547 | // Remove trailing zeros; this can happen during integer overflow cases. |
548 | if (!includeTrailingZeros) { |
549 | while (result > 0 && (result % 10) == 0) { |
550 | result /= 10; |
551 | } |
552 | } |
553 | return result; |
554 | } |
555 | |
556 | bool DecimalQuantity::fitsInLong(bool ignoreFraction) const { |
557 | if (isInfinite() || isNaN()) { |
558 | return false; |
559 | } |
560 | if (isZeroish()) { |
561 | return true; |
562 | } |
563 | if (scale < 0 && !ignoreFraction) { |
564 | return false; |
565 | } |
566 | int magnitude = getMagnitude(); |
567 | if (magnitude < 18) { |
568 | return true; |
569 | } |
570 | if (magnitude > 18) { |
571 | return false; |
572 | } |
573 | // Hard case: the magnitude is 10^18. |
574 | // The largest int64 is: 9,223,372,036,854,775,807 |
575 | for (int p = 0; p < precision; p++) { |
576 | int8_t digit = getDigit(18 - p); |
577 | static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 }; |
578 | if (digit < INT64_BCD[p]) { |
579 | return true; |
580 | } else if (digit > INT64_BCD[p]) { |
581 | return false; |
582 | } |
583 | } |
584 | // Exactly equal to max long plus one. |
585 | return isNegative(); |
586 | } |
587 | |
588 | double DecimalQuantity::toDouble() const { |
589 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
590 | // See the comment in the header file explaining the "isApproximate" field. |
591 | U_ASSERT(!isApproximate); |
592 | |
593 | if (isNaN()) { |
594 | return NAN; |
595 | } else if (isInfinite()) { |
596 | return isNegative() ? -INFINITY : INFINITY; |
597 | } |
598 | |
599 | // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter. |
600 | StringToDoubleConverter converter(0, 0, 0, "" , "" ); |
601 | UnicodeString numberString = this->toScientificString(); |
602 | int32_t count; |
603 | return converter.StringToDouble( |
604 | reinterpret_cast<const uint16_t*>(numberString.getBuffer()), |
605 | numberString.length(), |
606 | &count); |
607 | } |
608 | |
609 | void DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const { |
610 | // Special handling for zero |
611 | if (precision == 0) { |
612 | output.setTo("0" , status); |
613 | } |
614 | |
615 | // Use the BCD constructor. We need to do a little bit of work to convert, though. |
616 | // The decNumber constructor expects most-significant first, but we store least-significant first. |
617 | MaybeStackArray<uint8_t, 20> ubcd(precision); |
618 | for (int32_t m = 0; m < precision; m++) { |
619 | ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m)); |
620 | } |
621 | output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status); |
622 | } |
623 | |
624 | void DecimalQuantity::truncate() { |
625 | if (scale < 0) { |
626 | shiftRight(-scale); |
627 | scale = 0; |
628 | compact(); |
629 | } |
630 | } |
631 | |
632 | void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
633 | roundToMagnitude(magnitude, roundingMode, true, status); |
634 | } |
635 | |
636 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
637 | roundToMagnitude(magnitude, roundingMode, false, status); |
638 | } |
639 | |
640 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) { |
641 | // The position in the BCD at which rounding will be performed; digits to the right of position |
642 | // will be rounded away. |
643 | int position = safeSubtract(magnitude, scale); |
644 | |
645 | // "trailing" = least significant digit to the left of rounding |
646 | int8_t trailingDigit = getDigitPos(position); |
647 | |
648 | if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
649 | // All digits are to the left of the rounding magnitude. |
650 | } else if (precision == 0) { |
651 | // No rounding for zero. |
652 | } else { |
653 | // Perform rounding logic. |
654 | // "leading" = most significant digit to the right of rounding |
655 | int8_t leadingDigit = getDigitPos(safeSubtract(position, 1)); |
656 | |
657 | // Compute which section of the number we are in. |
658 | // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles) |
659 | // LOWER means we are between the bottom edge and the midpoint, like 1.391 |
660 | // MIDPOINT means we are exactly in the middle, like 1.500 |
661 | // UPPER means we are between the midpoint and the top edge, like 1.916 |
662 | roundingutils::Section section; |
663 | if (!isApproximate) { |
664 | if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
665 | // Nickel rounding, and not at .02x or .07x |
666 | if (trailingDigit < 2) { |
667 | // .00, .01 => down to .00 |
668 | section = roundingutils::SECTION_LOWER; |
669 | } else if (trailingDigit < 5) { |
670 | // .03, .04 => up to .05 |
671 | section = roundingutils::SECTION_UPPER; |
672 | } else if (trailingDigit < 7) { |
673 | // .05, .06 => down to .05 |
674 | section = roundingutils::SECTION_LOWER; |
675 | } else { |
676 | // .08, .09 => up to .10 |
677 | section = roundingutils::SECTION_UPPER; |
678 | } |
679 | } else if (leadingDigit < 5) { |
680 | // Includes nickel rounding .020-.024 and .070-.074 |
681 | section = roundingutils::SECTION_LOWER; |
682 | } else if (leadingDigit > 5) { |
683 | // Includes nickel rounding .026-.029 and .076-.079 |
684 | section = roundingutils::SECTION_UPPER; |
685 | } else { |
686 | // Includes nickel rounding .025 and .075 |
687 | section = roundingutils::SECTION_MIDPOINT; |
688 | for (int p = safeSubtract(position, 2); p >= 0; p--) { |
689 | if (getDigitPos(p) != 0) { |
690 | section = roundingutils::SECTION_UPPER; |
691 | break; |
692 | } |
693 | } |
694 | } |
695 | } else { |
696 | int32_t p = safeSubtract(position, 2); |
697 | int32_t minP = uprv_max(0, precision - 14); |
698 | if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
699 | section = roundingutils::SECTION_LOWER_EDGE; |
700 | for (; p >= minP; p--) { |
701 | if (getDigitPos(p) != 0) { |
702 | section = roundingutils::SECTION_LOWER; |
703 | break; |
704 | } |
705 | } |
706 | } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
707 | section = roundingutils::SECTION_MIDPOINT; |
708 | for (; p >= minP; p--) { |
709 | if (getDigitPos(p) != 9) { |
710 | section = roundingutils::SECTION_LOWER; |
711 | break; |
712 | } |
713 | } |
714 | } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
715 | section = roundingutils::SECTION_MIDPOINT; |
716 | for (; p >= minP; p--) { |
717 | if (getDigitPos(p) != 0) { |
718 | section = roundingutils::SECTION_UPPER; |
719 | break; |
720 | } |
721 | } |
722 | } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) { |
723 | section = roundingutils::SECTION_UPPER_EDGE; |
724 | for (; p >= minP; p--) { |
725 | if (getDigitPos(p) != 9) { |
726 | section = roundingutils::SECTION_UPPER; |
727 | break; |
728 | } |
729 | } |
730 | } else if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
731 | // Nickel rounding, and not at .02x or .07x |
732 | if (trailingDigit < 2) { |
733 | // .00, .01 => down to .00 |
734 | section = roundingutils::SECTION_LOWER; |
735 | } else if (trailingDigit < 5) { |
736 | // .03, .04 => up to .05 |
737 | section = roundingutils::SECTION_UPPER; |
738 | } else if (trailingDigit < 7) { |
739 | // .05, .06 => down to .05 |
740 | section = roundingutils::SECTION_LOWER; |
741 | } else { |
742 | // .08, .09 => up to .10 |
743 | section = roundingutils::SECTION_UPPER; |
744 | } |
745 | } else if (leadingDigit < 5) { |
746 | // Includes nickel rounding .020-.024 and .070-.074 |
747 | section = roundingutils::SECTION_LOWER; |
748 | } else { |
749 | // Includes nickel rounding .026-.029 and .076-.079 |
750 | section = roundingutils::SECTION_UPPER; |
751 | } |
752 | |
753 | bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode); |
754 | if (safeSubtract(position, 1) < precision - 14 || |
755 | (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) || |
756 | (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { |
757 | // Oops! This means that we have to get the exact representation of the double, |
758 | // because the zone of uncertainty is along the rounding boundary. |
759 | convertToAccurateDouble(); |
760 | roundToMagnitude(magnitude, roundingMode, nickel, status); // start over |
761 | return; |
762 | } |
763 | |
764 | // Turn off the approximate double flag, since the value is now confirmed to be exact. |
765 | isApproximate = false; |
766 | origDouble = 0.0; |
767 | origDelta = 0; |
768 | |
769 | if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
770 | // All digits are to the left of the rounding magnitude. |
771 | return; |
772 | } |
773 | |
774 | // Good to continue rounding. |
775 | if (section == -1) { section = roundingutils::SECTION_LOWER; } |
776 | if (section == -2) { section = roundingutils::SECTION_UPPER; } |
777 | } |
778 | |
779 | // Nickel rounding "half even" goes to the nearest whole (away from the 5). |
780 | bool isEven = nickel |
781 | ? (trailingDigit < 2 || trailingDigit > 7 |
782 | || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER) |
783 | || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER)) |
784 | : (trailingDigit % 2) == 0; |
785 | |
786 | bool roundDown = roundingutils::getRoundingDirection(isEven, |
787 | isNegative(), |
788 | section, |
789 | roundingMode, |
790 | status); |
791 | if (U_FAILURE(status)) { |
792 | return; |
793 | } |
794 | |
795 | // Perform truncation |
796 | if (position >= precision) { |
797 | setBcdToZero(); |
798 | scale = magnitude; |
799 | } else { |
800 | shiftRight(position); |
801 | } |
802 | |
803 | if (nickel) { |
804 | if (trailingDigit < 5 && roundDown) { |
805 | setDigitPos(0, 0); |
806 | compact(); |
807 | return; |
808 | } else if (trailingDigit >= 5 && !roundDown) { |
809 | setDigitPos(0, 9); |
810 | trailingDigit = 9; |
811 | // do not return: use the bubbling logic below |
812 | } else { |
813 | setDigitPos(0, 5); |
814 | // compact not necessary: digit at position 0 is nonzero |
815 | return; |
816 | } |
817 | } |
818 | |
819 | // Bubble the result to the higher digits |
820 | if (!roundDown) { |
821 | if (trailingDigit == 9) { |
822 | int bubblePos = 0; |
823 | // Note: in the long implementation, the most digits BCD can have at this point is |
824 | // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe. |
825 | for (; getDigitPos(bubblePos) == 9; bubblePos++) {} |
826 | shiftRight(bubblePos); // shift off the trailing 9s |
827 | } |
828 | int8_t digit0 = getDigitPos(0); |
829 | U_ASSERT(digit0 != 9); |
830 | setDigitPos(0, static_cast<int8_t>(digit0 + 1)); |
831 | precision += 1; // in case an extra digit got added |
832 | } |
833 | |
834 | compact(); |
835 | } |
836 | } |
837 | |
838 | void DecimalQuantity::roundToInfinity() { |
839 | if (isApproximate) { |
840 | convertToAccurateDouble(); |
841 | } |
842 | } |
843 | |
844 | void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) { |
845 | U_ASSERT(leadingZeros >= 0); |
846 | |
847 | // Zero requires special handling to maintain the invariant that the least-significant digit |
848 | // in the BCD is nonzero. |
849 | if (value == 0) { |
850 | if (appendAsInteger && precision != 0) { |
851 | scale += leadingZeros + 1; |
852 | } |
853 | return; |
854 | } |
855 | |
856 | // Deal with trailing zeros |
857 | if (scale > 0) { |
858 | leadingZeros += scale; |
859 | if (appendAsInteger) { |
860 | scale = 0; |
861 | } |
862 | } |
863 | |
864 | // Append digit |
865 | shiftLeft(leadingZeros + 1); |
866 | setDigitPos(0, value); |
867 | |
868 | // Fix scale if in integer mode |
869 | if (appendAsInteger) { |
870 | scale += leadingZeros + 1; |
871 | } |
872 | } |
873 | |
874 | UnicodeString DecimalQuantity::toPlainString() const { |
875 | U_ASSERT(!isApproximate); |
876 | UnicodeString sb; |
877 | if (isNegative()) { |
878 | sb.append(u'-'); |
879 | } |
880 | if (precision == 0 || getMagnitude() < 0) { |
881 | sb.append(u'0'); |
882 | } |
883 | for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { |
884 | if (m == -1) { sb.append(u'.'); } |
885 | sb.append(getDigit(m) + u'0'); |
886 | } |
887 | return sb; |
888 | } |
889 | |
890 | UnicodeString DecimalQuantity::toScientificString() const { |
891 | U_ASSERT(!isApproximate); |
892 | UnicodeString result; |
893 | if (isNegative()) { |
894 | result.append(u'-'); |
895 | } |
896 | if (precision == 0) { |
897 | result.append(u"0E+0" , -1); |
898 | return result; |
899 | } |
900 | int32_t upperPos = precision - 1; |
901 | int32_t lowerPos = 0; |
902 | int32_t p = upperPos; |
903 | result.append(u'0' + getDigitPos(p)); |
904 | if ((--p) >= lowerPos) { |
905 | result.append(u'.'); |
906 | for (; p >= lowerPos; p--) { |
907 | result.append(u'0' + getDigitPos(p)); |
908 | } |
909 | } |
910 | result.append(u'E'); |
911 | int32_t _scale = upperPos + scale; |
912 | if (_scale == INT32_MIN) { |
913 | result.append({u"-2147483648" , -1}); |
914 | return result; |
915 | } else if (_scale < 0) { |
916 | _scale *= -1; |
917 | result.append(u'-'); |
918 | } else { |
919 | result.append(u'+'); |
920 | } |
921 | if (_scale == 0) { |
922 | result.append(u'0'); |
923 | } |
924 | int32_t insertIndex = result.length(); |
925 | while (_scale > 0) { |
926 | std::div_t res = std::div(_scale, 10); |
927 | result.insert(insertIndex, u'0' + res.rem); |
928 | _scale = res.quot; |
929 | } |
930 | return result; |
931 | } |
932 | |
933 | //////////////////////////////////////////////////// |
934 | /// End of DecimalQuantity_AbstractBCD.java /// |
935 | /// Start of DecimalQuantity_DualStorageBCD.java /// |
936 | //////////////////////////////////////////////////// |
937 | |
938 | int8_t DecimalQuantity::getDigitPos(int32_t position) const { |
939 | if (usingBytes) { |
940 | if (position < 0 || position >= precision) { return 0; } |
941 | return fBCD.bcdBytes.ptr[position]; |
942 | } else { |
943 | if (position < 0 || position >= 16) { return 0; } |
944 | return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf); |
945 | } |
946 | } |
947 | |
948 | void DecimalQuantity::setDigitPos(int32_t position, int8_t value) { |
949 | U_ASSERT(position >= 0); |
950 | if (usingBytes) { |
951 | ensureCapacity(position + 1); |
952 | fBCD.bcdBytes.ptr[position] = value; |
953 | } else if (position >= 16) { |
954 | switchStorage(); |
955 | ensureCapacity(position + 1); |
956 | fBCD.bcdBytes.ptr[position] = value; |
957 | } else { |
958 | int shift = position * 4; |
959 | fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift); |
960 | } |
961 | } |
962 | |
963 | void DecimalQuantity::shiftLeft(int32_t numDigits) { |
964 | if (!usingBytes && precision + numDigits > 16) { |
965 | switchStorage(); |
966 | } |
967 | if (usingBytes) { |
968 | ensureCapacity(precision + numDigits); |
969 | int i = precision + numDigits - 1; |
970 | for (; i >= numDigits; i--) { |
971 | fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits]; |
972 | } |
973 | for (; i >= 0; i--) { |
974 | fBCD.bcdBytes.ptr[i] = 0; |
975 | } |
976 | } else { |
977 | fBCD.bcdLong <<= (numDigits * 4); |
978 | } |
979 | scale -= numDigits; |
980 | precision += numDigits; |
981 | } |
982 | |
983 | void DecimalQuantity::shiftRight(int32_t numDigits) { |
984 | if (usingBytes) { |
985 | int i = 0; |
986 | for (; i < precision - numDigits; i++) { |
987 | fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits]; |
988 | } |
989 | for (; i < precision; i++) { |
990 | fBCD.bcdBytes.ptr[i] = 0; |
991 | } |
992 | } else { |
993 | fBCD.bcdLong >>= (numDigits * 4); |
994 | } |
995 | scale += numDigits; |
996 | precision -= numDigits; |
997 | } |
998 | |
999 | void DecimalQuantity::popFromLeft(int32_t numDigits) { |
1000 | U_ASSERT(numDigits <= precision); |
1001 | if (usingBytes) { |
1002 | int i = precision - 1; |
1003 | for (; i >= precision - numDigits; i--) { |
1004 | fBCD.bcdBytes.ptr[i] = 0; |
1005 | } |
1006 | } else { |
1007 | fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1; |
1008 | } |
1009 | precision -= numDigits; |
1010 | } |
1011 | |
1012 | void DecimalQuantity::setBcdToZero() { |
1013 | if (usingBytes) { |
1014 | uprv_free(fBCD.bcdBytes.ptr); |
1015 | fBCD.bcdBytes.ptr = nullptr; |
1016 | usingBytes = false; |
1017 | } |
1018 | fBCD.bcdLong = 0L; |
1019 | scale = 0; |
1020 | precision = 0; |
1021 | isApproximate = false; |
1022 | origDouble = 0; |
1023 | origDelta = 0; |
1024 | } |
1025 | |
1026 | void DecimalQuantity::readIntToBcd(int32_t n) { |
1027 | U_ASSERT(n != 0); |
1028 | // ints always fit inside the long implementation. |
1029 | uint64_t result = 0L; |
1030 | int i = 16; |
1031 | for (; n != 0; n /= 10, i--) { |
1032 | result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60); |
1033 | } |
1034 | U_ASSERT(!usingBytes); |
1035 | fBCD.bcdLong = result >> (i * 4); |
1036 | scale = 0; |
1037 | precision = 16 - i; |
1038 | } |
1039 | |
1040 | void DecimalQuantity::readLongToBcd(int64_t n) { |
1041 | U_ASSERT(n != 0); |
1042 | if (n >= 10000000000000000L) { |
1043 | ensureCapacity(); |
1044 | int i = 0; |
1045 | for (; n != 0L; n /= 10L, i++) { |
1046 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10); |
1047 | } |
1048 | U_ASSERT(usingBytes); |
1049 | scale = 0; |
1050 | precision = i; |
1051 | } else { |
1052 | uint64_t result = 0L; |
1053 | int i = 16; |
1054 | for (; n != 0L; n /= 10L, i--) { |
1055 | result = (result >> 4) + ((n % 10) << 60); |
1056 | } |
1057 | U_ASSERT(i >= 0); |
1058 | U_ASSERT(!usingBytes); |
1059 | fBCD.bcdLong = result >> (i * 4); |
1060 | scale = 0; |
1061 | precision = 16 - i; |
1062 | } |
1063 | } |
1064 | |
1065 | void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) { |
1066 | const decNumber* dn = decnum.getRawDecNumber(); |
1067 | if (dn->digits > 16) { |
1068 | ensureCapacity(dn->digits); |
1069 | for (int32_t i = 0; i < dn->digits; i++) { |
1070 | fBCD.bcdBytes.ptr[i] = dn->lsu[i]; |
1071 | } |
1072 | } else { |
1073 | uint64_t result = 0L; |
1074 | for (int32_t i = 0; i < dn->digits; i++) { |
1075 | result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i); |
1076 | } |
1077 | fBCD.bcdLong = result; |
1078 | } |
1079 | scale = dn->exponent; |
1080 | precision = dn->digits; |
1081 | } |
1082 | |
1083 | void DecimalQuantity::readDoubleConversionToBcd( |
1084 | const char* buffer, int32_t length, int32_t point) { |
1085 | // NOTE: Despite the fact that double-conversion's API is called |
1086 | // "DoubleToAscii", they actually use '0' (as opposed to u8'0'). |
1087 | if (length > 16) { |
1088 | ensureCapacity(length); |
1089 | for (int32_t i = 0; i < length; i++) { |
1090 | fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0'; |
1091 | } |
1092 | } else { |
1093 | uint64_t result = 0L; |
1094 | for (int32_t i = 0; i < length; i++) { |
1095 | result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i); |
1096 | } |
1097 | fBCD.bcdLong = result; |
1098 | } |
1099 | scale = point - length; |
1100 | precision = length; |
1101 | } |
1102 | |
1103 | void DecimalQuantity::compact() { |
1104 | if (usingBytes) { |
1105 | int32_t delta = 0; |
1106 | for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++); |
1107 | if (delta == precision) { |
1108 | // Number is zero |
1109 | setBcdToZero(); |
1110 | return; |
1111 | } else { |
1112 | // Remove trailing zeros |
1113 | shiftRight(delta); |
1114 | } |
1115 | |
1116 | // Compute precision |
1117 | int32_t leading = precision - 1; |
1118 | for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--); |
1119 | precision = leading + 1; |
1120 | |
1121 | // Switch storage mechanism if possible |
1122 | if (precision <= 16) { |
1123 | switchStorage(); |
1124 | } |
1125 | |
1126 | } else { |
1127 | if (fBCD.bcdLong == 0L) { |
1128 | // Number is zero |
1129 | setBcdToZero(); |
1130 | return; |
1131 | } |
1132 | |
1133 | // Compact the number (remove trailing zeros) |
1134 | // TODO: Use a more efficient algorithm here and below. There is a logarithmic one. |
1135 | int32_t delta = 0; |
1136 | for (; delta < precision && getDigitPos(delta) == 0; delta++); |
1137 | fBCD.bcdLong >>= delta * 4; |
1138 | scale += delta; |
1139 | |
1140 | // Compute precision |
1141 | int32_t leading = precision - 1; |
1142 | for (; leading >= 0 && getDigitPos(leading) == 0; leading--); |
1143 | precision = leading + 1; |
1144 | } |
1145 | } |
1146 | |
1147 | void DecimalQuantity::ensureCapacity() { |
1148 | ensureCapacity(40); |
1149 | } |
1150 | |
1151 | void DecimalQuantity::ensureCapacity(int32_t capacity) { |
1152 | if (capacity == 0) { return; } |
1153 | int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0; |
1154 | if (!usingBytes) { |
1155 | // TODO: There is nothing being done to check for memory allocation failures. |
1156 | // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can |
1157 | // make these arrays half the size. |
1158 | fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t))); |
1159 | fBCD.bcdBytes.len = capacity; |
1160 | // Initialize the byte array to zeros (this is done automatically in Java) |
1161 | uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t)); |
1162 | } else if (oldCapacity < capacity) { |
1163 | auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t))); |
1164 | uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t)); |
1165 | // Initialize the rest of the byte array to zeros (this is done automatically in Java) |
1166 | uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t)); |
1167 | uprv_free(fBCD.bcdBytes.ptr); |
1168 | fBCD.bcdBytes.ptr = bcd1; |
1169 | fBCD.bcdBytes.len = capacity * 2; |
1170 | } |
1171 | usingBytes = true; |
1172 | } |
1173 | |
1174 | void DecimalQuantity::switchStorage() { |
1175 | if (usingBytes) { |
1176 | // Change from bytes to long |
1177 | uint64_t bcdLong = 0L; |
1178 | for (int i = precision - 1; i >= 0; i--) { |
1179 | bcdLong <<= 4; |
1180 | bcdLong |= fBCD.bcdBytes.ptr[i]; |
1181 | } |
1182 | uprv_free(fBCD.bcdBytes.ptr); |
1183 | fBCD.bcdBytes.ptr = nullptr; |
1184 | fBCD.bcdLong = bcdLong; |
1185 | usingBytes = false; |
1186 | } else { |
1187 | // Change from long to bytes |
1188 | // Copy the long into a local variable since it will get munged when we allocate the bytes |
1189 | uint64_t bcdLong = fBCD.bcdLong; |
1190 | ensureCapacity(); |
1191 | for (int i = 0; i < precision; i++) { |
1192 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf); |
1193 | bcdLong >>= 4; |
1194 | } |
1195 | U_ASSERT(usingBytes); |
1196 | } |
1197 | } |
1198 | |
1199 | void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) { |
1200 | setBcdToZero(); |
1201 | if (other.usingBytes) { |
1202 | ensureCapacity(other.precision); |
1203 | uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t)); |
1204 | } else { |
1205 | fBCD.bcdLong = other.fBCD.bcdLong; |
1206 | } |
1207 | } |
1208 | |
1209 | void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) { |
1210 | setBcdToZero(); |
1211 | if (other.usingBytes) { |
1212 | usingBytes = true; |
1213 | fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr; |
1214 | fBCD.bcdBytes.len = other.fBCD.bcdBytes.len; |
1215 | // Take ownership away from the old instance: |
1216 | other.fBCD.bcdBytes.ptr = nullptr; |
1217 | other.usingBytes = false; |
1218 | } else { |
1219 | fBCD.bcdLong = other.fBCD.bcdLong; |
1220 | } |
1221 | } |
1222 | |
1223 | const char16_t* DecimalQuantity::checkHealth() const { |
1224 | if (usingBytes) { |
1225 | if (precision == 0) { return u"Zero precision but we are in byte mode" ; } |
1226 | int32_t capacity = fBCD.bcdBytes.len; |
1227 | if (precision > capacity) { return u"Precision exceeds length of byte array" ; } |
1228 | if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode" ; } |
1229 | if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode" ; } |
1230 | for (int i = 0; i < precision; i++) { |
1231 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array" ; } |
1232 | if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array" ; } |
1233 | } |
1234 | for (int i = precision; i < capacity; i++) { |
1235 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array" ; } |
1236 | } |
1237 | } else { |
1238 | if (precision == 0 && fBCD.bcdLong != 0) { |
1239 | return u"Value in bcdLong even though precision is zero" ; |
1240 | } |
1241 | if (precision > 16) { return u"Precision exceeds length of long" ; } |
1242 | if (precision != 0 && getDigitPos(precision - 1) == 0) { |
1243 | return u"Most significant digit is zero in long mode" ; |
1244 | } |
1245 | if (precision != 0 && getDigitPos(0) == 0) { |
1246 | return u"Least significant digit is zero in long mode" ; |
1247 | } |
1248 | for (int i = 0; i < precision; i++) { |
1249 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long" ; } |
1250 | if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)" ; } |
1251 | } |
1252 | for (int i = precision; i < 16; i++) { |
1253 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long" ; } |
1254 | } |
1255 | } |
1256 | |
1257 | // No error |
1258 | return nullptr; |
1259 | } |
1260 | |
1261 | bool DecimalQuantity::operator==(const DecimalQuantity& other) const { |
1262 | bool basicEquals = |
1263 | scale == other.scale |
1264 | && precision == other.precision |
1265 | && flags == other.flags |
1266 | && lReqPos == other.lReqPos |
1267 | && rReqPos == other.rReqPos |
1268 | && isApproximate == other.isApproximate; |
1269 | if (!basicEquals) { |
1270 | return false; |
1271 | } |
1272 | |
1273 | if (precision == 0) { |
1274 | return true; |
1275 | } else if (isApproximate) { |
1276 | return origDouble == other.origDouble && origDelta == other.origDelta; |
1277 | } else { |
1278 | for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { |
1279 | if (getDigit(m) != other.getDigit(m)) { |
1280 | return false; |
1281 | } |
1282 | } |
1283 | return true; |
1284 | } |
1285 | } |
1286 | |
1287 | UnicodeString DecimalQuantity::toString() const { |
1288 | MaybeStackArray<char, 30> digits(precision + 1); |
1289 | for (int32_t i = 0; i < precision; i++) { |
1290 | digits[i] = getDigitPos(precision - i - 1) + '0'; |
1291 | } |
1292 | digits[precision] = 0; // terminate buffer |
1293 | char buffer8[100]; |
1294 | snprintf( |
1295 | buffer8, |
1296 | sizeof(buffer8), |
1297 | "<DecimalQuantity %d:%d %s %s%s%s%d>" , |
1298 | lReqPos, |
1299 | rReqPos, |
1300 | (usingBytes ? "bytes" : "long" ), |
1301 | (isNegative() ? "-" : "" ), |
1302 | (precision == 0 ? "0" : digits.getAlias()), |
1303 | "E" , |
1304 | scale); |
1305 | return UnicodeString(buffer8, -1, US_INV); |
1306 | } |
1307 | |
1308 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
1309 | |