1 | /* |
2 | * jdhuff.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2009-2011, 2016, 2018, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains Huffman entropy decoding routines. |
12 | * |
13 | * Much of the complexity here has to do with supporting input suspension. |
14 | * If the data source module demands suspension, we want to be able to back |
15 | * up to the start of the current MCU. To do this, we copy state variables |
16 | * into local working storage, and update them back to the permanent |
17 | * storage only upon successful completion of an MCU. |
18 | * |
19 | * NOTE: All referenced figures are from |
20 | * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. |
21 | */ |
22 | |
23 | #define JPEG_INTERNALS |
24 | #include "jinclude.h" |
25 | #include "jpeglib.h" |
26 | #include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
27 | #include "jpegcomp.h" |
28 | #include "jstdhuff.c" |
29 | |
30 | |
31 | /* |
32 | * Expanded entropy decoder object for Huffman decoding. |
33 | * |
34 | * The savable_state subrecord contains fields that change within an MCU, |
35 | * but must not be updated permanently until we complete the MCU. |
36 | */ |
37 | |
38 | typedef struct { |
39 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
40 | } savable_state; |
41 | |
42 | /* This macro is to work around compilers with missing or broken |
43 | * structure assignment. You'll need to fix this code if you have |
44 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
45 | */ |
46 | |
47 | #ifndef NO_STRUCT_ASSIGN |
48 | #define ASSIGN_STATE(dest, src) ((dest) = (src)) |
49 | #else |
50 | #if MAX_COMPS_IN_SCAN == 4 |
51 | #define ASSIGN_STATE(dest, src) \ |
52 | ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
53 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
54 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
55 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
56 | #endif |
57 | #endif |
58 | |
59 | |
60 | typedef struct { |
61 | struct jpeg_entropy_decoder pub; /* public fields */ |
62 | |
63 | /* These fields are loaded into local variables at start of each MCU. |
64 | * In case of suspension, we exit WITHOUT updating them. |
65 | */ |
66 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
67 | savable_state saved; /* Other state at start of MCU */ |
68 | |
69 | /* These fields are NOT loaded into local working state. */ |
70 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
71 | |
72 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
73 | d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; |
74 | d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; |
75 | |
76 | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
77 | |
78 | /* Pointers to derived tables to be used for each block within an MCU */ |
79 | d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
80 | d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
81 | /* Whether we care about the DC and AC coefficient values for each block */ |
82 | boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
83 | boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
84 | } huff_entropy_decoder; |
85 | |
86 | typedef huff_entropy_decoder *huff_entropy_ptr; |
87 | |
88 | |
89 | /* |
90 | * Initialize for a Huffman-compressed scan. |
91 | */ |
92 | |
93 | METHODDEF(void) |
94 | start_pass_huff_decoder(j_decompress_ptr cinfo) |
95 | { |
96 | huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
97 | int ci, blkn, dctbl, actbl; |
98 | d_derived_tbl **pdtbl; |
99 | jpeg_component_info *compptr; |
100 | |
101 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
102 | * This ought to be an error condition, but we make it a warning because |
103 | * there are some baseline files out there with all zeroes in these bytes. |
104 | */ |
105 | if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 || |
106 | cinfo->Ah != 0 || cinfo->Al != 0) |
107 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
108 | |
109 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
110 | compptr = cinfo->cur_comp_info[ci]; |
111 | dctbl = compptr->dc_tbl_no; |
112 | actbl = compptr->ac_tbl_no; |
113 | /* Compute derived values for Huffman tables */ |
114 | /* We may do this more than once for a table, but it's not expensive */ |
115 | pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl; |
116 | jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl); |
117 | pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl; |
118 | jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl); |
119 | /* Initialize DC predictions to 0 */ |
120 | entropy->saved.last_dc_val[ci] = 0; |
121 | } |
122 | |
123 | /* Precalculate decoding info for each block in an MCU of this scan */ |
124 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
125 | ci = cinfo->MCU_membership[blkn]; |
126 | compptr = cinfo->cur_comp_info[ci]; |
127 | /* Precalculate which table to use for each block */ |
128 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
129 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
130 | /* Decide whether we really care about the coefficient values */ |
131 | if (compptr->component_needed) { |
132 | entropy->dc_needed[blkn] = TRUE; |
133 | /* we don't need the ACs if producing a 1/8th-size image */ |
134 | entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1); |
135 | } else { |
136 | entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
137 | } |
138 | } |
139 | |
140 | /* Initialize bitread state variables */ |
141 | entropy->bitstate.bits_left = 0; |
142 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
143 | entropy->pub.insufficient_data = FALSE; |
144 | |
145 | /* Initialize restart counter */ |
146 | entropy->restarts_to_go = cinfo->restart_interval; |
147 | } |
148 | |
149 | |
150 | /* |
151 | * Compute the derived values for a Huffman table. |
152 | * This routine also performs some validation checks on the table. |
153 | * |
154 | * Note this is also used by jdphuff.c. |
155 | */ |
156 | |
157 | GLOBAL(void) |
158 | jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno, |
159 | d_derived_tbl **pdtbl) |
160 | { |
161 | JHUFF_TBL *htbl; |
162 | d_derived_tbl *dtbl; |
163 | int p, i, l, si, numsymbols; |
164 | int lookbits, ctr; |
165 | char huffsize[257]; |
166 | unsigned int huffcode[257]; |
167 | unsigned int code; |
168 | |
169 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
170 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
171 | */ |
172 | |
173 | /* Find the input Huffman table */ |
174 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
175 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
176 | htbl = |
177 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
178 | if (htbl == NULL) |
179 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
180 | |
181 | /* Allocate a workspace if we haven't already done so. */ |
182 | if (*pdtbl == NULL) |
183 | *pdtbl = (d_derived_tbl *) |
184 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
185 | sizeof(d_derived_tbl)); |
186 | dtbl = *pdtbl; |
187 | dtbl->pub = htbl; /* fill in back link */ |
188 | |
189 | /* Figure C.1: make table of Huffman code length for each symbol */ |
190 | |
191 | p = 0; |
192 | for (l = 1; l <= 16; l++) { |
193 | i = (int)htbl->bits[l]; |
194 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
195 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
196 | while (i--) |
197 | huffsize[p++] = (char)l; |
198 | } |
199 | huffsize[p] = 0; |
200 | numsymbols = p; |
201 | |
202 | /* Figure C.2: generate the codes themselves */ |
203 | /* We also validate that the counts represent a legal Huffman code tree. */ |
204 | |
205 | code = 0; |
206 | si = huffsize[0]; |
207 | p = 0; |
208 | while (huffsize[p]) { |
209 | while (((int)huffsize[p]) == si) { |
210 | huffcode[p++] = code; |
211 | code++; |
212 | } |
213 | /* code is now 1 more than the last code used for codelength si; but |
214 | * it must still fit in si bits, since no code is allowed to be all ones. |
215 | */ |
216 | if (((JLONG)code) >= (((JLONG)1) << si)) |
217 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
218 | code <<= 1; |
219 | si++; |
220 | } |
221 | |
222 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
223 | |
224 | p = 0; |
225 | for (l = 1; l <= 16; l++) { |
226 | if (htbl->bits[l]) { |
227 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
228 | * minus the minimum code of length l |
229 | */ |
230 | dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p]; |
231 | p += htbl->bits[l]; |
232 | dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */ |
233 | } else { |
234 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
235 | } |
236 | } |
237 | dtbl->valoffset[17] = 0; |
238 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
239 | |
240 | /* Compute lookahead tables to speed up decoding. |
241 | * First we set all the table entries to 0, indicating "too long"; |
242 | * then we iterate through the Huffman codes that are short enough and |
243 | * fill in all the entries that correspond to bit sequences starting |
244 | * with that code. |
245 | */ |
246 | |
247 | for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) |
248 | dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; |
249 | |
250 | p = 0; |
251 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
252 | for (i = 1; i <= (int)htbl->bits[l]; i++, p++) { |
253 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
254 | /* Generate left-justified code followed by all possible bit sequences */ |
255 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l); |
256 | for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) { |
257 | dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; |
258 | lookbits++; |
259 | } |
260 | } |
261 | } |
262 | |
263 | /* Validate symbols as being reasonable. |
264 | * For AC tables, we make no check, but accept all byte values 0..255. |
265 | * For DC tables, we require the symbols to be in range 0..15. |
266 | * (Tighter bounds could be applied depending on the data depth and mode, |
267 | * but this is sufficient to ensure safe decoding.) |
268 | */ |
269 | if (isDC) { |
270 | for (i = 0; i < numsymbols; i++) { |
271 | int sym = htbl->huffval[i]; |
272 | if (sym < 0 || sym > 15) |
273 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
274 | } |
275 | } |
276 | } |
277 | |
278 | |
279 | /* |
280 | * Out-of-line code for bit fetching (shared with jdphuff.c). |
281 | * See jdhuff.h for info about usage. |
282 | * Note: current values of get_buffer and bits_left are passed as parameters, |
283 | * but are returned in the corresponding fields of the state struct. |
284 | * |
285 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
286 | * of get_buffer to be used. (On machines with wider words, an even larger |
287 | * buffer could be used.) However, on some machines 32-bit shifts are |
288 | * quite slow and take time proportional to the number of places shifted. |
289 | * (This is true with most PC compilers, for instance.) In this case it may |
290 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
291 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
292 | */ |
293 | |
294 | #ifdef SLOW_SHIFT_32 |
295 | #define MIN_GET_BITS 15 /* minimum allowable value */ |
296 | #else |
297 | #define MIN_GET_BITS (BIT_BUF_SIZE - 7) |
298 | #endif |
299 | |
300 | |
301 | GLOBAL(boolean) |
302 | jpeg_fill_bit_buffer(bitread_working_state *state, |
303 | register bit_buf_type get_buffer, register int bits_left, |
304 | int nbits) |
305 | /* Load up the bit buffer to a depth of at least nbits */ |
306 | { |
307 | /* Copy heavily used state fields into locals (hopefully registers) */ |
308 | register const JOCTET *next_input_byte = state->next_input_byte; |
309 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
310 | j_decompress_ptr cinfo = state->cinfo; |
311 | |
312 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
313 | /* (It is assumed that no request will be for more than that many bits.) */ |
314 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
315 | |
316 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
317 | while (bits_left < MIN_GET_BITS) { |
318 | register int c; |
319 | |
320 | /* Attempt to read a byte */ |
321 | if (bytes_in_buffer == 0) { |
322 | if (!(*cinfo->src->fill_input_buffer) (cinfo)) |
323 | return FALSE; |
324 | next_input_byte = cinfo->src->next_input_byte; |
325 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
326 | } |
327 | bytes_in_buffer--; |
328 | c = GETJOCTET(*next_input_byte++); |
329 | |
330 | /* If it's 0xFF, check and discard stuffed zero byte */ |
331 | if (c == 0xFF) { |
332 | /* Loop here to discard any padding FF's on terminating marker, |
333 | * so that we can save a valid unread_marker value. NOTE: we will |
334 | * accept multiple FF's followed by a 0 as meaning a single FF data |
335 | * byte. This data pattern is not valid according to the standard. |
336 | */ |
337 | do { |
338 | if (bytes_in_buffer == 0) { |
339 | if (!(*cinfo->src->fill_input_buffer) (cinfo)) |
340 | return FALSE; |
341 | next_input_byte = cinfo->src->next_input_byte; |
342 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
343 | } |
344 | bytes_in_buffer--; |
345 | c = GETJOCTET(*next_input_byte++); |
346 | } while (c == 0xFF); |
347 | |
348 | if (c == 0) { |
349 | /* Found FF/00, which represents an FF data byte */ |
350 | c = 0xFF; |
351 | } else { |
352 | /* Oops, it's actually a marker indicating end of compressed data. |
353 | * Save the marker code for later use. |
354 | * Fine point: it might appear that we should save the marker into |
355 | * bitread working state, not straight into permanent state. But |
356 | * once we have hit a marker, we cannot need to suspend within the |
357 | * current MCU, because we will read no more bytes from the data |
358 | * source. So it is OK to update permanent state right away. |
359 | */ |
360 | cinfo->unread_marker = c; |
361 | /* See if we need to insert some fake zero bits. */ |
362 | goto no_more_bytes; |
363 | } |
364 | } |
365 | |
366 | /* OK, load c into get_buffer */ |
367 | get_buffer = (get_buffer << 8) | c; |
368 | bits_left += 8; |
369 | } /* end while */ |
370 | } else { |
371 | no_more_bytes: |
372 | /* We get here if we've read the marker that terminates the compressed |
373 | * data segment. There should be enough bits in the buffer register |
374 | * to satisfy the request; if so, no problem. |
375 | */ |
376 | if (nbits > bits_left) { |
377 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
378 | * the data stream, so that we can produce some kind of image. |
379 | * We use a nonvolatile flag to ensure that only one warning message |
380 | * appears per data segment. |
381 | */ |
382 | if (!cinfo->entropy->insufficient_data) { |
383 | WARNMS(cinfo, JWRN_HIT_MARKER); |
384 | cinfo->entropy->insufficient_data = TRUE; |
385 | } |
386 | /* Fill the buffer with zero bits */ |
387 | get_buffer <<= MIN_GET_BITS - bits_left; |
388 | bits_left = MIN_GET_BITS; |
389 | } |
390 | } |
391 | |
392 | /* Unload the local registers */ |
393 | state->next_input_byte = next_input_byte; |
394 | state->bytes_in_buffer = bytes_in_buffer; |
395 | state->get_buffer = get_buffer; |
396 | state->bits_left = bits_left; |
397 | |
398 | return TRUE; |
399 | } |
400 | |
401 | |
402 | /* Macro version of the above, which performs much better but does not |
403 | handle markers. We have to hand off any blocks with markers to the |
404 | slower routines. */ |
405 | |
406 | #define GET_BYTE { \ |
407 | register int c0, c1; \ |
408 | c0 = GETJOCTET(*buffer++); \ |
409 | c1 = GETJOCTET(*buffer); \ |
410 | /* Pre-execute most common case */ \ |
411 | get_buffer = (get_buffer << 8) | c0; \ |
412 | bits_left += 8; \ |
413 | if (c0 == 0xFF) { \ |
414 | /* Pre-execute case of FF/00, which represents an FF data byte */ \ |
415 | buffer++; \ |
416 | if (c1 != 0) { \ |
417 | /* Oops, it's actually a marker indicating end of compressed data. */ \ |
418 | cinfo->unread_marker = c1; \ |
419 | /* Back out pre-execution and fill the buffer with zero bits */ \ |
420 | buffer -= 2; \ |
421 | get_buffer &= ~0xFF; \ |
422 | } \ |
423 | } \ |
424 | } |
425 | |
426 | #if SIZEOF_SIZE_T == 8 || defined(_WIN64) |
427 | |
428 | /* Pre-fetch 48 bytes, because the holding register is 64-bit */ |
429 | #define FILL_BIT_BUFFER_FAST \ |
430 | if (bits_left <= 16) { \ |
431 | GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \ |
432 | } |
433 | |
434 | #else |
435 | |
436 | /* Pre-fetch 16 bytes, because the holding register is 32-bit */ |
437 | #define FILL_BIT_BUFFER_FAST \ |
438 | if (bits_left <= 16) { \ |
439 | GET_BYTE GET_BYTE \ |
440 | } |
441 | |
442 | #endif |
443 | |
444 | |
445 | /* |
446 | * Out-of-line code for Huffman code decoding. |
447 | * See jdhuff.h for info about usage. |
448 | */ |
449 | |
450 | GLOBAL(int) |
451 | jpeg_huff_decode(bitread_working_state *state, |
452 | register bit_buf_type get_buffer, register int bits_left, |
453 | d_derived_tbl *htbl, int min_bits) |
454 | { |
455 | register int l = min_bits; |
456 | register JLONG code; |
457 | |
458 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
459 | /* bits long, so fetch that many bits in one swoop. */ |
460 | |
461 | CHECK_BIT_BUFFER(*state, l, return -1); |
462 | code = GET_BITS(l); |
463 | |
464 | /* Collect the rest of the Huffman code one bit at a time. */ |
465 | /* This is per Figure F.16. */ |
466 | |
467 | while (code > htbl->maxcode[l]) { |
468 | code <<= 1; |
469 | CHECK_BIT_BUFFER(*state, 1, return -1); |
470 | code |= GET_BITS(1); |
471 | l++; |
472 | } |
473 | |
474 | /* Unload the local registers */ |
475 | state->get_buffer = get_buffer; |
476 | state->bits_left = bits_left; |
477 | |
478 | /* With garbage input we may reach the sentinel value l = 17. */ |
479 | |
480 | if (l > 16) { |
481 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
482 | return 0; /* fake a zero as the safest result */ |
483 | } |
484 | |
485 | return htbl->pub->huffval[(int)(code + htbl->valoffset[l])]; |
486 | } |
487 | |
488 | |
489 | /* |
490 | * Figure F.12: extend sign bit. |
491 | * On some machines, a shift and add will be faster than a table lookup. |
492 | */ |
493 | |
494 | #define AVOID_TABLES |
495 | #ifdef AVOID_TABLES |
496 | |
497 | #define NEG_1 ((unsigned int)-1) |
498 | #define HUFF_EXTEND(x, s) \ |
499 | ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1))) |
500 | |
501 | #else |
502 | |
503 | #define HUFF_EXTEND(x, s) \ |
504 | ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
505 | |
506 | static const int extend_test[16] = { /* entry n is 2**(n-1) */ |
507 | 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
508 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 |
509 | }; |
510 | |
511 | static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */ |
512 | 0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1, |
513 | ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1, |
514 | ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1, |
515 | ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1 |
516 | }; |
517 | |
518 | #endif /* AVOID_TABLES */ |
519 | |
520 | |
521 | /* |
522 | * Check for a restart marker & resynchronize decoder. |
523 | * Returns FALSE if must suspend. |
524 | */ |
525 | |
526 | LOCAL(boolean) |
527 | process_restart(j_decompress_ptr cinfo) |
528 | { |
529 | huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
530 | int ci; |
531 | |
532 | /* Throw away any unused bits remaining in bit buffer; */ |
533 | /* include any full bytes in next_marker's count of discarded bytes */ |
534 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
535 | entropy->bitstate.bits_left = 0; |
536 | |
537 | /* Advance past the RSTn marker */ |
538 | if (!(*cinfo->marker->read_restart_marker) (cinfo)) |
539 | return FALSE; |
540 | |
541 | /* Re-initialize DC predictions to 0 */ |
542 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
543 | entropy->saved.last_dc_val[ci] = 0; |
544 | |
545 | /* Reset restart counter */ |
546 | entropy->restarts_to_go = cinfo->restart_interval; |
547 | |
548 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
549 | * against a marker. In that case we will end up treating the next data |
550 | * segment as empty, and we can avoid producing bogus output pixels by |
551 | * leaving the flag set. |
552 | */ |
553 | if (cinfo->unread_marker == 0) |
554 | entropy->pub.insufficient_data = FALSE; |
555 | |
556 | return TRUE; |
557 | } |
558 | |
559 | |
560 | LOCAL(boolean) |
561 | decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
562 | { |
563 | huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
564 | BITREAD_STATE_VARS; |
565 | int blkn; |
566 | savable_state state; |
567 | /* Outer loop handles each block in the MCU */ |
568 | |
569 | /* Load up working state */ |
570 | BITREAD_LOAD_STATE(cinfo, entropy->bitstate); |
571 | ASSIGN_STATE(state, entropy->saved); |
572 | |
573 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
574 | JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
575 | d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
576 | d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
577 | register int s, k, r; |
578 | |
579 | /* Decode a single block's worth of coefficients */ |
580 | |
581 | /* Section F.2.2.1: decode the DC coefficient difference */ |
582 | HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
583 | if (s) { |
584 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
585 | r = GET_BITS(s); |
586 | s = HUFF_EXTEND(r, s); |
587 | } |
588 | |
589 | if (entropy->dc_needed[blkn]) { |
590 | /* Convert DC difference to actual value, update last_dc_val */ |
591 | int ci = cinfo->MCU_membership[blkn]; |
592 | s += state.last_dc_val[ci]; |
593 | state.last_dc_val[ci] = s; |
594 | if (block) { |
595 | /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
596 | (*block)[0] = (JCOEF)s; |
597 | } |
598 | } |
599 | |
600 | if (entropy->ac_needed[blkn] && block) { |
601 | |
602 | /* Section F.2.2.2: decode the AC coefficients */ |
603 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
604 | for (k = 1; k < DCTSIZE2; k++) { |
605 | HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
606 | |
607 | r = s >> 4; |
608 | s &= 15; |
609 | |
610 | if (s) { |
611 | k += r; |
612 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
613 | r = GET_BITS(s); |
614 | s = HUFF_EXTEND(r, s); |
615 | /* Output coefficient in natural (dezigzagged) order. |
616 | * Note: the extra entries in jpeg_natural_order[] will save us |
617 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
618 | */ |
619 | (*block)[jpeg_natural_order[k]] = (JCOEF)s; |
620 | } else { |
621 | if (r != 15) |
622 | break; |
623 | k += 15; |
624 | } |
625 | } |
626 | |
627 | } else { |
628 | |
629 | /* Section F.2.2.2: decode the AC coefficients */ |
630 | /* In this path we just discard the values */ |
631 | for (k = 1; k < DCTSIZE2; k++) { |
632 | HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
633 | |
634 | r = s >> 4; |
635 | s &= 15; |
636 | |
637 | if (s) { |
638 | k += r; |
639 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
640 | DROP_BITS(s); |
641 | } else { |
642 | if (r != 15) |
643 | break; |
644 | k += 15; |
645 | } |
646 | } |
647 | } |
648 | } |
649 | |
650 | /* Completed MCU, so update state */ |
651 | BITREAD_SAVE_STATE(cinfo, entropy->bitstate); |
652 | ASSIGN_STATE(entropy->saved, state); |
653 | return TRUE; |
654 | } |
655 | |
656 | |
657 | LOCAL(boolean) |
658 | decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
659 | { |
660 | huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
661 | BITREAD_STATE_VARS; |
662 | JOCTET *buffer; |
663 | int blkn; |
664 | savable_state state; |
665 | /* Outer loop handles each block in the MCU */ |
666 | |
667 | /* Load up working state */ |
668 | BITREAD_LOAD_STATE(cinfo, entropy->bitstate); |
669 | buffer = (JOCTET *)br_state.next_input_byte; |
670 | ASSIGN_STATE(state, entropy->saved); |
671 | |
672 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
673 | JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
674 | d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
675 | d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
676 | register int s, k, r, l; |
677 | |
678 | HUFF_DECODE_FAST(s, l, dctbl); |
679 | if (s) { |
680 | FILL_BIT_BUFFER_FAST |
681 | r = GET_BITS(s); |
682 | s = HUFF_EXTEND(r, s); |
683 | } |
684 | |
685 | if (entropy->dc_needed[blkn]) { |
686 | int ci = cinfo->MCU_membership[blkn]; |
687 | s += state.last_dc_val[ci]; |
688 | state.last_dc_val[ci] = s; |
689 | if (block) |
690 | (*block)[0] = (JCOEF)s; |
691 | } |
692 | |
693 | if (entropy->ac_needed[blkn] && block) { |
694 | |
695 | for (k = 1; k < DCTSIZE2; k++) { |
696 | HUFF_DECODE_FAST(s, l, actbl); |
697 | r = s >> 4; |
698 | s &= 15; |
699 | |
700 | if (s) { |
701 | k += r; |
702 | FILL_BIT_BUFFER_FAST |
703 | r = GET_BITS(s); |
704 | s = HUFF_EXTEND(r, s); |
705 | (*block)[jpeg_natural_order[k]] = (JCOEF)s; |
706 | } else { |
707 | if (r != 15) break; |
708 | k += 15; |
709 | } |
710 | } |
711 | |
712 | } else { |
713 | |
714 | for (k = 1; k < DCTSIZE2; k++) { |
715 | HUFF_DECODE_FAST(s, l, actbl); |
716 | r = s >> 4; |
717 | s &= 15; |
718 | |
719 | if (s) { |
720 | k += r; |
721 | FILL_BIT_BUFFER_FAST |
722 | DROP_BITS(s); |
723 | } else { |
724 | if (r != 15) break; |
725 | k += 15; |
726 | } |
727 | } |
728 | } |
729 | } |
730 | |
731 | if (cinfo->unread_marker != 0) { |
732 | cinfo->unread_marker = 0; |
733 | return FALSE; |
734 | } |
735 | |
736 | br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); |
737 | br_state.next_input_byte = buffer; |
738 | BITREAD_SAVE_STATE(cinfo, entropy->bitstate); |
739 | ASSIGN_STATE(entropy->saved, state); |
740 | return TRUE; |
741 | } |
742 | |
743 | |
744 | /* |
745 | * Decode and return one MCU's worth of Huffman-compressed coefficients. |
746 | * The coefficients are reordered from zigzag order into natural array order, |
747 | * but are not dequantized. |
748 | * |
749 | * The i'th block of the MCU is stored into the block pointed to by |
750 | * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
751 | * (Wholesale zeroing is usually a little faster than retail...) |
752 | * |
753 | * Returns FALSE if data source requested suspension. In that case no |
754 | * changes have been made to permanent state. (Exception: some output |
755 | * coefficients may already have been assigned. This is harmless for |
756 | * this module, since we'll just re-assign them on the next call.) |
757 | */ |
758 | |
759 | #define BUFSIZE (DCTSIZE2 * 8) |
760 | |
761 | METHODDEF(boolean) |
762 | decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
763 | { |
764 | huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
765 | int usefast = 1; |
766 | |
767 | /* Process restart marker if needed; may have to suspend */ |
768 | if (cinfo->restart_interval) { |
769 | if (entropy->restarts_to_go == 0) |
770 | if (!process_restart(cinfo)) |
771 | return FALSE; |
772 | usefast = 0; |
773 | } |
774 | |
775 | if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU || |
776 | cinfo->unread_marker != 0) |
777 | usefast = 0; |
778 | |
779 | /* If we've run out of data, just leave the MCU set to zeroes. |
780 | * This way, we return uniform gray for the remainder of the segment. |
781 | */ |
782 | if (!entropy->pub.insufficient_data) { |
783 | |
784 | if (usefast) { |
785 | if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow; |
786 | } else { |
787 | use_slow: |
788 | if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; |
789 | } |
790 | |
791 | } |
792 | |
793 | /* Account for restart interval (no-op if not using restarts) */ |
794 | entropy->restarts_to_go--; |
795 | |
796 | return TRUE; |
797 | } |
798 | |
799 | |
800 | /* |
801 | * Module initialization routine for Huffman entropy decoding. |
802 | */ |
803 | |
804 | GLOBAL(void) |
805 | jinit_huff_decoder(j_decompress_ptr cinfo) |
806 | { |
807 | huff_entropy_ptr entropy; |
808 | int i; |
809 | |
810 | /* Motion JPEG frames typically do not include the Huffman tables if they |
811 | are the default tables. Thus, if the tables are not set by the time |
812 | the Huffman decoder is initialized (usually within the body of |
813 | jpeg_start_decompress()), we set them to default values. */ |
814 | std_huff_tables((j_common_ptr)cinfo); |
815 | |
816 | entropy = (huff_entropy_ptr) |
817 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
818 | sizeof(huff_entropy_decoder)); |
819 | cinfo->entropy = (struct jpeg_entropy_decoder *)entropy; |
820 | entropy->pub.start_pass = start_pass_huff_decoder; |
821 | entropy->pub.decode_mcu = decode_mcu; |
822 | |
823 | /* Mark tables unallocated */ |
824 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
825 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
826 | } |
827 | } |
828 | |