1 | /* |
2 | * jmemmgr.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2016, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains the JPEG system-independent memory management |
12 | * routines. This code is usable across a wide variety of machines; most |
13 | * of the system dependencies have been isolated in a separate file. |
14 | * The major functions provided here are: |
15 | * * pool-based allocation and freeing of memory; |
16 | * * policy decisions about how to divide available memory among the |
17 | * virtual arrays; |
18 | * * control logic for swapping virtual arrays between main memory and |
19 | * backing storage. |
20 | * The separate system-dependent file provides the actual backing-storage |
21 | * access code, and it contains the policy decision about how much total |
22 | * main memory to use. |
23 | * This file is system-dependent in the sense that some of its functions |
24 | * are unnecessary in some systems. For example, if there is enough virtual |
25 | * memory so that backing storage will never be used, much of the virtual |
26 | * array control logic could be removed. (Of course, if you have that much |
27 | * memory then you shouldn't care about a little bit of unused code...) |
28 | */ |
29 | |
30 | #define JPEG_INTERNALS |
31 | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
32 | #include "jinclude.h" |
33 | #include "jpeglib.h" |
34 | #include "jmemsys.h" /* import the system-dependent declarations */ |
35 | #if !defined(_MSC_VER) || _MSC_VER > 1600 |
36 | #include <stdint.h> |
37 | #endif |
38 | #include <limits.h> |
39 | |
40 | #ifndef NO_GETENV |
41 | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
42 | extern char *getenv(const char *name); |
43 | #endif |
44 | #endif |
45 | |
46 | |
47 | LOCAL(size_t) |
48 | round_up_pow2(size_t a, size_t b) |
49 | /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ |
50 | /* Assumes a >= 0, b > 0, and b is a power of 2 */ |
51 | { |
52 | return ((a + b - 1) & (~(b - 1))); |
53 | } |
54 | |
55 | |
56 | /* |
57 | * Some important notes: |
58 | * The allocation routines provided here must never return NULL. |
59 | * They should exit to error_exit if unsuccessful. |
60 | * |
61 | * It's not a good idea to try to merge the sarray and barray routines, |
62 | * even though they are textually almost the same, because samples are |
63 | * usually stored as bytes while coefficients are shorts or ints. Thus, |
64 | * in machines where byte pointers have a different representation from |
65 | * word pointers, the resulting machine code could not be the same. |
66 | */ |
67 | |
68 | |
69 | /* |
70 | * Many machines require storage alignment: longs must start on 4-byte |
71 | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
72 | * always returns pointers that are multiples of the worst-case alignment |
73 | * requirement, and we had better do so too. |
74 | * There isn't any really portable way to determine the worst-case alignment |
75 | * requirement. This module assumes that the alignment requirement is |
76 | * multiples of ALIGN_SIZE. |
77 | * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on |
78 | * some workstations (where doubles really do need 8-byte alignment) and will |
79 | * work fine on nearly everything. If your machine has lesser alignment needs, |
80 | * you can save a few bytes by making ALIGN_SIZE smaller. |
81 | * The only place I know of where this will NOT work is certain Macintosh |
82 | * 680x0 compilers that define double as a 10-byte IEEE extended float. |
83 | * Doing 10-byte alignment is counterproductive because longwords won't be |
84 | * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
85 | * such a compiler. |
86 | */ |
87 | |
88 | #ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
89 | #ifndef WITH_SIMD |
90 | #define ALIGN_SIZE sizeof(double) |
91 | #else |
92 | #define ALIGN_SIZE 32 /* Most of the SIMD instructions we support require |
93 | 16-byte (128-bit) alignment, but AVX2 requires |
94 | 32-byte alignment. */ |
95 | #endif |
96 | #endif |
97 | |
98 | /* |
99 | * We allocate objects from "pools", where each pool is gotten with a single |
100 | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
101 | * overhead within a pool, except for alignment padding. Each pool has a |
102 | * header with a link to the next pool of the same class. |
103 | * Small and large pool headers are identical. |
104 | */ |
105 | |
106 | typedef struct small_pool_struct *small_pool_ptr; |
107 | |
108 | typedef struct small_pool_struct { |
109 | small_pool_ptr next; /* next in list of pools */ |
110 | size_t bytes_used; /* how many bytes already used within pool */ |
111 | size_t bytes_left; /* bytes still available in this pool */ |
112 | } small_pool_hdr; |
113 | |
114 | typedef struct large_pool_struct *large_pool_ptr; |
115 | |
116 | typedef struct large_pool_struct { |
117 | large_pool_ptr next; /* next in list of pools */ |
118 | size_t bytes_used; /* how many bytes already used within pool */ |
119 | size_t bytes_left; /* bytes still available in this pool */ |
120 | } large_pool_hdr; |
121 | |
122 | /* |
123 | * Here is the full definition of a memory manager object. |
124 | */ |
125 | |
126 | typedef struct { |
127 | struct jpeg_memory_mgr pub; /* public fields */ |
128 | |
129 | /* Each pool identifier (lifetime class) names a linked list of pools. */ |
130 | small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
131 | large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
132 | |
133 | /* Since we only have one lifetime class of virtual arrays, only one |
134 | * linked list is necessary (for each datatype). Note that the virtual |
135 | * array control blocks being linked together are actually stored somewhere |
136 | * in the small-pool list. |
137 | */ |
138 | jvirt_sarray_ptr virt_sarray_list; |
139 | jvirt_barray_ptr virt_barray_list; |
140 | |
141 | /* This counts total space obtained from jpeg_get_small/large */ |
142 | size_t total_space_allocated; |
143 | |
144 | /* alloc_sarray and alloc_barray set this value for use by virtual |
145 | * array routines. |
146 | */ |
147 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
148 | } my_memory_mgr; |
149 | |
150 | typedef my_memory_mgr *my_mem_ptr; |
151 | |
152 | |
153 | /* |
154 | * The control blocks for virtual arrays. |
155 | * Note that these blocks are allocated in the "small" pool area. |
156 | * System-dependent info for the associated backing store (if any) is hidden |
157 | * inside the backing_store_info struct. |
158 | */ |
159 | |
160 | struct jvirt_sarray_control { |
161 | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
162 | JDIMENSION rows_in_array; /* total virtual array height */ |
163 | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
164 | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
165 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
166 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
167 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
168 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
169 | boolean pre_zero; /* pre-zero mode requested? */ |
170 | boolean dirty; /* do current buffer contents need written? */ |
171 | boolean b_s_open; /* is backing-store data valid? */ |
172 | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
173 | backing_store_info b_s_info; /* System-dependent control info */ |
174 | }; |
175 | |
176 | struct jvirt_barray_control { |
177 | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
178 | JDIMENSION rows_in_array; /* total virtual array height */ |
179 | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
180 | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
181 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
182 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
183 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
184 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
185 | boolean pre_zero; /* pre-zero mode requested? */ |
186 | boolean dirty; /* do current buffer contents need written? */ |
187 | boolean b_s_open; /* is backing-store data valid? */ |
188 | jvirt_barray_ptr next; /* link to next virtual barray control block */ |
189 | backing_store_info b_s_info; /* System-dependent control info */ |
190 | }; |
191 | |
192 | |
193 | #ifdef MEM_STATS /* optional extra stuff for statistics */ |
194 | |
195 | LOCAL(void) |
196 | print_mem_stats(j_common_ptr cinfo, int pool_id) |
197 | { |
198 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
199 | small_pool_ptr shdr_ptr; |
200 | large_pool_ptr lhdr_ptr; |
201 | |
202 | /* Since this is only a debugging stub, we can cheat a little by using |
203 | * fprintf directly rather than going through the trace message code. |
204 | * This is helpful because message parm array can't handle longs. |
205 | */ |
206 | fprintf(stderr, "Freeing pool %d, total space = %ld\n" , |
207 | pool_id, mem->total_space_allocated); |
208 | |
209 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
210 | lhdr_ptr = lhdr_ptr->next) { |
211 | fprintf(stderr, " Large chunk used %ld\n" , (long)lhdr_ptr->bytes_used); |
212 | } |
213 | |
214 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
215 | shdr_ptr = shdr_ptr->next) { |
216 | fprintf(stderr, " Small chunk used %ld free %ld\n" , |
217 | (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left); |
218 | } |
219 | } |
220 | |
221 | #endif /* MEM_STATS */ |
222 | |
223 | |
224 | LOCAL(void) |
225 | out_of_memory(j_common_ptr cinfo, int which) |
226 | /* Report an out-of-memory error and stop execution */ |
227 | /* If we compiled MEM_STATS support, report alloc requests before dying */ |
228 | { |
229 | #ifdef MEM_STATS |
230 | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
231 | #endif |
232 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
233 | } |
234 | |
235 | |
236 | /* |
237 | * Allocation of "small" objects. |
238 | * |
239 | * For these, we use pooled storage. When a new pool must be created, |
240 | * we try to get enough space for the current request plus a "slop" factor, |
241 | * where the slop will be the amount of leftover space in the new pool. |
242 | * The speed vs. space tradeoff is largely determined by the slop values. |
243 | * A different slop value is provided for each pool class (lifetime), |
244 | * and we also distinguish the first pool of a class from later ones. |
245 | * NOTE: the values given work fairly well on both 16- and 32-bit-int |
246 | * machines, but may be too small if longs are 64 bits or more. |
247 | * |
248 | * Since we do not know what alignment malloc() gives us, we have to |
249 | * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
250 | * adjustment. |
251 | */ |
252 | |
253 | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = { |
254 | 1600, /* first PERMANENT pool */ |
255 | 16000 /* first IMAGE pool */ |
256 | }; |
257 | |
258 | static const size_t [JPOOL_NUMPOOLS] = { |
259 | 0, /* additional PERMANENT pools */ |
260 | 5000 /* additional IMAGE pools */ |
261 | }; |
262 | |
263 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
264 | |
265 | |
266 | METHODDEF(void *) |
267 | alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
268 | /* Allocate a "small" object */ |
269 | { |
270 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
271 | small_pool_ptr hdr_ptr, prev_hdr_ptr; |
272 | char *data_ptr; |
273 | size_t min_request, slop; |
274 | |
275 | /* |
276 | * Round up the requested size to a multiple of ALIGN_SIZE in order |
277 | * to assure alignment for the next object allocated in the same pool |
278 | * and so that algorithms can straddle outside the proper area up |
279 | * to the next alignment. |
280 | */ |
281 | if (sizeofobject > MAX_ALLOC_CHUNK) { |
282 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
283 | is close to SIZE_MAX. */ |
284 | out_of_memory(cinfo, 7); |
285 | } |
286 | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
287 | |
288 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
289 | if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
290 | MAX_ALLOC_CHUNK) |
291 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
292 | |
293 | /* See if space is available in any existing pool */ |
294 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
295 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
296 | prev_hdr_ptr = NULL; |
297 | hdr_ptr = mem->small_list[pool_id]; |
298 | while (hdr_ptr != NULL) { |
299 | if (hdr_ptr->bytes_left >= sizeofobject) |
300 | break; /* found pool with enough space */ |
301 | prev_hdr_ptr = hdr_ptr; |
302 | hdr_ptr = hdr_ptr->next; |
303 | } |
304 | |
305 | /* Time to make a new pool? */ |
306 | if (hdr_ptr == NULL) { |
307 | /* min_request is what we need now, slop is what will be leftover */ |
308 | min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
309 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
310 | slop = first_pool_slop[pool_id]; |
311 | else |
312 | slop = extra_pool_slop[pool_id]; |
313 | /* Don't ask for more than MAX_ALLOC_CHUNK */ |
314 | if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request)) |
315 | slop = (size_t)(MAX_ALLOC_CHUNK - min_request); |
316 | /* Try to get space, if fail reduce slop and try again */ |
317 | for (;;) { |
318 | hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop); |
319 | if (hdr_ptr != NULL) |
320 | break; |
321 | slop /= 2; |
322 | if (slop < MIN_SLOP) /* give up when it gets real small */ |
323 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
324 | } |
325 | mem->total_space_allocated += min_request + slop; |
326 | /* Success, initialize the new pool header and add to end of list */ |
327 | hdr_ptr->next = NULL; |
328 | hdr_ptr->bytes_used = 0; |
329 | hdr_ptr->bytes_left = sizeofobject + slop; |
330 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
331 | mem->small_list[pool_id] = hdr_ptr; |
332 | else |
333 | prev_hdr_ptr->next = hdr_ptr; |
334 | } |
335 | |
336 | /* OK, allocate the object from the current pool */ |
337 | data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ |
338 | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
339 | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
340 | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
341 | data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
342 | hdr_ptr->bytes_used += sizeofobject; |
343 | hdr_ptr->bytes_left -= sizeofobject; |
344 | |
345 | return (void *)data_ptr; |
346 | } |
347 | |
348 | |
349 | /* |
350 | * Allocation of "large" objects. |
351 | * |
352 | * The external semantics of these are the same as "small" objects. However, |
353 | * the pool management heuristics are quite different. We assume that each |
354 | * request is large enough that it may as well be passed directly to |
355 | * jpeg_get_large; the pool management just links everything together |
356 | * so that we can free it all on demand. |
357 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
358 | * structures. The routines that create these structures (see below) |
359 | * deliberately bunch rows together to ensure a large request size. |
360 | */ |
361 | |
362 | METHODDEF(void *) |
363 | alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
364 | /* Allocate a "large" object */ |
365 | { |
366 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
367 | large_pool_ptr hdr_ptr; |
368 | char *data_ptr; |
369 | |
370 | /* |
371 | * Round up the requested size to a multiple of ALIGN_SIZE so that |
372 | * algorithms can straddle outside the proper area up to the next |
373 | * alignment. |
374 | */ |
375 | if (sizeofobject > MAX_ALLOC_CHUNK) { |
376 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
377 | is close to SIZE_MAX. */ |
378 | out_of_memory(cinfo, 8); |
379 | } |
380 | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
381 | |
382 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
383 | if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
384 | MAX_ALLOC_CHUNK) |
385 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
386 | |
387 | /* Always make a new pool */ |
388 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
389 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
390 | |
391 | hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject + |
392 | sizeof(large_pool_hdr) + |
393 | ALIGN_SIZE - 1); |
394 | if (hdr_ptr == NULL) |
395 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
396 | mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + |
397 | ALIGN_SIZE - 1; |
398 | |
399 | /* Success, initialize the new pool header and add to list */ |
400 | hdr_ptr->next = mem->large_list[pool_id]; |
401 | /* We maintain space counts in each pool header for statistical purposes, |
402 | * even though they are not needed for allocation. |
403 | */ |
404 | hdr_ptr->bytes_used = sizeofobject; |
405 | hdr_ptr->bytes_left = 0; |
406 | mem->large_list[pool_id] = hdr_ptr; |
407 | |
408 | data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ |
409 | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
410 | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
411 | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
412 | |
413 | return (void *)data_ptr; |
414 | } |
415 | |
416 | |
417 | /* |
418 | * Creation of 2-D sample arrays. |
419 | * |
420 | * To minimize allocation overhead and to allow I/O of large contiguous |
421 | * blocks, we allocate the sample rows in groups of as many rows as possible |
422 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
423 | * NB: the virtual array control routines, later in this file, know about |
424 | * this chunking of rows. The rowsperchunk value is left in the mem manager |
425 | * object so that it can be saved away if this sarray is the workspace for |
426 | * a virtual array. |
427 | * |
428 | * Since we are often upsampling with a factor 2, we align the size (not |
429 | * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
430 | * to be as careful about size. |
431 | */ |
432 | |
433 | METHODDEF(JSAMPARRAY) |
434 | alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, |
435 | JDIMENSION numrows) |
436 | /* Allocate a 2-D sample array */ |
437 | { |
438 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
439 | JSAMPARRAY result; |
440 | JSAMPROW workspace; |
441 | JDIMENSION rowsperchunk, currow, i; |
442 | long ltemp; |
443 | |
444 | /* Make sure each row is properly aligned */ |
445 | if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) |
446 | out_of_memory(cinfo, 5); /* safety check */ |
447 | |
448 | if (samplesperrow > MAX_ALLOC_CHUNK) { |
449 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
450 | is close to SIZE_MAX. */ |
451 | out_of_memory(cinfo, 9); |
452 | } |
453 | samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / |
454 | sizeof(JSAMPLE)); |
455 | |
456 | /* Calculate max # of rows allowed in one allocation chunk */ |
457 | ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / |
458 | ((long)samplesperrow * sizeof(JSAMPLE)); |
459 | if (ltemp <= 0) |
460 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
461 | if (ltemp < (long)numrows) |
462 | rowsperchunk = (JDIMENSION)ltemp; |
463 | else |
464 | rowsperchunk = numrows; |
465 | mem->last_rowsperchunk = rowsperchunk; |
466 | |
467 | /* Get space for row pointers (small object) */ |
468 | result = (JSAMPARRAY)alloc_small(cinfo, pool_id, |
469 | (size_t)(numrows * sizeof(JSAMPROW))); |
470 | |
471 | /* Get the rows themselves (large objects) */ |
472 | currow = 0; |
473 | while (currow < numrows) { |
474 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
475 | workspace = (JSAMPROW)alloc_large(cinfo, pool_id, |
476 | (size_t)((size_t)rowsperchunk * (size_t)samplesperrow * |
477 | sizeof(JSAMPLE))); |
478 | for (i = rowsperchunk; i > 0; i--) { |
479 | result[currow++] = workspace; |
480 | workspace += samplesperrow; |
481 | } |
482 | } |
483 | |
484 | return result; |
485 | } |
486 | |
487 | |
488 | /* |
489 | * Creation of 2-D coefficient-block arrays. |
490 | * This is essentially the same as the code for sample arrays, above. |
491 | */ |
492 | |
493 | METHODDEF(JBLOCKARRAY) |
494 | alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, |
495 | JDIMENSION numrows) |
496 | /* Allocate a 2-D coefficient-block array */ |
497 | { |
498 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
499 | JBLOCKARRAY result; |
500 | JBLOCKROW workspace; |
501 | JDIMENSION rowsperchunk, currow, i; |
502 | long ltemp; |
503 | |
504 | /* Make sure each row is properly aligned */ |
505 | if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) |
506 | out_of_memory(cinfo, 6); /* safety check */ |
507 | |
508 | /* Calculate max # of rows allowed in one allocation chunk */ |
509 | ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / |
510 | ((long)blocksperrow * sizeof(JBLOCK)); |
511 | if (ltemp <= 0) |
512 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
513 | if (ltemp < (long)numrows) |
514 | rowsperchunk = (JDIMENSION)ltemp; |
515 | else |
516 | rowsperchunk = numrows; |
517 | mem->last_rowsperchunk = rowsperchunk; |
518 | |
519 | /* Get space for row pointers (small object) */ |
520 | result = (JBLOCKARRAY)alloc_small(cinfo, pool_id, |
521 | (size_t)(numrows * sizeof(JBLOCKROW))); |
522 | |
523 | /* Get the rows themselves (large objects) */ |
524 | currow = 0; |
525 | while (currow < numrows) { |
526 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
527 | workspace = (JBLOCKROW)alloc_large(cinfo, pool_id, |
528 | (size_t)((size_t)rowsperchunk * (size_t)blocksperrow * |
529 | sizeof(JBLOCK))); |
530 | for (i = rowsperchunk; i > 0; i--) { |
531 | result[currow++] = workspace; |
532 | workspace += blocksperrow; |
533 | } |
534 | } |
535 | |
536 | return result; |
537 | } |
538 | |
539 | |
540 | /* |
541 | * About virtual array management: |
542 | * |
543 | * The above "normal" array routines are only used to allocate strip buffers |
544 | * (as wide as the image, but just a few rows high). Full-image-sized buffers |
545 | * are handled as "virtual" arrays. The array is still accessed a strip at a |
546 | * time, but the memory manager must save the whole array for repeated |
547 | * accesses. The intended implementation is that there is a strip buffer in |
548 | * memory (as high as is possible given the desired memory limit), plus a |
549 | * backing file that holds the rest of the array. |
550 | * |
551 | * The request_virt_array routines are told the total size of the image and |
552 | * the maximum number of rows that will be accessed at once. The in-memory |
553 | * buffer must be at least as large as the maxaccess value. |
554 | * |
555 | * The request routines create control blocks but not the in-memory buffers. |
556 | * That is postponed until realize_virt_arrays is called. At that time the |
557 | * total amount of space needed is known (approximately, anyway), so free |
558 | * memory can be divided up fairly. |
559 | * |
560 | * The access_virt_array routines are responsible for making a specific strip |
561 | * area accessible (after reading or writing the backing file, if necessary). |
562 | * Note that the access routines are told whether the caller intends to modify |
563 | * the accessed strip; during a read-only pass this saves having to rewrite |
564 | * data to disk. The access routines are also responsible for pre-zeroing |
565 | * any newly accessed rows, if pre-zeroing was requested. |
566 | * |
567 | * In current usage, the access requests are usually for nonoverlapping |
568 | * strips; that is, successive access start_row numbers differ by exactly |
569 | * num_rows = maxaccess. This means we can get good performance with simple |
570 | * buffer dump/reload logic, by making the in-memory buffer be a multiple |
571 | * of the access height; then there will never be accesses across bufferload |
572 | * boundaries. The code will still work with overlapping access requests, |
573 | * but it doesn't handle bufferload overlaps very efficiently. |
574 | */ |
575 | |
576 | |
577 | METHODDEF(jvirt_sarray_ptr) |
578 | request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero, |
579 | JDIMENSION samplesperrow, JDIMENSION numrows, |
580 | JDIMENSION maxaccess) |
581 | /* Request a virtual 2-D sample array */ |
582 | { |
583 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
584 | jvirt_sarray_ptr result; |
585 | |
586 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
587 | if (pool_id != JPOOL_IMAGE) |
588 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
589 | |
590 | /* get control block */ |
591 | result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id, |
592 | sizeof(struct jvirt_sarray_control)); |
593 | |
594 | result->mem_buffer = NULL; /* marks array not yet realized */ |
595 | result->rows_in_array = numrows; |
596 | result->samplesperrow = samplesperrow; |
597 | result->maxaccess = maxaccess; |
598 | result->pre_zero = pre_zero; |
599 | result->b_s_open = FALSE; /* no associated backing-store object */ |
600 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
601 | mem->virt_sarray_list = result; |
602 | |
603 | return result; |
604 | } |
605 | |
606 | |
607 | METHODDEF(jvirt_barray_ptr) |
608 | request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero, |
609 | JDIMENSION blocksperrow, JDIMENSION numrows, |
610 | JDIMENSION maxaccess) |
611 | /* Request a virtual 2-D coefficient-block array */ |
612 | { |
613 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
614 | jvirt_barray_ptr result; |
615 | |
616 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
617 | if (pool_id != JPOOL_IMAGE) |
618 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
619 | |
620 | /* get control block */ |
621 | result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id, |
622 | sizeof(struct jvirt_barray_control)); |
623 | |
624 | result->mem_buffer = NULL; /* marks array not yet realized */ |
625 | result->rows_in_array = numrows; |
626 | result->blocksperrow = blocksperrow; |
627 | result->maxaccess = maxaccess; |
628 | result->pre_zero = pre_zero; |
629 | result->b_s_open = FALSE; /* no associated backing-store object */ |
630 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
631 | mem->virt_barray_list = result; |
632 | |
633 | return result; |
634 | } |
635 | |
636 | |
637 | METHODDEF(void) |
638 | realize_virt_arrays(j_common_ptr cinfo) |
639 | /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
640 | { |
641 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
642 | size_t space_per_minheight, maximum_space, avail_mem; |
643 | size_t minheights, max_minheights; |
644 | jvirt_sarray_ptr sptr; |
645 | jvirt_barray_ptr bptr; |
646 | |
647 | /* Compute the minimum space needed (maxaccess rows in each buffer) |
648 | * and the maximum space needed (full image height in each buffer). |
649 | * These may be of use to the system-dependent jpeg_mem_available routine. |
650 | */ |
651 | space_per_minheight = 0; |
652 | maximum_space = 0; |
653 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
654 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
655 | size_t new_space = (long)sptr->rows_in_array * |
656 | (long)sptr->samplesperrow * sizeof(JSAMPLE); |
657 | |
658 | space_per_minheight += (long)sptr->maxaccess * |
659 | (long)sptr->samplesperrow * sizeof(JSAMPLE); |
660 | if (SIZE_MAX - maximum_space < new_space) |
661 | out_of_memory(cinfo, 10); |
662 | maximum_space += new_space; |
663 | } |
664 | } |
665 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
666 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
667 | size_t new_space = (long)bptr->rows_in_array * |
668 | (long)bptr->blocksperrow * sizeof(JBLOCK); |
669 | |
670 | space_per_minheight += (long)bptr->maxaccess * |
671 | (long)bptr->blocksperrow * sizeof(JBLOCK); |
672 | if (SIZE_MAX - maximum_space < new_space) |
673 | out_of_memory(cinfo, 11); |
674 | maximum_space += new_space; |
675 | } |
676 | } |
677 | |
678 | if (space_per_minheight <= 0) |
679 | return; /* no unrealized arrays, no work */ |
680 | |
681 | /* Determine amount of memory to actually use; this is system-dependent. */ |
682 | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
683 | mem->total_space_allocated); |
684 | |
685 | /* If the maximum space needed is available, make all the buffers full |
686 | * height; otherwise parcel it out with the same number of minheights |
687 | * in each buffer. |
688 | */ |
689 | if (avail_mem >= maximum_space) |
690 | max_minheights = 1000000000L; |
691 | else { |
692 | max_minheights = avail_mem / space_per_minheight; |
693 | /* If there doesn't seem to be enough space, try to get the minimum |
694 | * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
695 | */ |
696 | if (max_minheights <= 0) |
697 | max_minheights = 1; |
698 | } |
699 | |
700 | /* Allocate the in-memory buffers and initialize backing store as needed. */ |
701 | |
702 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
703 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
704 | minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
705 | if (minheights <= max_minheights) { |
706 | /* This buffer fits in memory */ |
707 | sptr->rows_in_mem = sptr->rows_in_array; |
708 | } else { |
709 | /* It doesn't fit in memory, create backing store. */ |
710 | sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess); |
711 | jpeg_open_backing_store(cinfo, &sptr->b_s_info, |
712 | (long)sptr->rows_in_array * |
713 | (long)sptr->samplesperrow * |
714 | (long)sizeof(JSAMPLE)); |
715 | sptr->b_s_open = TRUE; |
716 | } |
717 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
718 | sptr->samplesperrow, sptr->rows_in_mem); |
719 | sptr->rowsperchunk = mem->last_rowsperchunk; |
720 | sptr->cur_start_row = 0; |
721 | sptr->first_undef_row = 0; |
722 | sptr->dirty = FALSE; |
723 | } |
724 | } |
725 | |
726 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
727 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
728 | minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
729 | if (minheights <= max_minheights) { |
730 | /* This buffer fits in memory */ |
731 | bptr->rows_in_mem = bptr->rows_in_array; |
732 | } else { |
733 | /* It doesn't fit in memory, create backing store. */ |
734 | bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess); |
735 | jpeg_open_backing_store(cinfo, &bptr->b_s_info, |
736 | (long)bptr->rows_in_array * |
737 | (long)bptr->blocksperrow * |
738 | (long)sizeof(JBLOCK)); |
739 | bptr->b_s_open = TRUE; |
740 | } |
741 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
742 | bptr->blocksperrow, bptr->rows_in_mem); |
743 | bptr->rowsperchunk = mem->last_rowsperchunk; |
744 | bptr->cur_start_row = 0; |
745 | bptr->first_undef_row = 0; |
746 | bptr->dirty = FALSE; |
747 | } |
748 | } |
749 | } |
750 | |
751 | |
752 | LOCAL(void) |
753 | do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
754 | /* Do backing store read or write of a virtual sample array */ |
755 | { |
756 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
757 | |
758 | bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE); |
759 | file_offset = ptr->cur_start_row * bytesperrow; |
760 | /* Loop to read or write each allocation chunk in mem_buffer */ |
761 | for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { |
762 | /* One chunk, but check for short chunk at end of buffer */ |
763 | rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); |
764 | /* Transfer no more than is currently defined */ |
765 | thisrow = (long)ptr->cur_start_row + i; |
766 | rows = MIN(rows, (long)ptr->first_undef_row - thisrow); |
767 | /* Transfer no more than fits in file */ |
768 | rows = MIN(rows, (long)ptr->rows_in_array - thisrow); |
769 | if (rows <= 0) /* this chunk might be past end of file! */ |
770 | break; |
771 | byte_count = rows * bytesperrow; |
772 | if (writing) |
773 | (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, |
774 | (void *)ptr->mem_buffer[i], |
775 | file_offset, byte_count); |
776 | else |
777 | (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, |
778 | (void *)ptr->mem_buffer[i], |
779 | file_offset, byte_count); |
780 | file_offset += byte_count; |
781 | } |
782 | } |
783 | |
784 | |
785 | LOCAL(void) |
786 | do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
787 | /* Do backing store read or write of a virtual coefficient-block array */ |
788 | { |
789 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
790 | |
791 | bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK); |
792 | file_offset = ptr->cur_start_row * bytesperrow; |
793 | /* Loop to read or write each allocation chunk in mem_buffer */ |
794 | for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { |
795 | /* One chunk, but check for short chunk at end of buffer */ |
796 | rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); |
797 | /* Transfer no more than is currently defined */ |
798 | thisrow = (long)ptr->cur_start_row + i; |
799 | rows = MIN(rows, (long)ptr->first_undef_row - thisrow); |
800 | /* Transfer no more than fits in file */ |
801 | rows = MIN(rows, (long)ptr->rows_in_array - thisrow); |
802 | if (rows <= 0) /* this chunk might be past end of file! */ |
803 | break; |
804 | byte_count = rows * bytesperrow; |
805 | if (writing) |
806 | (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, |
807 | (void *)ptr->mem_buffer[i], |
808 | file_offset, byte_count); |
809 | else |
810 | (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, |
811 | (void *)ptr->mem_buffer[i], |
812 | file_offset, byte_count); |
813 | file_offset += byte_count; |
814 | } |
815 | } |
816 | |
817 | |
818 | METHODDEF(JSAMPARRAY) |
819 | access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
820 | JDIMENSION start_row, JDIMENSION num_rows, boolean writable) |
821 | /* Access the part of a virtual sample array starting at start_row */ |
822 | /* and extending for num_rows rows. writable is true if */ |
823 | /* caller intends to modify the accessed area. */ |
824 | { |
825 | JDIMENSION end_row = start_row + num_rows; |
826 | JDIMENSION undef_row; |
827 | |
828 | /* debugging check */ |
829 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
830 | ptr->mem_buffer == NULL) |
831 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
832 | |
833 | /* Make the desired part of the virtual array accessible */ |
834 | if (start_row < ptr->cur_start_row || |
835 | end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
836 | if (!ptr->b_s_open) |
837 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
838 | /* Flush old buffer contents if necessary */ |
839 | if (ptr->dirty) { |
840 | do_sarray_io(cinfo, ptr, TRUE); |
841 | ptr->dirty = FALSE; |
842 | } |
843 | /* Decide what part of virtual array to access. |
844 | * Algorithm: if target address > current window, assume forward scan, |
845 | * load starting at target address. If target address < current window, |
846 | * assume backward scan, load so that target area is top of window. |
847 | * Note that when switching from forward write to forward read, will have |
848 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
849 | */ |
850 | if (start_row > ptr->cur_start_row) { |
851 | ptr->cur_start_row = start_row; |
852 | } else { |
853 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
854 | long ltemp; |
855 | |
856 | ltemp = (long)end_row - (long)ptr->rows_in_mem; |
857 | if (ltemp < 0) |
858 | ltemp = 0; /* don't fall off front end of file */ |
859 | ptr->cur_start_row = (JDIMENSION)ltemp; |
860 | } |
861 | /* Read in the selected part of the array. |
862 | * During the initial write pass, we will do no actual read |
863 | * because the selected part is all undefined. |
864 | */ |
865 | do_sarray_io(cinfo, ptr, FALSE); |
866 | } |
867 | /* Ensure the accessed part of the array is defined; prezero if needed. |
868 | * To improve locality of access, we only prezero the part of the array |
869 | * that the caller is about to access, not the entire in-memory array. |
870 | */ |
871 | if (ptr->first_undef_row < end_row) { |
872 | if (ptr->first_undef_row < start_row) { |
873 | if (writable) /* writer skipped over a section of array */ |
874 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
875 | undef_row = start_row; /* but reader is allowed to read ahead */ |
876 | } else { |
877 | undef_row = ptr->first_undef_row; |
878 | } |
879 | if (writable) |
880 | ptr->first_undef_row = end_row; |
881 | if (ptr->pre_zero) { |
882 | size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE); |
883 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
884 | end_row -= ptr->cur_start_row; |
885 | while (undef_row < end_row) { |
886 | jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); |
887 | undef_row++; |
888 | } |
889 | } else { |
890 | if (!writable) /* reader looking at undefined data */ |
891 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
892 | } |
893 | } |
894 | /* Flag the buffer dirty if caller will write in it */ |
895 | if (writable) |
896 | ptr->dirty = TRUE; |
897 | /* Return address of proper part of the buffer */ |
898 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
899 | } |
900 | |
901 | |
902 | METHODDEF(JBLOCKARRAY) |
903 | access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr, |
904 | JDIMENSION start_row, JDIMENSION num_rows, boolean writable) |
905 | /* Access the part of a virtual block array starting at start_row */ |
906 | /* and extending for num_rows rows. writable is true if */ |
907 | /* caller intends to modify the accessed area. */ |
908 | { |
909 | JDIMENSION end_row = start_row + num_rows; |
910 | JDIMENSION undef_row; |
911 | |
912 | /* debugging check */ |
913 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
914 | ptr->mem_buffer == NULL) |
915 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
916 | |
917 | /* Make the desired part of the virtual array accessible */ |
918 | if (start_row < ptr->cur_start_row || |
919 | end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
920 | if (!ptr->b_s_open) |
921 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
922 | /* Flush old buffer contents if necessary */ |
923 | if (ptr->dirty) { |
924 | do_barray_io(cinfo, ptr, TRUE); |
925 | ptr->dirty = FALSE; |
926 | } |
927 | /* Decide what part of virtual array to access. |
928 | * Algorithm: if target address > current window, assume forward scan, |
929 | * load starting at target address. If target address < current window, |
930 | * assume backward scan, load so that target area is top of window. |
931 | * Note that when switching from forward write to forward read, will have |
932 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
933 | */ |
934 | if (start_row > ptr->cur_start_row) { |
935 | ptr->cur_start_row = start_row; |
936 | } else { |
937 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
938 | long ltemp; |
939 | |
940 | ltemp = (long)end_row - (long)ptr->rows_in_mem; |
941 | if (ltemp < 0) |
942 | ltemp = 0; /* don't fall off front end of file */ |
943 | ptr->cur_start_row = (JDIMENSION)ltemp; |
944 | } |
945 | /* Read in the selected part of the array. |
946 | * During the initial write pass, we will do no actual read |
947 | * because the selected part is all undefined. |
948 | */ |
949 | do_barray_io(cinfo, ptr, FALSE); |
950 | } |
951 | /* Ensure the accessed part of the array is defined; prezero if needed. |
952 | * To improve locality of access, we only prezero the part of the array |
953 | * that the caller is about to access, not the entire in-memory array. |
954 | */ |
955 | if (ptr->first_undef_row < end_row) { |
956 | if (ptr->first_undef_row < start_row) { |
957 | if (writable) /* writer skipped over a section of array */ |
958 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
959 | undef_row = start_row; /* but reader is allowed to read ahead */ |
960 | } else { |
961 | undef_row = ptr->first_undef_row; |
962 | } |
963 | if (writable) |
964 | ptr->first_undef_row = end_row; |
965 | if (ptr->pre_zero) { |
966 | size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK); |
967 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
968 | end_row -= ptr->cur_start_row; |
969 | while (undef_row < end_row) { |
970 | jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); |
971 | undef_row++; |
972 | } |
973 | } else { |
974 | if (!writable) /* reader looking at undefined data */ |
975 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
976 | } |
977 | } |
978 | /* Flag the buffer dirty if caller will write in it */ |
979 | if (writable) |
980 | ptr->dirty = TRUE; |
981 | /* Return address of proper part of the buffer */ |
982 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
983 | } |
984 | |
985 | |
986 | /* |
987 | * Release all objects belonging to a specified pool. |
988 | */ |
989 | |
990 | METHODDEF(void) |
991 | free_pool(j_common_ptr cinfo, int pool_id) |
992 | { |
993 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
994 | small_pool_ptr shdr_ptr; |
995 | large_pool_ptr lhdr_ptr; |
996 | size_t space_freed; |
997 | |
998 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
999 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
1000 | |
1001 | #ifdef MEM_STATS |
1002 | if (cinfo->err->trace_level > 1) |
1003 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
1004 | #endif |
1005 | |
1006 | /* If freeing IMAGE pool, close any virtual arrays first */ |
1007 | if (pool_id == JPOOL_IMAGE) { |
1008 | jvirt_sarray_ptr sptr; |
1009 | jvirt_barray_ptr bptr; |
1010 | |
1011 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
1012 | if (sptr->b_s_open) { /* there may be no backing store */ |
1013 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
1014 | (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info); |
1015 | } |
1016 | } |
1017 | mem->virt_sarray_list = NULL; |
1018 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
1019 | if (bptr->b_s_open) { /* there may be no backing store */ |
1020 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
1021 | (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info); |
1022 | } |
1023 | } |
1024 | mem->virt_barray_list = NULL; |
1025 | } |
1026 | |
1027 | /* Release large objects */ |
1028 | lhdr_ptr = mem->large_list[pool_id]; |
1029 | mem->large_list[pool_id] = NULL; |
1030 | |
1031 | while (lhdr_ptr != NULL) { |
1032 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
1033 | space_freed = lhdr_ptr->bytes_used + |
1034 | lhdr_ptr->bytes_left + |
1035 | sizeof(large_pool_hdr); |
1036 | jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed); |
1037 | mem->total_space_allocated -= space_freed; |
1038 | lhdr_ptr = next_lhdr_ptr; |
1039 | } |
1040 | |
1041 | /* Release small objects */ |
1042 | shdr_ptr = mem->small_list[pool_id]; |
1043 | mem->small_list[pool_id] = NULL; |
1044 | |
1045 | while (shdr_ptr != NULL) { |
1046 | small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
1047 | space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left + |
1048 | sizeof(small_pool_hdr); |
1049 | jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed); |
1050 | mem->total_space_allocated -= space_freed; |
1051 | shdr_ptr = next_shdr_ptr; |
1052 | } |
1053 | } |
1054 | |
1055 | |
1056 | /* |
1057 | * Close up shop entirely. |
1058 | * Note that this cannot be called unless cinfo->mem is non-NULL. |
1059 | */ |
1060 | |
1061 | METHODDEF(void) |
1062 | self_destruct(j_common_ptr cinfo) |
1063 | { |
1064 | int pool; |
1065 | |
1066 | /* Close all backing store, release all memory. |
1067 | * Releasing pools in reverse order might help avoid fragmentation |
1068 | * with some (brain-damaged) malloc libraries. |
1069 | */ |
1070 | for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { |
1071 | free_pool(cinfo, pool); |
1072 | } |
1073 | |
1074 | /* Release the memory manager control block too. */ |
1075 | jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr)); |
1076 | cinfo->mem = NULL; /* ensures I will be called only once */ |
1077 | |
1078 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1079 | } |
1080 | |
1081 | |
1082 | /* |
1083 | * Memory manager initialization. |
1084 | * When this is called, only the error manager pointer is valid in cinfo! |
1085 | */ |
1086 | |
1087 | GLOBAL(void) |
1088 | jinit_memory_mgr(j_common_ptr cinfo) |
1089 | { |
1090 | my_mem_ptr mem; |
1091 | long max_to_use; |
1092 | int pool; |
1093 | size_t test_mac; |
1094 | |
1095 | cinfo->mem = NULL; /* for safety if init fails */ |
1096 | |
1097 | /* Check for configuration errors. |
1098 | * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1099 | * doesn't reflect any real hardware alignment requirement. |
1100 | * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1101 | * in common if and only if X is a power of 2, ie has only one one-bit. |
1102 | * Some compilers may give an "unreachable code" warning here; ignore it. |
1103 | */ |
1104 | if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0) |
1105 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1106 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1107 | * a multiple of ALIGN_SIZE. |
1108 | * Again, an "unreachable code" warning may be ignored here. |
1109 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1110 | */ |
1111 | test_mac = (size_t)MAX_ALLOC_CHUNK; |
1112 | if ((long)test_mac != MAX_ALLOC_CHUNK || |
1113 | (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
1114 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1115 | |
1116 | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1117 | |
1118 | /* Attempt to allocate memory manager's control block */ |
1119 | mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr)); |
1120 | |
1121 | if (mem == NULL) { |
1122 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1123 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1124 | } |
1125 | |
1126 | /* OK, fill in the method pointers */ |
1127 | mem->pub.alloc_small = alloc_small; |
1128 | mem->pub.alloc_large = alloc_large; |
1129 | mem->pub.alloc_sarray = alloc_sarray; |
1130 | mem->pub.alloc_barray = alloc_barray; |
1131 | mem->pub.request_virt_sarray = request_virt_sarray; |
1132 | mem->pub.request_virt_barray = request_virt_barray; |
1133 | mem->pub.realize_virt_arrays = realize_virt_arrays; |
1134 | mem->pub.access_virt_sarray = access_virt_sarray; |
1135 | mem->pub.access_virt_barray = access_virt_barray; |
1136 | mem->pub.free_pool = free_pool; |
1137 | mem->pub.self_destruct = self_destruct; |
1138 | |
1139 | /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1140 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1141 | |
1142 | /* Initialize working state */ |
1143 | mem->pub.max_memory_to_use = max_to_use; |
1144 | |
1145 | for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { |
1146 | mem->small_list[pool] = NULL; |
1147 | mem->large_list[pool] = NULL; |
1148 | } |
1149 | mem->virt_sarray_list = NULL; |
1150 | mem->virt_barray_list = NULL; |
1151 | |
1152 | mem->total_space_allocated = sizeof(my_memory_mgr); |
1153 | |
1154 | /* Declare ourselves open for business */ |
1155 | cinfo->mem = &mem->pub; |
1156 | |
1157 | /* Check for an environment variable JPEGMEM; if found, override the |
1158 | * default max_memory setting from jpeg_mem_init. Note that the |
1159 | * surrounding application may again override this value. |
1160 | * If your system doesn't support getenv(), define NO_GETENV to disable |
1161 | * this feature. |
1162 | */ |
1163 | #ifndef NO_GETENV |
1164 | { |
1165 | char *memenv; |
1166 | |
1167 | if ((memenv = getenv("JPEGMEM" )) != NULL) { |
1168 | char ch = 'x'; |
1169 | |
1170 | if (sscanf(memenv, "%ld%c" , &max_to_use, &ch) > 0) { |
1171 | if (ch == 'm' || ch == 'M') |
1172 | max_to_use *= 1000L; |
1173 | mem->pub.max_memory_to_use = max_to_use * 1000L; |
1174 | } |
1175 | } |
1176 | } |
1177 | #endif |
1178 | |
1179 | } |
1180 | |