1 | // Copyright 2014 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // NEON variant of methods for lossless decoder |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "src/dsp/dsp.h" |
15 | |
16 | #if defined(WEBP_USE_NEON) |
17 | |
18 | #include <arm_neon.h> |
19 | |
20 | #include "src/dsp/lossless.h" |
21 | #include "src/dsp/neon.h" |
22 | |
23 | //------------------------------------------------------------------------------ |
24 | // Colorspace conversion functions |
25 | |
26 | #if !defined(WORK_AROUND_GCC) |
27 | // gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for |
28 | // gcc-4.8.x at least. |
29 | static void ConvertBGRAToRGBA_NEON(const uint32_t* src, |
30 | int num_pixels, uint8_t* dst) { |
31 | const uint32_t* const end = src + (num_pixels & ~15); |
32 | for (; src < end; src += 16) { |
33 | uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
34 | // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!) |
35 | const uint8x16_t tmp = pixel.val[0]; |
36 | pixel.val[0] = pixel.val[2]; |
37 | pixel.val[2] = tmp; |
38 | vst4q_u8(dst, pixel); |
39 | dst += 64; |
40 | } |
41 | VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs |
42 | } |
43 | |
44 | static void ConvertBGRAToBGR_NEON(const uint32_t* src, |
45 | int num_pixels, uint8_t* dst) { |
46 | const uint32_t* const end = src + (num_pixels & ~15); |
47 | for (; src < end; src += 16) { |
48 | const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
49 | const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } }; |
50 | vst3q_u8(dst, tmp); |
51 | dst += 48; |
52 | } |
53 | VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs |
54 | } |
55 | |
56 | static void ConvertBGRAToRGB_NEON(const uint32_t* src, |
57 | int num_pixels, uint8_t* dst) { |
58 | const uint32_t* const end = src + (num_pixels & ~15); |
59 | for (; src < end; src += 16) { |
60 | const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); |
61 | const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } }; |
62 | vst3q_u8(dst, tmp); |
63 | dst += 48; |
64 | } |
65 | VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs |
66 | } |
67 | |
68 | #else // WORK_AROUND_GCC |
69 | |
70 | // gcc-4.6.0 fallback |
71 | |
72 | static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 }; |
73 | |
74 | static void ConvertBGRAToRGBA_NEON(const uint32_t* src, |
75 | int num_pixels, uint8_t* dst) { |
76 | const uint32_t* const end = src + (num_pixels & ~1); |
77 | const uint8x8_t shuffle = vld1_u8(kRGBAShuffle); |
78 | for (; src < end; src += 2) { |
79 | const uint8x8_t pixels = vld1_u8((uint8_t*)src); |
80 | vst1_u8(dst, vtbl1_u8(pixels, shuffle)); |
81 | dst += 8; |
82 | } |
83 | VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs |
84 | } |
85 | |
86 | static const uint8_t kBGRShuffle[3][8] = { |
87 | { 0, 1, 2, 4, 5, 6, 8, 9 }, |
88 | { 10, 12, 13, 14, 16, 17, 18, 20 }, |
89 | { 21, 22, 24, 25, 26, 28, 29, 30 } |
90 | }; |
91 | |
92 | static void ConvertBGRAToBGR_NEON(const uint32_t* src, |
93 | int num_pixels, uint8_t* dst) { |
94 | const uint32_t* const end = src + (num_pixels & ~7); |
95 | const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]); |
96 | const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]); |
97 | const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]); |
98 | for (; src < end; src += 8) { |
99 | uint8x8x4_t pixels; |
100 | INIT_VECTOR4(pixels, |
101 | vld1_u8((const uint8_t*)(src + 0)), |
102 | vld1_u8((const uint8_t*)(src + 2)), |
103 | vld1_u8((const uint8_t*)(src + 4)), |
104 | vld1_u8((const uint8_t*)(src + 6))); |
105 | vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); |
106 | vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); |
107 | vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); |
108 | dst += 8 * 3; |
109 | } |
110 | VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs |
111 | } |
112 | |
113 | static const uint8_t kRGBShuffle[3][8] = { |
114 | { 2, 1, 0, 6, 5, 4, 10, 9 }, |
115 | { 8, 14, 13, 12, 18, 17, 16, 22 }, |
116 | { 21, 20, 26, 25, 24, 30, 29, 28 } |
117 | }; |
118 | |
119 | static void ConvertBGRAToRGB_NEON(const uint32_t* src, |
120 | int num_pixels, uint8_t* dst) { |
121 | const uint32_t* const end = src + (num_pixels & ~7); |
122 | const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]); |
123 | const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]); |
124 | const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]); |
125 | for (; src < end; src += 8) { |
126 | uint8x8x4_t pixels; |
127 | INIT_VECTOR4(pixels, |
128 | vld1_u8((const uint8_t*)(src + 0)), |
129 | vld1_u8((const uint8_t*)(src + 2)), |
130 | vld1_u8((const uint8_t*)(src + 4)), |
131 | vld1_u8((const uint8_t*)(src + 6))); |
132 | vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); |
133 | vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); |
134 | vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); |
135 | dst += 8 * 3; |
136 | } |
137 | VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs |
138 | } |
139 | |
140 | #endif // !WORK_AROUND_GCC |
141 | |
142 | //------------------------------------------------------------------------------ |
143 | // Predictor Transform |
144 | |
145 | #define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN))) |
146 | #define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN))) |
147 | #define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN))) |
148 | #define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN))) |
149 | #define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0); |
150 | #define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0); |
151 | #define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN))); |
152 | #define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D |
153 | |
154 | static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) { |
155 | const uint8x8_t A0 = LOAD_U32_AS_U8(a0); |
156 | const uint8x8_t A1 = LOAD_U32_AS_U8(a1); |
157 | return vhadd_u8(A0, A1); |
158 | } |
159 | |
160 | static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0, |
161 | uint32_t c1, |
162 | uint32_t c2) { |
163 | const uint8x8_t avg = Average2_u8_NEON(c0, c1); |
164 | // Remove one to c2 when bigger than avg. |
165 | const uint8x8_t C2 = LOAD_U32_AS_U8(c2); |
166 | const uint8x8_t cmp = vcgt_u8(C2, avg); |
167 | const uint8x8_t C2_1 = vadd_u8(C2, cmp); |
168 | // Compute half of the difference between avg and c2. |
169 | const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1)); |
170 | // Compute the sum with avg and saturate. |
171 | const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg)); |
172 | const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); |
173 | const uint32_t output = GET_U8_AS_U32(res); |
174 | return output; |
175 | } |
176 | |
177 | static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) { |
178 | const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1); |
179 | const uint32_t avg = GET_U8_AS_U32(avg_u8x8); |
180 | return avg; |
181 | } |
182 | |
183 | static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1, |
184 | uint32_t a2) { |
185 | const uint8x8_t avg0 = Average2_u8_NEON(a0, a2); |
186 | const uint8x8_t A1 = LOAD_U32_AS_U8(a1); |
187 | const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1)); |
188 | return avg; |
189 | } |
190 | |
191 | static uint32_t Predictor5_NEON(uint32_t left, const uint32_t* const top) { |
192 | return Average3_NEON(left, top[0], top[1]); |
193 | } |
194 | static uint32_t Predictor6_NEON(uint32_t left, const uint32_t* const top) { |
195 | return Average2_NEON(left, top[-1]); |
196 | } |
197 | static uint32_t Predictor7_NEON(uint32_t left, const uint32_t* const top) { |
198 | return Average2_NEON(left, top[0]); |
199 | } |
200 | static uint32_t Predictor13_NEON(uint32_t left, const uint32_t* const top) { |
201 | return ClampedAddSubtractHalf_NEON(left, top[0], top[-1]); |
202 | } |
203 | |
204 | // Batch versions of those functions. |
205 | |
206 | // Predictor0: ARGB_BLACK. |
207 | static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper, |
208 | int num_pixels, uint32_t* out) { |
209 | int i; |
210 | const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK)); |
211 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
212 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
213 | const uint8x16_t res = vaddq_u8(src, black); |
214 | STOREQ_U8_AS_U32P(&out[i], res); |
215 | } |
216 | VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); |
217 | } |
218 | |
219 | // Predictor1: left. |
220 | static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper, |
221 | int num_pixels, uint32_t* out) { |
222 | int i; |
223 | const uint8x16_t zero = LOADQ_U32_AS_U8(0); |
224 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
225 | // a | b | c | d |
226 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
227 | // 0 | a | b | c |
228 | const uint8x16_t shift0 = vextq_u8(zero, src, 12); |
229 | // a | a + b | b + c | c + d |
230 | const uint8x16_t sum0 = vaddq_u8(src, shift0); |
231 | // 0 | 0 | a | a + b |
232 | const uint8x16_t shift1 = vextq_u8(zero, sum0, 8); |
233 | // a | a + b | a + b + c | a + b + c + d |
234 | const uint8x16_t sum1 = vaddq_u8(sum0, shift1); |
235 | const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]); |
236 | const uint8x16_t res = vaddq_u8(sum1, prev); |
237 | STOREQ_U8_AS_U32P(&out[i], res); |
238 | } |
239 | VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); |
240 | } |
241 | |
242 | // Macro that adds 32-bit integers from IN using mod 256 arithmetic |
243 | // per 8 bit channel. |
244 | #define GENERATE_PREDICTOR_1(X, IN) \ |
245 | static void PredictorAdd##X##_NEON(const uint32_t* in, \ |
246 | const uint32_t* upper, int num_pixels, \ |
247 | uint32_t* out) { \ |
248 | int i; \ |
249 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
250 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ |
251 | const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \ |
252 | const uint8x16_t res = vaddq_u8(src, other); \ |
253 | STOREQ_U8_AS_U32P(&out[i], res); \ |
254 | } \ |
255 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
256 | } |
257 | // Predictor2: Top. |
258 | GENERATE_PREDICTOR_1(2, upper[i]) |
259 | // Predictor3: Top-right. |
260 | GENERATE_PREDICTOR_1(3, upper[i + 1]) |
261 | // Predictor4: Top-left. |
262 | GENERATE_PREDICTOR_1(4, upper[i - 1]) |
263 | #undef GENERATE_PREDICTOR_1 |
264 | |
265 | // Predictor5: average(average(left, TR), T) |
266 | #define DO_PRED5(LANE) do { \ |
267 | const uint8x16_t avgLTR = vhaddq_u8(L, TR); \ |
268 | const uint8x16_t avg = vhaddq_u8(avgLTR, T); \ |
269 | const uint8x16_t res = vaddq_u8(avg, src); \ |
270 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
271 | L = ROTATE32_LEFT(res); \ |
272 | } while (0) |
273 | |
274 | static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper, |
275 | int num_pixels, uint32_t* out) { |
276 | int i; |
277 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
278 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
279 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
280 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]); |
281 | const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); |
282 | DO_PRED5(0); |
283 | DO_PRED5(1); |
284 | DO_PRED5(2); |
285 | DO_PRED5(3); |
286 | } |
287 | VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i); |
288 | } |
289 | #undef DO_PRED5 |
290 | |
291 | #define DO_PRED67(LANE) do { \ |
292 | const uint8x16_t avg = vhaddq_u8(L, top); \ |
293 | const uint8x16_t res = vaddq_u8(avg, src); \ |
294 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
295 | L = ROTATE32_LEFT(res); \ |
296 | } while (0) |
297 | |
298 | // Predictor6: average(left, TL) |
299 | static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper, |
300 | int num_pixels, uint32_t* out) { |
301 | int i; |
302 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
303 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
304 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
305 | const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]); |
306 | DO_PRED67(0); |
307 | DO_PRED67(1); |
308 | DO_PRED67(2); |
309 | DO_PRED67(3); |
310 | } |
311 | VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i); |
312 | } |
313 | |
314 | // Predictor7: average(left, T) |
315 | static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper, |
316 | int num_pixels, uint32_t* out) { |
317 | int i; |
318 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
319 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
320 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
321 | const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]); |
322 | DO_PRED67(0); |
323 | DO_PRED67(1); |
324 | DO_PRED67(2); |
325 | DO_PRED67(3); |
326 | } |
327 | VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i); |
328 | } |
329 | #undef DO_PRED67 |
330 | |
331 | #define GENERATE_PREDICTOR_2(X, IN) \ |
332 | static void PredictorAdd##X##_NEON(const uint32_t* in, \ |
333 | const uint32_t* upper, int num_pixels, \ |
334 | uint32_t* out) { \ |
335 | int i; \ |
336 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
337 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ |
338 | const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \ |
339 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \ |
340 | const uint8x16_t avg = vhaddq_u8(T, Tother); \ |
341 | const uint8x16_t res = vaddq_u8(avg, src); \ |
342 | STOREQ_U8_AS_U32P(&out[i], res); \ |
343 | } \ |
344 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
345 | } |
346 | // Predictor8: average TL T. |
347 | GENERATE_PREDICTOR_2(8, upper[i - 1]) |
348 | // Predictor9: average T TR. |
349 | GENERATE_PREDICTOR_2(9, upper[i + 1]) |
350 | #undef GENERATE_PREDICTOR_2 |
351 | |
352 | // Predictor10: average of (average of (L,TL), average of (T, TR)). |
353 | #define DO_PRED10(LANE) do { \ |
354 | const uint8x16_t avgLTL = vhaddq_u8(L, TL); \ |
355 | const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \ |
356 | const uint8x16_t res = vaddq_u8(avg, src); \ |
357 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
358 | L = ROTATE32_LEFT(res); \ |
359 | } while (0) |
360 | |
361 | static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper, |
362 | int num_pixels, uint32_t* out) { |
363 | int i; |
364 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
365 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
366 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
367 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
368 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
369 | const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); |
370 | const uint8x16_t avgTTR = vhaddq_u8(T, TR); |
371 | DO_PRED10(0); |
372 | DO_PRED10(1); |
373 | DO_PRED10(2); |
374 | DO_PRED10(3); |
375 | } |
376 | VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); |
377 | } |
378 | #undef DO_PRED10 |
379 | |
380 | // Predictor11: select. |
381 | #define DO_PRED11(LANE) do { \ |
382 | const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \ |
383 | const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \ |
384 | const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \ |
385 | const uint32x4_t pa = vpaddlq_u16(sum_LTL); \ |
386 | const uint32x4_t mask = vcleq_u32(pa, pb); \ |
387 | const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \ |
388 | vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ |
389 | L = ROTATE32_LEFT(res); \ |
390 | } while (0) |
391 | |
392 | static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper, |
393 | int num_pixels, uint32_t* out) { |
394 | int i; |
395 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
396 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
397 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
398 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
399 | const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL| |
400 | const uint16x8_t sum_TTL = vpaddlq_u8(pTTL); |
401 | const uint32x4_t pb = vpaddlq_u16(sum_TTL); |
402 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
403 | const uint8x16_t sumTin = vaddq_u8(T, src); // in + T |
404 | DO_PRED11(0); |
405 | DO_PRED11(1); |
406 | DO_PRED11(2); |
407 | DO_PRED11(3); |
408 | } |
409 | VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); |
410 | } |
411 | #undef DO_PRED11 |
412 | |
413 | // Predictor12: ClampedAddSubtractFull. |
414 | #define DO_PRED12(DIFF, LANE) do { \ |
415 | const uint8x8_t pred = \ |
416 | vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \ |
417 | const uint8x8_t res = \ |
418 | vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \ |
419 | const uint16x8_t res16 = vmovl_u8(res); \ |
420 | vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ |
421 | /* rotate in the left predictor for next iteration */ \ |
422 | L = vextq_u16(res16, res16, 4); \ |
423 | } while (0) |
424 | |
425 | static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper, |
426 | int num_pixels, uint32_t* out) { |
427 | int i; |
428 | uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1])); |
429 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
430 | // load four pixels of source |
431 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
432 | // precompute the difference T - TL once for all, stored as s16 |
433 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
434 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
435 | const int16x8_t diff_lo = |
436 | vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL))); |
437 | const int16x8_t diff_hi = |
438 | vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL))); |
439 | // loop over the four reconstructed pixels |
440 | DO_PRED12(diff_lo, 0); |
441 | DO_PRED12(diff_lo, 1); |
442 | DO_PRED12(diff_hi, 2); |
443 | DO_PRED12(diff_hi, 3); |
444 | } |
445 | VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); |
446 | } |
447 | #undef DO_PRED12 |
448 | |
449 | // Predictor13: ClampedAddSubtractHalf |
450 | #define DO_PRED13(LANE, LOW_OR_HI) do { \ |
451 | const uint8x16_t avg = vhaddq_u8(L, T); \ |
452 | const uint8x16_t cmp = vcgtq_u8(TL, avg); \ |
453 | const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \ |
454 | /* Compute half of the difference between avg and TL'. */ \ |
455 | const int8x8_t diff_avg = \ |
456 | vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \ |
457 | /* Compute the sum with avg and saturate. */ \ |
458 | const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \ |
459 | const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \ |
460 | const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \ |
461 | const uint8x16_t res2 = vcombine_u8(res, res); \ |
462 | vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ |
463 | L = ROTATE32_LEFT(res2); \ |
464 | } while (0) |
465 | |
466 | static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper, |
467 | int num_pixels, uint32_t* out) { |
468 | int i; |
469 | uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); |
470 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
471 | const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); |
472 | const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); |
473 | const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); |
474 | DO_PRED13(0, vget_low_u8); |
475 | DO_PRED13(1, vget_low_u8); |
476 | DO_PRED13(2, vget_high_u8); |
477 | DO_PRED13(3, vget_high_u8); |
478 | } |
479 | VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i); |
480 | } |
481 | #undef DO_PRED13 |
482 | |
483 | #undef LOAD_U32_AS_U8 |
484 | #undef LOAD_U32P_AS_U8 |
485 | #undef LOADQ_U32_AS_U8 |
486 | #undef LOADQ_U32P_AS_U8 |
487 | #undef GET_U8_AS_U32 |
488 | #undef GETQ_U8_AS_U32 |
489 | #undef STOREQ_U8_AS_U32P |
490 | #undef ROTATE32_LEFT |
491 | |
492 | //------------------------------------------------------------------------------ |
493 | // Subtract-Green Transform |
494 | |
495 | // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use |
496 | // non-standard versions there. |
497 | #if defined(__APPLE__) && defined(__aarch64__) && \ |
498 | defined(__apple_build_version__) && (__apple_build_version__< 6020037) |
499 | #define USE_VTBLQ |
500 | #endif |
501 | |
502 | #ifdef USE_VTBLQ |
503 | // 255 = byte will be zeroed |
504 | static const uint8_t kGreenShuffle[16] = { |
505 | 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 |
506 | }; |
507 | |
508 | static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, |
509 | const uint8x16_t shuffle) { |
510 | return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), |
511 | vtbl1q_u8(argb, vget_high_u8(shuffle))); |
512 | } |
513 | #else // !USE_VTBLQ |
514 | // 255 = byte will be zeroed |
515 | static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; |
516 | |
517 | static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, |
518 | const uint8x8_t shuffle) { |
519 | return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), |
520 | vtbl1_u8(vget_high_u8(argb), shuffle)); |
521 | } |
522 | #endif // USE_VTBLQ |
523 | |
524 | static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels, |
525 | uint32_t* dst) { |
526 | const uint32_t* const end = src + (num_pixels & ~3); |
527 | #ifdef USE_VTBLQ |
528 | const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); |
529 | #else |
530 | const uint8x8_t shuffle = vld1_u8(kGreenShuffle); |
531 | #endif |
532 | for (; src < end; src += 4, dst += 4) { |
533 | const uint8x16_t argb = vld1q_u8((const uint8_t*)src); |
534 | const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle); |
535 | vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens)); |
536 | } |
537 | // fallthrough and finish off with plain-C |
538 | VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst); |
539 | } |
540 | |
541 | //------------------------------------------------------------------------------ |
542 | // Color Transform |
543 | |
544 | static void TransformColorInverse_NEON(const VP8LMultipliers* const m, |
545 | const uint32_t* const src, |
546 | int num_pixels, uint32_t* dst) { |
547 | // sign-extended multiplying constants, pre-shifted by 6. |
548 | #define CST(X) (((int16_t)(m->X << 8)) >> 6) |
549 | const int16_t rb[8] = { |
550 | CST(green_to_blue_), CST(green_to_red_), |
551 | CST(green_to_blue_), CST(green_to_red_), |
552 | CST(green_to_blue_), CST(green_to_red_), |
553 | CST(green_to_blue_), CST(green_to_red_) |
554 | }; |
555 | const int16x8_t mults_rb = vld1q_s16(rb); |
556 | const int16_t b2[8] = { |
557 | 0, CST(red_to_blue_), 0, CST(red_to_blue_), |
558 | 0, CST(red_to_blue_), 0, CST(red_to_blue_), |
559 | }; |
560 | const int16x8_t mults_b2 = vld1q_s16(b2); |
561 | #undef CST |
562 | #ifdef USE_VTBLQ |
563 | static const uint8_t kg0g0[16] = { |
564 | 255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13 |
565 | }; |
566 | const uint8x16_t shuffle = vld1q_u8(kg0g0); |
567 | #else |
568 | static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 }; |
569 | const uint8x8_t shuffle = vld1_u8(k0g0g); |
570 | #endif |
571 | const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u); |
572 | int i; |
573 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
574 | const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i)); |
575 | const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag); |
576 | // 0 g 0 g |
577 | const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle); |
578 | // x dr x db1 |
579 | const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb); |
580 | // x r' x b' |
581 | const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in), |
582 | vreinterpretq_s8_s16(A)); |
583 | // r' 0 b' 0 |
584 | const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8); |
585 | // x db2 0 0 |
586 | const int16x8_t D = vqdmulhq_s16(C, mults_b2); |
587 | // 0 x db2 0 |
588 | const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8); |
589 | // r' x b'' 0 |
590 | const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E), |
591 | vreinterpretq_s8_s16(C)); |
592 | // 0 r' 0 b'' |
593 | const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8); |
594 | const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0); |
595 | vst1q_u32(dst + i, out); |
596 | } |
597 | // Fall-back to C-version for left-overs. |
598 | VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); |
599 | } |
600 | |
601 | #undef USE_VTBLQ |
602 | |
603 | //------------------------------------------------------------------------------ |
604 | // Entry point |
605 | |
606 | extern void VP8LDspInitNEON(void); |
607 | |
608 | WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) { |
609 | VP8LPredictors[5] = Predictor5_NEON; |
610 | VP8LPredictors[6] = Predictor6_NEON; |
611 | VP8LPredictors[7] = Predictor7_NEON; |
612 | VP8LPredictors[13] = Predictor13_NEON; |
613 | |
614 | VP8LPredictorsAdd[0] = PredictorAdd0_NEON; |
615 | VP8LPredictorsAdd[1] = PredictorAdd1_NEON; |
616 | VP8LPredictorsAdd[2] = PredictorAdd2_NEON; |
617 | VP8LPredictorsAdd[3] = PredictorAdd3_NEON; |
618 | VP8LPredictorsAdd[4] = PredictorAdd4_NEON; |
619 | VP8LPredictorsAdd[5] = PredictorAdd5_NEON; |
620 | VP8LPredictorsAdd[6] = PredictorAdd6_NEON; |
621 | VP8LPredictorsAdd[7] = PredictorAdd7_NEON; |
622 | VP8LPredictorsAdd[8] = PredictorAdd8_NEON; |
623 | VP8LPredictorsAdd[9] = PredictorAdd9_NEON; |
624 | VP8LPredictorsAdd[10] = PredictorAdd10_NEON; |
625 | VP8LPredictorsAdd[11] = PredictorAdd11_NEON; |
626 | VP8LPredictorsAdd[12] = PredictorAdd12_NEON; |
627 | VP8LPredictorsAdd[13] = PredictorAdd13_NEON; |
628 | |
629 | VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON; |
630 | VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON; |
631 | VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON; |
632 | |
633 | VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON; |
634 | VP8LTransformColorInverse = TransformColorInverse_NEON; |
635 | } |
636 | |
637 | #else // !WEBP_USE_NEON |
638 | |
639 | WEBP_DSP_INIT_STUB(VP8LDspInitNEON) |
640 | |
641 | #endif // WEBP_USE_NEON |
642 | |