| 1 | // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // SSE2 version of some decoding functions (idct, loop filtering). |
| 11 | // |
| 12 | // Author: somnath@google.com (Somnath Banerjee) |
| 13 | // cduvivier@google.com (Christian Duvivier) |
| 14 | |
| 15 | #include "src/dsp/dsp.h" |
| 16 | |
| 17 | #if defined(WEBP_USE_SSE2) |
| 18 | |
| 19 | // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C |
| 20 | // one it seems => disable it by default. Uncomment the following to enable: |
| 21 | #if !defined(USE_TRANSFORM_AC3) |
| 22 | #define USE_TRANSFORM_AC3 0 // ALTERNATE_CODE |
| 23 | #endif |
| 24 | |
| 25 | #include <emmintrin.h> |
| 26 | #include "src/dsp/common_sse2.h" |
| 27 | #include "src/dec/vp8i_dec.h" |
| 28 | #include "src/utils/utils.h" |
| 29 | |
| 30 | //------------------------------------------------------------------------------ |
| 31 | // Transforms (Paragraph 14.4) |
| 32 | |
| 33 | static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) { |
| 34 | // This implementation makes use of 16-bit fixed point versions of two |
| 35 | // multiply constants: |
| 36 | // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
| 37 | // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
| 38 | // |
| 39 | // To be able to use signed 16-bit integers, we use the following trick to |
| 40 | // have constants within range: |
| 41 | // - Associated constants are obtained by subtracting the 16-bit fixed point |
| 42 | // version of one: |
| 43 | // k = K - (1 << 16) => K = k + (1 << 16) |
| 44 | // K1 = 85267 => k1 = 20091 |
| 45 | // K2 = 35468 => k2 = -30068 |
| 46 | // - The multiplication of a variable by a constant become the sum of the |
| 47 | // variable and the multiplication of that variable by the associated |
| 48 | // constant: |
| 49 | // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
| 50 | const __m128i k1 = _mm_set1_epi16(20091); |
| 51 | const __m128i k2 = _mm_set1_epi16(-30068); |
| 52 | __m128i T0, T1, T2, T3; |
| 53 | |
| 54 | // Load and concatenate the transform coefficients (we'll do two transforms |
| 55 | // in parallel). In the case of only one transform, the second half of the |
| 56 | // vectors will just contain random value we'll never use nor store. |
| 57 | __m128i in0, in1, in2, in3; |
| 58 | { |
| 59 | in0 = _mm_loadl_epi64((const __m128i*)&in[0]); |
| 60 | in1 = _mm_loadl_epi64((const __m128i*)&in[4]); |
| 61 | in2 = _mm_loadl_epi64((const __m128i*)&in[8]); |
| 62 | in3 = _mm_loadl_epi64((const __m128i*)&in[12]); |
| 63 | // a00 a10 a20 a30 x x x x |
| 64 | // a01 a11 a21 a31 x x x x |
| 65 | // a02 a12 a22 a32 x x x x |
| 66 | // a03 a13 a23 a33 x x x x |
| 67 | if (do_two) { |
| 68 | const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); |
| 69 | const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); |
| 70 | const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); |
| 71 | const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); |
| 72 | in0 = _mm_unpacklo_epi64(in0, inB0); |
| 73 | in1 = _mm_unpacklo_epi64(in1, inB1); |
| 74 | in2 = _mm_unpacklo_epi64(in2, inB2); |
| 75 | in3 = _mm_unpacklo_epi64(in3, inB3); |
| 76 | // a00 a10 a20 a30 b00 b10 b20 b30 |
| 77 | // a01 a11 a21 a31 b01 b11 b21 b31 |
| 78 | // a02 a12 a22 a32 b02 b12 b22 b32 |
| 79 | // a03 a13 a23 a33 b03 b13 b23 b33 |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | // Vertical pass and subsequent transpose. |
| 84 | { |
| 85 | // First pass, c and d calculations are longer because of the "trick" |
| 86 | // multiplications. |
| 87 | const __m128i a = _mm_add_epi16(in0, in2); |
| 88 | const __m128i b = _mm_sub_epi16(in0, in2); |
| 89 | // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
| 90 | const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
| 91 | const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
| 92 | const __m128i c3 = _mm_sub_epi16(in1, in3); |
| 93 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
| 94 | const __m128i c = _mm_add_epi16(c3, c4); |
| 95 | // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
| 96 | const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
| 97 | const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
| 98 | const __m128i d3 = _mm_add_epi16(in1, in3); |
| 99 | const __m128i d4 = _mm_add_epi16(d1, d2); |
| 100 | const __m128i d = _mm_add_epi16(d3, d4); |
| 101 | |
| 102 | // Second pass. |
| 103 | const __m128i tmp0 = _mm_add_epi16(a, d); |
| 104 | const __m128i tmp1 = _mm_add_epi16(b, c); |
| 105 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
| 106 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
| 107 | |
| 108 | // Transpose the two 4x4. |
| 109 | VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); |
| 110 | } |
| 111 | |
| 112 | // Horizontal pass and subsequent transpose. |
| 113 | { |
| 114 | // First pass, c and d calculations are longer because of the "trick" |
| 115 | // multiplications. |
| 116 | const __m128i four = _mm_set1_epi16(4); |
| 117 | const __m128i dc = _mm_add_epi16(T0, four); |
| 118 | const __m128i a = _mm_add_epi16(dc, T2); |
| 119 | const __m128i b = _mm_sub_epi16(dc, T2); |
| 120 | // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
| 121 | const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
| 122 | const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
| 123 | const __m128i c3 = _mm_sub_epi16(T1, T3); |
| 124 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
| 125 | const __m128i c = _mm_add_epi16(c3, c4); |
| 126 | // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
| 127 | const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
| 128 | const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
| 129 | const __m128i d3 = _mm_add_epi16(T1, T3); |
| 130 | const __m128i d4 = _mm_add_epi16(d1, d2); |
| 131 | const __m128i d = _mm_add_epi16(d3, d4); |
| 132 | |
| 133 | // Second pass. |
| 134 | const __m128i tmp0 = _mm_add_epi16(a, d); |
| 135 | const __m128i tmp1 = _mm_add_epi16(b, c); |
| 136 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
| 137 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
| 138 | const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
| 139 | const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
| 140 | const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
| 141 | const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
| 142 | |
| 143 | // Transpose the two 4x4. |
| 144 | VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, |
| 145 | &T2, &T3); |
| 146 | } |
| 147 | |
| 148 | // Add inverse transform to 'dst' and store. |
| 149 | { |
| 150 | const __m128i zero = _mm_setzero_si128(); |
| 151 | // Load the reference(s). |
| 152 | __m128i dst0, dst1, dst2, dst3; |
| 153 | if (do_two) { |
| 154 | // Load eight bytes/pixels per line. |
| 155 | dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); |
| 156 | dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); |
| 157 | dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); |
| 158 | dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); |
| 159 | } else { |
| 160 | // Load four bytes/pixels per line. |
| 161 | dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); |
| 162 | dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); |
| 163 | dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); |
| 164 | dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); |
| 165 | } |
| 166 | // Convert to 16b. |
| 167 | dst0 = _mm_unpacklo_epi8(dst0, zero); |
| 168 | dst1 = _mm_unpacklo_epi8(dst1, zero); |
| 169 | dst2 = _mm_unpacklo_epi8(dst2, zero); |
| 170 | dst3 = _mm_unpacklo_epi8(dst3, zero); |
| 171 | // Add the inverse transform(s). |
| 172 | dst0 = _mm_add_epi16(dst0, T0); |
| 173 | dst1 = _mm_add_epi16(dst1, T1); |
| 174 | dst2 = _mm_add_epi16(dst2, T2); |
| 175 | dst3 = _mm_add_epi16(dst3, T3); |
| 176 | // Unsigned saturate to 8b. |
| 177 | dst0 = _mm_packus_epi16(dst0, dst0); |
| 178 | dst1 = _mm_packus_epi16(dst1, dst1); |
| 179 | dst2 = _mm_packus_epi16(dst2, dst2); |
| 180 | dst3 = _mm_packus_epi16(dst3, dst3); |
| 181 | // Store the results. |
| 182 | if (do_two) { |
| 183 | // Store eight bytes/pixels per line. |
| 184 | _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); |
| 185 | _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); |
| 186 | _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); |
| 187 | _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); |
| 188 | } else { |
| 189 | // Store four bytes/pixels per line. |
| 190 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); |
| 191 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); |
| 192 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); |
| 193 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | #if (USE_TRANSFORM_AC3 == 1) |
| 199 | #define MUL(a, b) (((a) * (b)) >> 16) |
| 200 | static void TransformAC3(const int16_t* in, uint8_t* dst) { |
| 201 | static const int kC1 = 20091 + (1 << 16); |
| 202 | static const int kC2 = 35468; |
| 203 | const __m128i A = _mm_set1_epi16(in[0] + 4); |
| 204 | const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); |
| 205 | const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); |
| 206 | const int c1 = MUL(in[1], kC2); |
| 207 | const int d1 = MUL(in[1], kC1); |
| 208 | const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); |
| 209 | const __m128i B = _mm_adds_epi16(A, CD); |
| 210 | const __m128i m0 = _mm_adds_epi16(B, d4); |
| 211 | const __m128i m1 = _mm_adds_epi16(B, c4); |
| 212 | const __m128i m2 = _mm_subs_epi16(B, c4); |
| 213 | const __m128i m3 = _mm_subs_epi16(B, d4); |
| 214 | const __m128i zero = _mm_setzero_si128(); |
| 215 | // Load the source pixels. |
| 216 | __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); |
| 217 | __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); |
| 218 | __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); |
| 219 | __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); |
| 220 | // Convert to 16b. |
| 221 | dst0 = _mm_unpacklo_epi8(dst0, zero); |
| 222 | dst1 = _mm_unpacklo_epi8(dst1, zero); |
| 223 | dst2 = _mm_unpacklo_epi8(dst2, zero); |
| 224 | dst3 = _mm_unpacklo_epi8(dst3, zero); |
| 225 | // Add the inverse transform. |
| 226 | dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); |
| 227 | dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); |
| 228 | dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); |
| 229 | dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); |
| 230 | // Unsigned saturate to 8b. |
| 231 | dst0 = _mm_packus_epi16(dst0, dst0); |
| 232 | dst1 = _mm_packus_epi16(dst1, dst1); |
| 233 | dst2 = _mm_packus_epi16(dst2, dst2); |
| 234 | dst3 = _mm_packus_epi16(dst3, dst3); |
| 235 | // Store the results. |
| 236 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); |
| 237 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); |
| 238 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); |
| 239 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); |
| 240 | } |
| 241 | #undef MUL |
| 242 | #endif // USE_TRANSFORM_AC3 |
| 243 | |
| 244 | //------------------------------------------------------------------------------ |
| 245 | // Loop Filter (Paragraph 15) |
| 246 | |
| 247 | // Compute abs(p - q) = subs(p - q) OR subs(q - p) |
| 248 | #define MM_ABS(p, q) _mm_or_si128( \ |
| 249 | _mm_subs_epu8((q), (p)), \ |
| 250 | _mm_subs_epu8((p), (q))) |
| 251 | |
| 252 | // Shift each byte of "x" by 3 bits while preserving by the sign bit. |
| 253 | static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) { |
| 254 | const __m128i zero = _mm_setzero_si128(); |
| 255 | const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x); |
| 256 | const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x); |
| 257 | const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8); |
| 258 | const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8); |
| 259 | *x = _mm_packs_epi16(lo_1, hi_1); |
| 260 | } |
| 261 | |
| 262 | #define FLIP_SIGN_BIT2(a, b) { \ |
| 263 | (a) = _mm_xor_si128(a, sign_bit); \ |
| 264 | (b) = _mm_xor_si128(b, sign_bit); \ |
| 265 | } |
| 266 | |
| 267 | #define FLIP_SIGN_BIT4(a, b, c, d) { \ |
| 268 | FLIP_SIGN_BIT2(a, b); \ |
| 269 | FLIP_SIGN_BIT2(c, d); \ |
| 270 | } |
| 271 | |
| 272 | // input/output is uint8_t |
| 273 | static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1, |
| 274 | const __m128i* const p0, |
| 275 | const __m128i* const q0, |
| 276 | const __m128i* const q1, |
| 277 | int hev_thresh, __m128i* const not_hev) { |
| 278 | const __m128i zero = _mm_setzero_si128(); |
| 279 | const __m128i t_1 = MM_ABS(*p1, *p0); |
| 280 | const __m128i t_2 = MM_ABS(*q1, *q0); |
| 281 | |
| 282 | const __m128i h = _mm_set1_epi8(hev_thresh); |
| 283 | const __m128i t_max = _mm_max_epu8(t_1, t_2); |
| 284 | |
| 285 | const __m128i t_max_h = _mm_subs_epu8(t_max, h); |
| 286 | *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2 |
| 287 | } |
| 288 | |
| 289 | // input pixels are int8_t |
| 290 | static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1, |
| 291 | const __m128i* const p0, |
| 292 | const __m128i* const q0, |
| 293 | const __m128i* const q1, |
| 294 | __m128i* const delta) { |
| 295 | // beware of addition order, for saturation! |
| 296 | const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 |
| 297 | const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0 |
| 298 | const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0) |
| 299 | const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0) |
| 300 | const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0) |
| 301 | *delta = s3; |
| 302 | } |
| 303 | |
| 304 | // input and output are int8_t |
| 305 | static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0, |
| 306 | __m128i* const q0, |
| 307 | const __m128i* const fl) { |
| 308 | const __m128i k3 = _mm_set1_epi8(3); |
| 309 | const __m128i k4 = _mm_set1_epi8(4); |
| 310 | __m128i v3 = _mm_adds_epi8(*fl, k3); |
| 311 | __m128i v4 = _mm_adds_epi8(*fl, k4); |
| 312 | |
| 313 | SignedShift8b_SSE2(&v4); // v4 >> 3 |
| 314 | SignedShift8b_SSE2(&v3); // v3 >> 3 |
| 315 | *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4 |
| 316 | *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3 |
| 317 | } |
| 318 | |
| 319 | // Updates values of 2 pixels at MB edge during complex filtering. |
| 320 | // Update operations: |
| 321 | // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] |
| 322 | // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). |
| 323 | static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi, |
| 324 | const __m128i* const a0_lo, |
| 325 | const __m128i* const a0_hi) { |
| 326 | const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); |
| 327 | const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); |
| 328 | const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); |
| 329 | const __m128i sign_bit = _mm_set1_epi8((char)0x80); |
| 330 | *pi = _mm_adds_epi8(*pi, delta); |
| 331 | *qi = _mm_subs_epi8(*qi, delta); |
| 332 | FLIP_SIGN_BIT2(*pi, *qi); |
| 333 | } |
| 334 | |
| 335 | // input pixels are uint8_t |
| 336 | static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1, |
| 337 | const __m128i* const p0, |
| 338 | const __m128i* const q0, |
| 339 | const __m128i* const q1, |
| 340 | int thresh, __m128i* const mask) { |
| 341 | const __m128i m_thresh = _mm_set1_epi8((char)thresh); |
| 342 | const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) |
| 343 | const __m128i kFE = _mm_set1_epi8((char)0xFE); |
| 344 | const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero |
| 345 | const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2 |
| 346 | |
| 347 | const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0) |
| 348 | const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2 |
| 349 | const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2 |
| 350 | |
| 351 | const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh |
| 352 | *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128()); |
| 353 | } |
| 354 | |
| 355 | //------------------------------------------------------------------------------ |
| 356 | // Edge filtering functions |
| 357 | |
| 358 | // Applies filter on 2 pixels (p0 and q0) |
| 359 | static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0, |
| 360 | __m128i* const q0, __m128i* const q1, |
| 361 | int thresh) { |
| 362 | __m128i a, mask; |
| 363 | const __m128i sign_bit = _mm_set1_epi8((char)0x80); |
| 364 | // convert p1/q1 to int8_t (for GetBaseDelta_SSE2) |
| 365 | const __m128i p1s = _mm_xor_si128(*p1, sign_bit); |
| 366 | const __m128i q1s = _mm_xor_si128(*q1, sign_bit); |
| 367 | |
| 368 | NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask); |
| 369 | |
| 370 | FLIP_SIGN_BIT2(*p0, *q0); |
| 371 | GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a); |
| 372 | a = _mm_and_si128(a, mask); // mask filter values we don't care about |
| 373 | DoSimpleFilter_SSE2(p0, q0, &a); |
| 374 | FLIP_SIGN_BIT2(*p0, *q0); |
| 375 | } |
| 376 | |
| 377 | // Applies filter on 4 pixels (p1, p0, q0 and q1) |
| 378 | static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0, |
| 379 | __m128i* const q0, __m128i* const q1, |
| 380 | const __m128i* const mask, |
| 381 | int hev_thresh) { |
| 382 | const __m128i zero = _mm_setzero_si128(); |
| 383 | const __m128i sign_bit = _mm_set1_epi8((char)0x80); |
| 384 | const __m128i k64 = _mm_set1_epi8(64); |
| 385 | const __m128i k3 = _mm_set1_epi8(3); |
| 386 | const __m128i k4 = _mm_set1_epi8(4); |
| 387 | __m128i not_hev; |
| 388 | __m128i t1, t2, t3; |
| 389 | |
| 390 | // compute hev mask |
| 391 | GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); |
| 392 | |
| 393 | // convert to signed values |
| 394 | FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); |
| 395 | |
| 396 | t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 |
| 397 | t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) |
| 398 | t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 |
| 399 | t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) |
| 400 | t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) |
| 401 | t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) |
| 402 | t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about |
| 403 | |
| 404 | t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3 |
| 405 | t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4 |
| 406 | SignedShift8b_SSE2(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 |
| 407 | SignedShift8b_SSE2(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 |
| 408 | *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 |
| 409 | *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 |
| 410 | FLIP_SIGN_BIT2(*p0, *q0); |
| 411 | |
| 412 | // this is equivalent to signed (a + 1) >> 1 calculation |
| 413 | t2 = _mm_add_epi8(t3, sign_bit); |
| 414 | t3 = _mm_avg_epu8(t2, zero); |
| 415 | t3 = _mm_sub_epi8(t3, k64); |
| 416 | |
| 417 | t3 = _mm_and_si128(not_hev, t3); // if !hev |
| 418 | *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 |
| 419 | *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 |
| 420 | FLIP_SIGN_BIT2(*p1, *q1); |
| 421 | } |
| 422 | |
| 423 | // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) |
| 424 | static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1, |
| 425 | __m128i* const p0, __m128i* const q0, |
| 426 | __m128i* const q1, __m128i* const q2, |
| 427 | const __m128i* const mask, |
| 428 | int hev_thresh) { |
| 429 | const __m128i zero = _mm_setzero_si128(); |
| 430 | const __m128i sign_bit = _mm_set1_epi8((char)0x80); |
| 431 | __m128i a, not_hev; |
| 432 | |
| 433 | // compute hev mask |
| 434 | GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); |
| 435 | |
| 436 | FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); |
| 437 | FLIP_SIGN_BIT2(*p2, *q2); |
| 438 | GetBaseDelta_SSE2(p1, p0, q0, q1, &a); |
| 439 | |
| 440 | { // do simple filter on pixels with hev |
| 441 | const __m128i m = _mm_andnot_si128(not_hev, *mask); |
| 442 | const __m128i f = _mm_and_si128(a, m); |
| 443 | DoSimpleFilter_SSE2(p0, q0, &f); |
| 444 | } |
| 445 | |
| 446 | { // do strong filter on pixels with not hev |
| 447 | const __m128i k9 = _mm_set1_epi16(0x0900); |
| 448 | const __m128i k63 = _mm_set1_epi16(63); |
| 449 | |
| 450 | const __m128i m = _mm_and_si128(not_hev, *mask); |
| 451 | const __m128i f = _mm_and_si128(a, m); |
| 452 | |
| 453 | const __m128i f_lo = _mm_unpacklo_epi8(zero, f); |
| 454 | const __m128i f_hi = _mm_unpackhi_epi8(zero, f); |
| 455 | |
| 456 | const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9 |
| 457 | const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9 |
| 458 | |
| 459 | const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63 |
| 460 | const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63 |
| 461 | |
| 462 | const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63 |
| 463 | const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63 |
| 464 | |
| 465 | const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 |
| 466 | const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 |
| 467 | |
| 468 | Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi); |
| 469 | Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi); |
| 470 | Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | // reads 8 rows across a vertical edge. |
| 475 | static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride, |
| 476 | __m128i* const p, __m128i* const q) { |
| 477 | // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00 |
| 478 | // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10 |
| 479 | const __m128i A0 = _mm_set_epi32( |
| 480 | WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]), |
| 481 | WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride])); |
| 482 | const __m128i A1 = _mm_set_epi32( |
| 483 | WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]), |
| 484 | WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride])); |
| 485 | |
| 486 | // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 |
| 487 | // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 |
| 488 | const __m128i B0 = _mm_unpacklo_epi8(A0, A1); |
| 489 | const __m128i B1 = _mm_unpackhi_epi8(A0, A1); |
| 490 | |
| 491 | // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 |
| 492 | // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 |
| 493 | const __m128i C0 = _mm_unpacklo_epi16(B0, B1); |
| 494 | const __m128i C1 = _mm_unpackhi_epi16(B0, B1); |
| 495 | |
| 496 | // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 |
| 497 | // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 |
| 498 | *p = _mm_unpacklo_epi32(C0, C1); |
| 499 | *q = _mm_unpackhi_epi32(C0, C1); |
| 500 | } |
| 501 | |
| 502 | static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0, |
| 503 | const uint8_t* const r8, |
| 504 | int stride, |
| 505 | __m128i* const p1, __m128i* const p0, |
| 506 | __m128i* const q0, __m128i* const q1) { |
| 507 | // Assume the pixels around the edge (|) are numbered as follows |
| 508 | // 00 01 | 02 03 |
| 509 | // 10 11 | 12 13 |
| 510 | // ... | ... |
| 511 | // e0 e1 | e2 e3 |
| 512 | // f0 f1 | f2 f3 |
| 513 | // |
| 514 | // r0 is pointing to the 0th row (00) |
| 515 | // r8 is pointing to the 8th row (80) |
| 516 | |
| 517 | // Load |
| 518 | // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 |
| 519 | // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 |
| 520 | // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 |
| 521 | // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 |
| 522 | Load8x4_SSE2(r0, stride, p1, q0); |
| 523 | Load8x4_SSE2(r8, stride, p0, q1); |
| 524 | |
| 525 | { |
| 526 | // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 |
| 527 | // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 |
| 528 | // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 |
| 529 | // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 |
| 530 | const __m128i t1 = *p1; |
| 531 | const __m128i t2 = *q0; |
| 532 | *p1 = _mm_unpacklo_epi64(t1, *p0); |
| 533 | *p0 = _mm_unpackhi_epi64(t1, *p0); |
| 534 | *q0 = _mm_unpacklo_epi64(t2, *q1); |
| 535 | *q1 = _mm_unpackhi_epi64(t2, *q1); |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | static WEBP_INLINE void Store4x4_SSE2(__m128i* const x, |
| 540 | uint8_t* dst, int stride) { |
| 541 | int i; |
| 542 | for (i = 0; i < 4; ++i, dst += stride) { |
| 543 | WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x)); |
| 544 | *x = _mm_srli_si128(*x, 4); |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | // Transpose back and store |
| 549 | static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1, |
| 550 | const __m128i* const p0, |
| 551 | const __m128i* const q0, |
| 552 | const __m128i* const q1, |
| 553 | uint8_t* r0, uint8_t* r8, |
| 554 | int stride) { |
| 555 | __m128i t1, p1_s, p0_s, q0_s, q1_s; |
| 556 | |
| 557 | // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 |
| 558 | // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 |
| 559 | t1 = *p0; |
| 560 | p0_s = _mm_unpacklo_epi8(*p1, t1); |
| 561 | p1_s = _mm_unpackhi_epi8(*p1, t1); |
| 562 | |
| 563 | // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 |
| 564 | // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 |
| 565 | t1 = *q0; |
| 566 | q0_s = _mm_unpacklo_epi8(t1, *q1); |
| 567 | q1_s = _mm_unpackhi_epi8(t1, *q1); |
| 568 | |
| 569 | // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 |
| 570 | // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 |
| 571 | t1 = p0_s; |
| 572 | p0_s = _mm_unpacklo_epi16(t1, q0_s); |
| 573 | q0_s = _mm_unpackhi_epi16(t1, q0_s); |
| 574 | |
| 575 | // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 |
| 576 | // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 |
| 577 | t1 = p1_s; |
| 578 | p1_s = _mm_unpacklo_epi16(t1, q1_s); |
| 579 | q1_s = _mm_unpackhi_epi16(t1, q1_s); |
| 580 | |
| 581 | Store4x4_SSE2(&p0_s, r0, stride); |
| 582 | r0 += 4 * stride; |
| 583 | Store4x4_SSE2(&q0_s, r0, stride); |
| 584 | |
| 585 | Store4x4_SSE2(&p1_s, r8, stride); |
| 586 | r8 += 4 * stride; |
| 587 | Store4x4_SSE2(&q1_s, r8, stride); |
| 588 | } |
| 589 | |
| 590 | //------------------------------------------------------------------------------ |
| 591 | // Simple In-loop filtering (Paragraph 15.2) |
| 592 | |
| 593 | static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) { |
| 594 | // Load |
| 595 | __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); |
| 596 | __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); |
| 597 | __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); |
| 598 | __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); |
| 599 | |
| 600 | DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); |
| 601 | |
| 602 | // Store |
| 603 | _mm_storeu_si128((__m128i*)&p[-stride], p0); |
| 604 | _mm_storeu_si128((__m128i*)&p[0], q0); |
| 605 | } |
| 606 | |
| 607 | static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) { |
| 608 | __m128i p1, p0, q0, q1; |
| 609 | |
| 610 | p -= 2; // beginning of p1 |
| 611 | |
| 612 | Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); |
| 613 | DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); |
| 614 | Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride); |
| 615 | } |
| 616 | |
| 617 | static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) { |
| 618 | int k; |
| 619 | for (k = 3; k > 0; --k) { |
| 620 | p += 4 * stride; |
| 621 | SimpleVFilter16_SSE2(p, stride, thresh); |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) { |
| 626 | int k; |
| 627 | for (k = 3; k > 0; --k) { |
| 628 | p += 4; |
| 629 | SimpleHFilter16_SSE2(p, stride, thresh); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | //------------------------------------------------------------------------------ |
| 634 | // Complex In-loop filtering (Paragraph 15.3) |
| 635 | |
| 636 | #define MAX_DIFF1(p3, p2, p1, p0, m) do { \ |
| 637 | (m) = MM_ABS(p1, p0); \ |
| 638 | (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ |
| 639 | (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ |
| 640 | } while (0) |
| 641 | |
| 642 | #define MAX_DIFF2(p3, p2, p1, p0, m) do { \ |
| 643 | (m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \ |
| 644 | (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ |
| 645 | (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ |
| 646 | } while (0) |
| 647 | |
| 648 | #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ |
| 649 | (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \ |
| 650 | (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \ |
| 651 | (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \ |
| 652 | (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \ |
| 653 | } |
| 654 | |
| 655 | #define LOADUV_H_EDGE(p, u, v, stride) do { \ |
| 656 | const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ |
| 657 | const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \ |
| 658 | (p) = _mm_unpacklo_epi64(U, V); \ |
| 659 | } while (0) |
| 660 | |
| 661 | #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ |
| 662 | LOADUV_H_EDGE(e1, u, v, 0 * (stride)); \ |
| 663 | LOADUV_H_EDGE(e2, u, v, 1 * (stride)); \ |
| 664 | LOADUV_H_EDGE(e3, u, v, 2 * (stride)); \ |
| 665 | LOADUV_H_EDGE(e4, u, v, 3 * (stride)); \ |
| 666 | } |
| 667 | |
| 668 | #define STOREUV(p, u, v, stride) { \ |
| 669 | _mm_storel_epi64((__m128i*)&(u)[(stride)], p); \ |
| 670 | (p) = _mm_srli_si128(p, 8); \ |
| 671 | _mm_storel_epi64((__m128i*)&(v)[(stride)], p); \ |
| 672 | } |
| 673 | |
| 674 | static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1, |
| 675 | const __m128i* const p0, |
| 676 | const __m128i* const q0, |
| 677 | const __m128i* const q1, |
| 678 | int thresh, int ithresh, |
| 679 | __m128i* const mask) { |
| 680 | const __m128i it = _mm_set1_epi8(ithresh); |
| 681 | const __m128i diff = _mm_subs_epu8(*mask, it); |
| 682 | const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128()); |
| 683 | __m128i filter_mask; |
| 684 | NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask); |
| 685 | *mask = _mm_and_si128(thresh_mask, filter_mask); |
| 686 | } |
| 687 | |
| 688 | // on macroblock edges |
| 689 | static void VFilter16_SSE2(uint8_t* p, int stride, |
| 690 | int thresh, int ithresh, int hev_thresh) { |
| 691 | __m128i t1; |
| 692 | __m128i mask; |
| 693 | __m128i p2, p1, p0, q0, q1, q2; |
| 694 | |
| 695 | // Load p3, p2, p1, p0 |
| 696 | LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); |
| 697 | MAX_DIFF1(t1, p2, p1, p0, mask); |
| 698 | |
| 699 | // Load q0, q1, q2, q3 |
| 700 | LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); |
| 701 | MAX_DIFF2(t1, q2, q1, q0, mask); |
| 702 | |
| 703 | ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| 704 | DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| 705 | |
| 706 | // Store |
| 707 | _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); |
| 708 | _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); |
| 709 | _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); |
| 710 | _mm_storeu_si128((__m128i*)&p[+0 * stride], q0); |
| 711 | _mm_storeu_si128((__m128i*)&p[+1 * stride], q1); |
| 712 | _mm_storeu_si128((__m128i*)&p[+2 * stride], q2); |
| 713 | } |
| 714 | |
| 715 | static void HFilter16_SSE2(uint8_t* p, int stride, |
| 716 | int thresh, int ithresh, int hev_thresh) { |
| 717 | __m128i mask; |
| 718 | __m128i p3, p2, p1, p0, q0, q1, q2, q3; |
| 719 | |
| 720 | uint8_t* const b = p - 4; |
| 721 | Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); |
| 722 | MAX_DIFF1(p3, p2, p1, p0, mask); |
| 723 | |
| 724 | Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); |
| 725 | MAX_DIFF2(q3, q2, q1, q0, mask); |
| 726 | |
| 727 | ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| 728 | DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| 729 | |
| 730 | Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride); |
| 731 | Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride); |
| 732 | } |
| 733 | |
| 734 | // on three inner edges |
| 735 | static void VFilter16i_SSE2(uint8_t* p, int stride, |
| 736 | int thresh, int ithresh, int hev_thresh) { |
| 737 | int k; |
| 738 | __m128i p3, p2, p1, p0; // loop invariants |
| 739 | |
| 740 | LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue |
| 741 | |
| 742 | for (k = 3; k > 0; --k) { |
| 743 | __m128i mask, tmp1, tmp2; |
| 744 | uint8_t* const b = p + 2 * stride; // beginning of p1 |
| 745 | p += 4 * stride; |
| 746 | |
| 747 | MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask |
| 748 | LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2); |
| 749 | MAX_DIFF2(p3, p2, tmp1, tmp2, mask); |
| 750 | |
| 751 | // p3 and p2 are not just temporary variables here: they will be |
| 752 | // re-used for next span. And q2/q3 will become p1/p0 accordingly. |
| 753 | ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); |
| 754 | DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); |
| 755 | |
| 756 | // Store |
| 757 | _mm_storeu_si128((__m128i*)&b[0 * stride], p1); |
| 758 | _mm_storeu_si128((__m128i*)&b[1 * stride], p0); |
| 759 | _mm_storeu_si128((__m128i*)&b[2 * stride], p3); |
| 760 | _mm_storeu_si128((__m128i*)&b[3 * stride], p2); |
| 761 | |
| 762 | // rotate samples |
| 763 | p1 = tmp1; |
| 764 | p0 = tmp2; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | static void HFilter16i_SSE2(uint8_t* p, int stride, |
| 769 | int thresh, int ithresh, int hev_thresh) { |
| 770 | int k; |
| 771 | __m128i p3, p2, p1, p0; // loop invariants |
| 772 | |
| 773 | Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue |
| 774 | |
| 775 | for (k = 3; k > 0; --k) { |
| 776 | __m128i mask, tmp1, tmp2; |
| 777 | uint8_t* const b = p + 2; // beginning of p1 |
| 778 | |
| 779 | p += 4; // beginning of q0 (and next span) |
| 780 | |
| 781 | MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask |
| 782 | Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2); |
| 783 | MAX_DIFF2(p3, p2, tmp1, tmp2, mask); |
| 784 | |
| 785 | ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); |
| 786 | DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); |
| 787 | |
| 788 | Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride); |
| 789 | |
| 790 | // rotate samples |
| 791 | p1 = tmp1; |
| 792 | p0 = tmp2; |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | // 8-pixels wide variant, for chroma filtering |
| 797 | static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, |
| 798 | int thresh, int ithresh, int hev_thresh) { |
| 799 | __m128i mask; |
| 800 | __m128i t1, p2, p1, p0, q0, q1, q2; |
| 801 | |
| 802 | // Load p3, p2, p1, p0 |
| 803 | LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); |
| 804 | MAX_DIFF1(t1, p2, p1, p0, mask); |
| 805 | |
| 806 | // Load q0, q1, q2, q3 |
| 807 | LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); |
| 808 | MAX_DIFF2(t1, q2, q1, q0, mask); |
| 809 | |
| 810 | ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| 811 | DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| 812 | |
| 813 | // Store |
| 814 | STOREUV(p2, u, v, -3 * stride); |
| 815 | STOREUV(p1, u, v, -2 * stride); |
| 816 | STOREUV(p0, u, v, -1 * stride); |
| 817 | STOREUV(q0, u, v, 0 * stride); |
| 818 | STOREUV(q1, u, v, 1 * stride); |
| 819 | STOREUV(q2, u, v, 2 * stride); |
| 820 | } |
| 821 | |
| 822 | static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, |
| 823 | int thresh, int ithresh, int hev_thresh) { |
| 824 | __m128i mask; |
| 825 | __m128i p3, p2, p1, p0, q0, q1, q2, q3; |
| 826 | |
| 827 | uint8_t* const tu = u - 4; |
| 828 | uint8_t* const tv = v - 4; |
| 829 | Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0); |
| 830 | MAX_DIFF1(p3, p2, p1, p0, mask); |
| 831 | |
| 832 | Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3); |
| 833 | MAX_DIFF2(q3, q2, q1, q0, mask); |
| 834 | |
| 835 | ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| 836 | DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| 837 | |
| 838 | Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride); |
| 839 | Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride); |
| 840 | } |
| 841 | |
| 842 | static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, |
| 843 | int thresh, int ithresh, int hev_thresh) { |
| 844 | __m128i mask; |
| 845 | __m128i t1, t2, p1, p0, q0, q1; |
| 846 | |
| 847 | // Load p3, p2, p1, p0 |
| 848 | LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); |
| 849 | MAX_DIFF1(t2, t1, p1, p0, mask); |
| 850 | |
| 851 | u += 4 * stride; |
| 852 | v += 4 * stride; |
| 853 | |
| 854 | // Load q0, q1, q2, q3 |
| 855 | LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); |
| 856 | MAX_DIFF2(t2, t1, q1, q0, mask); |
| 857 | |
| 858 | ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| 859 | DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); |
| 860 | |
| 861 | // Store |
| 862 | STOREUV(p1, u, v, -2 * stride); |
| 863 | STOREUV(p0, u, v, -1 * stride); |
| 864 | STOREUV(q0, u, v, 0 * stride); |
| 865 | STOREUV(q1, u, v, 1 * stride); |
| 866 | } |
| 867 | |
| 868 | static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, |
| 869 | int thresh, int ithresh, int hev_thresh) { |
| 870 | __m128i mask; |
| 871 | __m128i t1, t2, p1, p0, q0, q1; |
| 872 | Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 |
| 873 | MAX_DIFF1(t2, t1, p1, p0, mask); |
| 874 | |
| 875 | u += 4; // beginning of q0 |
| 876 | v += 4; |
| 877 | Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 |
| 878 | MAX_DIFF2(t2, t1, q1, q0, mask); |
| 879 | |
| 880 | ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| 881 | DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); |
| 882 | |
| 883 | u -= 2; // beginning of p1 |
| 884 | v -= 2; |
| 885 | Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride); |
| 886 | } |
| 887 | |
| 888 | //------------------------------------------------------------------------------ |
| 889 | // 4x4 predictions |
| 890 | |
| 891 | #define DST(x, y) dst[(x) + (y) * BPS] |
| 892 | #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) |
| 893 | |
| 894 | // We use the following 8b-arithmetic tricks: |
| 895 | // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 |
| 896 | // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] |
| 897 | // and: |
| 898 | // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb |
| 899 | // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 |
| 900 | // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 |
| 901 | |
| 902 | static void VE4_SSE2(uint8_t* dst) { // vertical |
| 903 | const __m128i one = _mm_set1_epi8(1); |
| 904 | const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); |
| 905 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| 906 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| 907 | const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); |
| 908 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); |
| 909 | const __m128i b = _mm_subs_epu8(a, lsb); |
| 910 | const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); |
| 911 | const uint32_t vals = _mm_cvtsi128_si32(avg); |
| 912 | int i; |
| 913 | for (i = 0; i < 4; ++i) { |
| 914 | WebPUint32ToMem(dst + i * BPS, vals); |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | static void LD4_SSE2(uint8_t* dst) { // Down-Left |
| 919 | const __m128i one = _mm_set1_epi8(1); |
| 920 | const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); |
| 921 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| 922 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| 923 | const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3); |
| 924 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); |
| 925 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); |
| 926 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 927 | const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); |
| 928 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| 929 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| 930 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| 931 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| 932 | } |
| 933 | |
| 934 | static void VR4_SSE2(uint8_t* dst) { // Vertical-Right |
| 935 | const __m128i one = _mm_set1_epi8(1); |
| 936 | const int I = dst[-1 + 0 * BPS]; |
| 937 | const int J = dst[-1 + 1 * BPS]; |
| 938 | const int K = dst[-1 + 2 * BPS]; |
| 939 | const int X = dst[-1 - BPS]; |
| 940 | const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); |
| 941 | const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); |
| 942 | const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); |
| 943 | const __m128i _XABCD = _mm_slli_si128(XABCD, 1); |
| 944 | const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0); |
| 945 | const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); |
| 946 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); |
| 947 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 948 | const __m128i efgh = _mm_avg_epu8(avg2, XABCD); |
| 949 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); |
| 950 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); |
| 951 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); |
| 952 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); |
| 953 | |
| 954 | // these two are hard to implement in SSE2, so we keep the C-version: |
| 955 | DST(0, 2) = AVG3(J, I, X); |
| 956 | DST(0, 3) = AVG3(K, J, I); |
| 957 | } |
| 958 | |
| 959 | static void VL4_SSE2(uint8_t* dst) { // Vertical-Left |
| 960 | const __m128i one = _mm_set1_epi8(1); |
| 961 | const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); |
| 962 | const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); |
| 963 | const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); |
| 964 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); |
| 965 | const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); |
| 966 | const __m128i avg3 = _mm_avg_epu8(avg1, avg2); |
| 967 | const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); |
| 968 | const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); |
| 969 | const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); |
| 970 | const __m128i abbc = _mm_or_si128(ab, bc); |
| 971 | const __m128i lsb2 = _mm_and_si128(abbc, lsb1); |
| 972 | const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); |
| 973 | const uint32_t = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); |
| 974 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); |
| 975 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); |
| 976 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); |
| 977 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); |
| 978 | |
| 979 | // these two are hard to get and irregular |
| 980 | DST(3, 2) = (extra_out >> 0) & 0xff; |
| 981 | DST(3, 3) = (extra_out >> 8) & 0xff; |
| 982 | } |
| 983 | |
| 984 | static void RD4_SSE2(uint8_t* dst) { // Down-right |
| 985 | const __m128i one = _mm_set1_epi8(1); |
| 986 | const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); |
| 987 | const __m128i ____XABCD = _mm_slli_si128(XABCD, 4); |
| 988 | const uint32_t I = dst[-1 + 0 * BPS]; |
| 989 | const uint32_t J = dst[-1 + 1 * BPS]; |
| 990 | const uint32_t K = dst[-1 + 2 * BPS]; |
| 991 | const uint32_t L = dst[-1 + 3 * BPS]; |
| 992 | const __m128i LKJI_____ = |
| 993 | _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24)); |
| 994 | const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD); |
| 995 | const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); |
| 996 | const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); |
| 997 | const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); |
| 998 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); |
| 999 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 1000 | const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); |
| 1001 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| 1002 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| 1003 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| 1004 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| 1005 | } |
| 1006 | |
| 1007 | #undef DST |
| 1008 | #undef AVG3 |
| 1009 | |
| 1010 | //------------------------------------------------------------------------------ |
| 1011 | // Luma 16x16 |
| 1012 | |
| 1013 | static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) { |
| 1014 | const uint8_t* top = dst - BPS; |
| 1015 | const __m128i zero = _mm_setzero_si128(); |
| 1016 | int y; |
| 1017 | if (size == 4) { |
| 1018 | const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); |
| 1019 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| 1020 | for (y = 0; y < 4; ++y, dst += BPS) { |
| 1021 | const int val = dst[-1] - top[-1]; |
| 1022 | const __m128i base = _mm_set1_epi16(val); |
| 1023 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| 1024 | WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); |
| 1025 | } |
| 1026 | } else if (size == 8) { |
| 1027 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 1028 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| 1029 | for (y = 0; y < 8; ++y, dst += BPS) { |
| 1030 | const int val = dst[-1] - top[-1]; |
| 1031 | const __m128i base = _mm_set1_epi16(val); |
| 1032 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| 1033 | _mm_storel_epi64((__m128i*)dst, out); |
| 1034 | } |
| 1035 | } else { |
| 1036 | const __m128i top_values = _mm_loadu_si128((const __m128i*)top); |
| 1037 | const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); |
| 1038 | const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); |
| 1039 | for (y = 0; y < 16; ++y, dst += BPS) { |
| 1040 | const int val = dst[-1] - top[-1]; |
| 1041 | const __m128i base = _mm_set1_epi16(val); |
| 1042 | const __m128i out_0 = _mm_add_epi16(base, top_base_0); |
| 1043 | const __m128i out_1 = _mm_add_epi16(base, top_base_1); |
| 1044 | const __m128i out = _mm_packus_epi16(out_0, out_1); |
| 1045 | _mm_storeu_si128((__m128i*)dst, out); |
| 1046 | } |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); } |
| 1051 | static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); } |
| 1052 | static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); } |
| 1053 | |
| 1054 | static void VE16_SSE2(uint8_t* dst) { |
| 1055 | const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); |
| 1056 | int j; |
| 1057 | for (j = 0; j < 16; ++j) { |
| 1058 | _mm_storeu_si128((__m128i*)(dst + j * BPS), top); |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | static void HE16_SSE2(uint8_t* dst) { // horizontal |
| 1063 | int j; |
| 1064 | for (j = 16; j > 0; --j) { |
| 1065 | const __m128i values = _mm_set1_epi8(dst[-1]); |
| 1066 | _mm_storeu_si128((__m128i*)dst, values); |
| 1067 | dst += BPS; |
| 1068 | } |
| 1069 | } |
| 1070 | |
| 1071 | static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { |
| 1072 | int j; |
| 1073 | const __m128i values = _mm_set1_epi8(v); |
| 1074 | for (j = 0; j < 16; ++j) { |
| 1075 | _mm_storeu_si128((__m128i*)(dst + j * BPS), values); |
| 1076 | } |
| 1077 | } |
| 1078 | |
| 1079 | static void DC16_SSE2(uint8_t* dst) { // DC |
| 1080 | const __m128i zero = _mm_setzero_si128(); |
| 1081 | const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); |
| 1082 | const __m128i sad8x2 = _mm_sad_epu8(top, zero); |
| 1083 | // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| 1084 | const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); |
| 1085 | int left = 0; |
| 1086 | int j; |
| 1087 | for (j = 0; j < 16; ++j) { |
| 1088 | left += dst[-1 + j * BPS]; |
| 1089 | } |
| 1090 | { |
| 1091 | const int DC = _mm_cvtsi128_si32(sum) + left + 16; |
| 1092 | Put16_SSE2(DC >> 5, dst); |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | static void DC16NoTop_SSE2(uint8_t* dst) { // DC with top samples unavailable |
| 1097 | int DC = 8; |
| 1098 | int j; |
| 1099 | for (j = 0; j < 16; ++j) { |
| 1100 | DC += dst[-1 + j * BPS]; |
| 1101 | } |
| 1102 | Put16_SSE2(DC >> 4, dst); |
| 1103 | } |
| 1104 | |
| 1105 | static void DC16NoLeft_SSE2(uint8_t* dst) { // DC with left samples unavailable |
| 1106 | const __m128i zero = _mm_setzero_si128(); |
| 1107 | const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); |
| 1108 | const __m128i sad8x2 = _mm_sad_epu8(top, zero); |
| 1109 | // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| 1110 | const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); |
| 1111 | const int DC = _mm_cvtsi128_si32(sum) + 8; |
| 1112 | Put16_SSE2(DC >> 4, dst); |
| 1113 | } |
| 1114 | |
| 1115 | static void DC16NoTopLeft_SSE2(uint8_t* dst) { // DC with no top & left samples |
| 1116 | Put16_SSE2(0x80, dst); |
| 1117 | } |
| 1118 | |
| 1119 | //------------------------------------------------------------------------------ |
| 1120 | // Chroma |
| 1121 | |
| 1122 | static void VE8uv_SSE2(uint8_t* dst) { // vertical |
| 1123 | int j; |
| 1124 | const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); |
| 1125 | for (j = 0; j < 8; ++j) { |
| 1126 | _mm_storel_epi64((__m128i*)(dst + j * BPS), top); |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | // helper for chroma-DC predictions |
| 1131 | static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { |
| 1132 | int j; |
| 1133 | const __m128i values = _mm_set1_epi8(v); |
| 1134 | for (j = 0; j < 8; ++j) { |
| 1135 | _mm_storel_epi64((__m128i*)(dst + j * BPS), values); |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | static void DC8uv_SSE2(uint8_t* dst) { // DC |
| 1140 | const __m128i zero = _mm_setzero_si128(); |
| 1141 | const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); |
| 1142 | const __m128i sum = _mm_sad_epu8(top, zero); |
| 1143 | int left = 0; |
| 1144 | int j; |
| 1145 | for (j = 0; j < 8; ++j) { |
| 1146 | left += dst[-1 + j * BPS]; |
| 1147 | } |
| 1148 | { |
| 1149 | const int DC = _mm_cvtsi128_si32(sum) + left + 8; |
| 1150 | Put8x8uv_SSE2(DC >> 4, dst); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | static void DC8uvNoLeft_SSE2(uint8_t* dst) { // DC with no left samples |
| 1155 | const __m128i zero = _mm_setzero_si128(); |
| 1156 | const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); |
| 1157 | const __m128i sum = _mm_sad_epu8(top, zero); |
| 1158 | const int DC = _mm_cvtsi128_si32(sum) + 4; |
| 1159 | Put8x8uv_SSE2(DC >> 3, dst); |
| 1160 | } |
| 1161 | |
| 1162 | static void DC8uvNoTop_SSE2(uint8_t* dst) { // DC with no top samples |
| 1163 | int dc0 = 4; |
| 1164 | int i; |
| 1165 | for (i = 0; i < 8; ++i) { |
| 1166 | dc0 += dst[-1 + i * BPS]; |
| 1167 | } |
| 1168 | Put8x8uv_SSE2(dc0 >> 3, dst); |
| 1169 | } |
| 1170 | |
| 1171 | static void DC8uvNoTopLeft_SSE2(uint8_t* dst) { // DC with nothing |
| 1172 | Put8x8uv_SSE2(0x80, dst); |
| 1173 | } |
| 1174 | |
| 1175 | //------------------------------------------------------------------------------ |
| 1176 | // Entry point |
| 1177 | |
| 1178 | extern void VP8DspInitSSE2(void); |
| 1179 | |
| 1180 | WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) { |
| 1181 | VP8Transform = Transform_SSE2; |
| 1182 | #if (USE_TRANSFORM_AC3 == 1) |
| 1183 | VP8TransformAC3 = TransformAC3_SSE2; |
| 1184 | #endif |
| 1185 | |
| 1186 | VP8VFilter16 = VFilter16_SSE2; |
| 1187 | VP8HFilter16 = HFilter16_SSE2; |
| 1188 | VP8VFilter8 = VFilter8_SSE2; |
| 1189 | VP8HFilter8 = HFilter8_SSE2; |
| 1190 | VP8VFilter16i = VFilter16i_SSE2; |
| 1191 | VP8HFilter16i = HFilter16i_SSE2; |
| 1192 | VP8VFilter8i = VFilter8i_SSE2; |
| 1193 | VP8HFilter8i = HFilter8i_SSE2; |
| 1194 | |
| 1195 | VP8SimpleVFilter16 = SimpleVFilter16_SSE2; |
| 1196 | VP8SimpleHFilter16 = SimpleHFilter16_SSE2; |
| 1197 | VP8SimpleVFilter16i = SimpleVFilter16i_SSE2; |
| 1198 | VP8SimpleHFilter16i = SimpleHFilter16i_SSE2; |
| 1199 | |
| 1200 | VP8PredLuma4[1] = TM4_SSE2; |
| 1201 | VP8PredLuma4[2] = VE4_SSE2; |
| 1202 | VP8PredLuma4[4] = RD4_SSE2; |
| 1203 | VP8PredLuma4[5] = VR4_SSE2; |
| 1204 | VP8PredLuma4[6] = LD4_SSE2; |
| 1205 | VP8PredLuma4[7] = VL4_SSE2; |
| 1206 | |
| 1207 | VP8PredLuma16[0] = DC16_SSE2; |
| 1208 | VP8PredLuma16[1] = TM16_SSE2; |
| 1209 | VP8PredLuma16[2] = VE16_SSE2; |
| 1210 | VP8PredLuma16[3] = HE16_SSE2; |
| 1211 | VP8PredLuma16[4] = DC16NoTop_SSE2; |
| 1212 | VP8PredLuma16[5] = DC16NoLeft_SSE2; |
| 1213 | VP8PredLuma16[6] = DC16NoTopLeft_SSE2; |
| 1214 | |
| 1215 | VP8PredChroma8[0] = DC8uv_SSE2; |
| 1216 | VP8PredChroma8[1] = TM8uv_SSE2; |
| 1217 | VP8PredChroma8[2] = VE8uv_SSE2; |
| 1218 | VP8PredChroma8[4] = DC8uvNoTop_SSE2; |
| 1219 | VP8PredChroma8[5] = DC8uvNoLeft_SSE2; |
| 1220 | VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2; |
| 1221 | } |
| 1222 | |
| 1223 | #else // !WEBP_USE_SSE2 |
| 1224 | |
| 1225 | WEBP_DSP_INIT_STUB(VP8DspInitSSE2) |
| 1226 | |
| 1227 | #endif // WEBP_USE_SSE2 |
| 1228 | |