1 | /* |
2 | * jdphuff.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1995-1997, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2015-2016, 2018, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains Huffman entropy decoding routines for progressive JPEG. |
12 | * |
13 | * Much of the complexity here has to do with supporting input suspension. |
14 | * If the data source module demands suspension, we want to be able to back |
15 | * up to the start of the current MCU. To do this, we copy state variables |
16 | * into local working storage, and update them back to the permanent |
17 | * storage only upon successful completion of an MCU. |
18 | * |
19 | * NOTE: All referenced figures are from |
20 | * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. |
21 | */ |
22 | |
23 | #define JPEG_INTERNALS |
24 | #include "jinclude.h" |
25 | #include "jpeglib.h" |
26 | #include "jdhuff.h" /* Declarations shared with jdhuff.c */ |
27 | #include <limits.h> |
28 | |
29 | |
30 | #ifdef D_PROGRESSIVE_SUPPORTED |
31 | |
32 | /* |
33 | * Expanded entropy decoder object for progressive Huffman decoding. |
34 | * |
35 | * The savable_state subrecord contains fields that change within an MCU, |
36 | * but must not be updated permanently until we complete the MCU. |
37 | */ |
38 | |
39 | typedef struct { |
40 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ |
41 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
42 | } savable_state; |
43 | |
44 | /* This macro is to work around compilers with missing or broken |
45 | * structure assignment. You'll need to fix this code if you have |
46 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
47 | */ |
48 | |
49 | #ifndef NO_STRUCT_ASSIGN |
50 | #define ASSIGN_STATE(dest, src) ((dest) = (src)) |
51 | #else |
52 | #if MAX_COMPS_IN_SCAN == 4 |
53 | #define ASSIGN_STATE(dest, src) \ |
54 | ((dest).EOBRUN = (src).EOBRUN, \ |
55 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
56 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
57 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
58 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
59 | #endif |
60 | #endif |
61 | |
62 | |
63 | typedef struct { |
64 | struct jpeg_entropy_decoder pub; /* public fields */ |
65 | |
66 | /* These fields are loaded into local variables at start of each MCU. |
67 | * In case of suspension, we exit WITHOUT updating them. |
68 | */ |
69 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
70 | savable_state saved; /* Other state at start of MCU */ |
71 | |
72 | /* These fields are NOT loaded into local working state. */ |
73 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
74 | |
75 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
76 | d_derived_tbl *derived_tbls[NUM_HUFF_TBLS]; |
77 | |
78 | d_derived_tbl *ac_derived_tbl; /* active table during an AC scan */ |
79 | } phuff_entropy_decoder; |
80 | |
81 | typedef phuff_entropy_decoder *phuff_entropy_ptr; |
82 | |
83 | /* Forward declarations */ |
84 | METHODDEF(boolean) decode_mcu_DC_first(j_decompress_ptr cinfo, |
85 | JBLOCKROW *MCU_data); |
86 | METHODDEF(boolean) decode_mcu_AC_first(j_decompress_ptr cinfo, |
87 | JBLOCKROW *MCU_data); |
88 | METHODDEF(boolean) decode_mcu_DC_refine(j_decompress_ptr cinfo, |
89 | JBLOCKROW *MCU_data); |
90 | METHODDEF(boolean) decode_mcu_AC_refine(j_decompress_ptr cinfo, |
91 | JBLOCKROW *MCU_data); |
92 | |
93 | |
94 | /* |
95 | * Initialize for a Huffman-compressed scan. |
96 | */ |
97 | |
98 | METHODDEF(void) |
99 | start_pass_phuff_decoder(j_decompress_ptr cinfo) |
100 | { |
101 | phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; |
102 | boolean is_DC_band, bad; |
103 | int ci, coefi, tbl; |
104 | d_derived_tbl **pdtbl; |
105 | int *coef_bit_ptr; |
106 | jpeg_component_info *compptr; |
107 | |
108 | is_DC_band = (cinfo->Ss == 0); |
109 | |
110 | /* Validate scan parameters */ |
111 | bad = FALSE; |
112 | if (is_DC_band) { |
113 | if (cinfo->Se != 0) |
114 | bad = TRUE; |
115 | } else { |
116 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
117 | if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) |
118 | bad = TRUE; |
119 | /* AC scans may have only one component */ |
120 | if (cinfo->comps_in_scan != 1) |
121 | bad = TRUE; |
122 | } |
123 | if (cinfo->Ah != 0) { |
124 | /* Successive approximation refinement scan: must have Al = Ah-1. */ |
125 | if (cinfo->Al != cinfo->Ah - 1) |
126 | bad = TRUE; |
127 | } |
128 | if (cinfo->Al > 13) /* need not check for < 0 */ |
129 | bad = TRUE; |
130 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, |
131 | * but the spec doesn't say so, and we try to be liberal about what we |
132 | * accept. Note: large Al values could result in out-of-range DC |
133 | * coefficients during early scans, leading to bizarre displays due to |
134 | * overflows in the IDCT math. But we won't crash. |
135 | */ |
136 | if (bad) |
137 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
138 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
139 | /* Update progression status, and verify that scan order is legal. |
140 | * Note that inter-scan inconsistencies are treated as warnings |
141 | * not fatal errors ... not clear if this is right way to behave. |
142 | */ |
143 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
144 | int cindex = cinfo->cur_comp_info[ci]->component_index; |
145 | coef_bit_ptr = &cinfo->coef_bits[cindex][0]; |
146 | if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
147 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
148 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
149 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
150 | if (cinfo->Ah != expected) |
151 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
152 | coef_bit_ptr[coefi] = cinfo->Al; |
153 | } |
154 | } |
155 | |
156 | /* Select MCU decoding routine */ |
157 | if (cinfo->Ah == 0) { |
158 | if (is_DC_band) |
159 | entropy->pub.decode_mcu = decode_mcu_DC_first; |
160 | else |
161 | entropy->pub.decode_mcu = decode_mcu_AC_first; |
162 | } else { |
163 | if (is_DC_band) |
164 | entropy->pub.decode_mcu = decode_mcu_DC_refine; |
165 | else |
166 | entropy->pub.decode_mcu = decode_mcu_AC_refine; |
167 | } |
168 | |
169 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
170 | compptr = cinfo->cur_comp_info[ci]; |
171 | /* Make sure requested tables are present, and compute derived tables. |
172 | * We may build same derived table more than once, but it's not expensive. |
173 | */ |
174 | if (is_DC_band) { |
175 | if (cinfo->Ah == 0) { /* DC refinement needs no table */ |
176 | tbl = compptr->dc_tbl_no; |
177 | pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl; |
178 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, pdtbl); |
179 | } |
180 | } else { |
181 | tbl = compptr->ac_tbl_no; |
182 | pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl; |
183 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, pdtbl); |
184 | /* remember the single active table */ |
185 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; |
186 | } |
187 | /* Initialize DC predictions to 0 */ |
188 | entropy->saved.last_dc_val[ci] = 0; |
189 | } |
190 | |
191 | /* Initialize bitread state variables */ |
192 | entropy->bitstate.bits_left = 0; |
193 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
194 | entropy->pub.insufficient_data = FALSE; |
195 | |
196 | /* Initialize private state variables */ |
197 | entropy->saved.EOBRUN = 0; |
198 | |
199 | /* Initialize restart counter */ |
200 | entropy->restarts_to_go = cinfo->restart_interval; |
201 | } |
202 | |
203 | |
204 | /* |
205 | * Figure F.12: extend sign bit. |
206 | * On some machines, a shift and add will be faster than a table lookup. |
207 | */ |
208 | |
209 | #define AVOID_TABLES |
210 | #ifdef AVOID_TABLES |
211 | |
212 | #define NEG_1 ((unsigned)-1) |
213 | #define HUFF_EXTEND(x, s) \ |
214 | ((x) < (1 << ((s) - 1)) ? (x) + (((NEG_1) << (s)) + 1) : (x)) |
215 | |
216 | #else |
217 | |
218 | #define HUFF_EXTEND(x, s) \ |
219 | ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
220 | |
221 | static const int extend_test[16] = { /* entry n is 2**(n-1) */ |
222 | 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
223 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 |
224 | }; |
225 | |
226 | static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */ |
227 | 0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1, |
228 | ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1, |
229 | ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1, |
230 | ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1 |
231 | }; |
232 | |
233 | #endif /* AVOID_TABLES */ |
234 | |
235 | |
236 | /* |
237 | * Check for a restart marker & resynchronize decoder. |
238 | * Returns FALSE if must suspend. |
239 | */ |
240 | |
241 | LOCAL(boolean) |
242 | process_restart(j_decompress_ptr cinfo) |
243 | { |
244 | phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; |
245 | int ci; |
246 | |
247 | /* Throw away any unused bits remaining in bit buffer; */ |
248 | /* include any full bytes in next_marker's count of discarded bytes */ |
249 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
250 | entropy->bitstate.bits_left = 0; |
251 | |
252 | /* Advance past the RSTn marker */ |
253 | if (!(*cinfo->marker->read_restart_marker) (cinfo)) |
254 | return FALSE; |
255 | |
256 | /* Re-initialize DC predictions to 0 */ |
257 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
258 | entropy->saved.last_dc_val[ci] = 0; |
259 | /* Re-init EOB run count, too */ |
260 | entropy->saved.EOBRUN = 0; |
261 | |
262 | /* Reset restart counter */ |
263 | entropy->restarts_to_go = cinfo->restart_interval; |
264 | |
265 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
266 | * against a marker. In that case we will end up treating the next data |
267 | * segment as empty, and we can avoid producing bogus output pixels by |
268 | * leaving the flag set. |
269 | */ |
270 | if (cinfo->unread_marker == 0) |
271 | entropy->pub.insufficient_data = FALSE; |
272 | |
273 | return TRUE; |
274 | } |
275 | |
276 | |
277 | /* |
278 | * Huffman MCU decoding. |
279 | * Each of these routines decodes and returns one MCU's worth of |
280 | * Huffman-compressed coefficients. |
281 | * The coefficients are reordered from zigzag order into natural array order, |
282 | * but are not dequantized. |
283 | * |
284 | * The i'th block of the MCU is stored into the block pointed to by |
285 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
286 | * |
287 | * We return FALSE if data source requested suspension. In that case no |
288 | * changes have been made to permanent state. (Exception: some output |
289 | * coefficients may already have been assigned. This is harmless for |
290 | * spectral selection, since we'll just re-assign them on the next call. |
291 | * Successive approximation AC refinement has to be more careful, however.) |
292 | */ |
293 | |
294 | /* |
295 | * MCU decoding for DC initial scan (either spectral selection, |
296 | * or first pass of successive approximation). |
297 | */ |
298 | |
299 | METHODDEF(boolean) |
300 | decode_mcu_DC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
301 | { |
302 | phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; |
303 | int Al = cinfo->Al; |
304 | register int s, r; |
305 | int blkn, ci; |
306 | JBLOCKROW block; |
307 | BITREAD_STATE_VARS; |
308 | savable_state state; |
309 | d_derived_tbl *tbl; |
310 | jpeg_component_info *compptr; |
311 | |
312 | /* Process restart marker if needed; may have to suspend */ |
313 | if (cinfo->restart_interval) { |
314 | if (entropy->restarts_to_go == 0) |
315 | if (!process_restart(cinfo)) |
316 | return FALSE; |
317 | } |
318 | |
319 | /* If we've run out of data, just leave the MCU set to zeroes. |
320 | * This way, we return uniform gray for the remainder of the segment. |
321 | */ |
322 | if (!entropy->pub.insufficient_data) { |
323 | |
324 | /* Load up working state */ |
325 | BITREAD_LOAD_STATE(cinfo, entropy->bitstate); |
326 | ASSIGN_STATE(state, entropy->saved); |
327 | |
328 | /* Outer loop handles each block in the MCU */ |
329 | |
330 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
331 | block = MCU_data[blkn]; |
332 | ci = cinfo->MCU_membership[blkn]; |
333 | compptr = cinfo->cur_comp_info[ci]; |
334 | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; |
335 | |
336 | /* Decode a single block's worth of coefficients */ |
337 | |
338 | /* Section F.2.2.1: decode the DC coefficient difference */ |
339 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); |
340 | if (s) { |
341 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
342 | r = GET_BITS(s); |
343 | s = HUFF_EXTEND(r, s); |
344 | } |
345 | |
346 | /* Convert DC difference to actual value, update last_dc_val */ |
347 | if ((state.last_dc_val[ci] >= 0 && |
348 | s > INT_MAX - state.last_dc_val[ci]) || |
349 | (state.last_dc_val[ci] < 0 && s < INT_MIN - state.last_dc_val[ci])) |
350 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
351 | s += state.last_dc_val[ci]; |
352 | state.last_dc_val[ci] = s; |
353 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ |
354 | (*block)[0] = (JCOEF)LEFT_SHIFT(s, Al); |
355 | } |
356 | |
357 | /* Completed MCU, so update state */ |
358 | BITREAD_SAVE_STATE(cinfo, entropy->bitstate); |
359 | ASSIGN_STATE(entropy->saved, state); |
360 | } |
361 | |
362 | /* Account for restart interval (no-op if not using restarts) */ |
363 | entropy->restarts_to_go--; |
364 | |
365 | return TRUE; |
366 | } |
367 | |
368 | |
369 | /* |
370 | * MCU decoding for AC initial scan (either spectral selection, |
371 | * or first pass of successive approximation). |
372 | */ |
373 | |
374 | METHODDEF(boolean) |
375 | decode_mcu_AC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
376 | { |
377 | phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; |
378 | int Se = cinfo->Se; |
379 | int Al = cinfo->Al; |
380 | register int s, k, r; |
381 | unsigned int EOBRUN; |
382 | JBLOCKROW block; |
383 | BITREAD_STATE_VARS; |
384 | d_derived_tbl *tbl; |
385 | |
386 | /* Process restart marker if needed; may have to suspend */ |
387 | if (cinfo->restart_interval) { |
388 | if (entropy->restarts_to_go == 0) |
389 | if (!process_restart(cinfo)) |
390 | return FALSE; |
391 | } |
392 | |
393 | /* If we've run out of data, just leave the MCU set to zeroes. |
394 | * This way, we return uniform gray for the remainder of the segment. |
395 | */ |
396 | if (!entropy->pub.insufficient_data) { |
397 | |
398 | /* Load up working state. |
399 | * We can avoid loading/saving bitread state if in an EOB run. |
400 | */ |
401 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
402 | |
403 | /* There is always only one block per MCU */ |
404 | |
405 | if (EOBRUN > 0) /* if it's a band of zeroes... */ |
406 | EOBRUN--; /* ...process it now (we do nothing) */ |
407 | else { |
408 | BITREAD_LOAD_STATE(cinfo, entropy->bitstate); |
409 | block = MCU_data[0]; |
410 | tbl = entropy->ac_derived_tbl; |
411 | |
412 | for (k = cinfo->Ss; k <= Se; k++) { |
413 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); |
414 | r = s >> 4; |
415 | s &= 15; |
416 | if (s) { |
417 | k += r; |
418 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
419 | r = GET_BITS(s); |
420 | s = HUFF_EXTEND(r, s); |
421 | /* Scale and output coefficient in natural (dezigzagged) order */ |
422 | (*block)[jpeg_natural_order[k]] = (JCOEF)LEFT_SHIFT(s, Al); |
423 | } else { |
424 | if (r == 15) { /* ZRL */ |
425 | k += 15; /* skip 15 zeroes in band */ |
426 | } else { /* EOBr, run length is 2^r + appended bits */ |
427 | EOBRUN = 1 << r; |
428 | if (r) { /* EOBr, r > 0 */ |
429 | CHECK_BIT_BUFFER(br_state, r, return FALSE); |
430 | r = GET_BITS(r); |
431 | EOBRUN += r; |
432 | } |
433 | EOBRUN--; /* this band is processed at this moment */ |
434 | break; /* force end-of-band */ |
435 | } |
436 | } |
437 | } |
438 | |
439 | BITREAD_SAVE_STATE(cinfo, entropy->bitstate); |
440 | } |
441 | |
442 | /* Completed MCU, so update state */ |
443 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
444 | } |
445 | |
446 | /* Account for restart interval (no-op if not using restarts) */ |
447 | entropy->restarts_to_go--; |
448 | |
449 | return TRUE; |
450 | } |
451 | |
452 | |
453 | /* |
454 | * MCU decoding for DC successive approximation refinement scan. |
455 | * Note: we assume such scans can be multi-component, although the spec |
456 | * is not very clear on the point. |
457 | */ |
458 | |
459 | METHODDEF(boolean) |
460 | decode_mcu_DC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
461 | { |
462 | phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; |
463 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
464 | int blkn; |
465 | JBLOCKROW block; |
466 | BITREAD_STATE_VARS; |
467 | |
468 | /* Process restart marker if needed; may have to suspend */ |
469 | if (cinfo->restart_interval) { |
470 | if (entropy->restarts_to_go == 0) |
471 | if (!process_restart(cinfo)) |
472 | return FALSE; |
473 | } |
474 | |
475 | /* Not worth the cycles to check insufficient_data here, |
476 | * since we will not change the data anyway if we read zeroes. |
477 | */ |
478 | |
479 | /* Load up working state */ |
480 | BITREAD_LOAD_STATE(cinfo, entropy->bitstate); |
481 | |
482 | /* Outer loop handles each block in the MCU */ |
483 | |
484 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
485 | block = MCU_data[blkn]; |
486 | |
487 | /* Encoded data is simply the next bit of the two's-complement DC value */ |
488 | CHECK_BIT_BUFFER(br_state, 1, return FALSE); |
489 | if (GET_BITS(1)) |
490 | (*block)[0] |= p1; |
491 | /* Note: since we use |=, repeating the assignment later is safe */ |
492 | } |
493 | |
494 | /* Completed MCU, so update state */ |
495 | BITREAD_SAVE_STATE(cinfo, entropy->bitstate); |
496 | |
497 | /* Account for restart interval (no-op if not using restarts) */ |
498 | entropy->restarts_to_go--; |
499 | |
500 | return TRUE; |
501 | } |
502 | |
503 | |
504 | /* |
505 | * MCU decoding for AC successive approximation refinement scan. |
506 | */ |
507 | |
508 | METHODDEF(boolean) |
509 | decode_mcu_AC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
510 | { |
511 | phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; |
512 | int Se = cinfo->Se; |
513 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
514 | int m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */ |
515 | register int s, k, r; |
516 | unsigned int EOBRUN; |
517 | JBLOCKROW block; |
518 | JCOEFPTR thiscoef; |
519 | BITREAD_STATE_VARS; |
520 | d_derived_tbl *tbl; |
521 | int num_newnz; |
522 | int newnz_pos[DCTSIZE2]; |
523 | |
524 | /* Process restart marker if needed; may have to suspend */ |
525 | if (cinfo->restart_interval) { |
526 | if (entropy->restarts_to_go == 0) |
527 | if (!process_restart(cinfo)) |
528 | return FALSE; |
529 | } |
530 | |
531 | /* If we've run out of data, don't modify the MCU. |
532 | */ |
533 | if (!entropy->pub.insufficient_data) { |
534 | |
535 | /* Load up working state */ |
536 | BITREAD_LOAD_STATE(cinfo, entropy->bitstate); |
537 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
538 | |
539 | /* There is always only one block per MCU */ |
540 | block = MCU_data[0]; |
541 | tbl = entropy->ac_derived_tbl; |
542 | |
543 | /* If we are forced to suspend, we must undo the assignments to any newly |
544 | * nonzero coefficients in the block, because otherwise we'd get confused |
545 | * next time about which coefficients were already nonzero. |
546 | * But we need not undo addition of bits to already-nonzero coefficients; |
547 | * instead, we can test the current bit to see if we already did it. |
548 | */ |
549 | num_newnz = 0; |
550 | |
551 | /* initialize coefficient loop counter to start of band */ |
552 | k = cinfo->Ss; |
553 | |
554 | if (EOBRUN == 0) { |
555 | for (; k <= Se; k++) { |
556 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); |
557 | r = s >> 4; |
558 | s &= 15; |
559 | if (s) { |
560 | if (s != 1) /* size of new coef should always be 1 */ |
561 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); |
562 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
563 | if (GET_BITS(1)) |
564 | s = p1; /* newly nonzero coef is positive */ |
565 | else |
566 | s = m1; /* newly nonzero coef is negative */ |
567 | } else { |
568 | if (r != 15) { |
569 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ |
570 | if (r) { |
571 | CHECK_BIT_BUFFER(br_state, r, goto undoit); |
572 | r = GET_BITS(r); |
573 | EOBRUN += r; |
574 | } |
575 | break; /* rest of block is handled by EOB logic */ |
576 | } |
577 | /* note s = 0 for processing ZRL */ |
578 | } |
579 | /* Advance over already-nonzero coefs and r still-zero coefs, |
580 | * appending correction bits to the nonzeroes. A correction bit is 1 |
581 | * if the absolute value of the coefficient must be increased. |
582 | */ |
583 | do { |
584 | thiscoef = *block + jpeg_natural_order[k]; |
585 | if (*thiscoef != 0) { |
586 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
587 | if (GET_BITS(1)) { |
588 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ |
589 | if (*thiscoef >= 0) |
590 | *thiscoef += p1; |
591 | else |
592 | *thiscoef += m1; |
593 | } |
594 | } |
595 | } else { |
596 | if (--r < 0) |
597 | break; /* reached target zero coefficient */ |
598 | } |
599 | k++; |
600 | } while (k <= Se); |
601 | if (s) { |
602 | int pos = jpeg_natural_order[k]; |
603 | /* Output newly nonzero coefficient */ |
604 | (*block)[pos] = (JCOEF)s; |
605 | /* Remember its position in case we have to suspend */ |
606 | newnz_pos[num_newnz++] = pos; |
607 | } |
608 | } |
609 | } |
610 | |
611 | if (EOBRUN > 0) { |
612 | /* Scan any remaining coefficient positions after the end-of-band |
613 | * (the last newly nonzero coefficient, if any). Append a correction |
614 | * bit to each already-nonzero coefficient. A correction bit is 1 |
615 | * if the absolute value of the coefficient must be increased. |
616 | */ |
617 | for (; k <= Se; k++) { |
618 | thiscoef = *block + jpeg_natural_order[k]; |
619 | if (*thiscoef != 0) { |
620 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
621 | if (GET_BITS(1)) { |
622 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ |
623 | if (*thiscoef >= 0) |
624 | *thiscoef += p1; |
625 | else |
626 | *thiscoef += m1; |
627 | } |
628 | } |
629 | } |
630 | } |
631 | /* Count one block completed in EOB run */ |
632 | EOBRUN--; |
633 | } |
634 | |
635 | /* Completed MCU, so update state */ |
636 | BITREAD_SAVE_STATE(cinfo, entropy->bitstate); |
637 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
638 | } |
639 | |
640 | /* Account for restart interval (no-op if not using restarts) */ |
641 | entropy->restarts_to_go--; |
642 | |
643 | return TRUE; |
644 | |
645 | undoit: |
646 | /* Re-zero any output coefficients that we made newly nonzero */ |
647 | while (num_newnz > 0) |
648 | (*block)[newnz_pos[--num_newnz]] = 0; |
649 | |
650 | return FALSE; |
651 | } |
652 | |
653 | |
654 | /* |
655 | * Module initialization routine for progressive Huffman entropy decoding. |
656 | */ |
657 | |
658 | GLOBAL(void) |
659 | jinit_phuff_decoder(j_decompress_ptr cinfo) |
660 | { |
661 | phuff_entropy_ptr entropy; |
662 | int *coef_bit_ptr; |
663 | int ci, i; |
664 | |
665 | entropy = (phuff_entropy_ptr) |
666 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
667 | sizeof(phuff_entropy_decoder)); |
668 | cinfo->entropy = (struct jpeg_entropy_decoder *)entropy; |
669 | entropy->pub.start_pass = start_pass_phuff_decoder; |
670 | |
671 | /* Mark derived tables unallocated */ |
672 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
673 | entropy->derived_tbls[i] = NULL; |
674 | } |
675 | |
676 | /* Create progression status table */ |
677 | cinfo->coef_bits = (int (*)[DCTSIZE2]) |
678 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
679 | cinfo->num_components * DCTSIZE2 * |
680 | sizeof(int)); |
681 | coef_bit_ptr = &cinfo->coef_bits[0][0]; |
682 | for (ci = 0; ci < cinfo->num_components; ci++) |
683 | for (i = 0; i < DCTSIZE2; i++) |
684 | *coef_bit_ptr++ = -1; |
685 | } |
686 | |
687 | #endif /* D_PROGRESSIVE_SUPPORTED */ |
688 | |