1 | // Copyright 2014 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // YUV->RGB conversion functions |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "src/dsp/yuv.h" |
15 | |
16 | #if defined(WEBP_USE_SSE41) |
17 | |
18 | #include "src/dsp/common_sse41.h" |
19 | #include <stdlib.h> |
20 | #include <smmintrin.h> |
21 | |
22 | //----------------------------------------------------------------------------- |
23 | // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. |
24 | |
25 | // These constants are 14b fixed-point version of ITU-R BT.601 constants. |
26 | // R = (19077 * y + 26149 * v - 14234) >> 6 |
27 | // G = (19077 * y - 6419 * u - 13320 * v + 8708) >> 6 |
28 | // B = (19077 * y + 33050 * u - 17685) >> 6 |
29 | static void ConvertYUV444ToRGB_SSE41(const __m128i* const Y0, |
30 | const __m128i* const U0, |
31 | const __m128i* const V0, |
32 | __m128i* const R, |
33 | __m128i* const G, |
34 | __m128i* const B) { |
35 | const __m128i k19077 = _mm_set1_epi16(19077); |
36 | const __m128i k26149 = _mm_set1_epi16(26149); |
37 | const __m128i k14234 = _mm_set1_epi16(14234); |
38 | // 33050 doesn't fit in a signed short: only use this with unsigned arithmetic |
39 | const __m128i k33050 = _mm_set1_epi16((short)33050); |
40 | const __m128i k17685 = _mm_set1_epi16(17685); |
41 | const __m128i k6419 = _mm_set1_epi16(6419); |
42 | const __m128i k13320 = _mm_set1_epi16(13320); |
43 | const __m128i k8708 = _mm_set1_epi16(8708); |
44 | |
45 | const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077); |
46 | |
47 | const __m128i R0 = _mm_mulhi_epu16(*V0, k26149); |
48 | const __m128i R1 = _mm_sub_epi16(Y1, k14234); |
49 | const __m128i R2 = _mm_add_epi16(R1, R0); |
50 | |
51 | const __m128i G0 = _mm_mulhi_epu16(*U0, k6419); |
52 | const __m128i G1 = _mm_mulhi_epu16(*V0, k13320); |
53 | const __m128i G2 = _mm_add_epi16(Y1, k8708); |
54 | const __m128i G3 = _mm_add_epi16(G0, G1); |
55 | const __m128i G4 = _mm_sub_epi16(G2, G3); |
56 | |
57 | // be careful with the saturated *unsigned* arithmetic here! |
58 | const __m128i B0 = _mm_mulhi_epu16(*U0, k33050); |
59 | const __m128i B1 = _mm_adds_epu16(B0, Y1); |
60 | const __m128i B2 = _mm_subs_epu16(B1, k17685); |
61 | |
62 | // use logical shift for B2, which can be larger than 32767 |
63 | *R = _mm_srai_epi16(R2, 6); // range: [-14234, 30815] |
64 | *G = _mm_srai_epi16(G4, 6); // range: [-10953, 27710] |
65 | *B = _mm_srli_epi16(B2, 6); // range: [0, 34238] |
66 | } |
67 | |
68 | // Load the bytes into the *upper* part of 16b words. That's "<< 8", basically. |
69 | static WEBP_INLINE __m128i Load_HI_16_SSE41(const uint8_t* src) { |
70 | const __m128i zero = _mm_setzero_si128(); |
71 | return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src)); |
72 | } |
73 | |
74 | // Load and replicate the U/V samples |
75 | static WEBP_INLINE __m128i Load_UV_HI_8_SSE41(const uint8_t* src) { |
76 | const __m128i zero = _mm_setzero_si128(); |
77 | const __m128i tmp0 = _mm_cvtsi32_si128(*(const uint32_t*)src); |
78 | const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0); |
79 | return _mm_unpacklo_epi16(tmp1, tmp1); // replicate samples |
80 | } |
81 | |
82 | // Convert 32 samples of YUV444 to R/G/B |
83 | static void YUV444ToRGB_SSE41(const uint8_t* const y, |
84 | const uint8_t* const u, |
85 | const uint8_t* const v, |
86 | __m128i* const R, __m128i* const G, |
87 | __m128i* const B) { |
88 | const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_HI_16_SSE41(u), |
89 | V0 = Load_HI_16_SSE41(v); |
90 | ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); |
91 | } |
92 | |
93 | // Convert 32 samples of YUV420 to R/G/B |
94 | static void YUV420ToRGB_SSE41(const uint8_t* const y, |
95 | const uint8_t* const u, |
96 | const uint8_t* const v, |
97 | __m128i* const R, __m128i* const G, |
98 | __m128i* const B) { |
99 | const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_UV_HI_8_SSE41(u), |
100 | V0 = Load_UV_HI_8_SSE41(v); |
101 | ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); |
102 | } |
103 | |
104 | // Pack the planar buffers |
105 | // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... |
106 | // triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... |
107 | static WEBP_INLINE void PlanarTo24b_SSE41( |
108 | __m128i* const in0, __m128i* const in1, __m128i* const in2, |
109 | __m128i* const in3, __m128i* const in4, __m128i* const in5, |
110 | uint8_t* const rgb) { |
111 | // The input is 6 registers of sixteen 8b but for the sake of explanation, |
112 | // let's take 6 registers of four 8b values. |
113 | // To pack, we will keep taking one every two 8b integer and move it |
114 | // around as follows: |
115 | // Input: |
116 | // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 |
117 | // Split the 6 registers in two sets of 3 registers: the first set as the even |
118 | // 8b bytes, the second the odd ones: |
119 | // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 |
120 | // Repeat the same permutations twice more: |
121 | // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 |
122 | // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 |
123 | VP8PlanarTo24b_SSE41(in0, in1, in2, in3, in4, in5); |
124 | |
125 | _mm_storeu_si128((__m128i*)(rgb + 0), *in0); |
126 | _mm_storeu_si128((__m128i*)(rgb + 16), *in1); |
127 | _mm_storeu_si128((__m128i*)(rgb + 32), *in2); |
128 | _mm_storeu_si128((__m128i*)(rgb + 48), *in3); |
129 | _mm_storeu_si128((__m128i*)(rgb + 64), *in4); |
130 | _mm_storeu_si128((__m128i*)(rgb + 80), *in5); |
131 | } |
132 | |
133 | void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
134 | uint8_t* dst) { |
135 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
136 | __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; |
137 | |
138 | YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
139 | YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); |
140 | YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); |
141 | YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); |
142 | |
143 | // Cast to 8b and store as RRRRGGGGBBBB. |
144 | rgb0 = _mm_packus_epi16(R0, R1); |
145 | rgb1 = _mm_packus_epi16(R2, R3); |
146 | rgb2 = _mm_packus_epi16(G0, G1); |
147 | rgb3 = _mm_packus_epi16(G2, G3); |
148 | rgb4 = _mm_packus_epi16(B0, B1); |
149 | rgb5 = _mm_packus_epi16(B2, B3); |
150 | |
151 | // Pack as RGBRGBRGBRGB. |
152 | PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); |
153 | } |
154 | |
155 | void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
156 | uint8_t* dst) { |
157 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
158 | __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; |
159 | |
160 | YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
161 | YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); |
162 | YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); |
163 | YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); |
164 | |
165 | // Cast to 8b and store as BBBBGGGGRRRR. |
166 | bgr0 = _mm_packus_epi16(B0, B1); |
167 | bgr1 = _mm_packus_epi16(B2, B3); |
168 | bgr2 = _mm_packus_epi16(G0, G1); |
169 | bgr3 = _mm_packus_epi16(G2, G3); |
170 | bgr4 = _mm_packus_epi16(R0, R1); |
171 | bgr5= _mm_packus_epi16(R2, R3); |
172 | |
173 | // Pack as BGRBGRBGRBGR. |
174 | PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); |
175 | } |
176 | |
177 | //----------------------------------------------------------------------------- |
178 | // Arbitrary-length row conversion functions |
179 | |
180 | static void YuvToRgbRow_SSE41(const uint8_t* y, |
181 | const uint8_t* u, const uint8_t* v, |
182 | uint8_t* dst, int len) { |
183 | int n; |
184 | for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { |
185 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
186 | __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; |
187 | |
188 | YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
189 | YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); |
190 | YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); |
191 | YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); |
192 | |
193 | // Cast to 8b and store as RRRRGGGGBBBB. |
194 | rgb0 = _mm_packus_epi16(R0, R1); |
195 | rgb1 = _mm_packus_epi16(R2, R3); |
196 | rgb2 = _mm_packus_epi16(G0, G1); |
197 | rgb3 = _mm_packus_epi16(G2, G3); |
198 | rgb4 = _mm_packus_epi16(B0, B1); |
199 | rgb5 = _mm_packus_epi16(B2, B3); |
200 | |
201 | // Pack as RGBRGBRGBRGB. |
202 | PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); |
203 | |
204 | y += 32; |
205 | u += 16; |
206 | v += 16; |
207 | } |
208 | for (; n < len; ++n) { // Finish off |
209 | VP8YuvToRgb(y[0], u[0], v[0], dst); |
210 | dst += 3; |
211 | y += 1; |
212 | u += (n & 1); |
213 | v += (n & 1); |
214 | } |
215 | } |
216 | |
217 | static void YuvToBgrRow_SSE41(const uint8_t* y, |
218 | const uint8_t* u, const uint8_t* v, |
219 | uint8_t* dst, int len) { |
220 | int n; |
221 | for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { |
222 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
223 | __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; |
224 | |
225 | YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
226 | YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); |
227 | YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); |
228 | YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); |
229 | |
230 | // Cast to 8b and store as BBBBGGGGRRRR. |
231 | bgr0 = _mm_packus_epi16(B0, B1); |
232 | bgr1 = _mm_packus_epi16(B2, B3); |
233 | bgr2 = _mm_packus_epi16(G0, G1); |
234 | bgr3 = _mm_packus_epi16(G2, G3); |
235 | bgr4 = _mm_packus_epi16(R0, R1); |
236 | bgr5 = _mm_packus_epi16(R2, R3); |
237 | |
238 | // Pack as BGRBGRBGRBGR. |
239 | PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); |
240 | |
241 | y += 32; |
242 | u += 16; |
243 | v += 16; |
244 | } |
245 | for (; n < len; ++n) { // Finish off |
246 | VP8YuvToBgr(y[0], u[0], v[0], dst); |
247 | dst += 3; |
248 | y += 1; |
249 | u += (n & 1); |
250 | v += (n & 1); |
251 | } |
252 | } |
253 | |
254 | //------------------------------------------------------------------------------ |
255 | // Entry point |
256 | |
257 | extern void WebPInitSamplersSSE41(void); |
258 | |
259 | WEBP_TSAN_IGNORE_FUNCTION void (void) { |
260 | WebPSamplers[MODE_RGB] = YuvToRgbRow_SSE41; |
261 | WebPSamplers[MODE_BGR] = YuvToBgrRow_SSE41; |
262 | } |
263 | |
264 | //------------------------------------------------------------------------------ |
265 | // RGB24/32 -> YUV converters |
266 | |
267 | // Load eight 16b-words from *src. |
268 | #define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src)) |
269 | // Store either 16b-words into *dst |
270 | #define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V)) |
271 | |
272 | #define WEBP_SSE41_SHUFF(OUT) do { \ |
273 | const __m128i tmp0 = _mm_shuffle_epi8(A0, shuff0); \ |
274 | const __m128i tmp1 = _mm_shuffle_epi8(A1, shuff1); \ |
275 | const __m128i tmp2 = _mm_shuffle_epi8(A2, shuff2); \ |
276 | const __m128i tmp3 = _mm_shuffle_epi8(A3, shuff0); \ |
277 | const __m128i tmp4 = _mm_shuffle_epi8(A4, shuff1); \ |
278 | const __m128i tmp5 = _mm_shuffle_epi8(A5, shuff2); \ |
279 | \ |
280 | /* OR everything to get one channel */ \ |
281 | const __m128i tmp6 = _mm_or_si128(tmp0, tmp1); \ |
282 | const __m128i tmp7 = _mm_or_si128(tmp3, tmp4); \ |
283 | out[OUT + 0] = _mm_or_si128(tmp6, tmp2); \ |
284 | out[OUT + 1] = _mm_or_si128(tmp7, tmp5); \ |
285 | } while (0); |
286 | |
287 | // Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers: |
288 | // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... |
289 | // Similar to PlanarTo24bHelper(), but in reverse order. |
290 | static WEBP_INLINE void RGB24PackedToPlanar_SSE41( |
291 | const uint8_t* const rgb, __m128i* const out /*out[6]*/) { |
292 | const __m128i A0 = _mm_loadu_si128((const __m128i*)(rgb + 0)); |
293 | const __m128i A1 = _mm_loadu_si128((const __m128i*)(rgb + 16)); |
294 | const __m128i A2 = _mm_loadu_si128((const __m128i*)(rgb + 32)); |
295 | const __m128i A3 = _mm_loadu_si128((const __m128i*)(rgb + 48)); |
296 | const __m128i A4 = _mm_loadu_si128((const __m128i*)(rgb + 64)); |
297 | const __m128i A5 = _mm_loadu_si128((const __m128i*)(rgb + 80)); |
298 | |
299 | // Compute RR. |
300 | { |
301 | const __m128i shuff0 = _mm_set_epi8( |
302 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0); |
303 | const __m128i shuff1 = _mm_set_epi8( |
304 | -1, -1, -1, -1, -1, 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1); |
305 | const __m128i shuff2 = _mm_set_epi8( |
306 | 13, 10, 7, 4, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); |
307 | WEBP_SSE41_SHUFF(0) |
308 | } |
309 | // Compute GG. |
310 | { |
311 | const __m128i shuff0 = _mm_set_epi8( |
312 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1); |
313 | const __m128i shuff1 = _mm_set_epi8( |
314 | -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1); |
315 | const __m128i shuff2 = _mm_set_epi8( |
316 | 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); |
317 | WEBP_SSE41_SHUFF(2) |
318 | } |
319 | // Compute BB. |
320 | { |
321 | const __m128i shuff0 = _mm_set_epi8( |
322 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 14, 11, 8, 5, 2); |
323 | const __m128i shuff1 = _mm_set_epi8( |
324 | -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1, -1, -1, -1, -1, -1); |
325 | const __m128i shuff2 = _mm_set_epi8( |
326 | 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); |
327 | WEBP_SSE41_SHUFF(4) |
328 | } |
329 | } |
330 | |
331 | #undef WEBP_SSE41_SHUFF |
332 | |
333 | // Convert 8 packed ARGB to r[], g[], b[] |
334 | static WEBP_INLINE void RGB32PackedToPlanar_SSE41( |
335 | const uint32_t* const argb, __m128i* const rgb /*in[6]*/) { |
336 | const __m128i zero = _mm_setzero_si128(); |
337 | __m128i a0 = LOAD_16(argb + 0); |
338 | __m128i a1 = LOAD_16(argb + 4); |
339 | __m128i a2 = LOAD_16(argb + 8); |
340 | __m128i a3 = LOAD_16(argb + 12); |
341 | VP8L32bToPlanar_SSE41(&a0, &a1, &a2, &a3); |
342 | rgb[0] = _mm_unpacklo_epi8(a1, zero); |
343 | rgb[1] = _mm_unpackhi_epi8(a1, zero); |
344 | rgb[2] = _mm_unpacklo_epi8(a2, zero); |
345 | rgb[3] = _mm_unpackhi_epi8(a2, zero); |
346 | rgb[4] = _mm_unpacklo_epi8(a3, zero); |
347 | rgb[5] = _mm_unpackhi_epi8(a3, zero); |
348 | } |
349 | |
350 | // This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX |
351 | // It's a macro and not a function because we need to use immediate values with |
352 | // srai_epi32, e.g. |
353 | #define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \ |
354 | ROUNDER, DESCALE_FIX, OUT) do { \ |
355 | const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \ |
356 | const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \ |
357 | const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \ |
358 | const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \ |
359 | const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \ |
360 | const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \ |
361 | const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \ |
362 | const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \ |
363 | const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \ |
364 | const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \ |
365 | (OUT) = _mm_packs_epi32(V5_lo, V5_hi); \ |
366 | } while (0) |
367 | |
368 | #define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A)) |
369 | static WEBP_INLINE void ConvertRGBToY_SSE41(const __m128i* const R, |
370 | const __m128i* const G, |
371 | const __m128i* const B, |
372 | __m128i* const Y) { |
373 | const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384); |
374 | const __m128i kGB_y = MK_CST_16(16384, 6420); |
375 | const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF); |
376 | |
377 | const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); |
378 | const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); |
379 | const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); |
380 | const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); |
381 | TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y); |
382 | } |
383 | |
384 | static WEBP_INLINE void ConvertRGBToUV_SSE41(const __m128i* const R, |
385 | const __m128i* const G, |
386 | const __m128i* const B, |
387 | __m128i* const U, |
388 | __m128i* const V) { |
389 | const __m128i kRG_u = MK_CST_16(-9719, -19081); |
390 | const __m128i kGB_u = MK_CST_16(0, 28800); |
391 | const __m128i kRG_v = MK_CST_16(28800, 0); |
392 | const __m128i kGB_v = MK_CST_16(-24116, -4684); |
393 | const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2); |
394 | |
395 | const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); |
396 | const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); |
397 | const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); |
398 | const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); |
399 | TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u, |
400 | kHALF_UV, YUV_FIX + 2, *U); |
401 | TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v, |
402 | kHALF_UV, YUV_FIX + 2, *V); |
403 | } |
404 | |
405 | #undef MK_CST_16 |
406 | #undef TRANSFORM |
407 | |
408 | static void ConvertRGB24ToY_SSE41(const uint8_t* rgb, uint8_t* y, int width) { |
409 | const int max_width = width & ~31; |
410 | int i; |
411 | for (i = 0; i < max_width; rgb += 3 * 16 * 2) { |
412 | __m128i rgb_plane[6]; |
413 | int j; |
414 | |
415 | RGB24PackedToPlanar_SSE41(rgb, rgb_plane); |
416 | |
417 | for (j = 0; j < 2; ++j, i += 16) { |
418 | const __m128i zero = _mm_setzero_si128(); |
419 | __m128i r, g, b, Y0, Y1; |
420 | |
421 | // Convert to 16-bit Y. |
422 | r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero); |
423 | g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero); |
424 | b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero); |
425 | ConvertRGBToY_SSE41(&r, &g, &b, &Y0); |
426 | |
427 | // Convert to 16-bit Y. |
428 | r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero); |
429 | g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero); |
430 | b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero); |
431 | ConvertRGBToY_SSE41(&r, &g, &b, &Y1); |
432 | |
433 | // Cast to 8-bit and store. |
434 | STORE_16(_mm_packus_epi16(Y0, Y1), y + i); |
435 | } |
436 | } |
437 | for (; i < width; ++i, rgb += 3) { // left-over |
438 | y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); |
439 | } |
440 | } |
441 | |
442 | static void ConvertBGR24ToY_SSE41(const uint8_t* bgr, uint8_t* y, int width) { |
443 | const int max_width = width & ~31; |
444 | int i; |
445 | for (i = 0; i < max_width; bgr += 3 * 16 * 2) { |
446 | __m128i bgr_plane[6]; |
447 | int j; |
448 | |
449 | RGB24PackedToPlanar_SSE41(bgr, bgr_plane); |
450 | |
451 | for (j = 0; j < 2; ++j, i += 16) { |
452 | const __m128i zero = _mm_setzero_si128(); |
453 | __m128i r, g, b, Y0, Y1; |
454 | |
455 | // Convert to 16-bit Y. |
456 | b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero); |
457 | g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero); |
458 | r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero); |
459 | ConvertRGBToY_SSE41(&r, &g, &b, &Y0); |
460 | |
461 | // Convert to 16-bit Y. |
462 | b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero); |
463 | g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero); |
464 | r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero); |
465 | ConvertRGBToY_SSE41(&r, &g, &b, &Y1); |
466 | |
467 | // Cast to 8-bit and store. |
468 | STORE_16(_mm_packus_epi16(Y0, Y1), y + i); |
469 | } |
470 | } |
471 | for (; i < width; ++i, bgr += 3) { // left-over |
472 | y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); |
473 | } |
474 | } |
475 | |
476 | static void ConvertARGBToY_SSE41(const uint32_t* argb, uint8_t* y, int width) { |
477 | const int max_width = width & ~15; |
478 | int i; |
479 | for (i = 0; i < max_width; i += 16) { |
480 | __m128i Y0, Y1, rgb[6]; |
481 | RGB32PackedToPlanar_SSE41(&argb[i], rgb); |
482 | ConvertRGBToY_SSE41(&rgb[0], &rgb[2], &rgb[4], &Y0); |
483 | ConvertRGBToY_SSE41(&rgb[1], &rgb[3], &rgb[5], &Y1); |
484 | STORE_16(_mm_packus_epi16(Y0, Y1), y + i); |
485 | } |
486 | for (; i < width; ++i) { // left-over |
487 | const uint32_t p = argb[i]; |
488 | y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, |
489 | YUV_HALF); |
490 | } |
491 | } |
492 | |
493 | // Horizontal add (doubled) of two 16b values, result is 16b. |
494 | // in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ... |
495 | static void HorizontalAddPack_SSE41(const __m128i* const A, |
496 | const __m128i* const B, |
497 | __m128i* const out) { |
498 | const __m128i k2 = _mm_set1_epi16(2); |
499 | const __m128i C = _mm_madd_epi16(*A, k2); |
500 | const __m128i D = _mm_madd_epi16(*B, k2); |
501 | *out = _mm_packs_epi32(C, D); |
502 | } |
503 | |
504 | static void ConvertARGBToUV_SSE41(const uint32_t* argb, |
505 | uint8_t* u, uint8_t* v, |
506 | int src_width, int do_store) { |
507 | const int max_width = src_width & ~31; |
508 | int i; |
509 | for (i = 0; i < max_width; i += 32, u += 16, v += 16) { |
510 | __m128i rgb[6], U0, V0, U1, V1; |
511 | RGB32PackedToPlanar_SSE41(&argb[i], rgb); |
512 | HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); |
513 | HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); |
514 | HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); |
515 | ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U0, &V0); |
516 | |
517 | RGB32PackedToPlanar_SSE41(&argb[i + 16], rgb); |
518 | HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); |
519 | HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); |
520 | HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); |
521 | ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U1, &V1); |
522 | |
523 | U0 = _mm_packus_epi16(U0, U1); |
524 | V0 = _mm_packus_epi16(V0, V1); |
525 | if (!do_store) { |
526 | const __m128i prev_u = LOAD_16(u); |
527 | const __m128i prev_v = LOAD_16(v); |
528 | U0 = _mm_avg_epu8(U0, prev_u); |
529 | V0 = _mm_avg_epu8(V0, prev_v); |
530 | } |
531 | STORE_16(U0, u); |
532 | STORE_16(V0, v); |
533 | } |
534 | if (i < src_width) { // left-over |
535 | WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); |
536 | } |
537 | } |
538 | |
539 | // Convert 16 packed ARGB 16b-values to r[], g[], b[] |
540 | static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE41( |
541 | const uint16_t* const rgbx, |
542 | __m128i* const r, __m128i* const g, __m128i* const b) { |
543 | const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x |
544 | const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x |
545 | const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ... |
546 | const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ... |
547 | // aarrggbb as 16-bit. |
548 | const __m128i shuff0 = |
549 | _mm_set_epi8(-1, -1, -1, -1, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0); |
550 | const __m128i shuff1 = |
551 | _mm_set_epi8(13, 12, 5, 4, -1, -1, -1, -1, 11, 10, 3, 2, 9, 8, 1, 0); |
552 | const __m128i A0 = _mm_shuffle_epi8(in0, shuff0); |
553 | const __m128i A1 = _mm_shuffle_epi8(in1, shuff1); |
554 | const __m128i A2 = _mm_shuffle_epi8(in2, shuff0); |
555 | const __m128i A3 = _mm_shuffle_epi8(in3, shuff1); |
556 | // R0R1G0G1 |
557 | // B0B1**** |
558 | // R2R3G2G3 |
559 | // B2B3**** |
560 | // (OR is used to free port 5 for the unpack) |
561 | const __m128i B0 = _mm_unpacklo_epi32(A0, A1); |
562 | const __m128i B1 = _mm_or_si128(A0, A1); |
563 | const __m128i B2 = _mm_unpacklo_epi32(A2, A3); |
564 | const __m128i B3 = _mm_or_si128(A2, A3); |
565 | // Gather the channels. |
566 | *r = _mm_unpacklo_epi64(B0, B2); |
567 | *g = _mm_unpackhi_epi64(B0, B2); |
568 | *b = _mm_unpackhi_epi64(B1, B3); |
569 | } |
570 | |
571 | static void ConvertRGBA32ToUV_SSE41(const uint16_t* rgb, |
572 | uint8_t* u, uint8_t* v, int width) { |
573 | const int max_width = width & ~15; |
574 | const uint16_t* const last_rgb = rgb + 4 * max_width; |
575 | while (rgb < last_rgb) { |
576 | __m128i r, g, b, U0, V0, U1, V1; |
577 | RGBA32PackedToPlanar_16b_SSE41(rgb + 0, &r, &g, &b); |
578 | ConvertRGBToUV_SSE41(&r, &g, &b, &U0, &V0); |
579 | RGBA32PackedToPlanar_16b_SSE41(rgb + 32, &r, &g, &b); |
580 | ConvertRGBToUV_SSE41(&r, &g, &b, &U1, &V1); |
581 | STORE_16(_mm_packus_epi16(U0, U1), u); |
582 | STORE_16(_mm_packus_epi16(V0, V1), v); |
583 | u += 16; |
584 | v += 16; |
585 | rgb += 2 * 32; |
586 | } |
587 | if (max_width < width) { // left-over |
588 | WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width); |
589 | } |
590 | } |
591 | |
592 | //------------------------------------------------------------------------------ |
593 | |
594 | extern void WebPInitConvertARGBToYUVSSE41(void); |
595 | |
596 | WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE41(void) { |
597 | WebPConvertARGBToY = ConvertARGBToY_SSE41; |
598 | WebPConvertARGBToUV = ConvertARGBToUV_SSE41; |
599 | |
600 | WebPConvertRGB24ToY = ConvertRGB24ToY_SSE41; |
601 | WebPConvertBGR24ToY = ConvertBGR24ToY_SSE41; |
602 | |
603 | WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE41; |
604 | } |
605 | |
606 | //------------------------------------------------------------------------------ |
607 | |
608 | #else // !WEBP_USE_SSE41 |
609 | |
610 | WEBP_DSP_INIT_STUB(WebPInitSamplersSSE41) |
611 | WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE41) |
612 | |
613 | #endif // WEBP_USE_SSE41 |
614 | |