| 1 | // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // SSE2 version of speed-critical encoding functions. |
| 11 | // |
| 12 | // Author: Christian Duvivier (cduvivier@google.com) |
| 13 | |
| 14 | #include "src/dsp/dsp.h" |
| 15 | |
| 16 | #if defined(WEBP_USE_SSE2) |
| 17 | #include <assert.h> |
| 18 | #include <stdlib.h> // for abs() |
| 19 | #include <emmintrin.h> |
| 20 | |
| 21 | #include "src/dsp/common_sse2.h" |
| 22 | #include "src/enc/cost_enc.h" |
| 23 | #include "src/enc/vp8i_enc.h" |
| 24 | |
| 25 | //------------------------------------------------------------------------------ |
| 26 | // Transforms (Paragraph 14.4) |
| 27 | |
| 28 | // Does one or two inverse transforms. |
| 29 | static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
| 30 | int do_two) { |
| 31 | // This implementation makes use of 16-bit fixed point versions of two |
| 32 | // multiply constants: |
| 33 | // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
| 34 | // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
| 35 | // |
| 36 | // To be able to use signed 16-bit integers, we use the following trick to |
| 37 | // have constants within range: |
| 38 | // - Associated constants are obtained by subtracting the 16-bit fixed point |
| 39 | // version of one: |
| 40 | // k = K - (1 << 16) => K = k + (1 << 16) |
| 41 | // K1 = 85267 => k1 = 20091 |
| 42 | // K2 = 35468 => k2 = -30068 |
| 43 | // - The multiplication of a variable by a constant become the sum of the |
| 44 | // variable and the multiplication of that variable by the associated |
| 45 | // constant: |
| 46 | // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
| 47 | const __m128i k1 = _mm_set1_epi16(20091); |
| 48 | const __m128i k2 = _mm_set1_epi16(-30068); |
| 49 | __m128i T0, T1, T2, T3; |
| 50 | |
| 51 | // Load and concatenate the transform coefficients (we'll do two inverse |
| 52 | // transforms in parallel). In the case of only one inverse transform, the |
| 53 | // second half of the vectors will just contain random value we'll never |
| 54 | // use nor store. |
| 55 | __m128i in0, in1, in2, in3; |
| 56 | { |
| 57 | in0 = _mm_loadl_epi64((const __m128i*)&in[0]); |
| 58 | in1 = _mm_loadl_epi64((const __m128i*)&in[4]); |
| 59 | in2 = _mm_loadl_epi64((const __m128i*)&in[8]); |
| 60 | in3 = _mm_loadl_epi64((const __m128i*)&in[12]); |
| 61 | // a00 a10 a20 a30 x x x x |
| 62 | // a01 a11 a21 a31 x x x x |
| 63 | // a02 a12 a22 a32 x x x x |
| 64 | // a03 a13 a23 a33 x x x x |
| 65 | if (do_two) { |
| 66 | const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); |
| 67 | const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); |
| 68 | const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); |
| 69 | const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); |
| 70 | in0 = _mm_unpacklo_epi64(in0, inB0); |
| 71 | in1 = _mm_unpacklo_epi64(in1, inB1); |
| 72 | in2 = _mm_unpacklo_epi64(in2, inB2); |
| 73 | in3 = _mm_unpacklo_epi64(in3, inB3); |
| 74 | // a00 a10 a20 a30 b00 b10 b20 b30 |
| 75 | // a01 a11 a21 a31 b01 b11 b21 b31 |
| 76 | // a02 a12 a22 a32 b02 b12 b22 b32 |
| 77 | // a03 a13 a23 a33 b03 b13 b23 b33 |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | // Vertical pass and subsequent transpose. |
| 82 | { |
| 83 | // First pass, c and d calculations are longer because of the "trick" |
| 84 | // multiplications. |
| 85 | const __m128i a = _mm_add_epi16(in0, in2); |
| 86 | const __m128i b = _mm_sub_epi16(in0, in2); |
| 87 | // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
| 88 | const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
| 89 | const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
| 90 | const __m128i c3 = _mm_sub_epi16(in1, in3); |
| 91 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
| 92 | const __m128i c = _mm_add_epi16(c3, c4); |
| 93 | // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
| 94 | const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
| 95 | const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
| 96 | const __m128i d3 = _mm_add_epi16(in1, in3); |
| 97 | const __m128i d4 = _mm_add_epi16(d1, d2); |
| 98 | const __m128i d = _mm_add_epi16(d3, d4); |
| 99 | |
| 100 | // Second pass. |
| 101 | const __m128i tmp0 = _mm_add_epi16(a, d); |
| 102 | const __m128i tmp1 = _mm_add_epi16(b, c); |
| 103 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
| 104 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
| 105 | |
| 106 | // Transpose the two 4x4. |
| 107 | VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); |
| 108 | } |
| 109 | |
| 110 | // Horizontal pass and subsequent transpose. |
| 111 | { |
| 112 | // First pass, c and d calculations are longer because of the "trick" |
| 113 | // multiplications. |
| 114 | const __m128i four = _mm_set1_epi16(4); |
| 115 | const __m128i dc = _mm_add_epi16(T0, four); |
| 116 | const __m128i a = _mm_add_epi16(dc, T2); |
| 117 | const __m128i b = _mm_sub_epi16(dc, T2); |
| 118 | // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
| 119 | const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
| 120 | const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
| 121 | const __m128i c3 = _mm_sub_epi16(T1, T3); |
| 122 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
| 123 | const __m128i c = _mm_add_epi16(c3, c4); |
| 124 | // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
| 125 | const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
| 126 | const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
| 127 | const __m128i d3 = _mm_add_epi16(T1, T3); |
| 128 | const __m128i d4 = _mm_add_epi16(d1, d2); |
| 129 | const __m128i d = _mm_add_epi16(d3, d4); |
| 130 | |
| 131 | // Second pass. |
| 132 | const __m128i tmp0 = _mm_add_epi16(a, d); |
| 133 | const __m128i tmp1 = _mm_add_epi16(b, c); |
| 134 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
| 135 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
| 136 | const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
| 137 | const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
| 138 | const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
| 139 | const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
| 140 | |
| 141 | // Transpose the two 4x4. |
| 142 | VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, |
| 143 | &T2, &T3); |
| 144 | } |
| 145 | |
| 146 | // Add inverse transform to 'ref' and store. |
| 147 | { |
| 148 | const __m128i zero = _mm_setzero_si128(); |
| 149 | // Load the reference(s). |
| 150 | __m128i ref0, ref1, ref2, ref3; |
| 151 | if (do_two) { |
| 152 | // Load eight bytes/pixels per line. |
| 153 | ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
| 154 | ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
| 155 | ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
| 156 | ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
| 157 | } else { |
| 158 | // Load four bytes/pixels per line. |
| 159 | ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS])); |
| 160 | ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS])); |
| 161 | ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS])); |
| 162 | ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS])); |
| 163 | } |
| 164 | // Convert to 16b. |
| 165 | ref0 = _mm_unpacklo_epi8(ref0, zero); |
| 166 | ref1 = _mm_unpacklo_epi8(ref1, zero); |
| 167 | ref2 = _mm_unpacklo_epi8(ref2, zero); |
| 168 | ref3 = _mm_unpacklo_epi8(ref3, zero); |
| 169 | // Add the inverse transform(s). |
| 170 | ref0 = _mm_add_epi16(ref0, T0); |
| 171 | ref1 = _mm_add_epi16(ref1, T1); |
| 172 | ref2 = _mm_add_epi16(ref2, T2); |
| 173 | ref3 = _mm_add_epi16(ref3, T3); |
| 174 | // Unsigned saturate to 8b. |
| 175 | ref0 = _mm_packus_epi16(ref0, ref0); |
| 176 | ref1 = _mm_packus_epi16(ref1, ref1); |
| 177 | ref2 = _mm_packus_epi16(ref2, ref2); |
| 178 | ref3 = _mm_packus_epi16(ref3, ref3); |
| 179 | // Store the results. |
| 180 | if (do_two) { |
| 181 | // Store eight bytes/pixels per line. |
| 182 | _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); |
| 183 | _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); |
| 184 | _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); |
| 185 | _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); |
| 186 | } else { |
| 187 | // Store four bytes/pixels per line. |
| 188 | WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0)); |
| 189 | WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1)); |
| 190 | WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2)); |
| 191 | WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3)); |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | static void FTransformPass1_SSE2(const __m128i* const in01, |
| 197 | const __m128i* const in23, |
| 198 | __m128i* const out01, |
| 199 | __m128i* const out32) { |
| 200 | const __m128i k937 = _mm_set1_epi32(937); |
| 201 | const __m128i k1812 = _mm_set1_epi32(1812); |
| 202 | |
| 203 | const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); |
| 204 | const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); |
| 205 | const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, |
| 206 | 2217, 5352, 2217, 5352); |
| 207 | const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, |
| 208 | -5352, 2217, -5352, 2217); |
| 209 | |
| 210 | // *in01 = 00 01 10 11 02 03 12 13 |
| 211 | // *in23 = 20 21 30 31 22 23 32 33 |
| 212 | const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1)); |
| 213 | const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1)); |
| 214 | // 00 01 10 11 03 02 13 12 |
| 215 | // 20 21 30 31 23 22 33 32 |
| 216 | const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); |
| 217 | const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); |
| 218 | // 00 01 10 11 20 21 30 31 |
| 219 | // 03 02 13 12 23 22 33 32 |
| 220 | const __m128i a01 = _mm_add_epi16(s01, s32); |
| 221 | const __m128i a32 = _mm_sub_epi16(s01, s32); |
| 222 | // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] |
| 223 | // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] |
| 224 | |
| 225 | const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] |
| 226 | const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] |
| 227 | const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); |
| 228 | const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); |
| 229 | const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); |
| 230 | const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); |
| 231 | const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); |
| 232 | const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); |
| 233 | const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); |
| 234 | const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); |
| 235 | const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... |
| 236 | const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 |
| 237 | const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); |
| 238 | *out01 = _mm_unpacklo_epi32(s_lo, s_hi); |
| 239 | *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. |
| 240 | } |
| 241 | |
| 242 | static void FTransformPass2_SSE2(const __m128i* const v01, |
| 243 | const __m128i* const v32, |
| 244 | int16_t* out) { |
| 245 | const __m128i zero = _mm_setzero_si128(); |
| 246 | const __m128i seven = _mm_set1_epi16(7); |
| 247 | const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, |
| 248 | 5352, 2217, 5352, 2217); |
| 249 | const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, |
| 250 | 2217, -5352, 2217, -5352); |
| 251 | const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); |
| 252 | const __m128i k51000 = _mm_set1_epi32(51000); |
| 253 | |
| 254 | // Same operations are done on the (0,3) and (1,2) pairs. |
| 255 | // a3 = v0 - v3 |
| 256 | // a2 = v1 - v2 |
| 257 | const __m128i a32 = _mm_sub_epi16(*v01, *v32); |
| 258 | const __m128i a22 = _mm_unpackhi_epi64(a32, a32); |
| 259 | |
| 260 | const __m128i b23 = _mm_unpacklo_epi16(a22, a32); |
| 261 | const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); |
| 262 | const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); |
| 263 | const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); |
| 264 | const __m128i d3 = _mm_add_epi32(c3, k51000); |
| 265 | const __m128i e1 = _mm_srai_epi32(d1, 16); |
| 266 | const __m128i e3 = _mm_srai_epi32(d3, 16); |
| 267 | // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) |
| 268 | // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) |
| 269 | const __m128i f1 = _mm_packs_epi32(e1, e1); |
| 270 | const __m128i f3 = _mm_packs_epi32(e3, e3); |
| 271 | // g1 = f1 + (a3 != 0); |
| 272 | // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the |
| 273 | // desired (0, 1), we add one earlier through k12000_plus_one. |
| 274 | // -> g1 = f1 + 1 - (a3 == 0) |
| 275 | const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); |
| 276 | |
| 277 | // a0 = v0 + v3 |
| 278 | // a1 = v1 + v2 |
| 279 | const __m128i a01 = _mm_add_epi16(*v01, *v32); |
| 280 | const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); |
| 281 | const __m128i a11 = _mm_unpackhi_epi64(a01, a01); |
| 282 | const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); |
| 283 | const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); |
| 284 | // d0 = (a0 + a1 + 7) >> 4; |
| 285 | // d2 = (a0 - a1 + 7) >> 4; |
| 286 | const __m128i d0 = _mm_srai_epi16(c0, 4); |
| 287 | const __m128i d2 = _mm_srai_epi16(c2, 4); |
| 288 | |
| 289 | const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); |
| 290 | const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); |
| 291 | _mm_storeu_si128((__m128i*)&out[0], d0_g1); |
| 292 | _mm_storeu_si128((__m128i*)&out[8], d2_f3); |
| 293 | } |
| 294 | |
| 295 | static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref, |
| 296 | int16_t* out) { |
| 297 | const __m128i zero = _mm_setzero_si128(); |
| 298 | // Load src. |
| 299 | const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
| 300 | const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
| 301 | const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
| 302 | const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
| 303 | // 00 01 02 03 * |
| 304 | // 10 11 12 13 * |
| 305 | // 20 21 22 23 * |
| 306 | // 30 31 32 33 * |
| 307 | // Shuffle. |
| 308 | const __m128i src_0 = _mm_unpacklo_epi16(src0, src1); |
| 309 | const __m128i src_1 = _mm_unpacklo_epi16(src2, src3); |
| 310 | // 00 01 10 11 02 03 12 13 * * ... |
| 311 | // 20 21 30 31 22 22 32 33 * * ... |
| 312 | |
| 313 | // Load ref. |
| 314 | const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
| 315 | const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
| 316 | const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
| 317 | const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
| 318 | const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1); |
| 319 | const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3); |
| 320 | |
| 321 | // Convert both to 16 bit. |
| 322 | const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero); |
| 323 | const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero); |
| 324 | const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero); |
| 325 | const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero); |
| 326 | |
| 327 | // Compute the difference. |
| 328 | const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b); |
| 329 | const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b); |
| 330 | __m128i v01, v32; |
| 331 | |
| 332 | // First pass |
| 333 | FTransformPass1_SSE2(&row01, &row23, &v01, &v32); |
| 334 | |
| 335 | // Second pass |
| 336 | FTransformPass2_SSE2(&v01, &v32, out); |
| 337 | } |
| 338 | |
| 339 | static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref, |
| 340 | int16_t* out) { |
| 341 | const __m128i zero = _mm_setzero_si128(); |
| 342 | |
| 343 | // Load src and convert to 16b. |
| 344 | const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
| 345 | const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
| 346 | const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
| 347 | const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
| 348 | const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
| 349 | const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
| 350 | const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
| 351 | const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
| 352 | // Load ref and convert to 16b. |
| 353 | const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
| 354 | const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
| 355 | const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
| 356 | const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
| 357 | const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
| 358 | const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
| 359 | const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
| 360 | const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
| 361 | // Compute difference. -> 00 01 02 03 00' 01' 02' 03' |
| 362 | const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
| 363 | const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
| 364 | const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
| 365 | const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
| 366 | |
| 367 | // Unpack and shuffle |
| 368 | // 00 01 02 03 0 0 0 0 |
| 369 | // 10 11 12 13 0 0 0 0 |
| 370 | // 20 21 22 23 0 0 0 0 |
| 371 | // 30 31 32 33 0 0 0 0 |
| 372 | const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1); |
| 373 | const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3); |
| 374 | const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1); |
| 375 | const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3); |
| 376 | __m128i v01l, v32l; |
| 377 | __m128i v01h, v32h; |
| 378 | |
| 379 | // First pass |
| 380 | FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l); |
| 381 | FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h); |
| 382 | |
| 383 | // Second pass |
| 384 | FTransformPass2_SSE2(&v01l, &v32l, out + 0); |
| 385 | FTransformPass2_SSE2(&v01h, &v32h, out + 16); |
| 386 | } |
| 387 | |
| 388 | static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) { |
| 389 | const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1); |
| 390 | const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]); |
| 391 | const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]); |
| 392 | const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]); |
| 393 | const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]); |
| 394 | const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ... |
| 395 | const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ... |
| 396 | const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ... |
| 397 | const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ... |
| 398 | const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ... |
| 399 | const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ... |
| 400 | const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1 |
| 401 | *out = _mm_madd_epi16(D, kMult); |
| 402 | } |
| 403 | |
| 404 | static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) { |
| 405 | // Input is 12b signed. |
| 406 | __m128i row0, row1, row2, row3; |
| 407 | // Rows are 14b signed. |
| 408 | FTransformWHTRow_SSE2(in + 0 * 64, &row0); |
| 409 | FTransformWHTRow_SSE2(in + 1 * 64, &row1); |
| 410 | FTransformWHTRow_SSE2(in + 2 * 64, &row2); |
| 411 | FTransformWHTRow_SSE2(in + 3 * 64, &row3); |
| 412 | |
| 413 | { |
| 414 | // The a* are 15b signed. |
| 415 | const __m128i a0 = _mm_add_epi32(row0, row2); |
| 416 | const __m128i a1 = _mm_add_epi32(row1, row3); |
| 417 | const __m128i a2 = _mm_sub_epi32(row1, row3); |
| 418 | const __m128i a3 = _mm_sub_epi32(row0, row2); |
| 419 | const __m128i a0a3 = _mm_packs_epi32(a0, a3); |
| 420 | const __m128i a1a2 = _mm_packs_epi32(a1, a2); |
| 421 | |
| 422 | // The b* are 16b signed. |
| 423 | const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2); |
| 424 | const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2); |
| 425 | const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2); |
| 426 | const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2); |
| 427 | |
| 428 | _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1)); |
| 429 | _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1)); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | //------------------------------------------------------------------------------ |
| 434 | // Compute susceptibility based on DCT-coeff histograms: |
| 435 | // the higher, the "easier" the macroblock is to compress. |
| 436 | |
| 437 | static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred, |
| 438 | int start_block, int end_block, |
| 439 | VP8Histogram* const histo) { |
| 440 | const __m128i zero = _mm_setzero_si128(); |
| 441 | const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
| 442 | int j; |
| 443 | int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
| 444 | for (j = start_block; j < end_block; ++j) { |
| 445 | int16_t out[16]; |
| 446 | int k; |
| 447 | |
| 448 | FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
| 449 | |
| 450 | // Convert coefficients to bin (within out[]). |
| 451 | { |
| 452 | // Load. |
| 453 | const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
| 454 | const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
| 455 | const __m128i d0 = _mm_sub_epi16(zero, out0); |
| 456 | const __m128i d1 = _mm_sub_epi16(zero, out1); |
| 457 | const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b |
| 458 | const __m128i abs1 = _mm_max_epi16(out1, d1); |
| 459 | // v = abs(out) >> 3 |
| 460 | const __m128i v0 = _mm_srai_epi16(abs0, 3); |
| 461 | const __m128i v1 = _mm_srai_epi16(abs1, 3); |
| 462 | // bin = min(v, MAX_COEFF_THRESH) |
| 463 | const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
| 464 | const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
| 465 | // Store. |
| 466 | _mm_storeu_si128((__m128i*)&out[0], bin0); |
| 467 | _mm_storeu_si128((__m128i*)&out[8], bin1); |
| 468 | } |
| 469 | |
| 470 | // Convert coefficients to bin. |
| 471 | for (k = 0; k < 16; ++k) { |
| 472 | ++distribution[out[k]]; |
| 473 | } |
| 474 | } |
| 475 | VP8SetHistogramData(distribution, histo); |
| 476 | } |
| 477 | |
| 478 | //------------------------------------------------------------------------------ |
| 479 | // Intra predictions |
| 480 | |
| 481 | // helper for chroma-DC predictions |
| 482 | static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { |
| 483 | int j; |
| 484 | const __m128i values = _mm_set1_epi8(v); |
| 485 | for (j = 0; j < 8; ++j) { |
| 486 | _mm_storel_epi64((__m128i*)(dst + j * BPS), values); |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { |
| 491 | int j; |
| 492 | const __m128i values = _mm_set1_epi8(v); |
| 493 | for (j = 0; j < 16; ++j) { |
| 494 | _mm_store_si128((__m128i*)(dst + j * BPS), values); |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) { |
| 499 | if (size == 4) { |
| 500 | int j; |
| 501 | for (j = 0; j < 4; ++j) { |
| 502 | memset(dst + j * BPS, value, 4); |
| 503 | } |
| 504 | } else if (size == 8) { |
| 505 | Put8x8uv_SSE2(value, dst); |
| 506 | } else { |
| 507 | Put16_SSE2(value, dst); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) { |
| 512 | int j; |
| 513 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 514 | for (j = 0; j < 8; ++j) { |
| 515 | _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values); |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) { |
| 520 | const __m128i top_values = _mm_load_si128((const __m128i*)top); |
| 521 | int j; |
| 522 | for (j = 0; j < 16; ++j) { |
| 523 | _mm_store_si128((__m128i*)(dst + j * BPS), top_values); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst, |
| 528 | const uint8_t* top, int size) { |
| 529 | if (top != NULL) { |
| 530 | if (size == 8) { |
| 531 | VE8uv_SSE2(dst, top); |
| 532 | } else { |
| 533 | VE16_SSE2(dst, top); |
| 534 | } |
| 535 | } else { |
| 536 | Fill_SSE2(dst, 127, size); |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) { |
| 541 | int j; |
| 542 | for (j = 0; j < 8; ++j) { |
| 543 | const __m128i values = _mm_set1_epi8(left[j]); |
| 544 | _mm_storel_epi64((__m128i*)dst, values); |
| 545 | dst += BPS; |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) { |
| 550 | int j; |
| 551 | for (j = 0; j < 16; ++j) { |
| 552 | const __m128i values = _mm_set1_epi8(left[j]); |
| 553 | _mm_store_si128((__m128i*)dst, values); |
| 554 | dst += BPS; |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst, |
| 559 | const uint8_t* left, int size) { |
| 560 | if (left != NULL) { |
| 561 | if (size == 8) { |
| 562 | HE8uv_SSE2(dst, left); |
| 563 | } else { |
| 564 | HE16_SSE2(dst, left); |
| 565 | } |
| 566 | } else { |
| 567 | Fill_SSE2(dst, 129, size); |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left, |
| 572 | const uint8_t* top, int size) { |
| 573 | const __m128i zero = _mm_setzero_si128(); |
| 574 | int y; |
| 575 | if (size == 8) { |
| 576 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 577 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| 578 | for (y = 0; y < 8; ++y, dst += BPS) { |
| 579 | const int val = left[y] - left[-1]; |
| 580 | const __m128i base = _mm_set1_epi16(val); |
| 581 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| 582 | _mm_storel_epi64((__m128i*)dst, out); |
| 583 | } |
| 584 | } else { |
| 585 | const __m128i top_values = _mm_load_si128((const __m128i*)top); |
| 586 | const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); |
| 587 | const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); |
| 588 | for (y = 0; y < 16; ++y, dst += BPS) { |
| 589 | const int val = left[y] - left[-1]; |
| 590 | const __m128i base = _mm_set1_epi16(val); |
| 591 | const __m128i out_0 = _mm_add_epi16(base, top_base_0); |
| 592 | const __m128i out_1 = _mm_add_epi16(base, top_base_1); |
| 593 | const __m128i out = _mm_packus_epi16(out_0, out_1); |
| 594 | _mm_store_si128((__m128i*)dst, out); |
| 595 | } |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left, |
| 600 | const uint8_t* top, int size) { |
| 601 | if (left != NULL) { |
| 602 | if (top != NULL) { |
| 603 | TM_SSE2(dst, left, top, size); |
| 604 | } else { |
| 605 | HorizontalPred_SSE2(dst, left, size); |
| 606 | } |
| 607 | } else { |
| 608 | // true motion without left samples (hence: with default 129 value) |
| 609 | // is equivalent to VE prediction where you just copy the top samples. |
| 610 | // Note that if top samples are not available, the default value is |
| 611 | // then 129, and not 127 as in the VerticalPred case. |
| 612 | if (top != NULL) { |
| 613 | VerticalPred_SSE2(dst, top, size); |
| 614 | } else { |
| 615 | Fill_SSE2(dst, 129, size); |
| 616 | } |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left, |
| 621 | const uint8_t* top) { |
| 622 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 623 | const __m128i left_values = _mm_loadl_epi64((const __m128i*)left); |
| 624 | const __m128i combined = _mm_unpacklo_epi64(top_values, left_values); |
| 625 | const int DC = VP8HorizontalAdd8b(&combined) + 8; |
| 626 | Put8x8uv_SSE2(DC >> 4, dst); |
| 627 | } |
| 628 | |
| 629 | static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) { |
| 630 | const __m128i zero = _mm_setzero_si128(); |
| 631 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 632 | const __m128i sum = _mm_sad_epu8(top_values, zero); |
| 633 | const int DC = _mm_cvtsi128_si32(sum) + 4; |
| 634 | Put8x8uv_SSE2(DC >> 3, dst); |
| 635 | } |
| 636 | |
| 637 | static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) { |
| 638 | // 'left' is contiguous so we can reuse the top summation. |
| 639 | DC8uvNoLeft_SSE2(dst, left); |
| 640 | } |
| 641 | |
| 642 | static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) { |
| 643 | Put8x8uv_SSE2(0x80, dst); |
| 644 | } |
| 645 | |
| 646 | static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left, |
| 647 | const uint8_t* top) { |
| 648 | if (top != NULL) { |
| 649 | if (left != NULL) { // top and left present |
| 650 | DC8uv_SSE2(dst, left, top); |
| 651 | } else { // top, but no left |
| 652 | DC8uvNoLeft_SSE2(dst, top); |
| 653 | } |
| 654 | } else if (left != NULL) { // left but no top |
| 655 | DC8uvNoTop_SSE2(dst, left); |
| 656 | } else { // no top, no left, nothing. |
| 657 | DC8uvNoTopLeft_SSE2(dst); |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left, |
| 662 | const uint8_t* top) { |
| 663 | const __m128i top_row = _mm_load_si128((const __m128i*)top); |
| 664 | const __m128i left_row = _mm_load_si128((const __m128i*)left); |
| 665 | const int DC = |
| 666 | VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16; |
| 667 | Put16_SSE2(DC >> 5, dst); |
| 668 | } |
| 669 | |
| 670 | static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) { |
| 671 | const __m128i top_row = _mm_load_si128((const __m128i*)top); |
| 672 | const int DC = VP8HorizontalAdd8b(&top_row) + 8; |
| 673 | Put16_SSE2(DC >> 4, dst); |
| 674 | } |
| 675 | |
| 676 | static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) { |
| 677 | // 'left' is contiguous so we can reuse the top summation. |
| 678 | DC16NoLeft_SSE2(dst, left); |
| 679 | } |
| 680 | |
| 681 | static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) { |
| 682 | Put16_SSE2(0x80, dst); |
| 683 | } |
| 684 | |
| 685 | static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left, |
| 686 | const uint8_t* top) { |
| 687 | if (top != NULL) { |
| 688 | if (left != NULL) { // top and left present |
| 689 | DC16_SSE2(dst, left, top); |
| 690 | } else { // top, but no left |
| 691 | DC16NoLeft_SSE2(dst, top); |
| 692 | } |
| 693 | } else if (left != NULL) { // left but no top |
| 694 | DC16NoTop_SSE2(dst, left); |
| 695 | } else { // no top, no left, nothing. |
| 696 | DC16NoTopLeft_SSE2(dst); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | //------------------------------------------------------------------------------ |
| 701 | // 4x4 predictions |
| 702 | |
| 703 | #define DST(x, y) dst[(x) + (y) * BPS] |
| 704 | #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) |
| 705 | #define AVG2(a, b) (((a) + (b) + 1) >> 1) |
| 706 | |
| 707 | // We use the following 8b-arithmetic tricks: |
| 708 | // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 |
| 709 | // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] |
| 710 | // and: |
| 711 | // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb |
| 712 | // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 |
| 713 | // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 |
| 714 | |
| 715 | static WEBP_INLINE void VE4_SSE2(uint8_t* dst, |
| 716 | const uint8_t* top) { // vertical |
| 717 | const __m128i one = _mm_set1_epi8(1); |
| 718 | const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1)); |
| 719 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| 720 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| 721 | const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); |
| 722 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); |
| 723 | const __m128i b = _mm_subs_epu8(a, lsb); |
| 724 | const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); |
| 725 | const uint32_t vals = _mm_cvtsi128_si32(avg); |
| 726 | int i; |
| 727 | for (i = 0; i < 4; ++i) { |
| 728 | WebPUint32ToMem(dst + i * BPS, vals); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | static WEBP_INLINE void HE4_SSE2(uint8_t* dst, |
| 733 | const uint8_t* top) { // horizontal |
| 734 | const int X = top[-1]; |
| 735 | const int I = top[-2]; |
| 736 | const int J = top[-3]; |
| 737 | const int K = top[-4]; |
| 738 | const int L = top[-5]; |
| 739 | WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); |
| 740 | WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); |
| 741 | WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); |
| 742 | WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); |
| 743 | } |
| 744 | |
| 745 | static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) { |
| 746 | uint32_t dc = 4; |
| 747 | int i; |
| 748 | for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; |
| 749 | Fill_SSE2(dst, dc >> 3, 4); |
| 750 | } |
| 751 | |
| 752 | static WEBP_INLINE void LD4_SSE2(uint8_t* dst, |
| 753 | const uint8_t* top) { // Down-Left |
| 754 | const __m128i one = _mm_set1_epi8(1); |
| 755 | const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
| 756 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| 757 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| 758 | const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3); |
| 759 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); |
| 760 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); |
| 761 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 762 | const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); |
| 763 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| 764 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| 765 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| 766 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| 767 | } |
| 768 | |
| 769 | static WEBP_INLINE void VR4_SSE2(uint8_t* dst, |
| 770 | const uint8_t* top) { // Vertical-Right |
| 771 | const __m128i one = _mm_set1_epi8(1); |
| 772 | const int I = top[-2]; |
| 773 | const int J = top[-3]; |
| 774 | const int K = top[-4]; |
| 775 | const int X = top[-1]; |
| 776 | const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1)); |
| 777 | const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); |
| 778 | const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); |
| 779 | const __m128i _XABCD = _mm_slli_si128(XABCD, 1); |
| 780 | const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0); |
| 781 | const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); |
| 782 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); |
| 783 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 784 | const __m128i efgh = _mm_avg_epu8(avg2, XABCD); |
| 785 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); |
| 786 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); |
| 787 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); |
| 788 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); |
| 789 | |
| 790 | // these two are hard to implement in SSE2, so we keep the C-version: |
| 791 | DST(0, 2) = AVG3(J, I, X); |
| 792 | DST(0, 3) = AVG3(K, J, I); |
| 793 | } |
| 794 | |
| 795 | static WEBP_INLINE void VL4_SSE2(uint8_t* dst, |
| 796 | const uint8_t* top) { // Vertical-Left |
| 797 | const __m128i one = _mm_set1_epi8(1); |
| 798 | const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
| 799 | const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); |
| 800 | const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); |
| 801 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); |
| 802 | const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); |
| 803 | const __m128i avg3 = _mm_avg_epu8(avg1, avg2); |
| 804 | const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); |
| 805 | const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); |
| 806 | const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); |
| 807 | const __m128i abbc = _mm_or_si128(ab, bc); |
| 808 | const __m128i lsb2 = _mm_and_si128(abbc, lsb1); |
| 809 | const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); |
| 810 | const uint32_t = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); |
| 811 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); |
| 812 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); |
| 813 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); |
| 814 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); |
| 815 | |
| 816 | // these two are hard to get and irregular |
| 817 | DST(3, 2) = (extra_out >> 0) & 0xff; |
| 818 | DST(3, 3) = (extra_out >> 8) & 0xff; |
| 819 | } |
| 820 | |
| 821 | static WEBP_INLINE void RD4_SSE2(uint8_t* dst, |
| 822 | const uint8_t* top) { // Down-right |
| 823 | const __m128i one = _mm_set1_epi8(1); |
| 824 | const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5)); |
| 825 | const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4); |
| 826 | const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); |
| 827 | const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); |
| 828 | const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); |
| 829 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); |
| 830 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 831 | const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); |
| 832 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| 833 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| 834 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| 835 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| 836 | } |
| 837 | |
| 838 | static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) { |
| 839 | const int I = top[-2]; |
| 840 | const int J = top[-3]; |
| 841 | const int K = top[-4]; |
| 842 | const int L = top[-5]; |
| 843 | DST(0, 0) = AVG2(I, J); |
| 844 | DST(2, 0) = DST(0, 1) = AVG2(J, K); |
| 845 | DST(2, 1) = DST(0, 2) = AVG2(K, L); |
| 846 | DST(1, 0) = AVG3(I, J, K); |
| 847 | DST(3, 0) = DST(1, 1) = AVG3(J, K, L); |
| 848 | DST(3, 1) = DST(1, 2) = AVG3(K, L, L); |
| 849 | DST(3, 2) = DST(2, 2) = |
| 850 | DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; |
| 851 | } |
| 852 | |
| 853 | static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) { |
| 854 | const int X = top[-1]; |
| 855 | const int I = top[-2]; |
| 856 | const int J = top[-3]; |
| 857 | const int K = top[-4]; |
| 858 | const int L = top[-5]; |
| 859 | const int A = top[0]; |
| 860 | const int B = top[1]; |
| 861 | const int C = top[2]; |
| 862 | |
| 863 | DST(0, 0) = DST(2, 1) = AVG2(I, X); |
| 864 | DST(0, 1) = DST(2, 2) = AVG2(J, I); |
| 865 | DST(0, 2) = DST(2, 3) = AVG2(K, J); |
| 866 | DST(0, 3) = AVG2(L, K); |
| 867 | |
| 868 | DST(3, 0) = AVG3(A, B, C); |
| 869 | DST(2, 0) = AVG3(X, A, B); |
| 870 | DST(1, 0) = DST(3, 1) = AVG3(I, X, A); |
| 871 | DST(1, 1) = DST(3, 2) = AVG3(J, I, X); |
| 872 | DST(1, 2) = DST(3, 3) = AVG3(K, J, I); |
| 873 | DST(1, 3) = AVG3(L, K, J); |
| 874 | } |
| 875 | |
| 876 | static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) { |
| 877 | const __m128i zero = _mm_setzero_si128(); |
| 878 | const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); |
| 879 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| 880 | int y; |
| 881 | for (y = 0; y < 4; ++y, dst += BPS) { |
| 882 | const int val = top[-2 - y] - top[-1]; |
| 883 | const __m128i base = _mm_set1_epi16(val); |
| 884 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| 885 | WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | #undef DST |
| 890 | #undef AVG3 |
| 891 | #undef AVG2 |
| 892 | |
| 893 | //------------------------------------------------------------------------------ |
| 894 | // luma 4x4 prediction |
| 895 | |
| 896 | // Left samples are top[-5 .. -2], top_left is top[-1], top are |
| 897 | // located at top[0..3], and top right is top[4..7] |
| 898 | static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) { |
| 899 | DC4_SSE2(I4DC4 + dst, top); |
| 900 | TM4_SSE2(I4TM4 + dst, top); |
| 901 | VE4_SSE2(I4VE4 + dst, top); |
| 902 | HE4_SSE2(I4HE4 + dst, top); |
| 903 | RD4_SSE2(I4RD4 + dst, top); |
| 904 | VR4_SSE2(I4VR4 + dst, top); |
| 905 | LD4_SSE2(I4LD4 + dst, top); |
| 906 | VL4_SSE2(I4VL4 + dst, top); |
| 907 | HD4_SSE2(I4HD4 + dst, top); |
| 908 | HU4_SSE2(I4HU4 + dst, top); |
| 909 | } |
| 910 | |
| 911 | //------------------------------------------------------------------------------ |
| 912 | // Chroma 8x8 prediction (paragraph 12.2) |
| 913 | |
| 914 | static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left, |
| 915 | const uint8_t* top) { |
| 916 | // U block |
| 917 | DC8uvMode_SSE2(C8DC8 + dst, left, top); |
| 918 | VerticalPred_SSE2(C8VE8 + dst, top, 8); |
| 919 | HorizontalPred_SSE2(C8HE8 + dst, left, 8); |
| 920 | TrueMotion_SSE2(C8TM8 + dst, left, top, 8); |
| 921 | // V block |
| 922 | dst += 8; |
| 923 | if (top != NULL) top += 8; |
| 924 | if (left != NULL) left += 16; |
| 925 | DC8uvMode_SSE2(C8DC8 + dst, left, top); |
| 926 | VerticalPred_SSE2(C8VE8 + dst, top, 8); |
| 927 | HorizontalPred_SSE2(C8HE8 + dst, left, 8); |
| 928 | TrueMotion_SSE2(C8TM8 + dst, left, top, 8); |
| 929 | } |
| 930 | |
| 931 | //------------------------------------------------------------------------------ |
| 932 | // luma 16x16 prediction (paragraph 12.3) |
| 933 | |
| 934 | static void Intra16Preds_SSE2(uint8_t* dst, |
| 935 | const uint8_t* left, const uint8_t* top) { |
| 936 | DC16Mode_SSE2(I16DC16 + dst, left, top); |
| 937 | VerticalPred_SSE2(I16VE16 + dst, top, 16); |
| 938 | HorizontalPred_SSE2(I16HE16 + dst, left, 16); |
| 939 | TrueMotion_SSE2(I16TM16 + dst, left, top, 16); |
| 940 | } |
| 941 | |
| 942 | //------------------------------------------------------------------------------ |
| 943 | // Metric |
| 944 | |
| 945 | static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a, |
| 946 | const __m128i b, |
| 947 | __m128i* const sum) { |
| 948 | // take abs(a-b) in 8b |
| 949 | const __m128i a_b = _mm_subs_epu8(a, b); |
| 950 | const __m128i b_a = _mm_subs_epu8(b, a); |
| 951 | const __m128i abs_a_b = _mm_or_si128(a_b, b_a); |
| 952 | // zero-extend to 16b |
| 953 | const __m128i zero = _mm_setzero_si128(); |
| 954 | const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); |
| 955 | const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); |
| 956 | // multiply with self |
| 957 | const __m128i sum1 = _mm_madd_epi16(C0, C0); |
| 958 | const __m128i sum2 = _mm_madd_epi16(C1, C1); |
| 959 | *sum = _mm_add_epi32(sum1, sum2); |
| 960 | } |
| 961 | |
| 962 | static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b, |
| 963 | int num_pairs) { |
| 964 | __m128i sum = _mm_setzero_si128(); |
| 965 | int32_t tmp[4]; |
| 966 | int i; |
| 967 | |
| 968 | for (i = 0; i < num_pairs; ++i) { |
| 969 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]); |
| 970 | const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]); |
| 971 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]); |
| 972 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]); |
| 973 | __m128i sum1, sum2; |
| 974 | SubtractAndAccumulate_SSE2(a0, b0, &sum1); |
| 975 | SubtractAndAccumulate_SSE2(a1, b1, &sum2); |
| 976 | sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2)); |
| 977 | a += 2 * BPS; |
| 978 | b += 2 * BPS; |
| 979 | } |
| 980 | _mm_storeu_si128((__m128i*)tmp, sum); |
| 981 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| 982 | } |
| 983 | |
| 984 | static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) { |
| 985 | return SSE_16xN_SSE2(a, b, 8); |
| 986 | } |
| 987 | |
| 988 | static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) { |
| 989 | return SSE_16xN_SSE2(a, b, 4); |
| 990 | } |
| 991 | |
| 992 | #define LOAD_8x16b(ptr) \ |
| 993 | _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero) |
| 994 | |
| 995 | static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) { |
| 996 | const __m128i zero = _mm_setzero_si128(); |
| 997 | int num_pairs = 4; |
| 998 | __m128i sum = zero; |
| 999 | int32_t tmp[4]; |
| 1000 | while (num_pairs-- > 0) { |
| 1001 | const __m128i a0 = LOAD_8x16b(&a[BPS * 0]); |
| 1002 | const __m128i a1 = LOAD_8x16b(&a[BPS * 1]); |
| 1003 | const __m128i b0 = LOAD_8x16b(&b[BPS * 0]); |
| 1004 | const __m128i b1 = LOAD_8x16b(&b[BPS * 1]); |
| 1005 | // subtract |
| 1006 | const __m128i c0 = _mm_subs_epi16(a0, b0); |
| 1007 | const __m128i c1 = _mm_subs_epi16(a1, b1); |
| 1008 | // multiply/accumulate with self |
| 1009 | const __m128i d0 = _mm_madd_epi16(c0, c0); |
| 1010 | const __m128i d1 = _mm_madd_epi16(c1, c1); |
| 1011 | // collect |
| 1012 | const __m128i sum01 = _mm_add_epi32(d0, d1); |
| 1013 | sum = _mm_add_epi32(sum, sum01); |
| 1014 | a += 2 * BPS; |
| 1015 | b += 2 * BPS; |
| 1016 | } |
| 1017 | _mm_storeu_si128((__m128i*)tmp, sum); |
| 1018 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| 1019 | } |
| 1020 | #undef LOAD_8x16b |
| 1021 | |
| 1022 | static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) { |
| 1023 | const __m128i zero = _mm_setzero_si128(); |
| 1024 | |
| 1025 | // Load values. Note that we read 8 pixels instead of 4, |
| 1026 | // but the a/b buffers are over-allocated to that effect. |
| 1027 | const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]); |
| 1028 | const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]); |
| 1029 | const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]); |
| 1030 | const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]); |
| 1031 | const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]); |
| 1032 | const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]); |
| 1033 | const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]); |
| 1034 | const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]); |
| 1035 | // Combine pair of lines. |
| 1036 | const __m128i a01 = _mm_unpacklo_epi32(a0, a1); |
| 1037 | const __m128i a23 = _mm_unpacklo_epi32(a2, a3); |
| 1038 | const __m128i b01 = _mm_unpacklo_epi32(b0, b1); |
| 1039 | const __m128i b23 = _mm_unpacklo_epi32(b2, b3); |
| 1040 | // Convert to 16b. |
| 1041 | const __m128i a01s = _mm_unpacklo_epi8(a01, zero); |
| 1042 | const __m128i a23s = _mm_unpacklo_epi8(a23, zero); |
| 1043 | const __m128i b01s = _mm_unpacklo_epi8(b01, zero); |
| 1044 | const __m128i b23s = _mm_unpacklo_epi8(b23, zero); |
| 1045 | // subtract, square and accumulate |
| 1046 | const __m128i d0 = _mm_subs_epi16(a01s, b01s); |
| 1047 | const __m128i d1 = _mm_subs_epi16(a23s, b23s); |
| 1048 | const __m128i e0 = _mm_madd_epi16(d0, d0); |
| 1049 | const __m128i e1 = _mm_madd_epi16(d1, d1); |
| 1050 | const __m128i sum = _mm_add_epi32(e0, e1); |
| 1051 | |
| 1052 | int32_t tmp[4]; |
| 1053 | _mm_storeu_si128((__m128i*)tmp, sum); |
| 1054 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| 1055 | } |
| 1056 | |
| 1057 | //------------------------------------------------------------------------------ |
| 1058 | |
| 1059 | static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) { |
| 1060 | const __m128i mask = _mm_set1_epi16(0x00ff); |
| 1061 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]); |
| 1062 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]); |
| 1063 | const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]); |
| 1064 | const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]); |
| 1065 | const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte |
| 1066 | const __m128i b1 = _mm_srli_epi16(a1, 8); |
| 1067 | const __m128i b2 = _mm_srli_epi16(a2, 8); |
| 1068 | const __m128i b3 = _mm_srli_epi16(a3, 8); |
| 1069 | const __m128i c0 = _mm_and_si128(a0, mask); // lo byte |
| 1070 | const __m128i c1 = _mm_and_si128(a1, mask); |
| 1071 | const __m128i c2 = _mm_and_si128(a2, mask); |
| 1072 | const __m128i c3 = _mm_and_si128(a3, mask); |
| 1073 | const __m128i d0 = _mm_add_epi32(b0, c0); |
| 1074 | const __m128i d1 = _mm_add_epi32(b1, c1); |
| 1075 | const __m128i d2 = _mm_add_epi32(b2, c2); |
| 1076 | const __m128i d3 = _mm_add_epi32(b3, c3); |
| 1077 | const __m128i e0 = _mm_add_epi32(d0, d1); |
| 1078 | const __m128i e1 = _mm_add_epi32(d2, d3); |
| 1079 | const __m128i f0 = _mm_add_epi32(e0, e1); |
| 1080 | uint16_t tmp[8]; |
| 1081 | _mm_storeu_si128((__m128i*)tmp, f0); |
| 1082 | dc[0] = tmp[0] + tmp[1]; |
| 1083 | dc[1] = tmp[2] + tmp[3]; |
| 1084 | dc[2] = tmp[4] + tmp[5]; |
| 1085 | dc[3] = tmp[6] + tmp[7]; |
| 1086 | } |
| 1087 | |
| 1088 | //------------------------------------------------------------------------------ |
| 1089 | // Texture distortion |
| 1090 | // |
| 1091 | // We try to match the spectral content (weighted) between source and |
| 1092 | // reconstructed samples. |
| 1093 | |
| 1094 | // Hadamard transform |
| 1095 | // Returns the weighted sum of the absolute value of transformed coefficients. |
| 1096 | // w[] contains a row-major 4 by 4 symmetric matrix. |
| 1097 | static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB, |
| 1098 | const uint16_t* const w) { |
| 1099 | int32_t sum[4]; |
| 1100 | __m128i tmp_0, tmp_1, tmp_2, tmp_3; |
| 1101 | const __m128i zero = _mm_setzero_si128(); |
| 1102 | |
| 1103 | // Load and combine inputs. |
| 1104 | { |
| 1105 | const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]); |
| 1106 | const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]); |
| 1107 | const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]); |
| 1108 | const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); |
| 1109 | const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]); |
| 1110 | const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]); |
| 1111 | const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]); |
| 1112 | const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); |
| 1113 | |
| 1114 | // Combine inA and inB (we'll do two transforms in parallel). |
| 1115 | const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); |
| 1116 | const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); |
| 1117 | const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); |
| 1118 | const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); |
| 1119 | tmp_0 = _mm_unpacklo_epi8(inAB_0, zero); |
| 1120 | tmp_1 = _mm_unpacklo_epi8(inAB_1, zero); |
| 1121 | tmp_2 = _mm_unpacklo_epi8(inAB_2, zero); |
| 1122 | tmp_3 = _mm_unpacklo_epi8(inAB_3, zero); |
| 1123 | // a00 a01 a02 a03 b00 b01 b02 b03 |
| 1124 | // a10 a11 a12 a13 b10 b11 b12 b13 |
| 1125 | // a20 a21 a22 a23 b20 b21 b22 b23 |
| 1126 | // a30 a31 a32 a33 b30 b31 b32 b33 |
| 1127 | } |
| 1128 | |
| 1129 | // Vertical pass first to avoid a transpose (vertical and horizontal passes |
| 1130 | // are commutative because w/kWeightY is symmetric) and subsequent transpose. |
| 1131 | { |
| 1132 | // Calculate a and b (two 4x4 at once). |
| 1133 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| 1134 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| 1135 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| 1136 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| 1137 | const __m128i b0 = _mm_add_epi16(a0, a1); |
| 1138 | const __m128i b1 = _mm_add_epi16(a3, a2); |
| 1139 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
| 1140 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
| 1141 | // a00 a01 a02 a03 b00 b01 b02 b03 |
| 1142 | // a10 a11 a12 a13 b10 b11 b12 b13 |
| 1143 | // a20 a21 a22 a23 b20 b21 b22 b23 |
| 1144 | // a30 a31 a32 a33 b30 b31 b32 b33 |
| 1145 | |
| 1146 | // Transpose the two 4x4. |
| 1147 | VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); |
| 1148 | } |
| 1149 | |
| 1150 | // Horizontal pass and difference of weighted sums. |
| 1151 | { |
| 1152 | // Load all inputs. |
| 1153 | const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); |
| 1154 | const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); |
| 1155 | |
| 1156 | // Calculate a and b (two 4x4 at once). |
| 1157 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| 1158 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| 1159 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| 1160 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| 1161 | const __m128i b0 = _mm_add_epi16(a0, a1); |
| 1162 | const __m128i b1 = _mm_add_epi16(a3, a2); |
| 1163 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
| 1164 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
| 1165 | |
| 1166 | // Separate the transforms of inA and inB. |
| 1167 | __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
| 1168 | __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
| 1169 | __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
| 1170 | __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
| 1171 | |
| 1172 | { |
| 1173 | const __m128i d0 = _mm_sub_epi16(zero, A_b0); |
| 1174 | const __m128i d1 = _mm_sub_epi16(zero, A_b2); |
| 1175 | const __m128i d2 = _mm_sub_epi16(zero, B_b0); |
| 1176 | const __m128i d3 = _mm_sub_epi16(zero, B_b2); |
| 1177 | A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b |
| 1178 | A_b2 = _mm_max_epi16(A_b2, d1); |
| 1179 | B_b0 = _mm_max_epi16(B_b0, d2); |
| 1180 | B_b2 = _mm_max_epi16(B_b2, d3); |
| 1181 | } |
| 1182 | |
| 1183 | // weighted sums |
| 1184 | A_b0 = _mm_madd_epi16(A_b0, w_0); |
| 1185 | A_b2 = _mm_madd_epi16(A_b2, w_8); |
| 1186 | B_b0 = _mm_madd_epi16(B_b0, w_0); |
| 1187 | B_b2 = _mm_madd_epi16(B_b2, w_8); |
| 1188 | A_b0 = _mm_add_epi32(A_b0, A_b2); |
| 1189 | B_b0 = _mm_add_epi32(B_b0, B_b2); |
| 1190 | |
| 1191 | // difference of weighted sums |
| 1192 | A_b0 = _mm_sub_epi32(A_b0, B_b0); |
| 1193 | _mm_storeu_si128((__m128i*)&sum[0], A_b0); |
| 1194 | } |
| 1195 | return sum[0] + sum[1] + sum[2] + sum[3]; |
| 1196 | } |
| 1197 | |
| 1198 | static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b, |
| 1199 | const uint16_t* const w) { |
| 1200 | const int diff_sum = TTransform_SSE2(a, b, w); |
| 1201 | return abs(diff_sum) >> 5; |
| 1202 | } |
| 1203 | |
| 1204 | static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b, |
| 1205 | const uint16_t* const w) { |
| 1206 | int D = 0; |
| 1207 | int x, y; |
| 1208 | for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
| 1209 | for (x = 0; x < 16; x += 4) { |
| 1210 | D += Disto4x4_SSE2(a + x + y, b + x + y, w); |
| 1211 | } |
| 1212 | } |
| 1213 | return D; |
| 1214 | } |
| 1215 | |
| 1216 | //------------------------------------------------------------------------------ |
| 1217 | // Quantization |
| 1218 | // |
| 1219 | |
| 1220 | static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16], |
| 1221 | const uint16_t* const sharpen, |
| 1222 | const VP8Matrix* const mtx) { |
| 1223 | const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
| 1224 | const __m128i zero = _mm_setzero_si128(); |
| 1225 | __m128i coeff0, coeff8; |
| 1226 | __m128i out0, out8; |
| 1227 | __m128i packed_out; |
| 1228 | |
| 1229 | // Load all inputs. |
| 1230 | __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
| 1231 | __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
| 1232 | const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); |
| 1233 | const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); |
| 1234 | const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); |
| 1235 | const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); |
| 1236 | |
| 1237 | // extract sign(in) (0x0000 if positive, 0xffff if negative) |
| 1238 | const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); |
| 1239 | const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); |
| 1240 | |
| 1241 | // coeff = abs(in) = (in ^ sign) - sign |
| 1242 | coeff0 = _mm_xor_si128(in0, sign0); |
| 1243 | coeff8 = _mm_xor_si128(in8, sign8); |
| 1244 | coeff0 = _mm_sub_epi16(coeff0, sign0); |
| 1245 | coeff8 = _mm_sub_epi16(coeff8, sign8); |
| 1246 | |
| 1247 | // coeff = abs(in) + sharpen |
| 1248 | if (sharpen != NULL) { |
| 1249 | const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); |
| 1250 | const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); |
| 1251 | coeff0 = _mm_add_epi16(coeff0, sharpen0); |
| 1252 | coeff8 = _mm_add_epi16(coeff8, sharpen8); |
| 1253 | } |
| 1254 | |
| 1255 | // out = (coeff * iQ + B) >> QFIX |
| 1256 | { |
| 1257 | // doing calculations with 32b precision (QFIX=17) |
| 1258 | // out = (coeff * iQ) |
| 1259 | const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
| 1260 | const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
| 1261 | const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
| 1262 | const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
| 1263 | __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
| 1264 | __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
| 1265 | __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
| 1266 | __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
| 1267 | // out = (coeff * iQ + B) |
| 1268 | const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); |
| 1269 | const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); |
| 1270 | const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); |
| 1271 | const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); |
| 1272 | out_00 = _mm_add_epi32(out_00, bias_00); |
| 1273 | out_04 = _mm_add_epi32(out_04, bias_04); |
| 1274 | out_08 = _mm_add_epi32(out_08, bias_08); |
| 1275 | out_12 = _mm_add_epi32(out_12, bias_12); |
| 1276 | // out = QUANTDIV(coeff, iQ, B, QFIX) |
| 1277 | out_00 = _mm_srai_epi32(out_00, QFIX); |
| 1278 | out_04 = _mm_srai_epi32(out_04, QFIX); |
| 1279 | out_08 = _mm_srai_epi32(out_08, QFIX); |
| 1280 | out_12 = _mm_srai_epi32(out_12, QFIX); |
| 1281 | |
| 1282 | // pack result as 16b |
| 1283 | out0 = _mm_packs_epi32(out_00, out_04); |
| 1284 | out8 = _mm_packs_epi32(out_08, out_12); |
| 1285 | |
| 1286 | // if (coeff > 2047) coeff = 2047 |
| 1287 | out0 = _mm_min_epi16(out0, max_coeff_2047); |
| 1288 | out8 = _mm_min_epi16(out8, max_coeff_2047); |
| 1289 | } |
| 1290 | |
| 1291 | // get sign back (if (sign[j]) out_n = -out_n) |
| 1292 | out0 = _mm_xor_si128(out0, sign0); |
| 1293 | out8 = _mm_xor_si128(out8, sign8); |
| 1294 | out0 = _mm_sub_epi16(out0, sign0); |
| 1295 | out8 = _mm_sub_epi16(out8, sign8); |
| 1296 | |
| 1297 | // in = out * Q |
| 1298 | in0 = _mm_mullo_epi16(out0, q0); |
| 1299 | in8 = _mm_mullo_epi16(out8, q8); |
| 1300 | |
| 1301 | _mm_storeu_si128((__m128i*)&in[0], in0); |
| 1302 | _mm_storeu_si128((__m128i*)&in[8], in8); |
| 1303 | |
| 1304 | // zigzag the output before storing it. |
| 1305 | // |
| 1306 | // The zigzag pattern can almost be reproduced with a small sequence of |
| 1307 | // shuffles. After it, we only need to swap the 7th (ending up in third |
| 1308 | // position instead of twelfth) and 8th values. |
| 1309 | { |
| 1310 | __m128i outZ0, outZ8; |
| 1311 | outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); |
| 1312 | outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1313 | outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); |
| 1314 | outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); |
| 1315 | outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1316 | outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); |
| 1317 | _mm_storeu_si128((__m128i*)&out[0], outZ0); |
| 1318 | _mm_storeu_si128((__m128i*)&out[8], outZ8); |
| 1319 | packed_out = _mm_packs_epi16(outZ0, outZ8); |
| 1320 | } |
| 1321 | { |
| 1322 | const int16_t outZ_12 = out[12]; |
| 1323 | const int16_t outZ_3 = out[3]; |
| 1324 | out[3] = outZ_12; |
| 1325 | out[12] = outZ_3; |
| 1326 | } |
| 1327 | |
| 1328 | // detect if all 'out' values are zeroes or not |
| 1329 | return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); |
| 1330 | } |
| 1331 | |
| 1332 | static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16], |
| 1333 | const VP8Matrix* const mtx) { |
| 1334 | return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx); |
| 1335 | } |
| 1336 | |
| 1337 | static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16], |
| 1338 | const VP8Matrix* const mtx) { |
| 1339 | return DoQuantizeBlock_SSE2(in, out, NULL, mtx); |
| 1340 | } |
| 1341 | |
| 1342 | static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32], |
| 1343 | const VP8Matrix* const mtx) { |
| 1344 | int nz; |
| 1345 | const uint16_t* const sharpen = &mtx->sharpen_[0]; |
| 1346 | nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; |
| 1347 | nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; |
| 1348 | return nz; |
| 1349 | } |
| 1350 | |
| 1351 | //------------------------------------------------------------------------------ |
| 1352 | // Entry point |
| 1353 | |
| 1354 | extern void VP8EncDspInitSSE2(void); |
| 1355 | |
| 1356 | WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) { |
| 1357 | VP8CollectHistogram = CollectHistogram_SSE2; |
| 1358 | VP8EncPredLuma16 = Intra16Preds_SSE2; |
| 1359 | VP8EncPredChroma8 = IntraChromaPreds_SSE2; |
| 1360 | VP8EncPredLuma4 = Intra4Preds_SSE2; |
| 1361 | VP8EncQuantizeBlock = QuantizeBlock_SSE2; |
| 1362 | VP8EncQuantize2Blocks = Quantize2Blocks_SSE2; |
| 1363 | VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2; |
| 1364 | VP8ITransform = ITransform_SSE2; |
| 1365 | VP8FTransform = FTransform_SSE2; |
| 1366 | VP8FTransform2 = FTransform2_SSE2; |
| 1367 | VP8FTransformWHT = FTransformWHT_SSE2; |
| 1368 | VP8SSE16x16 = SSE16x16_SSE2; |
| 1369 | VP8SSE16x8 = SSE16x8_SSE2; |
| 1370 | VP8SSE8x8 = SSE8x8_SSE2; |
| 1371 | VP8SSE4x4 = SSE4x4_SSE2; |
| 1372 | VP8TDisto4x4 = Disto4x4_SSE2; |
| 1373 | VP8TDisto16x16 = Disto16x16_SSE2; |
| 1374 | VP8Mean16x4 = Mean16x4_SSE2; |
| 1375 | } |
| 1376 | |
| 1377 | #else // !WEBP_USE_SSE2 |
| 1378 | |
| 1379 | WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2) |
| 1380 | |
| 1381 | #endif // WEBP_USE_SSE2 |
| 1382 | |