1 | /* |
2 | * jdcoefct.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1994-1997, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
8 | * Copyright (C) 2010, 2015-2016, D. R. Commander. |
9 | * Copyright (C) 2015, Google, Inc. |
10 | * For conditions of distribution and use, see the accompanying README.ijg |
11 | * file. |
12 | * |
13 | * This file contains the coefficient buffer controller for decompression. |
14 | * This controller is the top level of the JPEG decompressor proper. |
15 | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
16 | * |
17 | * In buffered-image mode, this controller is the interface between |
18 | * input-oriented processing and output-oriented processing. |
19 | * Also, the input side (only) is used when reading a file for transcoding. |
20 | */ |
21 | |
22 | #include "jinclude.h" |
23 | #include "jdcoefct.h" |
24 | #include "jpegcomp.h" |
25 | |
26 | |
27 | /* Forward declarations */ |
28 | METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo, |
29 | JSAMPIMAGE output_buf); |
30 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
31 | METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); |
32 | #endif |
33 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
34 | LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo); |
35 | METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo, |
36 | JSAMPIMAGE output_buf); |
37 | #endif |
38 | |
39 | |
40 | /* |
41 | * Initialize for an input processing pass. |
42 | */ |
43 | |
44 | METHODDEF(void) |
45 | start_input_pass(j_decompress_ptr cinfo) |
46 | { |
47 | cinfo->input_iMCU_row = 0; |
48 | start_iMCU_row(cinfo); |
49 | } |
50 | |
51 | |
52 | /* |
53 | * Initialize for an output processing pass. |
54 | */ |
55 | |
56 | METHODDEF(void) |
57 | start_output_pass(j_decompress_ptr cinfo) |
58 | { |
59 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
60 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
61 | |
62 | /* If multipass, check to see whether to use block smoothing on this pass */ |
63 | if (coef->pub.coef_arrays != NULL) { |
64 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
65 | coef->pub.decompress_data = decompress_smooth_data; |
66 | else |
67 | coef->pub.decompress_data = decompress_data; |
68 | } |
69 | #endif |
70 | cinfo->output_iMCU_row = 0; |
71 | } |
72 | |
73 | |
74 | /* |
75 | * Decompress and return some data in the single-pass case. |
76 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
77 | * Input and output must run in lockstep since we have only a one-MCU buffer. |
78 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
79 | * |
80 | * NB: output_buf contains a plane for each component in image, |
81 | * which we index according to the component's SOF position. |
82 | */ |
83 | |
84 | METHODDEF(int) |
85 | decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
86 | { |
87 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
88 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
89 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
90 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
91 | int blkn, ci, xindex, yindex, yoffset, useful_width; |
92 | JSAMPARRAY output_ptr; |
93 | JDIMENSION start_col, output_col; |
94 | jpeg_component_info *compptr; |
95 | inverse_DCT_method_ptr inverse_DCT; |
96 | |
97 | /* Loop to process as much as one whole iMCU row */ |
98 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
99 | yoffset++) { |
100 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
101 | MCU_col_num++) { |
102 | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
103 | jzero_far((void *)coef->MCU_buffer[0], |
104 | (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK))); |
105 | if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
106 | /* Suspension forced; update state counters and exit */ |
107 | coef->MCU_vert_offset = yoffset; |
108 | coef->MCU_ctr = MCU_col_num; |
109 | return JPEG_SUSPENDED; |
110 | } |
111 | |
112 | /* Only perform the IDCT on blocks that are contained within the desired |
113 | * cropping region. |
114 | */ |
115 | if (MCU_col_num >= cinfo->master->first_iMCU_col && |
116 | MCU_col_num <= cinfo->master->last_iMCU_col) { |
117 | /* Determine where data should go in output_buf and do the IDCT thing. |
118 | * We skip dummy blocks at the right and bottom edges (but blkn gets |
119 | * incremented past them!). Note the inner loop relies on having |
120 | * allocated the MCU_buffer[] blocks sequentially. |
121 | */ |
122 | blkn = 0; /* index of current DCT block within MCU */ |
123 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
124 | compptr = cinfo->cur_comp_info[ci]; |
125 | /* Don't bother to IDCT an uninteresting component. */ |
126 | if (!compptr->component_needed) { |
127 | blkn += compptr->MCU_blocks; |
128 | continue; |
129 | } |
130 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
131 | useful_width = (MCU_col_num < last_MCU_col) ? |
132 | compptr->MCU_width : compptr->last_col_width; |
133 | output_ptr = output_buf[compptr->component_index] + |
134 | yoffset * compptr->_DCT_scaled_size; |
135 | start_col = (MCU_col_num - cinfo->master->first_iMCU_col) * |
136 | compptr->MCU_sample_width; |
137 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
138 | if (cinfo->input_iMCU_row < last_iMCU_row || |
139 | yoffset + yindex < compptr->last_row_height) { |
140 | output_col = start_col; |
141 | for (xindex = 0; xindex < useful_width; xindex++) { |
142 | (*inverse_DCT) (cinfo, compptr, |
143 | (JCOEFPTR)coef->MCU_buffer[blkn + xindex], |
144 | output_ptr, output_col); |
145 | output_col += compptr->_DCT_scaled_size; |
146 | } |
147 | } |
148 | blkn += compptr->MCU_width; |
149 | output_ptr += compptr->_DCT_scaled_size; |
150 | } |
151 | } |
152 | } |
153 | } |
154 | /* Completed an MCU row, but perhaps not an iMCU row */ |
155 | coef->MCU_ctr = 0; |
156 | } |
157 | /* Completed the iMCU row, advance counters for next one */ |
158 | cinfo->output_iMCU_row++; |
159 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
160 | start_iMCU_row(cinfo); |
161 | return JPEG_ROW_COMPLETED; |
162 | } |
163 | /* Completed the scan */ |
164 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
165 | return JPEG_SCAN_COMPLETED; |
166 | } |
167 | |
168 | |
169 | /* |
170 | * Dummy consume-input routine for single-pass operation. |
171 | */ |
172 | |
173 | METHODDEF(int) |
174 | dummy_consume_data(j_decompress_ptr cinfo) |
175 | { |
176 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
177 | } |
178 | |
179 | |
180 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
181 | |
182 | /* |
183 | * Consume input data and store it in the full-image coefficient buffer. |
184 | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
185 | * ie, v_samp_factor block rows for each component in the scan. |
186 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
187 | */ |
188 | |
189 | METHODDEF(int) |
190 | consume_data(j_decompress_ptr cinfo) |
191 | { |
192 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
193 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
194 | int blkn, ci, xindex, yindex, yoffset; |
195 | JDIMENSION start_col; |
196 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
197 | JBLOCKROW buffer_ptr; |
198 | jpeg_component_info *compptr; |
199 | |
200 | /* Align the virtual buffers for the components used in this scan. */ |
201 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
202 | compptr = cinfo->cur_comp_info[ci]; |
203 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
204 | ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], |
205 | cinfo->input_iMCU_row * compptr->v_samp_factor, |
206 | (JDIMENSION)compptr->v_samp_factor, TRUE); |
207 | /* Note: entropy decoder expects buffer to be zeroed, |
208 | * but this is handled automatically by the memory manager |
209 | * because we requested a pre-zeroed array. |
210 | */ |
211 | } |
212 | |
213 | /* Loop to process one whole iMCU row */ |
214 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
215 | yoffset++) { |
216 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
217 | MCU_col_num++) { |
218 | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
219 | blkn = 0; /* index of current DCT block within MCU */ |
220 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
221 | compptr = cinfo->cur_comp_info[ci]; |
222 | start_col = MCU_col_num * compptr->MCU_width; |
223 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
224 | buffer_ptr = buffer[ci][yindex + yoffset] + start_col; |
225 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
226 | coef->MCU_buffer[blkn++] = buffer_ptr++; |
227 | } |
228 | } |
229 | } |
230 | /* Try to fetch the MCU. */ |
231 | if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
232 | /* Suspension forced; update state counters and exit */ |
233 | coef->MCU_vert_offset = yoffset; |
234 | coef->MCU_ctr = MCU_col_num; |
235 | return JPEG_SUSPENDED; |
236 | } |
237 | } |
238 | /* Completed an MCU row, but perhaps not an iMCU row */ |
239 | coef->MCU_ctr = 0; |
240 | } |
241 | /* Completed the iMCU row, advance counters for next one */ |
242 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
243 | start_iMCU_row(cinfo); |
244 | return JPEG_ROW_COMPLETED; |
245 | } |
246 | /* Completed the scan */ |
247 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
248 | return JPEG_SCAN_COMPLETED; |
249 | } |
250 | |
251 | |
252 | /* |
253 | * Decompress and return some data in the multi-pass case. |
254 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
255 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
256 | * |
257 | * NB: output_buf contains a plane for each component in image. |
258 | */ |
259 | |
260 | METHODDEF(int) |
261 | decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
262 | { |
263 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
264 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
265 | JDIMENSION block_num; |
266 | int ci, block_row, block_rows; |
267 | JBLOCKARRAY buffer; |
268 | JBLOCKROW buffer_ptr; |
269 | JSAMPARRAY output_ptr; |
270 | JDIMENSION output_col; |
271 | jpeg_component_info *compptr; |
272 | inverse_DCT_method_ptr inverse_DCT; |
273 | |
274 | /* Force some input to be done if we are getting ahead of the input. */ |
275 | while (cinfo->input_scan_number < cinfo->output_scan_number || |
276 | (cinfo->input_scan_number == cinfo->output_scan_number && |
277 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
278 | if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
279 | return JPEG_SUSPENDED; |
280 | } |
281 | |
282 | /* OK, output from the virtual arrays. */ |
283 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
284 | ci++, compptr++) { |
285 | /* Don't bother to IDCT an uninteresting component. */ |
286 | if (!compptr->component_needed) |
287 | continue; |
288 | /* Align the virtual buffer for this component. */ |
289 | buffer = (*cinfo->mem->access_virt_barray) |
290 | ((j_common_ptr)cinfo, coef->whole_image[ci], |
291 | cinfo->output_iMCU_row * compptr->v_samp_factor, |
292 | (JDIMENSION)compptr->v_samp_factor, FALSE); |
293 | /* Count non-dummy DCT block rows in this iMCU row. */ |
294 | if (cinfo->output_iMCU_row < last_iMCU_row) |
295 | block_rows = compptr->v_samp_factor; |
296 | else { |
297 | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
298 | block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); |
299 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
300 | } |
301 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
302 | output_ptr = output_buf[ci]; |
303 | /* Loop over all DCT blocks to be processed. */ |
304 | for (block_row = 0; block_row < block_rows; block_row++) { |
305 | buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; |
306 | output_col = 0; |
307 | for (block_num = cinfo->master->first_MCU_col[ci]; |
308 | block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { |
309 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr, |
310 | output_col); |
311 | buffer_ptr++; |
312 | output_col += compptr->_DCT_scaled_size; |
313 | } |
314 | output_ptr += compptr->_DCT_scaled_size; |
315 | } |
316 | } |
317 | |
318 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
319 | return JPEG_ROW_COMPLETED; |
320 | return JPEG_SCAN_COMPLETED; |
321 | } |
322 | |
323 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
324 | |
325 | |
326 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
327 | |
328 | /* |
329 | * This code applies interblock smoothing as described by section K.8 |
330 | * of the JPEG standard: the first 5 AC coefficients are estimated from |
331 | * the DC values of a DCT block and its 8 neighboring blocks. |
332 | * We apply smoothing only for progressive JPEG decoding, and only if |
333 | * the coefficients it can estimate are not yet known to full precision. |
334 | */ |
335 | |
336 | /* Natural-order array positions of the first 5 zigzag-order coefficients */ |
337 | #define Q01_POS 1 |
338 | #define Q10_POS 8 |
339 | #define Q20_POS 16 |
340 | #define Q11_POS 9 |
341 | #define Q02_POS 2 |
342 | |
343 | /* |
344 | * Determine whether block smoothing is applicable and safe. |
345 | * We also latch the current states of the coef_bits[] entries for the |
346 | * AC coefficients; otherwise, if the input side of the decompressor |
347 | * advances into a new scan, we might think the coefficients are known |
348 | * more accurately than they really are. |
349 | */ |
350 | |
351 | LOCAL(boolean) |
352 | smoothing_ok(j_decompress_ptr cinfo) |
353 | { |
354 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
355 | boolean smoothing_useful = FALSE; |
356 | int ci, coefi; |
357 | jpeg_component_info *compptr; |
358 | JQUANT_TBL *qtable; |
359 | int *coef_bits; |
360 | int *coef_bits_latch; |
361 | |
362 | if (!cinfo->progressive_mode || cinfo->coef_bits == NULL) |
363 | return FALSE; |
364 | |
365 | /* Allocate latch area if not already done */ |
366 | if (coef->coef_bits_latch == NULL) |
367 | coef->coef_bits_latch = (int *) |
368 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
369 | cinfo->num_components * |
370 | (SAVED_COEFS * sizeof(int))); |
371 | coef_bits_latch = coef->coef_bits_latch; |
372 | |
373 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
374 | ci++, compptr++) { |
375 | /* All components' quantization values must already be latched. */ |
376 | if ((qtable = compptr->quant_table) == NULL) |
377 | return FALSE; |
378 | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
379 | if (qtable->quantval[0] == 0 || |
380 | qtable->quantval[Q01_POS] == 0 || |
381 | qtable->quantval[Q10_POS] == 0 || |
382 | qtable->quantval[Q20_POS] == 0 || |
383 | qtable->quantval[Q11_POS] == 0 || |
384 | qtable->quantval[Q02_POS] == 0) |
385 | return FALSE; |
386 | /* DC values must be at least partly known for all components. */ |
387 | coef_bits = cinfo->coef_bits[ci]; |
388 | if (coef_bits[0] < 0) |
389 | return FALSE; |
390 | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
391 | for (coefi = 1; coefi <= 5; coefi++) { |
392 | coef_bits_latch[coefi] = coef_bits[coefi]; |
393 | if (coef_bits[coefi] != 0) |
394 | smoothing_useful = TRUE; |
395 | } |
396 | coef_bits_latch += SAVED_COEFS; |
397 | } |
398 | |
399 | return smoothing_useful; |
400 | } |
401 | |
402 | |
403 | /* |
404 | * Variant of decompress_data for use when doing block smoothing. |
405 | */ |
406 | |
407 | METHODDEF(int) |
408 | decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
409 | { |
410 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
411 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
412 | JDIMENSION block_num, last_block_column; |
413 | int ci, block_row, block_rows, access_rows; |
414 | JBLOCKARRAY buffer; |
415 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
416 | JSAMPARRAY output_ptr; |
417 | JDIMENSION output_col; |
418 | jpeg_component_info *compptr; |
419 | inverse_DCT_method_ptr inverse_DCT; |
420 | boolean first_row, last_row; |
421 | JCOEF *workspace; |
422 | int *coef_bits; |
423 | JQUANT_TBL *quanttbl; |
424 | JLONG Q00, Q01, Q02, Q10, Q11, Q20, num; |
425 | int DC1, DC2, DC3, DC4, DC5, DC6, DC7, DC8, DC9; |
426 | int Al, pred; |
427 | |
428 | /* Keep a local variable to avoid looking it up more than once */ |
429 | workspace = coef->workspace; |
430 | |
431 | /* Force some input to be done if we are getting ahead of the input. */ |
432 | while (cinfo->input_scan_number <= cinfo->output_scan_number && |
433 | !cinfo->inputctl->eoi_reached) { |
434 | if (cinfo->input_scan_number == cinfo->output_scan_number) { |
435 | /* If input is working on current scan, we ordinarily want it to |
436 | * have completed the current row. But if input scan is DC, |
437 | * we want it to keep one row ahead so that next block row's DC |
438 | * values are up to date. |
439 | */ |
440 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
441 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta) |
442 | break; |
443 | } |
444 | if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
445 | return JPEG_SUSPENDED; |
446 | } |
447 | |
448 | /* OK, output from the virtual arrays. */ |
449 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
450 | ci++, compptr++) { |
451 | /* Don't bother to IDCT an uninteresting component. */ |
452 | if (!compptr->component_needed) |
453 | continue; |
454 | /* Count non-dummy DCT block rows in this iMCU row. */ |
455 | if (cinfo->output_iMCU_row < last_iMCU_row) { |
456 | block_rows = compptr->v_samp_factor; |
457 | access_rows = block_rows * 2; /* this and next iMCU row */ |
458 | last_row = FALSE; |
459 | } else { |
460 | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
461 | block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); |
462 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
463 | access_rows = block_rows; /* this iMCU row only */ |
464 | last_row = TRUE; |
465 | } |
466 | /* Align the virtual buffer for this component. */ |
467 | if (cinfo->output_iMCU_row > 0) { |
468 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
469 | buffer = (*cinfo->mem->access_virt_barray) |
470 | ((j_common_ptr)cinfo, coef->whole_image[ci], |
471 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
472 | (JDIMENSION)access_rows, FALSE); |
473 | buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
474 | first_row = FALSE; |
475 | } else { |
476 | buffer = (*cinfo->mem->access_virt_barray) |
477 | ((j_common_ptr)cinfo, coef->whole_image[ci], |
478 | (JDIMENSION)0, (JDIMENSION)access_rows, FALSE); |
479 | first_row = TRUE; |
480 | } |
481 | /* Fetch component-dependent info */ |
482 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
483 | quanttbl = compptr->quant_table; |
484 | Q00 = quanttbl->quantval[0]; |
485 | Q01 = quanttbl->quantval[Q01_POS]; |
486 | Q10 = quanttbl->quantval[Q10_POS]; |
487 | Q20 = quanttbl->quantval[Q20_POS]; |
488 | Q11 = quanttbl->quantval[Q11_POS]; |
489 | Q02 = quanttbl->quantval[Q02_POS]; |
490 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
491 | output_ptr = output_buf[ci]; |
492 | /* Loop over all DCT blocks to be processed. */ |
493 | for (block_row = 0; block_row < block_rows; block_row++) { |
494 | buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; |
495 | if (first_row && block_row == 0) |
496 | prev_block_row = buffer_ptr; |
497 | else |
498 | prev_block_row = buffer[block_row - 1]; |
499 | if (last_row && block_row == block_rows - 1) |
500 | next_block_row = buffer_ptr; |
501 | else |
502 | next_block_row = buffer[block_row + 1]; |
503 | /* We fetch the surrounding DC values using a sliding-register approach. |
504 | * Initialize all nine here so as to do the right thing on narrow pics. |
505 | */ |
506 | DC1 = DC2 = DC3 = (int)prev_block_row[0][0]; |
507 | DC4 = DC5 = DC6 = (int)buffer_ptr[0][0]; |
508 | DC7 = DC8 = DC9 = (int)next_block_row[0][0]; |
509 | output_col = 0; |
510 | last_block_column = compptr->width_in_blocks - 1; |
511 | for (block_num = cinfo->master->first_MCU_col[ci]; |
512 | block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { |
513 | /* Fetch current DCT block into workspace so we can modify it. */ |
514 | jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1); |
515 | /* Update DC values */ |
516 | if (block_num < last_block_column) { |
517 | DC3 = (int)prev_block_row[1][0]; |
518 | DC6 = (int)buffer_ptr[1][0]; |
519 | DC9 = (int)next_block_row[1][0]; |
520 | } |
521 | /* Compute coefficient estimates per K.8. |
522 | * An estimate is applied only if coefficient is still zero, |
523 | * and is not known to be fully accurate. |
524 | */ |
525 | /* AC01 */ |
526 | if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) { |
527 | num = 36 * Q00 * (DC4 - DC6); |
528 | if (num >= 0) { |
529 | pred = (int)(((Q01 << 7) + num) / (Q01 << 8)); |
530 | if (Al > 0 && pred >= (1 << Al)) |
531 | pred = (1 << Al) - 1; |
532 | } else { |
533 | pred = (int)(((Q01 << 7) - num) / (Q01 << 8)); |
534 | if (Al > 0 && pred >= (1 << Al)) |
535 | pred = (1 << Al) - 1; |
536 | pred = -pred; |
537 | } |
538 | workspace[1] = (JCOEF)pred; |
539 | } |
540 | /* AC10 */ |
541 | if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) { |
542 | num = 36 * Q00 * (DC2 - DC8); |
543 | if (num >= 0) { |
544 | pred = (int)(((Q10 << 7) + num) / (Q10 << 8)); |
545 | if (Al > 0 && pred >= (1 << Al)) |
546 | pred = (1 << Al) - 1; |
547 | } else { |
548 | pred = (int)(((Q10 << 7) - num) / (Q10 << 8)); |
549 | if (Al > 0 && pred >= (1 << Al)) |
550 | pred = (1 << Al) - 1; |
551 | pred = -pred; |
552 | } |
553 | workspace[8] = (JCOEF)pred; |
554 | } |
555 | /* AC20 */ |
556 | if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) { |
557 | num = 9 * Q00 * (DC2 + DC8 - 2 * DC5); |
558 | if (num >= 0) { |
559 | pred = (int)(((Q20 << 7) + num) / (Q20 << 8)); |
560 | if (Al > 0 && pred >= (1 << Al)) |
561 | pred = (1 << Al) - 1; |
562 | } else { |
563 | pred = (int)(((Q20 << 7) - num) / (Q20 << 8)); |
564 | if (Al > 0 && pred >= (1 << Al)) |
565 | pred = (1 << Al) - 1; |
566 | pred = -pred; |
567 | } |
568 | workspace[16] = (JCOEF)pred; |
569 | } |
570 | /* AC11 */ |
571 | if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) { |
572 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
573 | if (num >= 0) { |
574 | pred = (int)(((Q11 << 7) + num) / (Q11 << 8)); |
575 | if (Al > 0 && pred >= (1 << Al)) |
576 | pred = (1 << Al) - 1; |
577 | } else { |
578 | pred = (int)(((Q11 << 7) - num) / (Q11 << 8)); |
579 | if (Al > 0 && pred >= (1 << Al)) |
580 | pred = (1 << Al) - 1; |
581 | pred = -pred; |
582 | } |
583 | workspace[9] = (JCOEF)pred; |
584 | } |
585 | /* AC02 */ |
586 | if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) { |
587 | num = 9 * Q00 * (DC4 + DC6 - 2 * DC5); |
588 | if (num >= 0) { |
589 | pred = (int)(((Q02 << 7) + num) / (Q02 << 8)); |
590 | if (Al > 0 && pred >= (1 << Al)) |
591 | pred = (1 << Al) - 1; |
592 | } else { |
593 | pred = (int)(((Q02 << 7) - num) / (Q02 << 8)); |
594 | if (Al > 0 && pred >= (1 << Al)) |
595 | pred = (1 << Al) - 1; |
596 | pred = -pred; |
597 | } |
598 | workspace[2] = (JCOEF)pred; |
599 | } |
600 | /* OK, do the IDCT */ |
601 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr, |
602 | output_col); |
603 | /* Advance for next column */ |
604 | DC1 = DC2; DC2 = DC3; |
605 | DC4 = DC5; DC5 = DC6; |
606 | DC7 = DC8; DC8 = DC9; |
607 | buffer_ptr++, prev_block_row++, next_block_row++; |
608 | output_col += compptr->_DCT_scaled_size; |
609 | } |
610 | output_ptr += compptr->_DCT_scaled_size; |
611 | } |
612 | } |
613 | |
614 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
615 | return JPEG_ROW_COMPLETED; |
616 | return JPEG_SCAN_COMPLETED; |
617 | } |
618 | |
619 | #endif /* BLOCK_SMOOTHING_SUPPORTED */ |
620 | |
621 | |
622 | /* |
623 | * Initialize coefficient buffer controller. |
624 | */ |
625 | |
626 | GLOBAL(void) |
627 | jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer) |
628 | { |
629 | my_coef_ptr coef; |
630 | |
631 | coef = (my_coef_ptr) |
632 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
633 | sizeof(my_coef_controller)); |
634 | cinfo->coef = (struct jpeg_d_coef_controller *)coef; |
635 | coef->pub.start_input_pass = start_input_pass; |
636 | coef->pub.start_output_pass = start_output_pass; |
637 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
638 | coef->coef_bits_latch = NULL; |
639 | #endif |
640 | |
641 | /* Create the coefficient buffer. */ |
642 | if (need_full_buffer) { |
643 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
644 | /* Allocate a full-image virtual array for each component, */ |
645 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
646 | /* Note we ask for a pre-zeroed array. */ |
647 | int ci, access_rows; |
648 | jpeg_component_info *compptr; |
649 | |
650 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
651 | ci++, compptr++) { |
652 | access_rows = compptr->v_samp_factor; |
653 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
654 | /* If block smoothing could be used, need a bigger window */ |
655 | if (cinfo->progressive_mode) |
656 | access_rows *= 3; |
657 | #endif |
658 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
659 | ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE, |
660 | (JDIMENSION)jround_up((long)compptr->width_in_blocks, |
661 | (long)compptr->h_samp_factor), |
662 | (JDIMENSION)jround_up((long)compptr->height_in_blocks, |
663 | (long)compptr->v_samp_factor), |
664 | (JDIMENSION)access_rows); |
665 | } |
666 | coef->pub.consume_data = consume_data; |
667 | coef->pub.decompress_data = decompress_data; |
668 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
669 | #else |
670 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
671 | #endif |
672 | } else { |
673 | /* We only need a single-MCU buffer. */ |
674 | JBLOCKROW buffer; |
675 | int i; |
676 | |
677 | buffer = (JBLOCKROW) |
678 | (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
679 | D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
680 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
681 | coef->MCU_buffer[i] = buffer + i; |
682 | } |
683 | coef->pub.consume_data = dummy_consume_data; |
684 | coef->pub.decompress_data = decompress_onepass; |
685 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
686 | } |
687 | |
688 | /* Allocate the workspace buffer */ |
689 | coef->workspace = (JCOEF *) |
690 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
691 | sizeof(JCOEF) * DCTSIZE2); |
692 | } |
693 | |