1 | /* |
2 | * jcsample.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1991-1996, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
8 | * Copyright (C) 2014, MIPS Technologies, Inc., California. |
9 | * Copyright (C) 2015, D. R. Commander. |
10 | * For conditions of distribution and use, see the accompanying README.ijg |
11 | * file. |
12 | * |
13 | * This file contains downsampling routines. |
14 | * |
15 | * Downsampling input data is counted in "row groups". A row group |
16 | * is defined to be max_v_samp_factor pixel rows of each component, |
17 | * from which the downsampler produces v_samp_factor sample rows. |
18 | * A single row group is processed in each call to the downsampler module. |
19 | * |
20 | * The downsampler is responsible for edge-expansion of its output data |
21 | * to fill an integral number of DCT blocks horizontally. The source buffer |
22 | * may be modified if it is helpful for this purpose (the source buffer is |
23 | * allocated wide enough to correspond to the desired output width). |
24 | * The caller (the prep controller) is responsible for vertical padding. |
25 | * |
26 | * The downsampler may request "context rows" by setting need_context_rows |
27 | * during startup. In this case, the input arrays will contain at least |
28 | * one row group's worth of pixels above and below the passed-in data; |
29 | * the caller will create dummy rows at image top and bottom by replicating |
30 | * the first or last real pixel row. |
31 | * |
32 | * An excellent reference for image resampling is |
33 | * Digital Image Warping, George Wolberg, 1990. |
34 | * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
35 | * |
36 | * The downsampling algorithm used here is a simple average of the source |
37 | * pixels covered by the output pixel. The hi-falutin sampling literature |
38 | * refers to this as a "box filter". In general the characteristics of a box |
39 | * filter are not very good, but for the specific cases we normally use (1:1 |
40 | * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
41 | * nearly so bad. If you intend to use other sampling ratios, you'd be well |
42 | * advised to improve this code. |
43 | * |
44 | * A simple input-smoothing capability is provided. This is mainly intended |
45 | * for cleaning up color-dithered GIF input files (if you find it inadequate, |
46 | * we suggest using an external filtering program such as pnmconvol). When |
47 | * enabled, each input pixel P is replaced by a weighted sum of itself and its |
48 | * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
49 | * where SF = (smoothing_factor / 1024). |
50 | * Currently, smoothing is only supported for 2h2v sampling factors. |
51 | */ |
52 | |
53 | #define JPEG_INTERNALS |
54 | #include "jinclude.h" |
55 | #include "jpeglib.h" |
56 | #include "jsimd.h" |
57 | |
58 | |
59 | /* Pointer to routine to downsample a single component */ |
60 | typedef void (*downsample1_ptr) (j_compress_ptr cinfo, |
61 | jpeg_component_info *compptr, |
62 | JSAMPARRAY input_data, |
63 | JSAMPARRAY output_data); |
64 | |
65 | /* Private subobject */ |
66 | |
67 | typedef struct { |
68 | struct jpeg_downsampler pub; /* public fields */ |
69 | |
70 | /* Downsampling method pointers, one per component */ |
71 | downsample1_ptr methods[MAX_COMPONENTS]; |
72 | } my_downsampler; |
73 | |
74 | typedef my_downsampler *my_downsample_ptr; |
75 | |
76 | |
77 | /* |
78 | * Initialize for a downsampling pass. |
79 | */ |
80 | |
81 | METHODDEF(void) |
82 | start_pass_downsample(j_compress_ptr cinfo) |
83 | { |
84 | /* no work for now */ |
85 | } |
86 | |
87 | |
88 | /* |
89 | * Expand a component horizontally from width input_cols to width output_cols, |
90 | * by duplicating the rightmost samples. |
91 | */ |
92 | |
93 | LOCAL(void) |
94 | expand_right_edge(JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols, |
95 | JDIMENSION output_cols) |
96 | { |
97 | register JSAMPROW ptr; |
98 | register JSAMPLE pixval; |
99 | register int count; |
100 | int row; |
101 | int numcols = (int)(output_cols - input_cols); |
102 | |
103 | if (numcols > 0) { |
104 | for (row = 0; row < num_rows; row++) { |
105 | ptr = image_data[row] + input_cols; |
106 | pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
107 | for (count = numcols; count > 0; count--) |
108 | *ptr++ = pixval; |
109 | } |
110 | } |
111 | } |
112 | |
113 | |
114 | /* |
115 | * Do downsampling for a whole row group (all components). |
116 | * |
117 | * In this version we simply downsample each component independently. |
118 | */ |
119 | |
120 | METHODDEF(void) |
121 | sep_downsample(j_compress_ptr cinfo, JSAMPIMAGE input_buf, |
122 | JDIMENSION in_row_index, JSAMPIMAGE output_buf, |
123 | JDIMENSION out_row_group_index) |
124 | { |
125 | my_downsample_ptr downsample = (my_downsample_ptr)cinfo->downsample; |
126 | int ci; |
127 | jpeg_component_info *compptr; |
128 | JSAMPARRAY in_ptr, out_ptr; |
129 | |
130 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
131 | ci++, compptr++) { |
132 | in_ptr = input_buf[ci] + in_row_index; |
133 | out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); |
134 | (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
135 | } |
136 | } |
137 | |
138 | |
139 | /* |
140 | * Downsample pixel values of a single component. |
141 | * One row group is processed per call. |
142 | * This version handles arbitrary integral sampling ratios, without smoothing. |
143 | * Note that this version is not actually used for customary sampling ratios. |
144 | */ |
145 | |
146 | METHODDEF(void) |
147 | int_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, |
148 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
149 | { |
150 | int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
151 | JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
152 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
153 | JSAMPROW inptr, outptr; |
154 | JLONG outvalue; |
155 | |
156 | h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; |
157 | v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; |
158 | numpix = h_expand * v_expand; |
159 | numpix2 = numpix / 2; |
160 | |
161 | /* Expand input data enough to let all the output samples be generated |
162 | * by the standard loop. Special-casing padded output would be more |
163 | * efficient. |
164 | */ |
165 | expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, |
166 | output_cols * h_expand); |
167 | |
168 | inrow = 0; |
169 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
170 | outptr = output_data[outrow]; |
171 | for (outcol = 0, outcol_h = 0; outcol < output_cols; |
172 | outcol++, outcol_h += h_expand) { |
173 | outvalue = 0; |
174 | for (v = 0; v < v_expand; v++) { |
175 | inptr = input_data[inrow + v] + outcol_h; |
176 | for (h = 0; h < h_expand; h++) { |
177 | outvalue += (JLONG)GETJSAMPLE(*inptr++); |
178 | } |
179 | } |
180 | *outptr++ = (JSAMPLE)((outvalue + numpix2) / numpix); |
181 | } |
182 | inrow += v_expand; |
183 | } |
184 | } |
185 | |
186 | |
187 | /* |
188 | * Downsample pixel values of a single component. |
189 | * This version handles the special case of a full-size component, |
190 | * without smoothing. |
191 | */ |
192 | |
193 | METHODDEF(void) |
194 | fullsize_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, |
195 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
196 | { |
197 | /* Copy the data */ |
198 | jcopy_sample_rows(input_data, 0, output_data, 0, cinfo->max_v_samp_factor, |
199 | cinfo->image_width); |
200 | /* Edge-expand */ |
201 | expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, |
202 | compptr->width_in_blocks * DCTSIZE); |
203 | } |
204 | |
205 | |
206 | /* |
207 | * Downsample pixel values of a single component. |
208 | * This version handles the common case of 2:1 horizontal and 1:1 vertical, |
209 | * without smoothing. |
210 | * |
211 | * A note about the "bias" calculations: when rounding fractional values to |
212 | * integer, we do not want to always round 0.5 up to the next integer. |
213 | * If we did that, we'd introduce a noticeable bias towards larger values. |
214 | * Instead, this code is arranged so that 0.5 will be rounded up or down at |
215 | * alternate pixel locations (a simple ordered dither pattern). |
216 | */ |
217 | |
218 | METHODDEF(void) |
219 | h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, |
220 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
221 | { |
222 | int outrow; |
223 | JDIMENSION outcol; |
224 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
225 | register JSAMPROW inptr, outptr; |
226 | register int bias; |
227 | |
228 | /* Expand input data enough to let all the output samples be generated |
229 | * by the standard loop. Special-casing padded output would be more |
230 | * efficient. |
231 | */ |
232 | expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, |
233 | output_cols * 2); |
234 | |
235 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
236 | outptr = output_data[outrow]; |
237 | inptr = input_data[outrow]; |
238 | bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
239 | for (outcol = 0; outcol < output_cols; outcol++) { |
240 | *outptr++ = |
241 | (JSAMPLE)((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) + bias) >> 1); |
242 | bias ^= 1; /* 0=>1, 1=>0 */ |
243 | inptr += 2; |
244 | } |
245 | } |
246 | } |
247 | |
248 | |
249 | /* |
250 | * Downsample pixel values of a single component. |
251 | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
252 | * without smoothing. |
253 | */ |
254 | |
255 | METHODDEF(void) |
256 | h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, |
257 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
258 | { |
259 | int inrow, outrow; |
260 | JDIMENSION outcol; |
261 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
262 | register JSAMPROW inptr0, inptr1, outptr; |
263 | register int bias; |
264 | |
265 | /* Expand input data enough to let all the output samples be generated |
266 | * by the standard loop. Special-casing padded output would be more |
267 | * efficient. |
268 | */ |
269 | expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, |
270 | output_cols * 2); |
271 | |
272 | inrow = 0; |
273 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
274 | outptr = output_data[outrow]; |
275 | inptr0 = input_data[inrow]; |
276 | inptr1 = input_data[inrow + 1]; |
277 | bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
278 | for (outcol = 0; outcol < output_cols; outcol++) { |
279 | *outptr++ = |
280 | (JSAMPLE)((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
281 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) + bias) >> 2); |
282 | bias ^= 3; /* 1=>2, 2=>1 */ |
283 | inptr0 += 2; inptr1 += 2; |
284 | } |
285 | inrow += 2; |
286 | } |
287 | } |
288 | |
289 | |
290 | #ifdef INPUT_SMOOTHING_SUPPORTED |
291 | |
292 | /* |
293 | * Downsample pixel values of a single component. |
294 | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
295 | * with smoothing. One row of context is required. |
296 | */ |
297 | |
298 | METHODDEF(void) |
299 | h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, |
300 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
301 | { |
302 | int inrow, outrow; |
303 | JDIMENSION colctr; |
304 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
305 | register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
306 | JLONG membersum, neighsum, memberscale, neighscale; |
307 | |
308 | /* Expand input data enough to let all the output samples be generated |
309 | * by the standard loop. Special-casing padded output would be more |
310 | * efficient. |
311 | */ |
312 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
313 | cinfo->image_width, output_cols * 2); |
314 | |
315 | /* We don't bother to form the individual "smoothed" input pixel values; |
316 | * we can directly compute the output which is the average of the four |
317 | * smoothed values. Each of the four member pixels contributes a fraction |
318 | * (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
319 | * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
320 | * output. The four corner-adjacent neighbor pixels contribute a fraction |
321 | * SF to just one smoothed pixel, or SF/4 to the final output; while the |
322 | * eight edge-adjacent neighbors contribute SF to each of two smoothed |
323 | * pixels, or SF/2 overall. In order to use integer arithmetic, these |
324 | * factors are scaled by 2^16 = 65536. |
325 | * Also recall that SF = smoothing_factor / 1024. |
326 | */ |
327 | |
328 | memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
329 | neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
330 | |
331 | inrow = 0; |
332 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
333 | outptr = output_data[outrow]; |
334 | inptr0 = input_data[inrow]; |
335 | inptr1 = input_data[inrow + 1]; |
336 | above_ptr = input_data[inrow - 1]; |
337 | below_ptr = input_data[inrow + 2]; |
338 | |
339 | /* Special case for first column: pretend column -1 is same as column 0 */ |
340 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
341 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
342 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
343 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
344 | GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
345 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
346 | neighsum += neighsum; |
347 | neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
348 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
349 | membersum = membersum * memberscale + neighsum * neighscale; |
350 | *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); |
351 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
352 | |
353 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
354 | /* sum of pixels directly mapped to this output element */ |
355 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
356 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
357 | /* sum of edge-neighbor pixels */ |
358 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
359 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
360 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
361 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
362 | /* The edge-neighbors count twice as much as corner-neighbors */ |
363 | neighsum += neighsum; |
364 | /* Add in the corner-neighbors */ |
365 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
366 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
367 | /* form final output scaled up by 2^16 */ |
368 | membersum = membersum * memberscale + neighsum * neighscale; |
369 | /* round, descale and output it */ |
370 | *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); |
371 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
372 | } |
373 | |
374 | /* Special case for last column */ |
375 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
376 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
377 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
378 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
379 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
380 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
381 | neighsum += neighsum; |
382 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
383 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
384 | membersum = membersum * memberscale + neighsum * neighscale; |
385 | *outptr = (JSAMPLE)((membersum + 32768) >> 16); |
386 | |
387 | inrow += 2; |
388 | } |
389 | } |
390 | |
391 | |
392 | /* |
393 | * Downsample pixel values of a single component. |
394 | * This version handles the special case of a full-size component, |
395 | * with smoothing. One row of context is required. |
396 | */ |
397 | |
398 | METHODDEF(void) |
399 | fullsize_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, |
400 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
401 | { |
402 | int outrow; |
403 | JDIMENSION colctr; |
404 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
405 | register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
406 | JLONG membersum, neighsum, memberscale, neighscale; |
407 | int colsum, lastcolsum, nextcolsum; |
408 | |
409 | /* Expand input data enough to let all the output samples be generated |
410 | * by the standard loop. Special-casing padded output would be more |
411 | * efficient. |
412 | */ |
413 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
414 | cinfo->image_width, output_cols); |
415 | |
416 | /* Each of the eight neighbor pixels contributes a fraction SF to the |
417 | * smoothed pixel, while the main pixel contributes (1-8*SF). In order |
418 | * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
419 | * Also recall that SF = smoothing_factor / 1024. |
420 | */ |
421 | |
422 | memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
423 | neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
424 | |
425 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
426 | outptr = output_data[outrow]; |
427 | inptr = input_data[outrow]; |
428 | above_ptr = input_data[outrow - 1]; |
429 | below_ptr = input_data[outrow + 1]; |
430 | |
431 | /* Special case for first column */ |
432 | colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
433 | GETJSAMPLE(*inptr); |
434 | membersum = GETJSAMPLE(*inptr++); |
435 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
436 | GETJSAMPLE(*inptr); |
437 | neighsum = colsum + (colsum - membersum) + nextcolsum; |
438 | membersum = membersum * memberscale + neighsum * neighscale; |
439 | *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); |
440 | lastcolsum = colsum; colsum = nextcolsum; |
441 | |
442 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
443 | membersum = GETJSAMPLE(*inptr++); |
444 | above_ptr++; below_ptr++; |
445 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
446 | GETJSAMPLE(*inptr); |
447 | neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
448 | membersum = membersum * memberscale + neighsum * neighscale; |
449 | *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); |
450 | lastcolsum = colsum; colsum = nextcolsum; |
451 | } |
452 | |
453 | /* Special case for last column */ |
454 | membersum = GETJSAMPLE(*inptr); |
455 | neighsum = lastcolsum + (colsum - membersum) + colsum; |
456 | membersum = membersum * memberscale + neighsum * neighscale; |
457 | *outptr = (JSAMPLE)((membersum + 32768) >> 16); |
458 | |
459 | } |
460 | } |
461 | |
462 | #endif /* INPUT_SMOOTHING_SUPPORTED */ |
463 | |
464 | |
465 | /* |
466 | * Module initialization routine for downsampling. |
467 | * Note that we must select a routine for each component. |
468 | */ |
469 | |
470 | GLOBAL(void) |
471 | jinit_downsampler(j_compress_ptr cinfo) |
472 | { |
473 | my_downsample_ptr downsample; |
474 | int ci; |
475 | jpeg_component_info *compptr; |
476 | boolean smoothok = TRUE; |
477 | |
478 | downsample = (my_downsample_ptr) |
479 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
480 | sizeof(my_downsampler)); |
481 | cinfo->downsample = (struct jpeg_downsampler *)downsample; |
482 | downsample->pub.start_pass = start_pass_downsample; |
483 | downsample->pub.downsample = sep_downsample; |
484 | downsample->pub.need_context_rows = FALSE; |
485 | |
486 | if (cinfo->CCIR601_sampling) |
487 | ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
488 | |
489 | /* Verify we can handle the sampling factors, and set up method pointers */ |
490 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
491 | ci++, compptr++) { |
492 | if (compptr->h_samp_factor == cinfo->max_h_samp_factor && |
493 | compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
494 | #ifdef INPUT_SMOOTHING_SUPPORTED |
495 | if (cinfo->smoothing_factor) { |
496 | downsample->methods[ci] = fullsize_smooth_downsample; |
497 | downsample->pub.need_context_rows = TRUE; |
498 | } else |
499 | #endif |
500 | downsample->methods[ci] = fullsize_downsample; |
501 | } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
502 | compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
503 | smoothok = FALSE; |
504 | if (jsimd_can_h2v1_downsample()) |
505 | downsample->methods[ci] = jsimd_h2v1_downsample; |
506 | else |
507 | downsample->methods[ci] = h2v1_downsample; |
508 | } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
509 | compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { |
510 | #ifdef INPUT_SMOOTHING_SUPPORTED |
511 | if (cinfo->smoothing_factor) { |
512 | #if defined(__mips__) |
513 | if (jsimd_can_h2v2_smooth_downsample()) |
514 | downsample->methods[ci] = jsimd_h2v2_smooth_downsample; |
515 | else |
516 | #endif |
517 | downsample->methods[ci] = h2v2_smooth_downsample; |
518 | downsample->pub.need_context_rows = TRUE; |
519 | } else |
520 | #endif |
521 | { |
522 | if (jsimd_can_h2v2_downsample()) |
523 | downsample->methods[ci] = jsimd_h2v2_downsample; |
524 | else |
525 | downsample->methods[ci] = h2v2_downsample; |
526 | } |
527 | } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && |
528 | (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { |
529 | smoothok = FALSE; |
530 | downsample->methods[ci] = int_downsample; |
531 | } else |
532 | ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
533 | } |
534 | |
535 | #ifdef INPUT_SMOOTHING_SUPPORTED |
536 | if (cinfo->smoothing_factor && !smoothok) |
537 | TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
538 | #endif |
539 | } |
540 | |