1 | // Copyright 2012 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // ARM NEON version of speed-critical encoding functions. |
11 | // |
12 | // adapted from libvpx (http://www.webmproject.org/code/) |
13 | |
14 | #include "src/dsp/dsp.h" |
15 | |
16 | #if defined(WEBP_USE_NEON) |
17 | |
18 | #include <assert.h> |
19 | |
20 | #include "src/dsp/neon.h" |
21 | #include "src/enc/vp8i_enc.h" |
22 | |
23 | //------------------------------------------------------------------------------ |
24 | // Transforms (Paragraph 14.4) |
25 | |
26 | // Inverse transform. |
27 | // This code is pretty much the same as TransformOne in the dec_neon.c, except |
28 | // for subtraction to *ref. See the comments there for algorithmic explanations. |
29 | |
30 | static const int16_t kC1 = 20091; |
31 | static const int16_t kC2 = 17734; // half of kC2, actually. See comment above. |
32 | |
33 | // This code works but is *slower* than the inlined-asm version below |
34 | // (with gcc-4.6). So we disable it for now. Later, it'll be conditional to |
35 | // WEBP_USE_INTRINSICS define. |
36 | // With gcc-4.8, it's a little faster speed than inlined-assembly. |
37 | #if defined(WEBP_USE_INTRINSICS) |
38 | |
39 | // Treats 'v' as an uint8x8_t and zero extends to an int16x8_t. |
40 | static WEBP_INLINE int16x8_t ConvertU8ToS16_NEON(uint32x2_t v) { |
41 | return vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(v))); |
42 | } |
43 | |
44 | // Performs unsigned 8b saturation on 'dst01' and 'dst23' storing the result |
45 | // to the corresponding rows of 'dst'. |
46 | static WEBP_INLINE void SaturateAndStore4x4_NEON(uint8_t* const dst, |
47 | const int16x8_t dst01, |
48 | const int16x8_t dst23) { |
49 | // Unsigned saturate to 8b. |
50 | const uint8x8_t dst01_u8 = vqmovun_s16(dst01); |
51 | const uint8x8_t dst23_u8 = vqmovun_s16(dst23); |
52 | |
53 | // Store the results. |
54 | vst1_lane_u32((uint32_t*)(dst + 0 * BPS), vreinterpret_u32_u8(dst01_u8), 0); |
55 | vst1_lane_u32((uint32_t*)(dst + 1 * BPS), vreinterpret_u32_u8(dst01_u8), 1); |
56 | vst1_lane_u32((uint32_t*)(dst + 2 * BPS), vreinterpret_u32_u8(dst23_u8), 0); |
57 | vst1_lane_u32((uint32_t*)(dst + 3 * BPS), vreinterpret_u32_u8(dst23_u8), 1); |
58 | } |
59 | |
60 | static WEBP_INLINE void Add4x4_NEON(const int16x8_t row01, |
61 | const int16x8_t row23, |
62 | const uint8_t* const ref, |
63 | uint8_t* const dst) { |
64 | uint32x2_t dst01 = vdup_n_u32(0); |
65 | uint32x2_t dst23 = vdup_n_u32(0); |
66 | |
67 | // Load the source pixels. |
68 | dst01 = vld1_lane_u32((uint32_t*)(ref + 0 * BPS), dst01, 0); |
69 | dst23 = vld1_lane_u32((uint32_t*)(ref + 2 * BPS), dst23, 0); |
70 | dst01 = vld1_lane_u32((uint32_t*)(ref + 1 * BPS), dst01, 1); |
71 | dst23 = vld1_lane_u32((uint32_t*)(ref + 3 * BPS), dst23, 1); |
72 | |
73 | { |
74 | // Convert to 16b. |
75 | const int16x8_t dst01_s16 = ConvertU8ToS16_NEON(dst01); |
76 | const int16x8_t dst23_s16 = ConvertU8ToS16_NEON(dst23); |
77 | |
78 | // Descale with rounding. |
79 | const int16x8_t out01 = vrsraq_n_s16(dst01_s16, row01, 3); |
80 | const int16x8_t out23 = vrsraq_n_s16(dst23_s16, row23, 3); |
81 | // Add the inverse transform. |
82 | SaturateAndStore4x4_NEON(dst, out01, out23); |
83 | } |
84 | } |
85 | |
86 | static WEBP_INLINE void Transpose8x2_NEON(const int16x8_t in0, |
87 | const int16x8_t in1, |
88 | int16x8x2_t* const out) { |
89 | // a0 a1 a2 a3 | b0 b1 b2 b3 => a0 b0 c0 d0 | a1 b1 c1 d1 |
90 | // c0 c1 c2 c3 | d0 d1 d2 d3 a2 b2 c2 d2 | a3 b3 c3 d3 |
91 | const int16x8x2_t tmp0 = vzipq_s16(in0, in1); // a0 c0 a1 c1 a2 c2 ... |
92 | // b0 d0 b1 d1 b2 d2 ... |
93 | *out = vzipq_s16(tmp0.val[0], tmp0.val[1]); |
94 | } |
95 | |
96 | static WEBP_INLINE void TransformPass_NEON(int16x8x2_t* const rows) { |
97 | // {rows} = in0 | in4 |
98 | // in8 | in12 |
99 | // B1 = in4 | in12 |
100 | const int16x8_t B1 = |
101 | vcombine_s16(vget_high_s16(rows->val[0]), vget_high_s16(rows->val[1])); |
102 | // C0 = kC1 * in4 | kC1 * in12 |
103 | // C1 = kC2 * in4 | kC2 * in12 |
104 | const int16x8_t C0 = vsraq_n_s16(B1, vqdmulhq_n_s16(B1, kC1), 1); |
105 | const int16x8_t C1 = vqdmulhq_n_s16(B1, kC2); |
106 | const int16x4_t a = vqadd_s16(vget_low_s16(rows->val[0]), |
107 | vget_low_s16(rows->val[1])); // in0 + in8 |
108 | const int16x4_t b = vqsub_s16(vget_low_s16(rows->val[0]), |
109 | vget_low_s16(rows->val[1])); // in0 - in8 |
110 | // c = kC2 * in4 - kC1 * in12 |
111 | // d = kC1 * in4 + kC2 * in12 |
112 | const int16x4_t c = vqsub_s16(vget_low_s16(C1), vget_high_s16(C0)); |
113 | const int16x4_t d = vqadd_s16(vget_low_s16(C0), vget_high_s16(C1)); |
114 | const int16x8_t D0 = vcombine_s16(a, b); // D0 = a | b |
115 | const int16x8_t D1 = vcombine_s16(d, c); // D1 = d | c |
116 | const int16x8_t E0 = vqaddq_s16(D0, D1); // a+d | b+c |
117 | const int16x8_t E_tmp = vqsubq_s16(D0, D1); // a-d | b-c |
118 | const int16x8_t E1 = vcombine_s16(vget_high_s16(E_tmp), vget_low_s16(E_tmp)); |
119 | Transpose8x2_NEON(E0, E1, rows); |
120 | } |
121 | |
122 | static void ITransformOne_NEON(const uint8_t* ref, |
123 | const int16_t* in, uint8_t* dst) { |
124 | int16x8x2_t rows; |
125 | INIT_VECTOR2(rows, vld1q_s16(in + 0), vld1q_s16(in + 8)); |
126 | TransformPass_NEON(&rows); |
127 | TransformPass_NEON(&rows); |
128 | Add4x4_NEON(rows.val[0], rows.val[1], ref, dst); |
129 | } |
130 | |
131 | #else |
132 | |
133 | static void ITransformOne_NEON(const uint8_t* ref, |
134 | const int16_t* in, uint8_t* dst) { |
135 | const int kBPS = BPS; |
136 | const int16_t kC1C2[] = { kC1, kC2, 0, 0 }; |
137 | |
138 | __asm__ volatile ( |
139 | "vld1.16 {q1, q2}, [%[in]] \n" |
140 | "vld1.16 {d0}, [%[kC1C2]] \n" |
141 | |
142 | // d2: in[0] |
143 | // d3: in[8] |
144 | // d4: in[4] |
145 | // d5: in[12] |
146 | "vswp d3, d4 \n" |
147 | |
148 | // q8 = {in[4], in[12]} * kC1 * 2 >> 16 |
149 | // q9 = {in[4], in[12]} * kC2 >> 16 |
150 | "vqdmulh.s16 q8, q2, d0[0] \n" |
151 | "vqdmulh.s16 q9, q2, d0[1] \n" |
152 | |
153 | // d22 = a = in[0] + in[8] |
154 | // d23 = b = in[0] - in[8] |
155 | "vqadd.s16 d22, d2, d3 \n" |
156 | "vqsub.s16 d23, d2, d3 \n" |
157 | |
158 | // q8 = in[4]/[12] * kC1 >> 16 |
159 | "vshr.s16 q8, q8, #1 \n" |
160 | |
161 | // Add {in[4], in[12]} back after the multiplication. |
162 | "vqadd.s16 q8, q2, q8 \n" |
163 | |
164 | // d20 = c = in[4]*kC2 - in[12]*kC1 |
165 | // d21 = d = in[4]*kC1 + in[12]*kC2 |
166 | "vqsub.s16 d20, d18, d17 \n" |
167 | "vqadd.s16 d21, d19, d16 \n" |
168 | |
169 | // d2 = tmp[0] = a + d |
170 | // d3 = tmp[1] = b + c |
171 | // d4 = tmp[2] = b - c |
172 | // d5 = tmp[3] = a - d |
173 | "vqadd.s16 d2, d22, d21 \n" |
174 | "vqadd.s16 d3, d23, d20 \n" |
175 | "vqsub.s16 d4, d23, d20 \n" |
176 | "vqsub.s16 d5, d22, d21 \n" |
177 | |
178 | "vzip.16 q1, q2 \n" |
179 | "vzip.16 q1, q2 \n" |
180 | |
181 | "vswp d3, d4 \n" |
182 | |
183 | // q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16 |
184 | // q9 = {tmp[4], tmp[12]} * kC2 >> 16 |
185 | "vqdmulh.s16 q8, q2, d0[0] \n" |
186 | "vqdmulh.s16 q9, q2, d0[1] \n" |
187 | |
188 | // d22 = a = tmp[0] + tmp[8] |
189 | // d23 = b = tmp[0] - tmp[8] |
190 | "vqadd.s16 d22, d2, d3 \n" |
191 | "vqsub.s16 d23, d2, d3 \n" |
192 | |
193 | "vshr.s16 q8, q8, #1 \n" |
194 | "vqadd.s16 q8, q2, q8 \n" |
195 | |
196 | // d20 = c = in[4]*kC2 - in[12]*kC1 |
197 | // d21 = d = in[4]*kC1 + in[12]*kC2 |
198 | "vqsub.s16 d20, d18, d17 \n" |
199 | "vqadd.s16 d21, d19, d16 \n" |
200 | |
201 | // d2 = tmp[0] = a + d |
202 | // d3 = tmp[1] = b + c |
203 | // d4 = tmp[2] = b - c |
204 | // d5 = tmp[3] = a - d |
205 | "vqadd.s16 d2, d22, d21 \n" |
206 | "vqadd.s16 d3, d23, d20 \n" |
207 | "vqsub.s16 d4, d23, d20 \n" |
208 | "vqsub.s16 d5, d22, d21 \n" |
209 | |
210 | "vld1.32 d6[0], [%[ref]], %[kBPS] \n" |
211 | "vld1.32 d6[1], [%[ref]], %[kBPS] \n" |
212 | "vld1.32 d7[0], [%[ref]], %[kBPS] \n" |
213 | "vld1.32 d7[1], [%[ref]], %[kBPS] \n" |
214 | |
215 | "sub %[ref], %[ref], %[kBPS], lsl #2 \n" |
216 | |
217 | // (val) + 4 >> 3 |
218 | "vrshr.s16 d2, d2, #3 \n" |
219 | "vrshr.s16 d3, d3, #3 \n" |
220 | "vrshr.s16 d4, d4, #3 \n" |
221 | "vrshr.s16 d5, d5, #3 \n" |
222 | |
223 | "vzip.16 q1, q2 \n" |
224 | "vzip.16 q1, q2 \n" |
225 | |
226 | // Must accumulate before saturating |
227 | "vmovl.u8 q8, d6 \n" |
228 | "vmovl.u8 q9, d7 \n" |
229 | |
230 | "vqadd.s16 q1, q1, q8 \n" |
231 | "vqadd.s16 q2, q2, q9 \n" |
232 | |
233 | "vqmovun.s16 d0, q1 \n" |
234 | "vqmovun.s16 d1, q2 \n" |
235 | |
236 | "vst1.32 d0[0], [%[dst]], %[kBPS] \n" |
237 | "vst1.32 d0[1], [%[dst]], %[kBPS] \n" |
238 | "vst1.32 d1[0], [%[dst]], %[kBPS] \n" |
239 | "vst1.32 d1[1], [%[dst]] \n" |
240 | |
241 | : [in] "+r" (in), [dst] "+r" (dst) // modified registers |
242 | : [kBPS] "r" (kBPS), [kC1C2] "r" (kC1C2), [ref] "r" (ref) // constants |
243 | : "memory" , "q0" , "q1" , "q2" , "q8" , "q9" , "q10" , "q11" // clobbered |
244 | ); |
245 | } |
246 | |
247 | #endif // WEBP_USE_INTRINSICS |
248 | |
249 | static void ITransform_NEON(const uint8_t* ref, |
250 | const int16_t* in, uint8_t* dst, int do_two) { |
251 | ITransformOne_NEON(ref, in, dst); |
252 | if (do_two) { |
253 | ITransformOne_NEON(ref + 4, in + 16, dst + 4); |
254 | } |
255 | } |
256 | |
257 | // Load all 4x4 pixels into a single uint8x16_t variable. |
258 | static uint8x16_t Load4x4_NEON(const uint8_t* src) { |
259 | uint32x4_t out = vdupq_n_u32(0); |
260 | out = vld1q_lane_u32((const uint32_t*)(src + 0 * BPS), out, 0); |
261 | out = vld1q_lane_u32((const uint32_t*)(src + 1 * BPS), out, 1); |
262 | out = vld1q_lane_u32((const uint32_t*)(src + 2 * BPS), out, 2); |
263 | out = vld1q_lane_u32((const uint32_t*)(src + 3 * BPS), out, 3); |
264 | return vreinterpretq_u8_u32(out); |
265 | } |
266 | |
267 | // Forward transform. |
268 | |
269 | #if defined(WEBP_USE_INTRINSICS) |
270 | |
271 | static WEBP_INLINE void Transpose4x4_S16_NEON(const int16x4_t A, |
272 | const int16x4_t B, |
273 | const int16x4_t C, |
274 | const int16x4_t D, |
275 | int16x8_t* const out01, |
276 | int16x8_t* const out32) { |
277 | const int16x4x2_t AB = vtrn_s16(A, B); |
278 | const int16x4x2_t CD = vtrn_s16(C, D); |
279 | const int32x2x2_t tmp02 = vtrn_s32(vreinterpret_s32_s16(AB.val[0]), |
280 | vreinterpret_s32_s16(CD.val[0])); |
281 | const int32x2x2_t tmp13 = vtrn_s32(vreinterpret_s32_s16(AB.val[1]), |
282 | vreinterpret_s32_s16(CD.val[1])); |
283 | *out01 = vreinterpretq_s16_s64( |
284 | vcombine_s64(vreinterpret_s64_s32(tmp02.val[0]), |
285 | vreinterpret_s64_s32(tmp13.val[0]))); |
286 | *out32 = vreinterpretq_s16_s64( |
287 | vcombine_s64(vreinterpret_s64_s32(tmp13.val[1]), |
288 | vreinterpret_s64_s32(tmp02.val[1]))); |
289 | } |
290 | |
291 | static WEBP_INLINE int16x8_t DiffU8ToS16_NEON(const uint8x8_t a, |
292 | const uint8x8_t b) { |
293 | return vreinterpretq_s16_u16(vsubl_u8(a, b)); |
294 | } |
295 | |
296 | static void FTransform_NEON(const uint8_t* src, const uint8_t* ref, |
297 | int16_t* out) { |
298 | int16x8_t d0d1, d3d2; // working 4x4 int16 variables |
299 | { |
300 | const uint8x16_t S0 = Load4x4_NEON(src); |
301 | const uint8x16_t R0 = Load4x4_NEON(ref); |
302 | const int16x8_t D0D1 = DiffU8ToS16_NEON(vget_low_u8(S0), vget_low_u8(R0)); |
303 | const int16x8_t D2D3 = DiffU8ToS16_NEON(vget_high_u8(S0), vget_high_u8(R0)); |
304 | const int16x4_t D0 = vget_low_s16(D0D1); |
305 | const int16x4_t D1 = vget_high_s16(D0D1); |
306 | const int16x4_t D2 = vget_low_s16(D2D3); |
307 | const int16x4_t D3 = vget_high_s16(D2D3); |
308 | Transpose4x4_S16_NEON(D0, D1, D2, D3, &d0d1, &d3d2); |
309 | } |
310 | { // 1rst pass |
311 | const int32x4_t kCst937 = vdupq_n_s32(937); |
312 | const int32x4_t kCst1812 = vdupq_n_s32(1812); |
313 | const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1) |
314 | const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2) |
315 | const int16x8_t a0a1_2 = vshlq_n_s16(a0a1, 3); |
316 | const int16x4_t tmp0 = vadd_s16(vget_low_s16(a0a1_2), |
317 | vget_high_s16(a0a1_2)); |
318 | const int16x4_t tmp2 = vsub_s16(vget_low_s16(a0a1_2), |
319 | vget_high_s16(a0a1_2)); |
320 | const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217); |
321 | const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217); |
322 | const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352); |
323 | const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352); |
324 | const int16x4_t tmp1 = vshrn_n_s32(vaddq_s32(a2_p_a3, kCst1812), 9); |
325 | const int16x4_t tmp3 = vshrn_n_s32(vaddq_s32(a3_m_a2, kCst937), 9); |
326 | Transpose4x4_S16_NEON(tmp0, tmp1, tmp2, tmp3, &d0d1, &d3d2); |
327 | } |
328 | { // 2nd pass |
329 | // the (1<<16) addition is for the replacement: a3!=0 <-> 1-(a3==0) |
330 | const int32x4_t kCst12000 = vdupq_n_s32(12000 + (1 << 16)); |
331 | const int32x4_t kCst51000 = vdupq_n_s32(51000); |
332 | const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1) |
333 | const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2) |
334 | const int16x4_t a0_k7 = vadd_s16(vget_low_s16(a0a1), vdup_n_s16(7)); |
335 | const int16x4_t out0 = vshr_n_s16(vadd_s16(a0_k7, vget_high_s16(a0a1)), 4); |
336 | const int16x4_t out2 = vshr_n_s16(vsub_s16(a0_k7, vget_high_s16(a0a1)), 4); |
337 | const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217); |
338 | const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217); |
339 | const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352); |
340 | const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352); |
341 | const int16x4_t tmp1 = vaddhn_s32(a2_p_a3, kCst12000); |
342 | const int16x4_t out3 = vaddhn_s32(a3_m_a2, kCst51000); |
343 | const int16x4_t a3_eq_0 = |
344 | vreinterpret_s16_u16(vceq_s16(vget_low_s16(a3a2), vdup_n_s16(0))); |
345 | const int16x4_t out1 = vadd_s16(tmp1, a3_eq_0); |
346 | vst1_s16(out + 0, out0); |
347 | vst1_s16(out + 4, out1); |
348 | vst1_s16(out + 8, out2); |
349 | vst1_s16(out + 12, out3); |
350 | } |
351 | } |
352 | |
353 | #else |
354 | |
355 | // adapted from vp8/encoder/arm/neon/shortfdct_neon.asm |
356 | static const int16_t kCoeff16[] = { |
357 | 5352, 5352, 5352, 5352, 2217, 2217, 2217, 2217 |
358 | }; |
359 | static const int32_t kCoeff32[] = { |
360 | 1812, 1812, 1812, 1812, |
361 | 937, 937, 937, 937, |
362 | 12000, 12000, 12000, 12000, |
363 | 51000, 51000, 51000, 51000 |
364 | }; |
365 | |
366 | static void FTransform_NEON(const uint8_t* src, const uint8_t* ref, |
367 | int16_t* out) { |
368 | const int kBPS = BPS; |
369 | const uint8_t* src_ptr = src; |
370 | const uint8_t* ref_ptr = ref; |
371 | const int16_t* coeff16 = kCoeff16; |
372 | const int32_t* coeff32 = kCoeff32; |
373 | |
374 | __asm__ volatile ( |
375 | // load src into q4, q5 in high half |
376 | "vld1.8 {d8}, [%[src_ptr]], %[kBPS] \n" |
377 | "vld1.8 {d10}, [%[src_ptr]], %[kBPS] \n" |
378 | "vld1.8 {d9}, [%[src_ptr]], %[kBPS] \n" |
379 | "vld1.8 {d11}, [%[src_ptr]] \n" |
380 | |
381 | // load ref into q6, q7 in high half |
382 | "vld1.8 {d12}, [%[ref_ptr]], %[kBPS] \n" |
383 | "vld1.8 {d14}, [%[ref_ptr]], %[kBPS] \n" |
384 | "vld1.8 {d13}, [%[ref_ptr]], %[kBPS] \n" |
385 | "vld1.8 {d15}, [%[ref_ptr]] \n" |
386 | |
387 | // Pack the high values in to q4 and q6 |
388 | "vtrn.32 q4, q5 \n" |
389 | "vtrn.32 q6, q7 \n" |
390 | |
391 | // d[0-3] = src - ref |
392 | "vsubl.u8 q0, d8, d12 \n" |
393 | "vsubl.u8 q1, d9, d13 \n" |
394 | |
395 | // load coeff16 into q8(d16=5352, d17=2217) |
396 | "vld1.16 {q8}, [%[coeff16]] \n" |
397 | |
398 | // load coeff32 high half into q9 = 1812, q10 = 937 |
399 | "vld1.32 {q9, q10}, [%[coeff32]]! \n" |
400 | |
401 | // load coeff32 low half into q11=12000, q12=51000 |
402 | "vld1.32 {q11,q12}, [%[coeff32]] \n" |
403 | |
404 | // part 1 |
405 | // Transpose. Register dN is the same as dN in C |
406 | "vtrn.32 d0, d2 \n" |
407 | "vtrn.32 d1, d3 \n" |
408 | "vtrn.16 d0, d1 \n" |
409 | "vtrn.16 d2, d3 \n" |
410 | |
411 | "vadd.s16 d4, d0, d3 \n" // a0 = d0 + d3 |
412 | "vadd.s16 d5, d1, d2 \n" // a1 = d1 + d2 |
413 | "vsub.s16 d6, d1, d2 \n" // a2 = d1 - d2 |
414 | "vsub.s16 d7, d0, d3 \n" // a3 = d0 - d3 |
415 | |
416 | "vadd.s16 d0, d4, d5 \n" // a0 + a1 |
417 | "vshl.s16 d0, d0, #3 \n" // temp[0+i*4] = (a0+a1) << 3 |
418 | "vsub.s16 d2, d4, d5 \n" // a0 - a1 |
419 | "vshl.s16 d2, d2, #3 \n" // (temp[2+i*4] = (a0-a1) << 3 |
420 | |
421 | "vmlal.s16 q9, d7, d16 \n" // a3*5352 + 1812 |
422 | "vmlal.s16 q10, d7, d17 \n" // a3*2217 + 937 |
423 | "vmlal.s16 q9, d6, d17 \n" // a2*2217 + a3*5352 + 1812 |
424 | "vmlsl.s16 q10, d6, d16 \n" // a3*2217 + 937 - a2*5352 |
425 | |
426 | // temp[1+i*4] = (d2*2217 + d3*5352 + 1812) >> 9 |
427 | // temp[3+i*4] = (d3*2217 + 937 - d2*5352) >> 9 |
428 | "vshrn.s32 d1, q9, #9 \n" |
429 | "vshrn.s32 d3, q10, #9 \n" |
430 | |
431 | // part 2 |
432 | // transpose d0=ip[0], d1=ip[4], d2=ip[8], d3=ip[12] |
433 | "vtrn.32 d0, d2 \n" |
434 | "vtrn.32 d1, d3 \n" |
435 | "vtrn.16 d0, d1 \n" |
436 | "vtrn.16 d2, d3 \n" |
437 | |
438 | "vmov.s16 d26, #7 \n" |
439 | |
440 | "vadd.s16 d4, d0, d3 \n" // a1 = ip[0] + ip[12] |
441 | "vadd.s16 d5, d1, d2 \n" // b1 = ip[4] + ip[8] |
442 | "vsub.s16 d6, d1, d2 \n" // c1 = ip[4] - ip[8] |
443 | "vadd.s16 d4, d4, d26 \n" // a1 + 7 |
444 | "vsub.s16 d7, d0, d3 \n" // d1 = ip[0] - ip[12] |
445 | |
446 | "vadd.s16 d0, d4, d5 \n" // op[0] = a1 + b1 + 7 |
447 | "vsub.s16 d2, d4, d5 \n" // op[8] = a1 - b1 + 7 |
448 | |
449 | "vmlal.s16 q11, d7, d16 \n" // d1*5352 + 12000 |
450 | "vmlal.s16 q12, d7, d17 \n" // d1*2217 + 51000 |
451 | |
452 | "vceq.s16 d4, d7, #0 \n" |
453 | |
454 | "vshr.s16 d0, d0, #4 \n" |
455 | "vshr.s16 d2, d2, #4 \n" |
456 | |
457 | "vmlal.s16 q11, d6, d17 \n" // c1*2217 + d1*5352 + 12000 |
458 | "vmlsl.s16 q12, d6, d16 \n" // d1*2217 - c1*5352 + 51000 |
459 | |
460 | "vmvn d4, d4 \n" // !(d1 == 0) |
461 | // op[4] = (c1*2217 + d1*5352 + 12000)>>16 |
462 | "vshrn.s32 d1, q11, #16 \n" |
463 | // op[4] += (d1!=0) |
464 | "vsub.s16 d1, d1, d4 \n" |
465 | // op[12]= (d1*2217 - c1*5352 + 51000)>>16 |
466 | "vshrn.s32 d3, q12, #16 \n" |
467 | |
468 | // set result to out array |
469 | "vst1.16 {q0, q1}, [%[out]] \n" |
470 | : [src_ptr] "+r" (src_ptr), [ref_ptr] "+r" (ref_ptr), |
471 | [coeff32] "+r" (coeff32) // modified registers |
472 | : [kBPS] "r" (kBPS), [coeff16] "r" (coeff16), |
473 | [out] "r" (out) // constants |
474 | : "memory" , "q0" , "q1" , "q2" , "q3" , "q4" , "q5" , "q6" , "q7" , "q8" , "q9" , |
475 | "q10" , "q11" , "q12" , "q13" // clobbered |
476 | ); |
477 | } |
478 | |
479 | #endif |
480 | |
481 | #define LOAD_LANE_16b(VALUE, LANE) do { \ |
482 | (VALUE) = vld1_lane_s16(src, (VALUE), (LANE)); \ |
483 | src += stride; \ |
484 | } while (0) |
485 | |
486 | static void FTransformWHT_NEON(const int16_t* src, int16_t* out) { |
487 | const int stride = 16; |
488 | const int16x4_t zero = vdup_n_s16(0); |
489 | int32x4x4_t tmp0; |
490 | int16x4x4_t in; |
491 | INIT_VECTOR4(in, zero, zero, zero, zero); |
492 | LOAD_LANE_16b(in.val[0], 0); |
493 | LOAD_LANE_16b(in.val[1], 0); |
494 | LOAD_LANE_16b(in.val[2], 0); |
495 | LOAD_LANE_16b(in.val[3], 0); |
496 | LOAD_LANE_16b(in.val[0], 1); |
497 | LOAD_LANE_16b(in.val[1], 1); |
498 | LOAD_LANE_16b(in.val[2], 1); |
499 | LOAD_LANE_16b(in.val[3], 1); |
500 | LOAD_LANE_16b(in.val[0], 2); |
501 | LOAD_LANE_16b(in.val[1], 2); |
502 | LOAD_LANE_16b(in.val[2], 2); |
503 | LOAD_LANE_16b(in.val[3], 2); |
504 | LOAD_LANE_16b(in.val[0], 3); |
505 | LOAD_LANE_16b(in.val[1], 3); |
506 | LOAD_LANE_16b(in.val[2], 3); |
507 | LOAD_LANE_16b(in.val[3], 3); |
508 | |
509 | { |
510 | // a0 = in[0 * 16] + in[2 * 16] |
511 | // a1 = in[1 * 16] + in[3 * 16] |
512 | // a2 = in[1 * 16] - in[3 * 16] |
513 | // a3 = in[0 * 16] - in[2 * 16] |
514 | const int32x4_t a0 = vaddl_s16(in.val[0], in.val[2]); |
515 | const int32x4_t a1 = vaddl_s16(in.val[1], in.val[3]); |
516 | const int32x4_t a2 = vsubl_s16(in.val[1], in.val[3]); |
517 | const int32x4_t a3 = vsubl_s16(in.val[0], in.val[2]); |
518 | tmp0.val[0] = vaddq_s32(a0, a1); |
519 | tmp0.val[1] = vaddq_s32(a3, a2); |
520 | tmp0.val[2] = vsubq_s32(a3, a2); |
521 | tmp0.val[3] = vsubq_s32(a0, a1); |
522 | } |
523 | { |
524 | const int32x4x4_t tmp1 = Transpose4x4_NEON(tmp0); |
525 | // a0 = tmp[0 + i] + tmp[ 8 + i] |
526 | // a1 = tmp[4 + i] + tmp[12 + i] |
527 | // a2 = tmp[4 + i] - tmp[12 + i] |
528 | // a3 = tmp[0 + i] - tmp[ 8 + i] |
529 | const int32x4_t a0 = vaddq_s32(tmp1.val[0], tmp1.val[2]); |
530 | const int32x4_t a1 = vaddq_s32(tmp1.val[1], tmp1.val[3]); |
531 | const int32x4_t a2 = vsubq_s32(tmp1.val[1], tmp1.val[3]); |
532 | const int32x4_t a3 = vsubq_s32(tmp1.val[0], tmp1.val[2]); |
533 | const int32x4_t b0 = vhaddq_s32(a0, a1); // (a0 + a1) >> 1 |
534 | const int32x4_t b1 = vhaddq_s32(a3, a2); // (a3 + a2) >> 1 |
535 | const int32x4_t b2 = vhsubq_s32(a3, a2); // (a3 - a2) >> 1 |
536 | const int32x4_t b3 = vhsubq_s32(a0, a1); // (a0 - a1) >> 1 |
537 | const int16x4_t out0 = vmovn_s32(b0); |
538 | const int16x4_t out1 = vmovn_s32(b1); |
539 | const int16x4_t out2 = vmovn_s32(b2); |
540 | const int16x4_t out3 = vmovn_s32(b3); |
541 | |
542 | vst1_s16(out + 0, out0); |
543 | vst1_s16(out + 4, out1); |
544 | vst1_s16(out + 8, out2); |
545 | vst1_s16(out + 12, out3); |
546 | } |
547 | } |
548 | #undef LOAD_LANE_16b |
549 | |
550 | //------------------------------------------------------------------------------ |
551 | // Texture distortion |
552 | // |
553 | // We try to match the spectral content (weighted) between source and |
554 | // reconstructed samples. |
555 | |
556 | // a 0123, b 0123 |
557 | // a 4567, b 4567 |
558 | // a 89ab, b 89ab |
559 | // a cdef, b cdef |
560 | // |
561 | // transpose |
562 | // |
563 | // a 048c, b 048c |
564 | // a 159d, b 159d |
565 | // a 26ae, b 26ae |
566 | // a 37bf, b 37bf |
567 | // |
568 | static WEBP_INLINE int16x8x4_t DistoTranspose4x4S16_NEON(int16x8x4_t q4_in) { |
569 | const int16x8x2_t q2_tmp0 = vtrnq_s16(q4_in.val[0], q4_in.val[1]); |
570 | const int16x8x2_t q2_tmp1 = vtrnq_s16(q4_in.val[2], q4_in.val[3]); |
571 | const int32x4x2_t q2_tmp2 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[0]), |
572 | vreinterpretq_s32_s16(q2_tmp1.val[0])); |
573 | const int32x4x2_t q2_tmp3 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[1]), |
574 | vreinterpretq_s32_s16(q2_tmp1.val[1])); |
575 | q4_in.val[0] = vreinterpretq_s16_s32(q2_tmp2.val[0]); |
576 | q4_in.val[2] = vreinterpretq_s16_s32(q2_tmp2.val[1]); |
577 | q4_in.val[1] = vreinterpretq_s16_s32(q2_tmp3.val[0]); |
578 | q4_in.val[3] = vreinterpretq_s16_s32(q2_tmp3.val[1]); |
579 | return q4_in; |
580 | } |
581 | |
582 | static WEBP_INLINE int16x8x4_t DistoHorizontalPass_NEON( |
583 | const int16x8x4_t q4_in) { |
584 | // {a0, a1} = {in[0] + in[2], in[1] + in[3]} |
585 | // {a3, a2} = {in[0] - in[2], in[1] - in[3]} |
586 | const int16x8_t q_a0 = vaddq_s16(q4_in.val[0], q4_in.val[2]); |
587 | const int16x8_t q_a1 = vaddq_s16(q4_in.val[1], q4_in.val[3]); |
588 | const int16x8_t q_a3 = vsubq_s16(q4_in.val[0], q4_in.val[2]); |
589 | const int16x8_t q_a2 = vsubq_s16(q4_in.val[1], q4_in.val[3]); |
590 | int16x8x4_t q4_out; |
591 | // tmp[0] = a0 + a1 |
592 | // tmp[1] = a3 + a2 |
593 | // tmp[2] = a3 - a2 |
594 | // tmp[3] = a0 - a1 |
595 | INIT_VECTOR4(q4_out, |
596 | vabsq_s16(vaddq_s16(q_a0, q_a1)), |
597 | vabsq_s16(vaddq_s16(q_a3, q_a2)), |
598 | vabdq_s16(q_a3, q_a2), vabdq_s16(q_a0, q_a1)); |
599 | return q4_out; |
600 | } |
601 | |
602 | static WEBP_INLINE int16x8x4_t DistoVerticalPass_NEON(const uint8x8x4_t q4_in) { |
603 | const int16x8_t q_a0 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[0], |
604 | q4_in.val[2])); |
605 | const int16x8_t q_a1 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[1], |
606 | q4_in.val[3])); |
607 | const int16x8_t q_a2 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[1], |
608 | q4_in.val[3])); |
609 | const int16x8_t q_a3 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[0], |
610 | q4_in.val[2])); |
611 | int16x8x4_t q4_out; |
612 | |
613 | INIT_VECTOR4(q4_out, |
614 | vaddq_s16(q_a0, q_a1), vaddq_s16(q_a3, q_a2), |
615 | vsubq_s16(q_a3, q_a2), vsubq_s16(q_a0, q_a1)); |
616 | return q4_out; |
617 | } |
618 | |
619 | static WEBP_INLINE int16x4x4_t DistoLoadW_NEON(const uint16_t* w) { |
620 | const uint16x8_t q_w07 = vld1q_u16(&w[0]); |
621 | const uint16x8_t q_w8f = vld1q_u16(&w[8]); |
622 | int16x4x4_t d4_w; |
623 | INIT_VECTOR4(d4_w, |
624 | vget_low_s16(vreinterpretq_s16_u16(q_w07)), |
625 | vget_high_s16(vreinterpretq_s16_u16(q_w07)), |
626 | vget_low_s16(vreinterpretq_s16_u16(q_w8f)), |
627 | vget_high_s16(vreinterpretq_s16_u16(q_w8f))); |
628 | return d4_w; |
629 | } |
630 | |
631 | static WEBP_INLINE int32x2_t DistoSum_NEON(const int16x8x4_t q4_in, |
632 | const int16x4x4_t d4_w) { |
633 | int32x2_t d_sum; |
634 | // sum += w[ 0] * abs(b0); |
635 | // sum += w[ 4] * abs(b1); |
636 | // sum += w[ 8] * abs(b2); |
637 | // sum += w[12] * abs(b3); |
638 | int32x4_t q_sum0 = vmull_s16(d4_w.val[0], vget_low_s16(q4_in.val[0])); |
639 | int32x4_t q_sum1 = vmull_s16(d4_w.val[1], vget_low_s16(q4_in.val[1])); |
640 | int32x4_t q_sum2 = vmull_s16(d4_w.val[2], vget_low_s16(q4_in.val[2])); |
641 | int32x4_t q_sum3 = vmull_s16(d4_w.val[3], vget_low_s16(q4_in.val[3])); |
642 | q_sum0 = vmlsl_s16(q_sum0, d4_w.val[0], vget_high_s16(q4_in.val[0])); |
643 | q_sum1 = vmlsl_s16(q_sum1, d4_w.val[1], vget_high_s16(q4_in.val[1])); |
644 | q_sum2 = vmlsl_s16(q_sum2, d4_w.val[2], vget_high_s16(q4_in.val[2])); |
645 | q_sum3 = vmlsl_s16(q_sum3, d4_w.val[3], vget_high_s16(q4_in.val[3])); |
646 | |
647 | q_sum0 = vaddq_s32(q_sum0, q_sum1); |
648 | q_sum2 = vaddq_s32(q_sum2, q_sum3); |
649 | q_sum2 = vaddq_s32(q_sum0, q_sum2); |
650 | d_sum = vpadd_s32(vget_low_s32(q_sum2), vget_high_s32(q_sum2)); |
651 | d_sum = vpadd_s32(d_sum, d_sum); |
652 | return d_sum; |
653 | } |
654 | |
655 | #define LOAD_LANE_32b(src, VALUE, LANE) \ |
656 | (VALUE) = vld1_lane_u32((const uint32_t*)(src), (VALUE), (LANE)) |
657 | |
658 | // Hadamard transform |
659 | // Returns the weighted sum of the absolute value of transformed coefficients. |
660 | // w[] contains a row-major 4 by 4 symmetric matrix. |
661 | static int Disto4x4_NEON(const uint8_t* const a, const uint8_t* const b, |
662 | const uint16_t* const w) { |
663 | uint32x2_t d_in_ab_0123 = vdup_n_u32(0); |
664 | uint32x2_t d_in_ab_4567 = vdup_n_u32(0); |
665 | uint32x2_t d_in_ab_89ab = vdup_n_u32(0); |
666 | uint32x2_t d_in_ab_cdef = vdup_n_u32(0); |
667 | uint8x8x4_t d4_in; |
668 | |
669 | // load data a, b |
670 | LOAD_LANE_32b(a + 0 * BPS, d_in_ab_0123, 0); |
671 | LOAD_LANE_32b(a + 1 * BPS, d_in_ab_4567, 0); |
672 | LOAD_LANE_32b(a + 2 * BPS, d_in_ab_89ab, 0); |
673 | LOAD_LANE_32b(a + 3 * BPS, d_in_ab_cdef, 0); |
674 | LOAD_LANE_32b(b + 0 * BPS, d_in_ab_0123, 1); |
675 | LOAD_LANE_32b(b + 1 * BPS, d_in_ab_4567, 1); |
676 | LOAD_LANE_32b(b + 2 * BPS, d_in_ab_89ab, 1); |
677 | LOAD_LANE_32b(b + 3 * BPS, d_in_ab_cdef, 1); |
678 | INIT_VECTOR4(d4_in, |
679 | vreinterpret_u8_u32(d_in_ab_0123), |
680 | vreinterpret_u8_u32(d_in_ab_4567), |
681 | vreinterpret_u8_u32(d_in_ab_89ab), |
682 | vreinterpret_u8_u32(d_in_ab_cdef)); |
683 | |
684 | { |
685 | // Vertical pass first to avoid a transpose (vertical and horizontal passes |
686 | // are commutative because w/kWeightY is symmetric) and subsequent |
687 | // transpose. |
688 | const int16x8x4_t q4_v = DistoVerticalPass_NEON(d4_in); |
689 | const int16x4x4_t d4_w = DistoLoadW_NEON(w); |
690 | // horizontal pass |
691 | const int16x8x4_t q4_t = DistoTranspose4x4S16_NEON(q4_v); |
692 | const int16x8x4_t q4_h = DistoHorizontalPass_NEON(q4_t); |
693 | int32x2_t d_sum = DistoSum_NEON(q4_h, d4_w); |
694 | |
695 | // abs(sum2 - sum1) >> 5 |
696 | d_sum = vabs_s32(d_sum); |
697 | d_sum = vshr_n_s32(d_sum, 5); |
698 | return vget_lane_s32(d_sum, 0); |
699 | } |
700 | } |
701 | #undef LOAD_LANE_32b |
702 | |
703 | static int Disto16x16_NEON(const uint8_t* const a, const uint8_t* const b, |
704 | const uint16_t* const w) { |
705 | int D = 0; |
706 | int x, y; |
707 | for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
708 | for (x = 0; x < 16; x += 4) { |
709 | D += Disto4x4_NEON(a + x + y, b + x + y, w); |
710 | } |
711 | } |
712 | return D; |
713 | } |
714 | |
715 | //------------------------------------------------------------------------------ |
716 | |
717 | static void CollectHistogram_NEON(const uint8_t* ref, const uint8_t* pred, |
718 | int start_block, int end_block, |
719 | VP8Histogram* const histo) { |
720 | const uint16x8_t max_coeff_thresh = vdupq_n_u16(MAX_COEFF_THRESH); |
721 | int j; |
722 | int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
723 | for (j = start_block; j < end_block; ++j) { |
724 | int16_t out[16]; |
725 | FTransform_NEON(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
726 | { |
727 | int k; |
728 | const int16x8_t a0 = vld1q_s16(out + 0); |
729 | const int16x8_t b0 = vld1q_s16(out + 8); |
730 | const uint16x8_t a1 = vreinterpretq_u16_s16(vabsq_s16(a0)); |
731 | const uint16x8_t b1 = vreinterpretq_u16_s16(vabsq_s16(b0)); |
732 | const uint16x8_t a2 = vshrq_n_u16(a1, 3); |
733 | const uint16x8_t b2 = vshrq_n_u16(b1, 3); |
734 | const uint16x8_t a3 = vminq_u16(a2, max_coeff_thresh); |
735 | const uint16x8_t b3 = vminq_u16(b2, max_coeff_thresh); |
736 | vst1q_s16(out + 0, vreinterpretq_s16_u16(a3)); |
737 | vst1q_s16(out + 8, vreinterpretq_s16_u16(b3)); |
738 | // Convert coefficients to bin. |
739 | for (k = 0; k < 16; ++k) { |
740 | ++distribution[out[k]]; |
741 | } |
742 | } |
743 | } |
744 | VP8SetHistogramData(distribution, histo); |
745 | } |
746 | |
747 | //------------------------------------------------------------------------------ |
748 | |
749 | static WEBP_INLINE void AccumulateSSE16_NEON(const uint8_t* const a, |
750 | const uint8_t* const b, |
751 | uint32x4_t* const sum) { |
752 | const uint8x16_t a0 = vld1q_u8(a); |
753 | const uint8x16_t b0 = vld1q_u8(b); |
754 | const uint8x16_t abs_diff = vabdq_u8(a0, b0); |
755 | const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff), |
756 | vget_low_u8(abs_diff)); |
757 | const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff), |
758 | vget_high_u8(abs_diff)); |
759 | /* pair-wise adds and widen */ |
760 | const uint32x4_t sum1 = vpaddlq_u16(prod1); |
761 | const uint32x4_t sum2 = vpaddlq_u16(prod2); |
762 | *sum = vaddq_u32(*sum, vaddq_u32(sum1, sum2)); |
763 | } |
764 | |
765 | // Horizontal sum of all four uint32_t values in 'sum'. |
766 | static int SumToInt_NEON(uint32x4_t sum) { |
767 | const uint64x2_t sum2 = vpaddlq_u32(sum); |
768 | const uint64_t sum3 = vgetq_lane_u64(sum2, 0) + vgetq_lane_u64(sum2, 1); |
769 | return (int)sum3; |
770 | } |
771 | |
772 | static int SSE16x16_NEON(const uint8_t* a, const uint8_t* b) { |
773 | uint32x4_t sum = vdupq_n_u32(0); |
774 | int y; |
775 | for (y = 0; y < 16; ++y) { |
776 | AccumulateSSE16_NEON(a + y * BPS, b + y * BPS, &sum); |
777 | } |
778 | return SumToInt_NEON(sum); |
779 | } |
780 | |
781 | static int SSE16x8_NEON(const uint8_t* a, const uint8_t* b) { |
782 | uint32x4_t sum = vdupq_n_u32(0); |
783 | int y; |
784 | for (y = 0; y < 8; ++y) { |
785 | AccumulateSSE16_NEON(a + y * BPS, b + y * BPS, &sum); |
786 | } |
787 | return SumToInt_NEON(sum); |
788 | } |
789 | |
790 | static int SSE8x8_NEON(const uint8_t* a, const uint8_t* b) { |
791 | uint32x4_t sum = vdupq_n_u32(0); |
792 | int y; |
793 | for (y = 0; y < 8; ++y) { |
794 | const uint8x8_t a0 = vld1_u8(a + y * BPS); |
795 | const uint8x8_t b0 = vld1_u8(b + y * BPS); |
796 | const uint8x8_t abs_diff = vabd_u8(a0, b0); |
797 | const uint16x8_t prod = vmull_u8(abs_diff, abs_diff); |
798 | sum = vpadalq_u16(sum, prod); |
799 | } |
800 | return SumToInt_NEON(sum); |
801 | } |
802 | |
803 | static int SSE4x4_NEON(const uint8_t* a, const uint8_t* b) { |
804 | const uint8x16_t a0 = Load4x4_NEON(a); |
805 | const uint8x16_t b0 = Load4x4_NEON(b); |
806 | const uint8x16_t abs_diff = vabdq_u8(a0, b0); |
807 | const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff), |
808 | vget_low_u8(abs_diff)); |
809 | const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff), |
810 | vget_high_u8(abs_diff)); |
811 | /* pair-wise adds and widen */ |
812 | const uint32x4_t sum1 = vpaddlq_u16(prod1); |
813 | const uint32x4_t sum2 = vpaddlq_u16(prod2); |
814 | return SumToInt_NEON(vaddq_u32(sum1, sum2)); |
815 | } |
816 | |
817 | //------------------------------------------------------------------------------ |
818 | |
819 | // Compilation with gcc-4.6.x is problematic for now. |
820 | #if !defined(WORK_AROUND_GCC) |
821 | |
822 | static int16x8_t Quantize_NEON(int16_t* const in, |
823 | const VP8Matrix* const mtx, int offset) { |
824 | const uint16x8_t sharp = vld1q_u16(&mtx->sharpen_[offset]); |
825 | const uint16x8_t q = vld1q_u16(&mtx->q_[offset]); |
826 | const uint16x8_t iq = vld1q_u16(&mtx->iq_[offset]); |
827 | const uint32x4_t bias0 = vld1q_u32(&mtx->bias_[offset + 0]); |
828 | const uint32x4_t bias1 = vld1q_u32(&mtx->bias_[offset + 4]); |
829 | |
830 | const int16x8_t a = vld1q_s16(in + offset); // in |
831 | const uint16x8_t b = vreinterpretq_u16_s16(vabsq_s16(a)); // coeff = abs(in) |
832 | const int16x8_t sign = vshrq_n_s16(a, 15); // sign |
833 | const uint16x8_t c = vaddq_u16(b, sharp); // + sharpen |
834 | const uint32x4_t m0 = vmull_u16(vget_low_u16(c), vget_low_u16(iq)); |
835 | const uint32x4_t m1 = vmull_u16(vget_high_u16(c), vget_high_u16(iq)); |
836 | const uint32x4_t m2 = vhaddq_u32(m0, bias0); |
837 | const uint32x4_t m3 = vhaddq_u32(m1, bias1); // (coeff * iQ + bias) >> 1 |
838 | const uint16x8_t c0 = vcombine_u16(vshrn_n_u32(m2, 16), |
839 | vshrn_n_u32(m3, 16)); // QFIX=17 = 16+1 |
840 | const uint16x8_t c1 = vminq_u16(c0, vdupq_n_u16(MAX_LEVEL)); |
841 | const int16x8_t c2 = veorq_s16(vreinterpretq_s16_u16(c1), sign); |
842 | const int16x8_t c3 = vsubq_s16(c2, sign); // restore sign |
843 | const int16x8_t c4 = vmulq_s16(c3, vreinterpretq_s16_u16(q)); |
844 | vst1q_s16(in + offset, c4); |
845 | assert(QFIX == 17); // this function can't work as is if QFIX != 16+1 |
846 | return c3; |
847 | } |
848 | |
849 | static const uint8_t kShuffles[4][8] = { |
850 | { 0, 1, 2, 3, 8, 9, 16, 17 }, |
851 | { 10, 11, 4, 5, 6, 7, 12, 13 }, |
852 | { 18, 19, 24, 25, 26, 27, 20, 21 }, |
853 | { 14, 15, 22, 23, 28, 29, 30, 31 } |
854 | }; |
855 | |
856 | static int QuantizeBlock_NEON(int16_t in[16], int16_t out[16], |
857 | const VP8Matrix* const mtx) { |
858 | const int16x8_t out0 = Quantize_NEON(in, mtx, 0); |
859 | const int16x8_t out1 = Quantize_NEON(in, mtx, 8); |
860 | uint8x8x4_t shuffles; |
861 | // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use |
862 | // non-standard versions there. |
863 | #if defined(__APPLE__) && defined(__aarch64__) && \ |
864 | defined(__apple_build_version__) && (__apple_build_version__< 6020037) |
865 | uint8x16x2_t all_out; |
866 | INIT_VECTOR2(all_out, vreinterpretq_u8_s16(out0), vreinterpretq_u8_s16(out1)); |
867 | INIT_VECTOR4(shuffles, |
868 | vtbl2q_u8(all_out, vld1_u8(kShuffles[0])), |
869 | vtbl2q_u8(all_out, vld1_u8(kShuffles[1])), |
870 | vtbl2q_u8(all_out, vld1_u8(kShuffles[2])), |
871 | vtbl2q_u8(all_out, vld1_u8(kShuffles[3]))); |
872 | #else |
873 | uint8x8x4_t all_out; |
874 | INIT_VECTOR4(all_out, |
875 | vreinterpret_u8_s16(vget_low_s16(out0)), |
876 | vreinterpret_u8_s16(vget_high_s16(out0)), |
877 | vreinterpret_u8_s16(vget_low_s16(out1)), |
878 | vreinterpret_u8_s16(vget_high_s16(out1))); |
879 | INIT_VECTOR4(shuffles, |
880 | vtbl4_u8(all_out, vld1_u8(kShuffles[0])), |
881 | vtbl4_u8(all_out, vld1_u8(kShuffles[1])), |
882 | vtbl4_u8(all_out, vld1_u8(kShuffles[2])), |
883 | vtbl4_u8(all_out, vld1_u8(kShuffles[3]))); |
884 | #endif |
885 | // Zigzag reordering |
886 | vst1_u8((uint8_t*)(out + 0), shuffles.val[0]); |
887 | vst1_u8((uint8_t*)(out + 4), shuffles.val[1]); |
888 | vst1_u8((uint8_t*)(out + 8), shuffles.val[2]); |
889 | vst1_u8((uint8_t*)(out + 12), shuffles.val[3]); |
890 | // test zeros |
891 | if (*(uint64_t*)(out + 0) != 0) return 1; |
892 | if (*(uint64_t*)(out + 4) != 0) return 1; |
893 | if (*(uint64_t*)(out + 8) != 0) return 1; |
894 | if (*(uint64_t*)(out + 12) != 0) return 1; |
895 | return 0; |
896 | } |
897 | |
898 | static int Quantize2Blocks_NEON(int16_t in[32], int16_t out[32], |
899 | const VP8Matrix* const mtx) { |
900 | int nz; |
901 | nz = QuantizeBlock_NEON(in + 0 * 16, out + 0 * 16, mtx) << 0; |
902 | nz |= QuantizeBlock_NEON(in + 1 * 16, out + 1 * 16, mtx) << 1; |
903 | return nz; |
904 | } |
905 | |
906 | #endif // !WORK_AROUND_GCC |
907 | |
908 | //------------------------------------------------------------------------------ |
909 | // Entry point |
910 | |
911 | extern void VP8EncDspInitNEON(void); |
912 | |
913 | WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitNEON(void) { |
914 | VP8ITransform = ITransform_NEON; |
915 | VP8FTransform = FTransform_NEON; |
916 | |
917 | VP8FTransformWHT = FTransformWHT_NEON; |
918 | |
919 | VP8TDisto4x4 = Disto4x4_NEON; |
920 | VP8TDisto16x16 = Disto16x16_NEON; |
921 | VP8CollectHistogram = CollectHistogram_NEON; |
922 | |
923 | VP8SSE16x16 = SSE16x16_NEON; |
924 | VP8SSE16x8 = SSE16x8_NEON; |
925 | VP8SSE8x8 = SSE8x8_NEON; |
926 | VP8SSE4x4 = SSE4x4_NEON; |
927 | |
928 | #if !defined(WORK_AROUND_GCC) |
929 | VP8EncQuantizeBlock = QuantizeBlock_NEON; |
930 | VP8EncQuantize2Blocks = Quantize2Blocks_NEON; |
931 | #endif |
932 | } |
933 | |
934 | #else // !WEBP_USE_NEON |
935 | |
936 | WEBP_DSP_INIT_STUB(VP8EncDspInitNEON) |
937 | |
938 | #endif // WEBP_USE_NEON |
939 | |