| 1 | /* | 
|---|
| 2 | * jmemmgr.c | 
|---|
| 3 | * | 
|---|
| 4 | * This file was part of the Independent JPEG Group's software: | 
|---|
| 5 | * Copyright (C) 1991-1997, Thomas G. Lane. | 
|---|
| 6 | * libjpeg-turbo Modifications: | 
|---|
| 7 | * Copyright (C) 2016, D. R. Commander. | 
|---|
| 8 | * For conditions of distribution and use, see the accompanying README.ijg | 
|---|
| 9 | * file. | 
|---|
| 10 | * | 
|---|
| 11 | * This file contains the JPEG system-independent memory management | 
|---|
| 12 | * routines.  This code is usable across a wide variety of machines; most | 
|---|
| 13 | * of the system dependencies have been isolated in a separate file. | 
|---|
| 14 | * The major functions provided here are: | 
|---|
| 15 | *   * pool-based allocation and freeing of memory; | 
|---|
| 16 | *   * policy decisions about how to divide available memory among the | 
|---|
| 17 | *     virtual arrays; | 
|---|
| 18 | *   * control logic for swapping virtual arrays between main memory and | 
|---|
| 19 | *     backing storage. | 
|---|
| 20 | * The separate system-dependent file provides the actual backing-storage | 
|---|
| 21 | * access code, and it contains the policy decision about how much total | 
|---|
| 22 | * main memory to use. | 
|---|
| 23 | * This file is system-dependent in the sense that some of its functions | 
|---|
| 24 | * are unnecessary in some systems.  For example, if there is enough virtual | 
|---|
| 25 | * memory so that backing storage will never be used, much of the virtual | 
|---|
| 26 | * array control logic could be removed.  (Of course, if you have that much | 
|---|
| 27 | * memory then you shouldn't care about a little bit of unused code...) | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | #define JPEG_INTERNALS | 
|---|
| 31 | #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */ | 
|---|
| 32 | #include "jinclude.h" | 
|---|
| 33 | #include "jpeglib.h" | 
|---|
| 34 | #include "jmemsys.h"            /* import the system-dependent declarations */ | 
|---|
| 35 | #if !defined(_MSC_VER) || _MSC_VER > 1600 | 
|---|
| 36 | #include <stdint.h> | 
|---|
| 37 | #endif | 
|---|
| 38 | #include <limits.h> | 
|---|
| 39 |  | 
|---|
| 40 | #ifndef NO_GETENV | 
|---|
| 41 | #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */ | 
|---|
| 42 | extern char *getenv(const char *name); | 
|---|
| 43 | #endif | 
|---|
| 44 | #endif | 
|---|
| 45 |  | 
|---|
| 46 |  | 
|---|
| 47 | LOCAL(size_t) | 
|---|
| 48 | round_up_pow2(size_t a, size_t b) | 
|---|
| 49 | /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ | 
|---|
| 50 | /* Assumes a >= 0, b > 0, and b is a power of 2 */ | 
|---|
| 51 | { | 
|---|
| 52 | return ((a + b - 1) & (~(b - 1))); | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 |  | 
|---|
| 56 | /* | 
|---|
| 57 | * Some important notes: | 
|---|
| 58 | *   The allocation routines provided here must never return NULL. | 
|---|
| 59 | *   They should exit to error_exit if unsuccessful. | 
|---|
| 60 | * | 
|---|
| 61 | *   It's not a good idea to try to merge the sarray and barray routines, | 
|---|
| 62 | *   even though they are textually almost the same, because samples are | 
|---|
| 63 | *   usually stored as bytes while coefficients are shorts or ints.  Thus, | 
|---|
| 64 | *   in machines where byte pointers have a different representation from | 
|---|
| 65 | *   word pointers, the resulting machine code could not be the same. | 
|---|
| 66 | */ | 
|---|
| 67 |  | 
|---|
| 68 |  | 
|---|
| 69 | /* | 
|---|
| 70 | * Many machines require storage alignment: longs must start on 4-byte | 
|---|
| 71 | * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc() | 
|---|
| 72 | * always returns pointers that are multiples of the worst-case alignment | 
|---|
| 73 | * requirement, and we had better do so too. | 
|---|
| 74 | * There isn't any really portable way to determine the worst-case alignment | 
|---|
| 75 | * requirement.  This module assumes that the alignment requirement is | 
|---|
| 76 | * multiples of ALIGN_SIZE. | 
|---|
| 77 | * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on | 
|---|
| 78 | * some workstations (where doubles really do need 8-byte alignment) and will | 
|---|
| 79 | * work fine on nearly everything.  If your machine has lesser alignment needs, | 
|---|
| 80 | * you can save a few bytes by making ALIGN_SIZE smaller. | 
|---|
| 81 | * The only place I know of where this will NOT work is certain Macintosh | 
|---|
| 82 | * 680x0 compilers that define double as a 10-byte IEEE extended float. | 
|---|
| 83 | * Doing 10-byte alignment is counterproductive because longwords won't be | 
|---|
| 84 | * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have | 
|---|
| 85 | * such a compiler. | 
|---|
| 86 | */ | 
|---|
| 87 |  | 
|---|
| 88 | #ifndef ALIGN_SIZE              /* so can override from jconfig.h */ | 
|---|
| 89 | #ifndef WITH_SIMD | 
|---|
| 90 | #define ALIGN_SIZE  sizeof(double) | 
|---|
| 91 | #else | 
|---|
| 92 | #define ALIGN_SIZE  32 /* Most of the SIMD instructions we support require | 
|---|
| 93 | 16-byte (128-bit) alignment, but AVX2 requires | 
|---|
| 94 | 32-byte alignment. */ | 
|---|
| 95 | #endif | 
|---|
| 96 | #endif | 
|---|
| 97 |  | 
|---|
| 98 | /* | 
|---|
| 99 | * We allocate objects from "pools", where each pool is gotten with a single | 
|---|
| 100 | * request to jpeg_get_small() or jpeg_get_large().  There is no per-object | 
|---|
| 101 | * overhead within a pool, except for alignment padding.  Each pool has a | 
|---|
| 102 | * header with a link to the next pool of the same class. | 
|---|
| 103 | * Small and large pool headers are identical. | 
|---|
| 104 | */ | 
|---|
| 105 |  | 
|---|
| 106 | typedef struct small_pool_struct *small_pool_ptr; | 
|---|
| 107 |  | 
|---|
| 108 | typedef struct small_pool_struct { | 
|---|
| 109 | small_pool_ptr next;          /* next in list of pools */ | 
|---|
| 110 | size_t bytes_used;            /* how many bytes already used within pool */ | 
|---|
| 111 | size_t bytes_left;            /* bytes still available in this pool */ | 
|---|
| 112 | } small_pool_hdr; | 
|---|
| 113 |  | 
|---|
| 114 | typedef struct large_pool_struct *large_pool_ptr; | 
|---|
| 115 |  | 
|---|
| 116 | typedef struct large_pool_struct { | 
|---|
| 117 | large_pool_ptr next;          /* next in list of pools */ | 
|---|
| 118 | size_t bytes_used;            /* how many bytes already used within pool */ | 
|---|
| 119 | size_t bytes_left;            /* bytes still available in this pool */ | 
|---|
| 120 | } large_pool_hdr; | 
|---|
| 121 |  | 
|---|
| 122 | /* | 
|---|
| 123 | * Here is the full definition of a memory manager object. | 
|---|
| 124 | */ | 
|---|
| 125 |  | 
|---|
| 126 | typedef struct { | 
|---|
| 127 | struct jpeg_memory_mgr pub;   /* public fields */ | 
|---|
| 128 |  | 
|---|
| 129 | /* Each pool identifier (lifetime class) names a linked list of pools. */ | 
|---|
| 130 | small_pool_ptr small_list[JPOOL_NUMPOOLS]; | 
|---|
| 131 | large_pool_ptr large_list[JPOOL_NUMPOOLS]; | 
|---|
| 132 |  | 
|---|
| 133 | /* Since we only have one lifetime class of virtual arrays, only one | 
|---|
| 134 | * linked list is necessary (for each datatype).  Note that the virtual | 
|---|
| 135 | * array control blocks being linked together are actually stored somewhere | 
|---|
| 136 | * in the small-pool list. | 
|---|
| 137 | */ | 
|---|
| 138 | jvirt_sarray_ptr virt_sarray_list; | 
|---|
| 139 | jvirt_barray_ptr virt_barray_list; | 
|---|
| 140 |  | 
|---|
| 141 | /* This counts total space obtained from jpeg_get_small/large */ | 
|---|
| 142 | size_t total_space_allocated; | 
|---|
| 143 |  | 
|---|
| 144 | /* alloc_sarray and alloc_barray set this value for use by virtual | 
|---|
| 145 | * array routines. | 
|---|
| 146 | */ | 
|---|
| 147 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ | 
|---|
| 148 | } my_memory_mgr; | 
|---|
| 149 |  | 
|---|
| 150 | typedef my_memory_mgr *my_mem_ptr; | 
|---|
| 151 |  | 
|---|
| 152 |  | 
|---|
| 153 | /* | 
|---|
| 154 | * The control blocks for virtual arrays. | 
|---|
| 155 | * Note that these blocks are allocated in the "small" pool area. | 
|---|
| 156 | * System-dependent info for the associated backing store (if any) is hidden | 
|---|
| 157 | * inside the backing_store_info struct. | 
|---|
| 158 | */ | 
|---|
| 159 |  | 
|---|
| 160 | struct jvirt_sarray_control { | 
|---|
| 161 | JSAMPARRAY mem_buffer;        /* => the in-memory buffer */ | 
|---|
| 162 | JDIMENSION rows_in_array;     /* total virtual array height */ | 
|---|
| 163 | JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */ | 
|---|
| 164 | JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */ | 
|---|
| 165 | JDIMENSION rows_in_mem;       /* height of memory buffer */ | 
|---|
| 166 | JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */ | 
|---|
| 167 | JDIMENSION cur_start_row;     /* first logical row # in the buffer */ | 
|---|
| 168 | JDIMENSION first_undef_row;   /* row # of first uninitialized row */ | 
|---|
| 169 | boolean pre_zero;             /* pre-zero mode requested? */ | 
|---|
| 170 | boolean dirty;                /* do current buffer contents need written? */ | 
|---|
| 171 | boolean b_s_open;             /* is backing-store data valid? */ | 
|---|
| 172 | jvirt_sarray_ptr next;        /* link to next virtual sarray control block */ | 
|---|
| 173 | backing_store_info b_s_info;  /* System-dependent control info */ | 
|---|
| 174 | }; | 
|---|
| 175 |  | 
|---|
| 176 | struct jvirt_barray_control { | 
|---|
| 177 | JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */ | 
|---|
| 178 | JDIMENSION rows_in_array;     /* total virtual array height */ | 
|---|
| 179 | JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */ | 
|---|
| 180 | JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */ | 
|---|
| 181 | JDIMENSION rows_in_mem;       /* height of memory buffer */ | 
|---|
| 182 | JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */ | 
|---|
| 183 | JDIMENSION cur_start_row;     /* first logical row # in the buffer */ | 
|---|
| 184 | JDIMENSION first_undef_row;   /* row # of first uninitialized row */ | 
|---|
| 185 | boolean pre_zero;             /* pre-zero mode requested? */ | 
|---|
| 186 | boolean dirty;                /* do current buffer contents need written? */ | 
|---|
| 187 | boolean b_s_open;             /* is backing-store data valid? */ | 
|---|
| 188 | jvirt_barray_ptr next;        /* link to next virtual barray control block */ | 
|---|
| 189 | backing_store_info b_s_info;  /* System-dependent control info */ | 
|---|
| 190 | }; | 
|---|
| 191 |  | 
|---|
| 192 |  | 
|---|
| 193 | #ifdef MEM_STATS                /* optional extra stuff for statistics */ | 
|---|
| 194 |  | 
|---|
| 195 | LOCAL(void) | 
|---|
| 196 | print_mem_stats(j_common_ptr cinfo, int pool_id) | 
|---|
| 197 | { | 
|---|
| 198 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 199 | small_pool_ptr shdr_ptr; | 
|---|
| 200 | large_pool_ptr lhdr_ptr; | 
|---|
| 201 |  | 
|---|
| 202 | /* Since this is only a debugging stub, we can cheat a little by using | 
|---|
| 203 | * fprintf directly rather than going through the trace message code. | 
|---|
| 204 | * This is helpful because message parm array can't handle longs. | 
|---|
| 205 | */ | 
|---|
| 206 | fprintf(stderr, "Freeing pool %d, total space = %ld\n", | 
|---|
| 207 | pool_id, mem->total_space_allocated); | 
|---|
| 208 |  | 
|---|
| 209 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; | 
|---|
| 210 | lhdr_ptr = lhdr_ptr->next) { | 
|---|
| 211 | fprintf(stderr, "  Large chunk used %ld\n", (long)lhdr_ptr->bytes_used); | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; | 
|---|
| 215 | shdr_ptr = shdr_ptr->next) { | 
|---|
| 216 | fprintf(stderr, "  Small chunk used %ld free %ld\n", | 
|---|
| 217 | (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left); | 
|---|
| 218 | } | 
|---|
| 219 | } | 
|---|
| 220 |  | 
|---|
| 221 | #endif /* MEM_STATS */ | 
|---|
| 222 |  | 
|---|
| 223 |  | 
|---|
| 224 | LOCAL(void) | 
|---|
| 225 | out_of_memory(j_common_ptr cinfo, int which) | 
|---|
| 226 | /* Report an out-of-memory error and stop execution */ | 
|---|
| 227 | /* If we compiled MEM_STATS support, report alloc requests before dying */ | 
|---|
| 228 | { | 
|---|
| 229 | #ifdef MEM_STATS | 
|---|
| 230 | cinfo->err->trace_level = 2;  /* force self_destruct to report stats */ | 
|---|
| 231 | #endif | 
|---|
| 232 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); | 
|---|
| 233 | } | 
|---|
| 234 |  | 
|---|
| 235 |  | 
|---|
| 236 | /* | 
|---|
| 237 | * Allocation of "small" objects. | 
|---|
| 238 | * | 
|---|
| 239 | * For these, we use pooled storage.  When a new pool must be created, | 
|---|
| 240 | * we try to get enough space for the current request plus a "slop" factor, | 
|---|
| 241 | * where the slop will be the amount of leftover space in the new pool. | 
|---|
| 242 | * The speed vs. space tradeoff is largely determined by the slop values. | 
|---|
| 243 | * A different slop value is provided for each pool class (lifetime), | 
|---|
| 244 | * and we also distinguish the first pool of a class from later ones. | 
|---|
| 245 | * NOTE: the values given work fairly well on both 16- and 32-bit-int | 
|---|
| 246 | * machines, but may be too small if longs are 64 bits or more. | 
|---|
| 247 | * | 
|---|
| 248 | * Since we do not know what alignment malloc() gives us, we have to | 
|---|
| 249 | * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment | 
|---|
| 250 | * adjustment. | 
|---|
| 251 | */ | 
|---|
| 252 |  | 
|---|
| 253 | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = { | 
|---|
| 254 | 1600,                         /* first PERMANENT pool */ | 
|---|
| 255 | 16000                         /* first IMAGE pool */ | 
|---|
| 256 | }; | 
|---|
| 257 |  | 
|---|
| 258 | static const size_t [JPOOL_NUMPOOLS] = { | 
|---|
| 259 | 0,                            /* additional PERMANENT pools */ | 
|---|
| 260 | 5000                          /* additional IMAGE pools */ | 
|---|
| 261 | }; | 
|---|
| 262 |  | 
|---|
| 263 | #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */ | 
|---|
| 264 |  | 
|---|
| 265 |  | 
|---|
| 266 | METHODDEF(void *) | 
|---|
| 267 | alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject) | 
|---|
| 268 | /* Allocate a "small" object */ | 
|---|
| 269 | { | 
|---|
| 270 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 271 | small_pool_ptr hdr_ptr, prev_hdr_ptr; | 
|---|
| 272 | char *data_ptr; | 
|---|
| 273 | size_t min_request, slop; | 
|---|
| 274 |  | 
|---|
| 275 | /* | 
|---|
| 276 | * Round up the requested size to a multiple of ALIGN_SIZE in order | 
|---|
| 277 | * to assure alignment for the next object allocated in the same pool | 
|---|
| 278 | * and so that algorithms can straddle outside the proper area up | 
|---|
| 279 | * to the next alignment. | 
|---|
| 280 | */ | 
|---|
| 281 | if (sizeofobject > MAX_ALLOC_CHUNK) { | 
|---|
| 282 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject | 
|---|
| 283 | is close to SIZE_MAX. */ | 
|---|
| 284 | out_of_memory(cinfo, 7); | 
|---|
| 285 | } | 
|---|
| 286 | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); | 
|---|
| 287 |  | 
|---|
| 288 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | 
|---|
| 289 | if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > | 
|---|
| 290 | MAX_ALLOC_CHUNK) | 
|---|
| 291 | out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */ | 
|---|
| 292 |  | 
|---|
| 293 | /* See if space is available in any existing pool */ | 
|---|
| 294 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 
|---|
| 295 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | 
|---|
| 296 | prev_hdr_ptr = NULL; | 
|---|
| 297 | hdr_ptr = mem->small_list[pool_id]; | 
|---|
| 298 | while (hdr_ptr != NULL) { | 
|---|
| 299 | if (hdr_ptr->bytes_left >= sizeofobject) | 
|---|
| 300 | break;                    /* found pool with enough space */ | 
|---|
| 301 | prev_hdr_ptr = hdr_ptr; | 
|---|
| 302 | hdr_ptr = hdr_ptr->next; | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 | /* Time to make a new pool? */ | 
|---|
| 306 | if (hdr_ptr == NULL) { | 
|---|
| 307 | /* min_request is what we need now, slop is what will be leftover */ | 
|---|
| 308 | min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; | 
|---|
| 309 | if (prev_hdr_ptr == NULL)   /* first pool in class? */ | 
|---|
| 310 | slop = first_pool_slop[pool_id]; | 
|---|
| 311 | else | 
|---|
| 312 | slop = extra_pool_slop[pool_id]; | 
|---|
| 313 | /* Don't ask for more than MAX_ALLOC_CHUNK */ | 
|---|
| 314 | if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request)) | 
|---|
| 315 | slop = (size_t)(MAX_ALLOC_CHUNK - min_request); | 
|---|
| 316 | /* Try to get space, if fail reduce slop and try again */ | 
|---|
| 317 | for (;;) { | 
|---|
| 318 | hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop); | 
|---|
| 319 | if (hdr_ptr != NULL) | 
|---|
| 320 | break; | 
|---|
| 321 | slop /= 2; | 
|---|
| 322 | if (slop < MIN_SLOP)      /* give up when it gets real small */ | 
|---|
| 323 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | 
|---|
| 324 | } | 
|---|
| 325 | mem->total_space_allocated += min_request + slop; | 
|---|
| 326 | /* Success, initialize the new pool header and add to end of list */ | 
|---|
| 327 | hdr_ptr->next = NULL; | 
|---|
| 328 | hdr_ptr->bytes_used = 0; | 
|---|
| 329 | hdr_ptr->bytes_left = sizeofobject + slop; | 
|---|
| 330 | if (prev_hdr_ptr == NULL)   /* first pool in class? */ | 
|---|
| 331 | mem->small_list[pool_id] = hdr_ptr; | 
|---|
| 332 | else | 
|---|
| 333 | prev_hdr_ptr->next = hdr_ptr; | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | /* OK, allocate the object from the current pool */ | 
|---|
| 337 | data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ | 
|---|
| 338 | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ | 
|---|
| 339 | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ | 
|---|
| 340 | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; | 
|---|
| 341 | data_ptr += hdr_ptr->bytes_used; /* point to place for object */ | 
|---|
| 342 | hdr_ptr->bytes_used += sizeofobject; | 
|---|
| 343 | hdr_ptr->bytes_left -= sizeofobject; | 
|---|
| 344 |  | 
|---|
| 345 | return (void *)data_ptr; | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 |  | 
|---|
| 349 | /* | 
|---|
| 350 | * Allocation of "large" objects. | 
|---|
| 351 | * | 
|---|
| 352 | * The external semantics of these are the same as "small" objects.  However, | 
|---|
| 353 | * the pool management heuristics are quite different.  We assume that each | 
|---|
| 354 | * request is large enough that it may as well be passed directly to | 
|---|
| 355 | * jpeg_get_large; the pool management just links everything together | 
|---|
| 356 | * so that we can free it all on demand. | 
|---|
| 357 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | 
|---|
| 358 | * structures.  The routines that create these structures (see below) | 
|---|
| 359 | * deliberately bunch rows together to ensure a large request size. | 
|---|
| 360 | */ | 
|---|
| 361 |  | 
|---|
| 362 | METHODDEF(void *) | 
|---|
| 363 | alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject) | 
|---|
| 364 | /* Allocate a "large" object */ | 
|---|
| 365 | { | 
|---|
| 366 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 367 | large_pool_ptr hdr_ptr; | 
|---|
| 368 | char *data_ptr; | 
|---|
| 369 |  | 
|---|
| 370 | /* | 
|---|
| 371 | * Round up the requested size to a multiple of ALIGN_SIZE so that | 
|---|
| 372 | * algorithms can straddle outside the proper area up to the next | 
|---|
| 373 | * alignment. | 
|---|
| 374 | */ | 
|---|
| 375 | if (sizeofobject > MAX_ALLOC_CHUNK) { | 
|---|
| 376 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject | 
|---|
| 377 | is close to SIZE_MAX. */ | 
|---|
| 378 | out_of_memory(cinfo, 8); | 
|---|
| 379 | } | 
|---|
| 380 | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); | 
|---|
| 381 |  | 
|---|
| 382 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | 
|---|
| 383 | if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > | 
|---|
| 384 | MAX_ALLOC_CHUNK) | 
|---|
| 385 | out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */ | 
|---|
| 386 |  | 
|---|
| 387 | /* Always make a new pool */ | 
|---|
| 388 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 
|---|
| 389 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | 
|---|
| 390 |  | 
|---|
| 391 | hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject + | 
|---|
| 392 | sizeof(large_pool_hdr) + | 
|---|
| 393 | ALIGN_SIZE - 1); | 
|---|
| 394 | if (hdr_ptr == NULL) | 
|---|
| 395 | out_of_memory(cinfo, 4);    /* jpeg_get_large failed */ | 
|---|
| 396 | mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + | 
|---|
| 397 | ALIGN_SIZE - 1; | 
|---|
| 398 |  | 
|---|
| 399 | /* Success, initialize the new pool header and add to list */ | 
|---|
| 400 | hdr_ptr->next = mem->large_list[pool_id]; | 
|---|
| 401 | /* We maintain space counts in each pool header for statistical purposes, | 
|---|
| 402 | * even though they are not needed for allocation. | 
|---|
| 403 | */ | 
|---|
| 404 | hdr_ptr->bytes_used = sizeofobject; | 
|---|
| 405 | hdr_ptr->bytes_left = 0; | 
|---|
| 406 | mem->large_list[pool_id] = hdr_ptr; | 
|---|
| 407 |  | 
|---|
| 408 | data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ | 
|---|
| 409 | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ | 
|---|
| 410 | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ | 
|---|
| 411 | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; | 
|---|
| 412 |  | 
|---|
| 413 | return (void *)data_ptr; | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 |  | 
|---|
| 417 | /* | 
|---|
| 418 | * Creation of 2-D sample arrays. | 
|---|
| 419 | * | 
|---|
| 420 | * To minimize allocation overhead and to allow I/O of large contiguous | 
|---|
| 421 | * blocks, we allocate the sample rows in groups of as many rows as possible | 
|---|
| 422 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | 
|---|
| 423 | * NB: the virtual array control routines, later in this file, know about | 
|---|
| 424 | * this chunking of rows.  The rowsperchunk value is left in the mem manager | 
|---|
| 425 | * object so that it can be saved away if this sarray is the workspace for | 
|---|
| 426 | * a virtual array. | 
|---|
| 427 | * | 
|---|
| 428 | * Since we are often upsampling with a factor 2, we align the size (not | 
|---|
| 429 | * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have | 
|---|
| 430 | * to be as careful about size. | 
|---|
| 431 | */ | 
|---|
| 432 |  | 
|---|
| 433 | METHODDEF(JSAMPARRAY) | 
|---|
| 434 | alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, | 
|---|
| 435 | JDIMENSION numrows) | 
|---|
| 436 | /* Allocate a 2-D sample array */ | 
|---|
| 437 | { | 
|---|
| 438 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 439 | JSAMPARRAY result; | 
|---|
| 440 | JSAMPROW workspace; | 
|---|
| 441 | JDIMENSION rowsperchunk, currow, i; | 
|---|
| 442 | long ltemp; | 
|---|
| 443 |  | 
|---|
| 444 | /* Make sure each row is properly aligned */ | 
|---|
| 445 | if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) | 
|---|
| 446 | out_of_memory(cinfo, 5);    /* safety check */ | 
|---|
| 447 |  | 
|---|
| 448 | if (samplesperrow > MAX_ALLOC_CHUNK) { | 
|---|
| 449 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject | 
|---|
| 450 | is close to SIZE_MAX. */ | 
|---|
| 451 | out_of_memory(cinfo, 9); | 
|---|
| 452 | } | 
|---|
| 453 | samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / | 
|---|
| 454 | sizeof(JSAMPLE)); | 
|---|
| 455 |  | 
|---|
| 456 | /* Calculate max # of rows allowed in one allocation chunk */ | 
|---|
| 457 | ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / | 
|---|
| 458 | ((long)samplesperrow * sizeof(JSAMPLE)); | 
|---|
| 459 | if (ltemp <= 0) | 
|---|
| 460 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | 
|---|
| 461 | if (ltemp < (long)numrows) | 
|---|
| 462 | rowsperchunk = (JDIMENSION)ltemp; | 
|---|
| 463 | else | 
|---|
| 464 | rowsperchunk = numrows; | 
|---|
| 465 | mem->last_rowsperchunk = rowsperchunk; | 
|---|
| 466 |  | 
|---|
| 467 | /* Get space for row pointers (small object) */ | 
|---|
| 468 | result = (JSAMPARRAY)alloc_small(cinfo, pool_id, | 
|---|
| 469 | (size_t)(numrows * sizeof(JSAMPROW))); | 
|---|
| 470 |  | 
|---|
| 471 | /* Get the rows themselves (large objects) */ | 
|---|
| 472 | currow = 0; | 
|---|
| 473 | while (currow < numrows) { | 
|---|
| 474 | rowsperchunk = MIN(rowsperchunk, numrows - currow); | 
|---|
| 475 | workspace = (JSAMPROW)alloc_large(cinfo, pool_id, | 
|---|
| 476 | (size_t)((size_t)rowsperchunk * (size_t)samplesperrow * | 
|---|
| 477 | sizeof(JSAMPLE))); | 
|---|
| 478 | for (i = rowsperchunk; i > 0; i--) { | 
|---|
| 479 | result[currow++] = workspace; | 
|---|
| 480 | workspace += samplesperrow; | 
|---|
| 481 | } | 
|---|
| 482 | } | 
|---|
| 483 |  | 
|---|
| 484 | return result; | 
|---|
| 485 | } | 
|---|
| 486 |  | 
|---|
| 487 |  | 
|---|
| 488 | /* | 
|---|
| 489 | * Creation of 2-D coefficient-block arrays. | 
|---|
| 490 | * This is essentially the same as the code for sample arrays, above. | 
|---|
| 491 | */ | 
|---|
| 492 |  | 
|---|
| 493 | METHODDEF(JBLOCKARRAY) | 
|---|
| 494 | alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, | 
|---|
| 495 | JDIMENSION numrows) | 
|---|
| 496 | /* Allocate a 2-D coefficient-block array */ | 
|---|
| 497 | { | 
|---|
| 498 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 499 | JBLOCKARRAY result; | 
|---|
| 500 | JBLOCKROW workspace; | 
|---|
| 501 | JDIMENSION rowsperchunk, currow, i; | 
|---|
| 502 | long ltemp; | 
|---|
| 503 |  | 
|---|
| 504 | /* Make sure each row is properly aligned */ | 
|---|
| 505 | if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) | 
|---|
| 506 | out_of_memory(cinfo, 6);    /* safety check */ | 
|---|
| 507 |  | 
|---|
| 508 | /* Calculate max # of rows allowed in one allocation chunk */ | 
|---|
| 509 | ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / | 
|---|
| 510 | ((long)blocksperrow * sizeof(JBLOCK)); | 
|---|
| 511 | if (ltemp <= 0) | 
|---|
| 512 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | 
|---|
| 513 | if (ltemp < (long)numrows) | 
|---|
| 514 | rowsperchunk = (JDIMENSION)ltemp; | 
|---|
| 515 | else | 
|---|
| 516 | rowsperchunk = numrows; | 
|---|
| 517 | mem->last_rowsperchunk = rowsperchunk; | 
|---|
| 518 |  | 
|---|
| 519 | /* Get space for row pointers (small object) */ | 
|---|
| 520 | result = (JBLOCKARRAY)alloc_small(cinfo, pool_id, | 
|---|
| 521 | (size_t)(numrows * sizeof(JBLOCKROW))); | 
|---|
| 522 |  | 
|---|
| 523 | /* Get the rows themselves (large objects) */ | 
|---|
| 524 | currow = 0; | 
|---|
| 525 | while (currow < numrows) { | 
|---|
| 526 | rowsperchunk = MIN(rowsperchunk, numrows - currow); | 
|---|
| 527 | workspace = (JBLOCKROW)alloc_large(cinfo, pool_id, | 
|---|
| 528 | (size_t)((size_t)rowsperchunk * (size_t)blocksperrow * | 
|---|
| 529 | sizeof(JBLOCK))); | 
|---|
| 530 | for (i = rowsperchunk; i > 0; i--) { | 
|---|
| 531 | result[currow++] = workspace; | 
|---|
| 532 | workspace += blocksperrow; | 
|---|
| 533 | } | 
|---|
| 534 | } | 
|---|
| 535 |  | 
|---|
| 536 | return result; | 
|---|
| 537 | } | 
|---|
| 538 |  | 
|---|
| 539 |  | 
|---|
| 540 | /* | 
|---|
| 541 | * About virtual array management: | 
|---|
| 542 | * | 
|---|
| 543 | * The above "normal" array routines are only used to allocate strip buffers | 
|---|
| 544 | * (as wide as the image, but just a few rows high).  Full-image-sized buffers | 
|---|
| 545 | * are handled as "virtual" arrays.  The array is still accessed a strip at a | 
|---|
| 546 | * time, but the memory manager must save the whole array for repeated | 
|---|
| 547 | * accesses.  The intended implementation is that there is a strip buffer in | 
|---|
| 548 | * memory (as high as is possible given the desired memory limit), plus a | 
|---|
| 549 | * backing file that holds the rest of the array. | 
|---|
| 550 | * | 
|---|
| 551 | * The request_virt_array routines are told the total size of the image and | 
|---|
| 552 | * the maximum number of rows that will be accessed at once.  The in-memory | 
|---|
| 553 | * buffer must be at least as large as the maxaccess value. | 
|---|
| 554 | * | 
|---|
| 555 | * The request routines create control blocks but not the in-memory buffers. | 
|---|
| 556 | * That is postponed until realize_virt_arrays is called.  At that time the | 
|---|
| 557 | * total amount of space needed is known (approximately, anyway), so free | 
|---|
| 558 | * memory can be divided up fairly. | 
|---|
| 559 | * | 
|---|
| 560 | * The access_virt_array routines are responsible for making a specific strip | 
|---|
| 561 | * area accessible (after reading or writing the backing file, if necessary). | 
|---|
| 562 | * Note that the access routines are told whether the caller intends to modify | 
|---|
| 563 | * the accessed strip; during a read-only pass this saves having to rewrite | 
|---|
| 564 | * data to disk.  The access routines are also responsible for pre-zeroing | 
|---|
| 565 | * any newly accessed rows, if pre-zeroing was requested. | 
|---|
| 566 | * | 
|---|
| 567 | * In current usage, the access requests are usually for nonoverlapping | 
|---|
| 568 | * strips; that is, successive access start_row numbers differ by exactly | 
|---|
| 569 | * num_rows = maxaccess.  This means we can get good performance with simple | 
|---|
| 570 | * buffer dump/reload logic, by making the in-memory buffer be a multiple | 
|---|
| 571 | * of the access height; then there will never be accesses across bufferload | 
|---|
| 572 | * boundaries.  The code will still work with overlapping access requests, | 
|---|
| 573 | * but it doesn't handle bufferload overlaps very efficiently. | 
|---|
| 574 | */ | 
|---|
| 575 |  | 
|---|
| 576 |  | 
|---|
| 577 | METHODDEF(jvirt_sarray_ptr) | 
|---|
| 578 | request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero, | 
|---|
| 579 | JDIMENSION samplesperrow, JDIMENSION numrows, | 
|---|
| 580 | JDIMENSION maxaccess) | 
|---|
| 581 | /* Request a virtual 2-D sample array */ | 
|---|
| 582 | { | 
|---|
| 583 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 584 | jvirt_sarray_ptr result; | 
|---|
| 585 |  | 
|---|
| 586 | /* Only IMAGE-lifetime virtual arrays are currently supported */ | 
|---|
| 587 | if (pool_id != JPOOL_IMAGE) | 
|---|
| 588 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | 
|---|
| 589 |  | 
|---|
| 590 | /* get control block */ | 
|---|
| 591 | result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id, | 
|---|
| 592 | sizeof(struct jvirt_sarray_control)); | 
|---|
| 593 |  | 
|---|
| 594 | result->mem_buffer = NULL;    /* marks array not yet realized */ | 
|---|
| 595 | result->rows_in_array = numrows; | 
|---|
| 596 | result->samplesperrow = samplesperrow; | 
|---|
| 597 | result->maxaccess = maxaccess; | 
|---|
| 598 | result->pre_zero = pre_zero; | 
|---|
| 599 | result->b_s_open = FALSE;     /* no associated backing-store object */ | 
|---|
| 600 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | 
|---|
| 601 | mem->virt_sarray_list = result; | 
|---|
| 602 |  | 
|---|
| 603 | return result; | 
|---|
| 604 | } | 
|---|
| 605 |  | 
|---|
| 606 |  | 
|---|
| 607 | METHODDEF(jvirt_barray_ptr) | 
|---|
| 608 | request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero, | 
|---|
| 609 | JDIMENSION blocksperrow, JDIMENSION numrows, | 
|---|
| 610 | JDIMENSION maxaccess) | 
|---|
| 611 | /* Request a virtual 2-D coefficient-block array */ | 
|---|
| 612 | { | 
|---|
| 613 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 614 | jvirt_barray_ptr result; | 
|---|
| 615 |  | 
|---|
| 616 | /* Only IMAGE-lifetime virtual arrays are currently supported */ | 
|---|
| 617 | if (pool_id != JPOOL_IMAGE) | 
|---|
| 618 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | 
|---|
| 619 |  | 
|---|
| 620 | /* get control block */ | 
|---|
| 621 | result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id, | 
|---|
| 622 | sizeof(struct jvirt_barray_control)); | 
|---|
| 623 |  | 
|---|
| 624 | result->mem_buffer = NULL;    /* marks array not yet realized */ | 
|---|
| 625 | result->rows_in_array = numrows; | 
|---|
| 626 | result->blocksperrow = blocksperrow; | 
|---|
| 627 | result->maxaccess = maxaccess; | 
|---|
| 628 | result->pre_zero = pre_zero; | 
|---|
| 629 | result->b_s_open = FALSE;     /* no associated backing-store object */ | 
|---|
| 630 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | 
|---|
| 631 | mem->virt_barray_list = result; | 
|---|
| 632 |  | 
|---|
| 633 | return result; | 
|---|
| 634 | } | 
|---|
| 635 |  | 
|---|
| 636 |  | 
|---|
| 637 | METHODDEF(void) | 
|---|
| 638 | realize_virt_arrays(j_common_ptr cinfo) | 
|---|
| 639 | /* Allocate the in-memory buffers for any unrealized virtual arrays */ | 
|---|
| 640 | { | 
|---|
| 641 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 642 | size_t space_per_minheight, maximum_space, avail_mem; | 
|---|
| 643 | size_t minheights, max_minheights; | 
|---|
| 644 | jvirt_sarray_ptr sptr; | 
|---|
| 645 | jvirt_barray_ptr bptr; | 
|---|
| 646 |  | 
|---|
| 647 | /* Compute the minimum space needed (maxaccess rows in each buffer) | 
|---|
| 648 | * and the maximum space needed (full image height in each buffer). | 
|---|
| 649 | * These may be of use to the system-dependent jpeg_mem_available routine. | 
|---|
| 650 | */ | 
|---|
| 651 | space_per_minheight = 0; | 
|---|
| 652 | maximum_space = 0; | 
|---|
| 653 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
|---|
| 654 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 
|---|
| 655 | size_t new_space = (long)sptr->rows_in_array * | 
|---|
| 656 | (long)sptr->samplesperrow * sizeof(JSAMPLE); | 
|---|
| 657 |  | 
|---|
| 658 | space_per_minheight += (long)sptr->maxaccess * | 
|---|
| 659 | (long)sptr->samplesperrow * sizeof(JSAMPLE); | 
|---|
| 660 | if (SIZE_MAX - maximum_space < new_space) | 
|---|
| 661 | out_of_memory(cinfo, 10); | 
|---|
| 662 | maximum_space += new_space; | 
|---|
| 663 | } | 
|---|
| 664 | } | 
|---|
| 665 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
|---|
| 666 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 
|---|
| 667 | size_t new_space = (long)bptr->rows_in_array * | 
|---|
| 668 | (long)bptr->blocksperrow * sizeof(JBLOCK); | 
|---|
| 669 |  | 
|---|
| 670 | space_per_minheight += (long)bptr->maxaccess * | 
|---|
| 671 | (long)bptr->blocksperrow * sizeof(JBLOCK); | 
|---|
| 672 | if (SIZE_MAX - maximum_space < new_space) | 
|---|
| 673 | out_of_memory(cinfo, 11); | 
|---|
| 674 | maximum_space += new_space; | 
|---|
| 675 | } | 
|---|
| 676 | } | 
|---|
| 677 |  | 
|---|
| 678 | if (space_per_minheight <= 0) | 
|---|
| 679 | return;                     /* no unrealized arrays, no work */ | 
|---|
| 680 |  | 
|---|
| 681 | /* Determine amount of memory to actually use; this is system-dependent. */ | 
|---|
| 682 | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, | 
|---|
| 683 | mem->total_space_allocated); | 
|---|
| 684 |  | 
|---|
| 685 | /* If the maximum space needed is available, make all the buffers full | 
|---|
| 686 | * height; otherwise parcel it out with the same number of minheights | 
|---|
| 687 | * in each buffer. | 
|---|
| 688 | */ | 
|---|
| 689 | if (avail_mem >= maximum_space) | 
|---|
| 690 | max_minheights = 1000000000L; | 
|---|
| 691 | else { | 
|---|
| 692 | max_minheights = avail_mem / space_per_minheight; | 
|---|
| 693 | /* If there doesn't seem to be enough space, try to get the minimum | 
|---|
| 694 | * anyway.  This allows a "stub" implementation of jpeg_mem_available(). | 
|---|
| 695 | */ | 
|---|
| 696 | if (max_minheights <= 0) | 
|---|
| 697 | max_minheights = 1; | 
|---|
| 698 | } | 
|---|
| 699 |  | 
|---|
| 700 | /* Allocate the in-memory buffers and initialize backing store as needed. */ | 
|---|
| 701 |  | 
|---|
| 702 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
|---|
| 703 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 
|---|
| 704 | minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | 
|---|
| 705 | if (minheights <= max_minheights) { | 
|---|
| 706 | /* This buffer fits in memory */ | 
|---|
| 707 | sptr->rows_in_mem = sptr->rows_in_array; | 
|---|
| 708 | } else { | 
|---|
| 709 | /* It doesn't fit in memory, create backing store. */ | 
|---|
| 710 | sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess); | 
|---|
| 711 | jpeg_open_backing_store(cinfo, &sptr->b_s_info, | 
|---|
| 712 | (long)sptr->rows_in_array * | 
|---|
| 713 | (long)sptr->samplesperrow * | 
|---|
| 714 | (long)sizeof(JSAMPLE)); | 
|---|
| 715 | sptr->b_s_open = TRUE; | 
|---|
| 716 | } | 
|---|
| 717 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, | 
|---|
| 718 | sptr->samplesperrow, sptr->rows_in_mem); | 
|---|
| 719 | sptr->rowsperchunk = mem->last_rowsperchunk; | 
|---|
| 720 | sptr->cur_start_row = 0; | 
|---|
| 721 | sptr->first_undef_row = 0; | 
|---|
| 722 | sptr->dirty = FALSE; | 
|---|
| 723 | } | 
|---|
| 724 | } | 
|---|
| 725 |  | 
|---|
| 726 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
|---|
| 727 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 
|---|
| 728 | minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | 
|---|
| 729 | if (minheights <= max_minheights) { | 
|---|
| 730 | /* This buffer fits in memory */ | 
|---|
| 731 | bptr->rows_in_mem = bptr->rows_in_array; | 
|---|
| 732 | } else { | 
|---|
| 733 | /* It doesn't fit in memory, create backing store. */ | 
|---|
| 734 | bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess); | 
|---|
| 735 | jpeg_open_backing_store(cinfo, &bptr->b_s_info, | 
|---|
| 736 | (long)bptr->rows_in_array * | 
|---|
| 737 | (long)bptr->blocksperrow * | 
|---|
| 738 | (long)sizeof(JBLOCK)); | 
|---|
| 739 | bptr->b_s_open = TRUE; | 
|---|
| 740 | } | 
|---|
| 741 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, | 
|---|
| 742 | bptr->blocksperrow, bptr->rows_in_mem); | 
|---|
| 743 | bptr->rowsperchunk = mem->last_rowsperchunk; | 
|---|
| 744 | bptr->cur_start_row = 0; | 
|---|
| 745 | bptr->first_undef_row = 0; | 
|---|
| 746 | bptr->dirty = FALSE; | 
|---|
| 747 | } | 
|---|
| 748 | } | 
|---|
| 749 | } | 
|---|
| 750 |  | 
|---|
| 751 |  | 
|---|
| 752 | LOCAL(void) | 
|---|
| 753 | do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | 
|---|
| 754 | /* Do backing store read or write of a virtual sample array */ | 
|---|
| 755 | { | 
|---|
| 756 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | 
|---|
| 757 |  | 
|---|
| 758 | bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE); | 
|---|
| 759 | file_offset = ptr->cur_start_row * bytesperrow; | 
|---|
| 760 | /* Loop to read or write each allocation chunk in mem_buffer */ | 
|---|
| 761 | for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { | 
|---|
| 762 | /* One chunk, but check for short chunk at end of buffer */ | 
|---|
| 763 | rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); | 
|---|
| 764 | /* Transfer no more than is currently defined */ | 
|---|
| 765 | thisrow = (long)ptr->cur_start_row + i; | 
|---|
| 766 | rows = MIN(rows, (long)ptr->first_undef_row - thisrow); | 
|---|
| 767 | /* Transfer no more than fits in file */ | 
|---|
| 768 | rows = MIN(rows, (long)ptr->rows_in_array - thisrow); | 
|---|
| 769 | if (rows <= 0)              /* this chunk might be past end of file! */ | 
|---|
| 770 | break; | 
|---|
| 771 | byte_count = rows * bytesperrow; | 
|---|
| 772 | if (writing) | 
|---|
| 773 | (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, | 
|---|
| 774 | (void *)ptr->mem_buffer[i], | 
|---|
| 775 | file_offset, byte_count); | 
|---|
| 776 | else | 
|---|
| 777 | (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, | 
|---|
| 778 | (void *)ptr->mem_buffer[i], | 
|---|
| 779 | file_offset, byte_count); | 
|---|
| 780 | file_offset += byte_count; | 
|---|
| 781 | } | 
|---|
| 782 | } | 
|---|
| 783 |  | 
|---|
| 784 |  | 
|---|
| 785 | LOCAL(void) | 
|---|
| 786 | do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | 
|---|
| 787 | /* Do backing store read or write of a virtual coefficient-block array */ | 
|---|
| 788 | { | 
|---|
| 789 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | 
|---|
| 790 |  | 
|---|
| 791 | bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK); | 
|---|
| 792 | file_offset = ptr->cur_start_row * bytesperrow; | 
|---|
| 793 | /* Loop to read or write each allocation chunk in mem_buffer */ | 
|---|
| 794 | for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { | 
|---|
| 795 | /* One chunk, but check for short chunk at end of buffer */ | 
|---|
| 796 | rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); | 
|---|
| 797 | /* Transfer no more than is currently defined */ | 
|---|
| 798 | thisrow = (long)ptr->cur_start_row + i; | 
|---|
| 799 | rows = MIN(rows, (long)ptr->first_undef_row - thisrow); | 
|---|
| 800 | /* Transfer no more than fits in file */ | 
|---|
| 801 | rows = MIN(rows, (long)ptr->rows_in_array - thisrow); | 
|---|
| 802 | if (rows <= 0)              /* this chunk might be past end of file! */ | 
|---|
| 803 | break; | 
|---|
| 804 | byte_count = rows * bytesperrow; | 
|---|
| 805 | if (writing) | 
|---|
| 806 | (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, | 
|---|
| 807 | (void *)ptr->mem_buffer[i], | 
|---|
| 808 | file_offset, byte_count); | 
|---|
| 809 | else | 
|---|
| 810 | (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, | 
|---|
| 811 | (void *)ptr->mem_buffer[i], | 
|---|
| 812 | file_offset, byte_count); | 
|---|
| 813 | file_offset += byte_count; | 
|---|
| 814 | } | 
|---|
| 815 | } | 
|---|
| 816 |  | 
|---|
| 817 |  | 
|---|
| 818 | METHODDEF(JSAMPARRAY) | 
|---|
| 819 | access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr, | 
|---|
| 820 | JDIMENSION start_row, JDIMENSION num_rows, boolean writable) | 
|---|
| 821 | /* Access the part of a virtual sample array starting at start_row */ | 
|---|
| 822 | /* and extending for num_rows rows.  writable is true if  */ | 
|---|
| 823 | /* caller intends to modify the accessed area. */ | 
|---|
| 824 | { | 
|---|
| 825 | JDIMENSION end_row = start_row + num_rows; | 
|---|
| 826 | JDIMENSION undef_row; | 
|---|
| 827 |  | 
|---|
| 828 | /* debugging check */ | 
|---|
| 829 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | 
|---|
| 830 | ptr->mem_buffer == NULL) | 
|---|
| 831 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|---|
| 832 |  | 
|---|
| 833 | /* Make the desired part of the virtual array accessible */ | 
|---|
| 834 | if (start_row < ptr->cur_start_row || | 
|---|
| 835 | end_row > ptr->cur_start_row + ptr->rows_in_mem) { | 
|---|
| 836 | if (!ptr->b_s_open) | 
|---|
| 837 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); | 
|---|
| 838 | /* Flush old buffer contents if necessary */ | 
|---|
| 839 | if (ptr->dirty) { | 
|---|
| 840 | do_sarray_io(cinfo, ptr, TRUE); | 
|---|
| 841 | ptr->dirty = FALSE; | 
|---|
| 842 | } | 
|---|
| 843 | /* Decide what part of virtual array to access. | 
|---|
| 844 | * Algorithm: if target address > current window, assume forward scan, | 
|---|
| 845 | * load starting at target address.  If target address < current window, | 
|---|
| 846 | * assume backward scan, load so that target area is top of window. | 
|---|
| 847 | * Note that when switching from forward write to forward read, will have | 
|---|
| 848 | * start_row = 0, so the limiting case applies and we load from 0 anyway. | 
|---|
| 849 | */ | 
|---|
| 850 | if (start_row > ptr->cur_start_row) { | 
|---|
| 851 | ptr->cur_start_row = start_row; | 
|---|
| 852 | } else { | 
|---|
| 853 | /* use long arithmetic here to avoid overflow & unsigned problems */ | 
|---|
| 854 | long ltemp; | 
|---|
| 855 |  | 
|---|
| 856 | ltemp = (long)end_row - (long)ptr->rows_in_mem; | 
|---|
| 857 | if (ltemp < 0) | 
|---|
| 858 | ltemp = 0;              /* don't fall off front end of file */ | 
|---|
| 859 | ptr->cur_start_row = (JDIMENSION)ltemp; | 
|---|
| 860 | } | 
|---|
| 861 | /* Read in the selected part of the array. | 
|---|
| 862 | * During the initial write pass, we will do no actual read | 
|---|
| 863 | * because the selected part is all undefined. | 
|---|
| 864 | */ | 
|---|
| 865 | do_sarray_io(cinfo, ptr, FALSE); | 
|---|
| 866 | } | 
|---|
| 867 | /* Ensure the accessed part of the array is defined; prezero if needed. | 
|---|
| 868 | * To improve locality of access, we only prezero the part of the array | 
|---|
| 869 | * that the caller is about to access, not the entire in-memory array. | 
|---|
| 870 | */ | 
|---|
| 871 | if (ptr->first_undef_row < end_row) { | 
|---|
| 872 | if (ptr->first_undef_row < start_row) { | 
|---|
| 873 | if (writable)             /* writer skipped over a section of array */ | 
|---|
| 874 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|---|
| 875 | undef_row = start_row;    /* but reader is allowed to read ahead */ | 
|---|
| 876 | } else { | 
|---|
| 877 | undef_row = ptr->first_undef_row; | 
|---|
| 878 | } | 
|---|
| 879 | if (writable) | 
|---|
| 880 | ptr->first_undef_row = end_row; | 
|---|
| 881 | if (ptr->pre_zero) { | 
|---|
| 882 | size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE); | 
|---|
| 883 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | 
|---|
| 884 | end_row -= ptr->cur_start_row; | 
|---|
| 885 | while (undef_row < end_row) { | 
|---|
| 886 | jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); | 
|---|
| 887 | undef_row++; | 
|---|
| 888 | } | 
|---|
| 889 | } else { | 
|---|
| 890 | if (!writable)            /* reader looking at undefined data */ | 
|---|
| 891 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|---|
| 892 | } | 
|---|
| 893 | } | 
|---|
| 894 | /* Flag the buffer dirty if caller will write in it */ | 
|---|
| 895 | if (writable) | 
|---|
| 896 | ptr->dirty = TRUE; | 
|---|
| 897 | /* Return address of proper part of the buffer */ | 
|---|
| 898 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | 
|---|
| 899 | } | 
|---|
| 900 |  | 
|---|
| 901 |  | 
|---|
| 902 | METHODDEF(JBLOCKARRAY) | 
|---|
| 903 | access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr, | 
|---|
| 904 | JDIMENSION start_row, JDIMENSION num_rows, boolean writable) | 
|---|
| 905 | /* Access the part of a virtual block array starting at start_row */ | 
|---|
| 906 | /* and extending for num_rows rows.  writable is true if  */ | 
|---|
| 907 | /* caller intends to modify the accessed area. */ | 
|---|
| 908 | { | 
|---|
| 909 | JDIMENSION end_row = start_row + num_rows; | 
|---|
| 910 | JDIMENSION undef_row; | 
|---|
| 911 |  | 
|---|
| 912 | /* debugging check */ | 
|---|
| 913 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | 
|---|
| 914 | ptr->mem_buffer == NULL) | 
|---|
| 915 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|---|
| 916 |  | 
|---|
| 917 | /* Make the desired part of the virtual array accessible */ | 
|---|
| 918 | if (start_row < ptr->cur_start_row || | 
|---|
| 919 | end_row > ptr->cur_start_row + ptr->rows_in_mem) { | 
|---|
| 920 | if (!ptr->b_s_open) | 
|---|
| 921 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); | 
|---|
| 922 | /* Flush old buffer contents if necessary */ | 
|---|
| 923 | if (ptr->dirty) { | 
|---|
| 924 | do_barray_io(cinfo, ptr, TRUE); | 
|---|
| 925 | ptr->dirty = FALSE; | 
|---|
| 926 | } | 
|---|
| 927 | /* Decide what part of virtual array to access. | 
|---|
| 928 | * Algorithm: if target address > current window, assume forward scan, | 
|---|
| 929 | * load starting at target address.  If target address < current window, | 
|---|
| 930 | * assume backward scan, load so that target area is top of window. | 
|---|
| 931 | * Note that when switching from forward write to forward read, will have | 
|---|
| 932 | * start_row = 0, so the limiting case applies and we load from 0 anyway. | 
|---|
| 933 | */ | 
|---|
| 934 | if (start_row > ptr->cur_start_row) { | 
|---|
| 935 | ptr->cur_start_row = start_row; | 
|---|
| 936 | } else { | 
|---|
| 937 | /* use long arithmetic here to avoid overflow & unsigned problems */ | 
|---|
| 938 | long ltemp; | 
|---|
| 939 |  | 
|---|
| 940 | ltemp = (long)end_row - (long)ptr->rows_in_mem; | 
|---|
| 941 | if (ltemp < 0) | 
|---|
| 942 | ltemp = 0;              /* don't fall off front end of file */ | 
|---|
| 943 | ptr->cur_start_row = (JDIMENSION)ltemp; | 
|---|
| 944 | } | 
|---|
| 945 | /* Read in the selected part of the array. | 
|---|
| 946 | * During the initial write pass, we will do no actual read | 
|---|
| 947 | * because the selected part is all undefined. | 
|---|
| 948 | */ | 
|---|
| 949 | do_barray_io(cinfo, ptr, FALSE); | 
|---|
| 950 | } | 
|---|
| 951 | /* Ensure the accessed part of the array is defined; prezero if needed. | 
|---|
| 952 | * To improve locality of access, we only prezero the part of the array | 
|---|
| 953 | * that the caller is about to access, not the entire in-memory array. | 
|---|
| 954 | */ | 
|---|
| 955 | if (ptr->first_undef_row < end_row) { | 
|---|
| 956 | if (ptr->first_undef_row < start_row) { | 
|---|
| 957 | if (writable)             /* writer skipped over a section of array */ | 
|---|
| 958 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|---|
| 959 | undef_row = start_row;    /* but reader is allowed to read ahead */ | 
|---|
| 960 | } else { | 
|---|
| 961 | undef_row = ptr->first_undef_row; | 
|---|
| 962 | } | 
|---|
| 963 | if (writable) | 
|---|
| 964 | ptr->first_undef_row = end_row; | 
|---|
| 965 | if (ptr->pre_zero) { | 
|---|
| 966 | size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK); | 
|---|
| 967 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | 
|---|
| 968 | end_row -= ptr->cur_start_row; | 
|---|
| 969 | while (undef_row < end_row) { | 
|---|
| 970 | jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); | 
|---|
| 971 | undef_row++; | 
|---|
| 972 | } | 
|---|
| 973 | } else { | 
|---|
| 974 | if (!writable)            /* reader looking at undefined data */ | 
|---|
| 975 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|---|
| 976 | } | 
|---|
| 977 | } | 
|---|
| 978 | /* Flag the buffer dirty if caller will write in it */ | 
|---|
| 979 | if (writable) | 
|---|
| 980 | ptr->dirty = TRUE; | 
|---|
| 981 | /* Return address of proper part of the buffer */ | 
|---|
| 982 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | 
|---|
| 983 | } | 
|---|
| 984 |  | 
|---|
| 985 |  | 
|---|
| 986 | /* | 
|---|
| 987 | * Release all objects belonging to a specified pool. | 
|---|
| 988 | */ | 
|---|
| 989 |  | 
|---|
| 990 | METHODDEF(void) | 
|---|
| 991 | free_pool(j_common_ptr cinfo, int pool_id) | 
|---|
| 992 | { | 
|---|
| 993 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; | 
|---|
| 994 | small_pool_ptr shdr_ptr; | 
|---|
| 995 | large_pool_ptr lhdr_ptr; | 
|---|
| 996 | size_t space_freed; | 
|---|
| 997 |  | 
|---|
| 998 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 
|---|
| 999 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | 
|---|
| 1000 |  | 
|---|
| 1001 | #ifdef MEM_STATS | 
|---|
| 1002 | if (cinfo->err->trace_level > 1) | 
|---|
| 1003 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | 
|---|
| 1004 | #endif | 
|---|
| 1005 |  | 
|---|
| 1006 | /* If freeing IMAGE pool, close any virtual arrays first */ | 
|---|
| 1007 | if (pool_id == JPOOL_IMAGE) { | 
|---|
| 1008 | jvirt_sarray_ptr sptr; | 
|---|
| 1009 | jvirt_barray_ptr bptr; | 
|---|
| 1010 |  | 
|---|
| 1011 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
|---|
| 1012 | if (sptr->b_s_open) {     /* there may be no backing store */ | 
|---|
| 1013 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ | 
|---|
| 1014 | (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info); | 
|---|
| 1015 | } | 
|---|
| 1016 | } | 
|---|
| 1017 | mem->virt_sarray_list = NULL; | 
|---|
| 1018 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
|---|
| 1019 | if (bptr->b_s_open) {     /* there may be no backing store */ | 
|---|
| 1020 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ | 
|---|
| 1021 | (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info); | 
|---|
| 1022 | } | 
|---|
| 1023 | } | 
|---|
| 1024 | mem->virt_barray_list = NULL; | 
|---|
| 1025 | } | 
|---|
| 1026 |  | 
|---|
| 1027 | /* Release large objects */ | 
|---|
| 1028 | lhdr_ptr = mem->large_list[pool_id]; | 
|---|
| 1029 | mem->large_list[pool_id] = NULL; | 
|---|
| 1030 |  | 
|---|
| 1031 | while (lhdr_ptr != NULL) { | 
|---|
| 1032 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; | 
|---|
| 1033 | space_freed = lhdr_ptr->bytes_used + | 
|---|
| 1034 | lhdr_ptr->bytes_left + | 
|---|
| 1035 | sizeof(large_pool_hdr); | 
|---|
| 1036 | jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed); | 
|---|
| 1037 | mem->total_space_allocated -= space_freed; | 
|---|
| 1038 | lhdr_ptr = next_lhdr_ptr; | 
|---|
| 1039 | } | 
|---|
| 1040 |  | 
|---|
| 1041 | /* Release small objects */ | 
|---|
| 1042 | shdr_ptr = mem->small_list[pool_id]; | 
|---|
| 1043 | mem->small_list[pool_id] = NULL; | 
|---|
| 1044 |  | 
|---|
| 1045 | while (shdr_ptr != NULL) { | 
|---|
| 1046 | small_pool_ptr next_shdr_ptr = shdr_ptr->next; | 
|---|
| 1047 | space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left + | 
|---|
| 1048 | sizeof(small_pool_hdr); | 
|---|
| 1049 | jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed); | 
|---|
| 1050 | mem->total_space_allocated -= space_freed; | 
|---|
| 1051 | shdr_ptr = next_shdr_ptr; | 
|---|
| 1052 | } | 
|---|
| 1053 | } | 
|---|
| 1054 |  | 
|---|
| 1055 |  | 
|---|
| 1056 | /* | 
|---|
| 1057 | * Close up shop entirely. | 
|---|
| 1058 | * Note that this cannot be called unless cinfo->mem is non-NULL. | 
|---|
| 1059 | */ | 
|---|
| 1060 |  | 
|---|
| 1061 | METHODDEF(void) | 
|---|
| 1062 | self_destruct(j_common_ptr cinfo) | 
|---|
| 1063 | { | 
|---|
| 1064 | int pool; | 
|---|
| 1065 |  | 
|---|
| 1066 | /* Close all backing store, release all memory. | 
|---|
| 1067 | * Releasing pools in reverse order might help avoid fragmentation | 
|---|
| 1068 | * with some (brain-damaged) malloc libraries. | 
|---|
| 1069 | */ | 
|---|
| 1070 | for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { | 
|---|
| 1071 | free_pool(cinfo, pool); | 
|---|
| 1072 | } | 
|---|
| 1073 |  | 
|---|
| 1074 | /* Release the memory manager control block too. */ | 
|---|
| 1075 | jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr)); | 
|---|
| 1076 | cinfo->mem = NULL;            /* ensures I will be called only once */ | 
|---|
| 1077 |  | 
|---|
| 1078 | jpeg_mem_term(cinfo);         /* system-dependent cleanup */ | 
|---|
| 1079 | } | 
|---|
| 1080 |  | 
|---|
| 1081 |  | 
|---|
| 1082 | /* | 
|---|
| 1083 | * Memory manager initialization. | 
|---|
| 1084 | * When this is called, only the error manager pointer is valid in cinfo! | 
|---|
| 1085 | */ | 
|---|
| 1086 |  | 
|---|
| 1087 | GLOBAL(void) | 
|---|
| 1088 | jinit_memory_mgr(j_common_ptr cinfo) | 
|---|
| 1089 | { | 
|---|
| 1090 | my_mem_ptr mem; | 
|---|
| 1091 | long max_to_use; | 
|---|
| 1092 | int pool; | 
|---|
| 1093 | size_t test_mac; | 
|---|
| 1094 |  | 
|---|
| 1095 | cinfo->mem = NULL;            /* for safety if init fails */ | 
|---|
| 1096 |  | 
|---|
| 1097 | /* Check for configuration errors. | 
|---|
| 1098 | * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably | 
|---|
| 1099 | * doesn't reflect any real hardware alignment requirement. | 
|---|
| 1100 | * The test is a little tricky: for X>0, X and X-1 have no one-bits | 
|---|
| 1101 | * in common if and only if X is a power of 2, ie has only one one-bit. | 
|---|
| 1102 | * Some compilers may give an "unreachable code" warning here; ignore it. | 
|---|
| 1103 | */ | 
|---|
| 1104 | if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0) | 
|---|
| 1105 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); | 
|---|
| 1106 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | 
|---|
| 1107 | * a multiple of ALIGN_SIZE. | 
|---|
| 1108 | * Again, an "unreachable code" warning may be ignored here. | 
|---|
| 1109 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | 
|---|
| 1110 | */ | 
|---|
| 1111 | test_mac = (size_t)MAX_ALLOC_CHUNK; | 
|---|
| 1112 | if ((long)test_mac != MAX_ALLOC_CHUNK || | 
|---|
| 1113 | (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) | 
|---|
| 1114 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); | 
|---|
| 1115 |  | 
|---|
| 1116 | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ | 
|---|
| 1117 |  | 
|---|
| 1118 | /* Attempt to allocate memory manager's control block */ | 
|---|
| 1119 | mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr)); | 
|---|
| 1120 |  | 
|---|
| 1121 | if (mem == NULL) { | 
|---|
| 1122 | jpeg_mem_term(cinfo);       /* system-dependent cleanup */ | 
|---|
| 1123 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); | 
|---|
| 1124 | } | 
|---|
| 1125 |  | 
|---|
| 1126 | /* OK, fill in the method pointers */ | 
|---|
| 1127 | mem->pub.alloc_small = alloc_small; | 
|---|
| 1128 | mem->pub.alloc_large = alloc_large; | 
|---|
| 1129 | mem->pub.alloc_sarray = alloc_sarray; | 
|---|
| 1130 | mem->pub.alloc_barray = alloc_barray; | 
|---|
| 1131 | mem->pub.request_virt_sarray = request_virt_sarray; | 
|---|
| 1132 | mem->pub.request_virt_barray = request_virt_barray; | 
|---|
| 1133 | mem->pub.realize_virt_arrays = realize_virt_arrays; | 
|---|
| 1134 | mem->pub.access_virt_sarray = access_virt_sarray; | 
|---|
| 1135 | mem->pub.access_virt_barray = access_virt_barray; | 
|---|
| 1136 | mem->pub.free_pool = free_pool; | 
|---|
| 1137 | mem->pub.self_destruct = self_destruct; | 
|---|
| 1138 |  | 
|---|
| 1139 | /* Make MAX_ALLOC_CHUNK accessible to other modules */ | 
|---|
| 1140 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; | 
|---|
| 1141 |  | 
|---|
| 1142 | /* Initialize working state */ | 
|---|
| 1143 | mem->pub.max_memory_to_use = max_to_use; | 
|---|
| 1144 |  | 
|---|
| 1145 | for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { | 
|---|
| 1146 | mem->small_list[pool] = NULL; | 
|---|
| 1147 | mem->large_list[pool] = NULL; | 
|---|
| 1148 | } | 
|---|
| 1149 | mem->virt_sarray_list = NULL; | 
|---|
| 1150 | mem->virt_barray_list = NULL; | 
|---|
| 1151 |  | 
|---|
| 1152 | mem->total_space_allocated = sizeof(my_memory_mgr); | 
|---|
| 1153 |  | 
|---|
| 1154 | /* Declare ourselves open for business */ | 
|---|
| 1155 | cinfo->mem = &mem->pub; | 
|---|
| 1156 |  | 
|---|
| 1157 | /* Check for an environment variable JPEGMEM; if found, override the | 
|---|
| 1158 | * default max_memory setting from jpeg_mem_init.  Note that the | 
|---|
| 1159 | * surrounding application may again override this value. | 
|---|
| 1160 | * If your system doesn't support getenv(), define NO_GETENV to disable | 
|---|
| 1161 | * this feature. | 
|---|
| 1162 | */ | 
|---|
| 1163 | #ifndef NO_GETENV | 
|---|
| 1164 | { | 
|---|
| 1165 | char *memenv; | 
|---|
| 1166 |  | 
|---|
| 1167 | if ((memenv = getenv( "JPEGMEM")) != NULL) { | 
|---|
| 1168 | char ch = 'x'; | 
|---|
| 1169 |  | 
|---|
| 1170 | if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { | 
|---|
| 1171 | if (ch == 'm' || ch == 'M') | 
|---|
| 1172 | max_to_use *= 1000L; | 
|---|
| 1173 | mem->pub.max_memory_to_use = max_to_use * 1000L; | 
|---|
| 1174 | } | 
|---|
| 1175 | } | 
|---|
| 1176 | } | 
|---|
| 1177 | #endif | 
|---|
| 1178 |  | 
|---|
| 1179 | } | 
|---|
| 1180 |  | 
|---|