1// Copyright 2014 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// SSE2 variant of methods for lossless decoder
11//
12// Author: Skal (pascal.massimino@gmail.com)
13
14#include "src/dsp/dsp.h"
15
16#if defined(WEBP_USE_SSE2)
17
18#include "src/dsp/common_sse2.h"
19#include "src/dsp/lossless.h"
20#include "src/dsp/lossless_common.h"
21#include <assert.h>
22#include <emmintrin.h>
23
24//------------------------------------------------------------------------------
25// Predictor Transform
26
27static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
28 uint32_t c1,
29 uint32_t c2) {
30 const __m128i zero = _mm_setzero_si128();
31 const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
32 const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
33 const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
34 const __m128i V1 = _mm_add_epi16(C0, C1);
35 const __m128i V2 = _mm_sub_epi16(V1, C2);
36 const __m128i b = _mm_packus_epi16(V2, V2);
37 const uint32_t output = _mm_cvtsi128_si32(b);
38 return output;
39}
40
41static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
42 uint32_t c1,
43 uint32_t c2) {
44 const __m128i zero = _mm_setzero_si128();
45 const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
46 const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
47 const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
48 const __m128i avg = _mm_add_epi16(C1, C0);
49 const __m128i A0 = _mm_srli_epi16(avg, 1);
50 const __m128i A1 = _mm_sub_epi16(A0, B0);
51 const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
52 const __m128i A2 = _mm_sub_epi16(A1, BgtA);
53 const __m128i A3 = _mm_srai_epi16(A2, 1);
54 const __m128i A4 = _mm_add_epi16(A0, A3);
55 const __m128i A5 = _mm_packus_epi16(A4, A4);
56 const uint32_t output = _mm_cvtsi128_si32(A5);
57 return output;
58}
59
60static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
61 int pa_minus_pb;
62 const __m128i zero = _mm_setzero_si128();
63 const __m128i A0 = _mm_cvtsi32_si128(a);
64 const __m128i B0 = _mm_cvtsi32_si128(b);
65 const __m128i C0 = _mm_cvtsi32_si128(c);
66 const __m128i AC0 = _mm_subs_epu8(A0, C0);
67 const __m128i CA0 = _mm_subs_epu8(C0, A0);
68 const __m128i BC0 = _mm_subs_epu8(B0, C0);
69 const __m128i CB0 = _mm_subs_epu8(C0, B0);
70 const __m128i AC = _mm_or_si128(AC0, CA0);
71 const __m128i BC = _mm_or_si128(BC0, CB0);
72 const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c|
73 const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c|
74 const __m128i diff = _mm_sub_epi16(pb, pa);
75 {
76 int16_t out[8];
77 _mm_storeu_si128((__m128i*)out, diff);
78 pa_minus_pb = out[0] + out[1] + out[2] + out[3];
79 }
80 return (pa_minus_pb <= 0) ? a : b;
81}
82
83static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
84 const __m128i* const a1,
85 __m128i* const avg) {
86 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
87 const __m128i ones = _mm_set1_epi8(1);
88 const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
89 const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
90 *avg = _mm_sub_epi8(avg1, one);
91}
92
93static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
94 const uint32_t a1,
95 __m128i* const avg) {
96 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
97 const __m128i ones = _mm_set1_epi8(1);
98 const __m128i A0 = _mm_cvtsi32_si128(a0);
99 const __m128i A1 = _mm_cvtsi32_si128(a1);
100 const __m128i avg1 = _mm_avg_epu8(A0, A1);
101 const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
102 *avg = _mm_sub_epi8(avg1, one);
103}
104
105static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
106 const __m128i zero = _mm_setzero_si128();
107 const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero);
108 const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
109 const __m128i sum = _mm_add_epi16(A1, A0);
110 return _mm_srli_epi16(sum, 1);
111}
112
113static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
114 __m128i output;
115 Average2_uint32_SSE2(a0, a1, &output);
116 return _mm_cvtsi128_si32(output);
117}
118
119static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
120 uint32_t a2) {
121 const __m128i zero = _mm_setzero_si128();
122 const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
123 const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
124 const __m128i sum = _mm_add_epi16(avg1, A1);
125 const __m128i avg2 = _mm_srli_epi16(sum, 1);
126 const __m128i A2 = _mm_packus_epi16(avg2, avg2);
127 const uint32_t output = _mm_cvtsi128_si32(A2);
128 return output;
129}
130
131static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
132 uint32_t a2, uint32_t a3) {
133 const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
134 const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
135 const __m128i sum = _mm_add_epi16(avg2, avg1);
136 const __m128i avg3 = _mm_srli_epi16(sum, 1);
137 const __m128i A0 = _mm_packus_epi16(avg3, avg3);
138 const uint32_t output = _mm_cvtsi128_si32(A0);
139 return output;
140}
141
142static uint32_t Predictor5_SSE2(uint32_t left, const uint32_t* const top) {
143 const uint32_t pred = Average3_SSE2(left, top[0], top[1]);
144 return pred;
145}
146static uint32_t Predictor6_SSE2(uint32_t left, const uint32_t* const top) {
147 const uint32_t pred = Average2_SSE2(left, top[-1]);
148 return pred;
149}
150static uint32_t Predictor7_SSE2(uint32_t left, const uint32_t* const top) {
151 const uint32_t pred = Average2_SSE2(left, top[0]);
152 return pred;
153}
154static uint32_t Predictor8_SSE2(uint32_t left, const uint32_t* const top) {
155 const uint32_t pred = Average2_SSE2(top[-1], top[0]);
156 (void)left;
157 return pred;
158}
159static uint32_t Predictor9_SSE2(uint32_t left, const uint32_t* const top) {
160 const uint32_t pred = Average2_SSE2(top[0], top[1]);
161 (void)left;
162 return pred;
163}
164static uint32_t Predictor10_SSE2(uint32_t left, const uint32_t* const top) {
165 const uint32_t pred = Average4_SSE2(left, top[-1], top[0], top[1]);
166 return pred;
167}
168static uint32_t Predictor11_SSE2(uint32_t left, const uint32_t* const top) {
169 const uint32_t pred = Select_SSE2(top[0], left, top[-1]);
170 return pred;
171}
172static uint32_t Predictor12_SSE2(uint32_t left, const uint32_t* const top) {
173 const uint32_t pred = ClampedAddSubtractFull_SSE2(left, top[0], top[-1]);
174 return pred;
175}
176static uint32_t Predictor13_SSE2(uint32_t left, const uint32_t* const top) {
177 const uint32_t pred = ClampedAddSubtractHalf_SSE2(left, top[0], top[-1]);
178 return pred;
179}
180
181// Batch versions of those functions.
182
183// Predictor0: ARGB_BLACK.
184static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
185 int num_pixels, uint32_t* out) {
186 int i;
187 const __m128i black = _mm_set1_epi32(ARGB_BLACK);
188 for (i = 0; i + 4 <= num_pixels; i += 4) {
189 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
190 const __m128i res = _mm_add_epi8(src, black);
191 _mm_storeu_si128((__m128i*)&out[i], res);
192 }
193 if (i != num_pixels) {
194 VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
195 }
196 (void)upper;
197}
198
199// Predictor1: left.
200static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
201 int num_pixels, uint32_t* out) {
202 int i;
203 __m128i prev = _mm_set1_epi32(out[-1]);
204 for (i = 0; i + 4 <= num_pixels; i += 4) {
205 // a | b | c | d
206 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
207 // 0 | a | b | c
208 const __m128i shift0 = _mm_slli_si128(src, 4);
209 // a | a + b | b + c | c + d
210 const __m128i sum0 = _mm_add_epi8(src, shift0);
211 // 0 | 0 | a | a + b
212 const __m128i shift1 = _mm_slli_si128(sum0, 8);
213 // a | a + b | a + b + c | a + b + c + d
214 const __m128i sum1 = _mm_add_epi8(sum0, shift1);
215 const __m128i res = _mm_add_epi8(sum1, prev);
216 _mm_storeu_si128((__m128i*)&out[i], res);
217 // replicate prev output on the four lanes
218 prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
219 }
220 if (i != num_pixels) {
221 VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
222 }
223}
224
225// Macro that adds 32-bit integers from IN using mod 256 arithmetic
226// per 8 bit channel.
227#define GENERATE_PREDICTOR_1(X, IN) \
228static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
229 int num_pixels, uint32_t* out) { \
230 int i; \
231 for (i = 0; i + 4 <= num_pixels; i += 4) { \
232 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
233 const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \
234 const __m128i res = _mm_add_epi8(src, other); \
235 _mm_storeu_si128((__m128i*)&out[i], res); \
236 } \
237 if (i != num_pixels) { \
238 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
239 } \
240}
241
242// Predictor2: Top.
243GENERATE_PREDICTOR_1(2, upper[i])
244// Predictor3: Top-right.
245GENERATE_PREDICTOR_1(3, upper[i + 1])
246// Predictor4: Top-left.
247GENERATE_PREDICTOR_1(4, upper[i - 1])
248#undef GENERATE_PREDICTOR_1
249
250// Due to averages with integers, values cannot be accumulated in parallel for
251// predictors 5 to 7.
252GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
253GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
254GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
255
256#define GENERATE_PREDICTOR_2(X, IN) \
257static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
258 int num_pixels, uint32_t* out) { \
259 int i; \
260 for (i = 0; i + 4 <= num_pixels; i += 4) { \
261 const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \
262 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \
263 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
264 __m128i avg, res; \
265 Average2_m128i(&T, &Tother, &avg); \
266 res = _mm_add_epi8(avg, src); \
267 _mm_storeu_si128((__m128i*)&out[i], res); \
268 } \
269 if (i != num_pixels) { \
270 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
271 } \
272}
273// Predictor8: average TL T.
274GENERATE_PREDICTOR_2(8, upper[i - 1])
275// Predictor9: average T TR.
276GENERATE_PREDICTOR_2(9, upper[i + 1])
277#undef GENERATE_PREDICTOR_2
278
279// Predictor10: average of (average of (L,TL), average of (T, TR)).
280#define DO_PRED10(OUT) do { \
281 __m128i avgLTL, avg; \
282 Average2_m128i(&L, &TL, &avgLTL); \
283 Average2_m128i(&avgTTR, &avgLTL, &avg); \
284 L = _mm_add_epi8(avg, src); \
285 out[i + (OUT)] = _mm_cvtsi128_si32(L); \
286} while (0)
287
288#define DO_PRED10_SHIFT do { \
289 /* Rotate the pre-computed values for the next iteration.*/ \
290 avgTTR = _mm_srli_si128(avgTTR, 4); \
291 TL = _mm_srli_si128(TL, 4); \
292 src = _mm_srli_si128(src, 4); \
293} while (0)
294
295static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
296 int num_pixels, uint32_t* out) {
297 int i;
298 __m128i L = _mm_cvtsi32_si128(out[-1]);
299 for (i = 0; i + 4 <= num_pixels; i += 4) {
300 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
301 __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
302 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
303 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
304 __m128i avgTTR;
305 Average2_m128i(&T, &TR, &avgTTR);
306 DO_PRED10(0);
307 DO_PRED10_SHIFT;
308 DO_PRED10(1);
309 DO_PRED10_SHIFT;
310 DO_PRED10(2);
311 DO_PRED10_SHIFT;
312 DO_PRED10(3);
313 }
314 if (i != num_pixels) {
315 VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
316 }
317}
318#undef DO_PRED10
319#undef DO_PRED10_SHIFT
320
321// Predictor11: select.
322#define DO_PRED11(OUT) do { \
323 const __m128i L_lo = _mm_unpacklo_epi32(L, T); \
324 const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \
325 const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \
326 const __m128i mask = _mm_cmpgt_epi32(pb, pa); \
327 const __m128i A = _mm_and_si128(mask, L); \
328 const __m128i B = _mm_andnot_si128(mask, T); \
329 const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
330 L = _mm_add_epi8(src, pred); \
331 out[i + (OUT)] = _mm_cvtsi128_si32(L); \
332} while (0)
333
334#define DO_PRED11_SHIFT do { \
335 /* Shift the pre-computed value for the next iteration.*/ \
336 T = _mm_srli_si128(T, 4); \
337 TL = _mm_srli_si128(TL, 4); \
338 src = _mm_srli_si128(src, 4); \
339 pa = _mm_srli_si128(pa, 4); \
340} while (0)
341
342static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
343 int num_pixels, uint32_t* out) {
344 int i;
345 __m128i pa;
346 __m128i L = _mm_cvtsi32_si128(out[-1]);
347 for (i = 0; i + 4 <= num_pixels; i += 4) {
348 __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
349 __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
350 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
351 {
352 // We can unpack with any value on the upper 32 bits, provided it's the
353 // same on both operands (so that their sum of abs diff is zero). Here we
354 // use T.
355 const __m128i T_lo = _mm_unpacklo_epi32(T, T);
356 const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
357 const __m128i T_hi = _mm_unpackhi_epi32(T, T);
358 const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
359 const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
360 const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
361 pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL|
362 }
363 DO_PRED11(0);
364 DO_PRED11_SHIFT;
365 DO_PRED11(1);
366 DO_PRED11_SHIFT;
367 DO_PRED11(2);
368 DO_PRED11_SHIFT;
369 DO_PRED11(3);
370 }
371 if (i != num_pixels) {
372 VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
373 }
374}
375#undef DO_PRED11
376#undef DO_PRED11_SHIFT
377
378// Predictor12: ClampedAddSubtractFull.
379#define DO_PRED12(DIFF, LANE, OUT) do { \
380 const __m128i all = _mm_add_epi16(L, (DIFF)); \
381 const __m128i alls = _mm_packus_epi16(all, all); \
382 const __m128i res = _mm_add_epi8(src, alls); \
383 out[i + (OUT)] = _mm_cvtsi128_si32(res); \
384 L = _mm_unpacklo_epi8(res, zero); \
385} while (0)
386
387#define DO_PRED12_SHIFT(DIFF, LANE) do { \
388 /* Shift the pre-computed value for the next iteration.*/ \
389 if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \
390 src = _mm_srli_si128(src, 4); \
391} while (0)
392
393static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
394 int num_pixels, uint32_t* out) {
395 int i;
396 const __m128i zero = _mm_setzero_si128();
397 const __m128i L8 = _mm_cvtsi32_si128(out[-1]);
398 __m128i L = _mm_unpacklo_epi8(L8, zero);
399 for (i = 0; i + 4 <= num_pixels; i += 4) {
400 // Load 4 pixels at a time.
401 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
402 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
403 const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
404 const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
405 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
406 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
407 const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
408 __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
409 __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
410 DO_PRED12(diff_lo, 0, 0);
411 DO_PRED12_SHIFT(diff_lo, 0);
412 DO_PRED12(diff_lo, 1, 1);
413 DO_PRED12_SHIFT(diff_lo, 1);
414 DO_PRED12(diff_hi, 0, 2);
415 DO_PRED12_SHIFT(diff_hi, 0);
416 DO_PRED12(diff_hi, 1, 3);
417 }
418 if (i != num_pixels) {
419 VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
420 }
421}
422#undef DO_PRED12
423#undef DO_PRED12_SHIFT
424
425// Due to averages with integers, values cannot be accumulated in parallel for
426// predictors 13.
427GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
428
429//------------------------------------------------------------------------------
430// Subtract-Green Transform
431
432static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
433 uint32_t* dst) {
434 int i;
435 for (i = 0; i + 4 <= num_pixels; i += 4) {
436 const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
437 const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
438 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
439 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
440 const __m128i out = _mm_add_epi8(in, C);
441 _mm_storeu_si128((__m128i*)&dst[i], out);
442 }
443 // fallthrough and finish off with plain-C
444 if (i != num_pixels) {
445 VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
446 }
447}
448
449//------------------------------------------------------------------------------
450// Color Transform
451
452static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
453 const uint32_t* const src,
454 int num_pixels, uint32_t* dst) {
455// sign-extended multiplying constants, pre-shifted by 5.
456#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
457#define MK_CST_16(HI, LO) \
458 _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
459 const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
460 const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
461#undef MK_CST_16
462#undef CST
463 const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks
464 int i;
465 for (i = 0; i + 4 <= num_pixels; i += 4) {
466 const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
467 const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
468 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
469 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
470 const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
471 const __m128i E = _mm_add_epi8(in, D); // x r' x b'
472 const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0
473 const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0
474 const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0
475 const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0
476 const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b''
477 const __m128i out = _mm_or_si128(J, A);
478 _mm_storeu_si128((__m128i*)&dst[i], out);
479 }
480 // Fall-back to C-version for left-overs.
481 if (i != num_pixels) {
482 VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
483 }
484}
485
486//------------------------------------------------------------------------------
487// Color-space conversion functions
488
489static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
490 uint8_t* dst) {
491 const __m128i* in = (const __m128i*)src;
492 __m128i* out = (__m128i*)dst;
493
494 while (num_pixels >= 32) {
495 // Load the BGRA buffers.
496 __m128i in0 = _mm_loadu_si128(in + 0);
497 __m128i in1 = _mm_loadu_si128(in + 1);
498 __m128i in2 = _mm_loadu_si128(in + 2);
499 __m128i in3 = _mm_loadu_si128(in + 3);
500 __m128i in4 = _mm_loadu_si128(in + 4);
501 __m128i in5 = _mm_loadu_si128(in + 5);
502 __m128i in6 = _mm_loadu_si128(in + 6);
503 __m128i in7 = _mm_loadu_si128(in + 7);
504 VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
505 VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
506 // At this points, in1/in5 contains red only, in2/in6 green only ...
507 // Pack the colors in 24b RGB.
508 VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
509 _mm_storeu_si128(out + 0, in1);
510 _mm_storeu_si128(out + 1, in5);
511 _mm_storeu_si128(out + 2, in2);
512 _mm_storeu_si128(out + 3, in6);
513 _mm_storeu_si128(out + 4, in3);
514 _mm_storeu_si128(out + 5, in7);
515 in += 8;
516 out += 6;
517 num_pixels -= 32;
518 }
519 // left-overs
520 if (num_pixels > 0) {
521 VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
522 }
523}
524
525static void ConvertBGRAToRGBA_SSE2(const uint32_t* src,
526 int num_pixels, uint8_t* dst) {
527 const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ffu);
528 const __m128i* in = (const __m128i*)src;
529 __m128i* out = (__m128i*)dst;
530 while (num_pixels >= 8) {
531 const __m128i A1 = _mm_loadu_si128(in++);
532 const __m128i A2 = _mm_loadu_si128(in++);
533 const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0
534 const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0
535 const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A
536 const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A
537 const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
538 const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
539 const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
540 const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
541 const __m128i F1 = _mm_or_si128(E1, C1);
542 const __m128i F2 = _mm_or_si128(E2, C2);
543 _mm_storeu_si128(out++, F1);
544 _mm_storeu_si128(out++, F2);
545 num_pixels -= 8;
546 }
547 // left-overs
548 if (num_pixels > 0) {
549 VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
550 }
551}
552
553static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src,
554 int num_pixels, uint8_t* dst) {
555 const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
556 const __m128i mask_0xf0 = _mm_set1_epi8(0xf0);
557 const __m128i* in = (const __m128i*)src;
558 __m128i* out = (__m128i*)dst;
559 while (num_pixels >= 8) {
560 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
561 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
562 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
563 const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
564 const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
565 const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
566 const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
567 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
568 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
569 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
570 const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7-
571 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7
572 const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7-
573 const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7
574 const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0
575#if (WEBP_SWAP_16BIT_CSP == 1)
576 const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7
577#else
578 const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7
579#endif
580 _mm_storeu_si128(out++, rgba);
581 num_pixels -= 8;
582 }
583 // left-overs
584 if (num_pixels > 0) {
585 VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
586 }
587}
588
589static void ConvertBGRAToRGB565_SSE2(const uint32_t* src,
590 int num_pixels, uint8_t* dst) {
591 const __m128i mask_0xe0 = _mm_set1_epi8(0xe0);
592 const __m128i mask_0xf8 = _mm_set1_epi8(0xf8);
593 const __m128i mask_0x07 = _mm_set1_epi8(0x07);
594 const __m128i* in = (const __m128i*)src;
595 __m128i* out = (__m128i*)dst;
596 while (num_pixels >= 8) {
597 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
598 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
599 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
600 const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
601 const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
602 const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
603 const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
604 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
605 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
606 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
607 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7
608 const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
609 const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b)
610 const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
611 const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b)
612 const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0
613 const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx
614 const __m128i b1 = _mm_srli_epi16(b0, 3);
615 const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx
616#if (WEBP_SWAP_16BIT_CSP == 1)
617 const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7
618#else
619 const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7
620#endif
621 _mm_storeu_si128(out++, rgba);
622 num_pixels -= 8;
623 }
624 // left-overs
625 if (num_pixels > 0) {
626 VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
627 }
628}
629
630static void ConvertBGRAToBGR_SSE2(const uint32_t* src,
631 int num_pixels, uint8_t* dst) {
632 const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
633 const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
634 const __m128i* in = (const __m128i*)src;
635 const uint8_t* const end = dst + num_pixels * 3;
636 // the last storel_epi64 below writes 8 bytes starting at offset 18
637 while (dst + 26 <= end) {
638 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
639 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
640 const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0
641 const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0
642 const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0
643 const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0
644 const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00
645 const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00
646 const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00
647 const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00
648 const __m128i c2 = _mm_srli_si128(c0, 8);
649 const __m128i c6 = _mm_srli_si128(c4, 8);
650 _mm_storel_epi64((__m128i*)(dst + 0), c0);
651 _mm_storel_epi64((__m128i*)(dst + 6), c2);
652 _mm_storel_epi64((__m128i*)(dst + 12), c4);
653 _mm_storel_epi64((__m128i*)(dst + 18), c6);
654 dst += 24;
655 num_pixels -= 8;
656 }
657 // left-overs
658 if (num_pixels > 0) {
659 VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
660 }
661}
662
663//------------------------------------------------------------------------------
664// Entry point
665
666extern void VP8LDspInitSSE2(void);
667
668WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
669 VP8LPredictors[5] = Predictor5_SSE2;
670 VP8LPredictors[6] = Predictor6_SSE2;
671 VP8LPredictors[7] = Predictor7_SSE2;
672 VP8LPredictors[8] = Predictor8_SSE2;
673 VP8LPredictors[9] = Predictor9_SSE2;
674 VP8LPredictors[10] = Predictor10_SSE2;
675 VP8LPredictors[11] = Predictor11_SSE2;
676 VP8LPredictors[12] = Predictor12_SSE2;
677 VP8LPredictors[13] = Predictor13_SSE2;
678
679 VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
680 VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
681 VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
682 VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
683 VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
684 VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
685 VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
686 VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
687 VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
688 VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
689 VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
690 VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
691 VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
692 VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
693
694 VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
695 VP8LTransformColorInverse = TransformColorInverse_SSE2;
696
697 VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
698 VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
699 VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
700 VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
701 VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
702}
703
704#else // !WEBP_USE_SSE2
705
706WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
707
708#endif // WEBP_USE_SSE2
709