| 1 | // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Author: Jyrki Alakuijala (jyrki@google.com) |
| 11 | // |
| 12 | #ifdef HAVE_CONFIG_H |
| 13 | #include "src/webp/config.h" |
| 14 | #endif |
| 15 | |
| 16 | #include <math.h> |
| 17 | |
| 18 | #include "src/enc/backward_references_enc.h" |
| 19 | #include "src/enc/histogram_enc.h" |
| 20 | #include "src/dsp/lossless.h" |
| 21 | #include "src/dsp/lossless_common.h" |
| 22 | #include "src/utils/utils.h" |
| 23 | |
| 24 | #define MAX_COST 1.e38 |
| 25 | |
| 26 | // Number of partitions for the three dominant (literal, red and blue) symbol |
| 27 | // costs. |
| 28 | #define NUM_PARTITIONS 4 |
| 29 | // The size of the bin-hash corresponding to the three dominant costs. |
| 30 | #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) |
| 31 | // Maximum number of histograms allowed in greedy combining algorithm. |
| 32 | #define MAX_HISTO_GREEDY 100 |
| 33 | |
| 34 | static void HistogramClear(VP8LHistogram* const p) { |
| 35 | uint32_t* const literal = p->literal_; |
| 36 | const int cache_bits = p->palette_code_bits_; |
| 37 | const int histo_size = VP8LGetHistogramSize(cache_bits); |
| 38 | memset(p, 0, histo_size); |
| 39 | p->palette_code_bits_ = cache_bits; |
| 40 | p->literal_ = literal; |
| 41 | } |
| 42 | |
| 43 | // Swap two histogram pointers. |
| 44 | static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) { |
| 45 | VP8LHistogram* const tmp = *A; |
| 46 | *A = *B; |
| 47 | *B = tmp; |
| 48 | } |
| 49 | |
| 50 | static void HistogramCopy(const VP8LHistogram* const src, |
| 51 | VP8LHistogram* const dst) { |
| 52 | uint32_t* const dst_literal = dst->literal_; |
| 53 | const int dst_cache_bits = dst->palette_code_bits_; |
| 54 | const int literal_size = VP8LHistogramNumCodes(dst_cache_bits); |
| 55 | const int histo_size = VP8LGetHistogramSize(dst_cache_bits); |
| 56 | assert(src->palette_code_bits_ == dst_cache_bits); |
| 57 | memcpy(dst, src, histo_size); |
| 58 | dst->literal_ = dst_literal; |
| 59 | memcpy(dst->literal_, src->literal_, literal_size * sizeof(*dst->literal_)); |
| 60 | } |
| 61 | |
| 62 | int VP8LGetHistogramSize(int cache_bits) { |
| 63 | const int literal_size = VP8LHistogramNumCodes(cache_bits); |
| 64 | const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size; |
| 65 | assert(total_size <= (size_t)0x7fffffff); |
| 66 | return (int)total_size; |
| 67 | } |
| 68 | |
| 69 | void VP8LFreeHistogram(VP8LHistogram* const histo) { |
| 70 | WebPSafeFree(histo); |
| 71 | } |
| 72 | |
| 73 | void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) { |
| 74 | WebPSafeFree(histo); |
| 75 | } |
| 76 | |
| 77 | void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, |
| 78 | VP8LHistogram* const histo) { |
| 79 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 80 | while (VP8LRefsCursorOk(&c)) { |
| 81 | VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0); |
| 82 | VP8LRefsCursorNext(&c); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | void VP8LHistogramCreate(VP8LHistogram* const p, |
| 87 | const VP8LBackwardRefs* const refs, |
| 88 | int palette_code_bits) { |
| 89 | if (palette_code_bits >= 0) { |
| 90 | p->palette_code_bits_ = palette_code_bits; |
| 91 | } |
| 92 | HistogramClear(p); |
| 93 | VP8LHistogramStoreRefs(refs, p); |
| 94 | } |
| 95 | |
| 96 | void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits, |
| 97 | int init_arrays) { |
| 98 | p->palette_code_bits_ = palette_code_bits; |
| 99 | if (init_arrays) { |
| 100 | HistogramClear(p); |
| 101 | } else { |
| 102 | p->trivial_symbol_ = 0; |
| 103 | p->bit_cost_ = 0.; |
| 104 | p->literal_cost_ = 0.; |
| 105 | p->red_cost_ = 0.; |
| 106 | p->blue_cost_ = 0.; |
| 107 | memset(p->is_used_, 0, sizeof(p->is_used_)); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | VP8LHistogram* VP8LAllocateHistogram(int cache_bits) { |
| 112 | VP8LHistogram* histo = NULL; |
| 113 | const int total_size = VP8LGetHistogramSize(cache_bits); |
| 114 | uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
| 115 | if (memory == NULL) return NULL; |
| 116 | histo = (VP8LHistogram*)memory; |
| 117 | // literal_ won't necessary be aligned. |
| 118 | histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
| 119 | VP8LHistogramInit(histo, cache_bits, /*init_arrays=*/ 0); |
| 120 | return histo; |
| 121 | } |
| 122 | |
| 123 | // Resets the pointers of the histograms to point to the bit buffer in the set. |
| 124 | static void HistogramSetResetPointers(VP8LHistogramSet* const set, |
| 125 | int cache_bits) { |
| 126 | int i; |
| 127 | const int histo_size = VP8LGetHistogramSize(cache_bits); |
| 128 | uint8_t* memory = (uint8_t*) (set->histograms); |
| 129 | memory += set->max_size * sizeof(*set->histograms); |
| 130 | for (i = 0; i < set->max_size; ++i) { |
| 131 | memory = (uint8_t*) WEBP_ALIGN(memory); |
| 132 | set->histograms[i] = (VP8LHistogram*) memory; |
| 133 | // literal_ won't necessary be aligned. |
| 134 | set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
| 135 | memory += histo_size; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | // Returns the total size of the VP8LHistogramSet. |
| 140 | static size_t HistogramSetTotalSize(int size, int cache_bits) { |
| 141 | const int histo_size = VP8LGetHistogramSize(cache_bits); |
| 142 | return (sizeof(VP8LHistogramSet) + size * (sizeof(VP8LHistogram*) + |
| 143 | histo_size + WEBP_ALIGN_CST)); |
| 144 | } |
| 145 | |
| 146 | VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { |
| 147 | int i; |
| 148 | VP8LHistogramSet* set; |
| 149 | const size_t total_size = HistogramSetTotalSize(size, cache_bits); |
| 150 | uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
| 151 | if (memory == NULL) return NULL; |
| 152 | |
| 153 | set = (VP8LHistogramSet*)memory; |
| 154 | memory += sizeof(*set); |
| 155 | set->histograms = (VP8LHistogram**)memory; |
| 156 | set->max_size = size; |
| 157 | set->size = size; |
| 158 | HistogramSetResetPointers(set, cache_bits); |
| 159 | for (i = 0; i < size; ++i) { |
| 160 | VP8LHistogramInit(set->histograms[i], cache_bits, /*init_arrays=*/ 0); |
| 161 | } |
| 162 | return set; |
| 163 | } |
| 164 | |
| 165 | void VP8LHistogramSetClear(VP8LHistogramSet* const set) { |
| 166 | int i; |
| 167 | const int cache_bits = set->histograms[0]->palette_code_bits_; |
| 168 | const int size = set->max_size; |
| 169 | const size_t total_size = HistogramSetTotalSize(size, cache_bits); |
| 170 | uint8_t* memory = (uint8_t*)set; |
| 171 | |
| 172 | memset(memory, 0, total_size); |
| 173 | memory += sizeof(*set); |
| 174 | set->histograms = (VP8LHistogram**)memory; |
| 175 | set->max_size = size; |
| 176 | set->size = size; |
| 177 | HistogramSetResetPointers(set, cache_bits); |
| 178 | for (i = 0; i < size; ++i) { |
| 179 | set->histograms[i]->palette_code_bits_ = cache_bits; |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | // Removes the histogram 'i' from 'set' by setting it to NULL. |
| 184 | static void HistogramSetRemoveHistogram(VP8LHistogramSet* const set, int i, |
| 185 | int* const num_used) { |
| 186 | assert(set->histograms[i] != NULL); |
| 187 | set->histograms[i] = NULL; |
| 188 | --*num_used; |
| 189 | // If we remove the last valid one, shrink until the next valid one. |
| 190 | if (i == set->size - 1) { |
| 191 | while (set->size >= 1 && set->histograms[set->size - 1] == NULL) { |
| 192 | --set->size; |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | // ----------------------------------------------------------------------------- |
| 198 | |
| 199 | void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, |
| 200 | const PixOrCopy* const v, |
| 201 | int (*const distance_modifier)(int, int), |
| 202 | int distance_modifier_arg0) { |
| 203 | if (PixOrCopyIsLiteral(v)) { |
| 204 | ++histo->alpha_[PixOrCopyLiteral(v, 3)]; |
| 205 | ++histo->red_[PixOrCopyLiteral(v, 2)]; |
| 206 | ++histo->literal_[PixOrCopyLiteral(v, 1)]; |
| 207 | ++histo->blue_[PixOrCopyLiteral(v, 0)]; |
| 208 | } else if (PixOrCopyIsCacheIdx(v)) { |
| 209 | const int literal_ix = |
| 210 | NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); |
| 211 | ++histo->literal_[literal_ix]; |
| 212 | } else { |
| 213 | int code, ; |
| 214 | VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); |
| 215 | ++histo->literal_[NUM_LITERAL_CODES + code]; |
| 216 | if (distance_modifier == NULL) { |
| 217 | VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); |
| 218 | } else { |
| 219 | VP8LPrefixEncodeBits( |
| 220 | distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)), |
| 221 | &code, &extra_bits); |
| 222 | } |
| 223 | ++histo->distance_[code]; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | // ----------------------------------------------------------------------------- |
| 228 | // Entropy-related functions. |
| 229 | |
| 230 | static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) { |
| 231 | double mix; |
| 232 | if (entropy->nonzeros < 5) { |
| 233 | if (entropy->nonzeros <= 1) { |
| 234 | return 0; |
| 235 | } |
| 236 | // Two symbols, they will be 0 and 1 in a Huffman code. |
| 237 | // Let's mix in a bit of entropy to favor good clustering when |
| 238 | // distributions of these are combined. |
| 239 | if (entropy->nonzeros == 2) { |
| 240 | return 0.99 * entropy->sum + 0.01 * entropy->entropy; |
| 241 | } |
| 242 | // No matter what the entropy says, we cannot be better than min_limit |
| 243 | // with Huffman coding. I am mixing a bit of entropy into the |
| 244 | // min_limit since it produces much better (~0.5 %) compression results |
| 245 | // perhaps because of better entropy clustering. |
| 246 | if (entropy->nonzeros == 3) { |
| 247 | mix = 0.95; |
| 248 | } else { |
| 249 | mix = 0.7; // nonzeros == 4. |
| 250 | } |
| 251 | } else { |
| 252 | mix = 0.627; |
| 253 | } |
| 254 | |
| 255 | { |
| 256 | double min_limit = 2 * entropy->sum - entropy->max_val; |
| 257 | min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy; |
| 258 | return (entropy->entropy < min_limit) ? min_limit : entropy->entropy; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | double VP8LBitsEntropy(const uint32_t* const array, int n) { |
| 263 | VP8LBitEntropy entropy; |
| 264 | VP8LBitsEntropyUnrefined(array, n, &entropy); |
| 265 | |
| 266 | return BitsEntropyRefine(&entropy); |
| 267 | } |
| 268 | |
| 269 | static double InitialHuffmanCost(void) { |
| 270 | // Small bias because Huffman code length is typically not stored in |
| 271 | // full length. |
| 272 | static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; |
| 273 | static const double kSmallBias = 9.1; |
| 274 | return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; |
| 275 | } |
| 276 | |
| 277 | // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) |
| 278 | static double FinalHuffmanCost(const VP8LStreaks* const stats) { |
| 279 | // The constants in this function are experimental and got rounded from |
| 280 | // their original values in 1/8 when switched to 1/1024. |
| 281 | double retval = InitialHuffmanCost(); |
| 282 | // Second coefficient: Many zeros in the histogram are covered efficiently |
| 283 | // by a run-length encode. Originally 2/8. |
| 284 | retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1]; |
| 285 | // Second coefficient: Constant values are encoded less efficiently, but still |
| 286 | // RLE'ed. Originally 6/8. |
| 287 | retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1]; |
| 288 | // 0s are usually encoded more efficiently than non-0s. |
| 289 | // Originally 15/8. |
| 290 | retval += 1.796875 * stats->streaks[0][0]; |
| 291 | // Originally 26/8. |
| 292 | retval += 3.28125 * stats->streaks[1][0]; |
| 293 | return retval; |
| 294 | } |
| 295 | |
| 296 | // Get the symbol entropy for the distribution 'population'. |
| 297 | // Set 'trivial_sym', if there's only one symbol present in the distribution. |
| 298 | static double PopulationCost(const uint32_t* const population, int length, |
| 299 | uint32_t* const trivial_sym, |
| 300 | uint8_t* const is_used) { |
| 301 | VP8LBitEntropy bit_entropy; |
| 302 | VP8LStreaks stats; |
| 303 | VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); |
| 304 | if (trivial_sym != NULL) { |
| 305 | *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code |
| 306 | : VP8L_NON_TRIVIAL_SYM; |
| 307 | } |
| 308 | // The histogram is used if there is at least one non-zero streak. |
| 309 | *is_used = (stats.streaks[1][0] != 0 || stats.streaks[1][1] != 0); |
| 310 | |
| 311 | return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
| 312 | } |
| 313 | |
| 314 | // trivial_at_end is 1 if the two histograms only have one element that is |
| 315 | // non-zero: both the zero-th one, or both the last one. |
| 316 | static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X, |
| 317 | const uint32_t* const Y, |
| 318 | int length, int is_X_used, |
| 319 | int is_Y_used, |
| 320 | int trivial_at_end) { |
| 321 | VP8LStreaks stats; |
| 322 | if (trivial_at_end) { |
| 323 | // This configuration is due to palettization that transforms an indexed |
| 324 | // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap. |
| 325 | // BitsEntropyRefine is 0 for histograms with only one non-zero value. |
| 326 | // Only FinalHuffmanCost needs to be evaluated. |
| 327 | memset(&stats, 0, sizeof(stats)); |
| 328 | // Deal with the non-zero value at index 0 or length-1. |
| 329 | stats.streaks[1][0] = 1; |
| 330 | // Deal with the following/previous zero streak. |
| 331 | stats.counts[0] = 1; |
| 332 | stats.streaks[0][1] = length - 1; |
| 333 | return FinalHuffmanCost(&stats); |
| 334 | } else { |
| 335 | VP8LBitEntropy bit_entropy; |
| 336 | if (is_X_used) { |
| 337 | if (is_Y_used) { |
| 338 | VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats); |
| 339 | } else { |
| 340 | VP8LGetEntropyUnrefined(X, length, &bit_entropy, &stats); |
| 341 | } |
| 342 | } else { |
| 343 | if (is_Y_used) { |
| 344 | VP8LGetEntropyUnrefined(Y, length, &bit_entropy, &stats); |
| 345 | } else { |
| 346 | memset(&stats, 0, sizeof(stats)); |
| 347 | stats.counts[0] = 1; |
| 348 | stats.streaks[0][length > 3] = length; |
| 349 | VP8LBitEntropyInit(&bit_entropy); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | // Estimates the Entropy + Huffman + other block overhead size cost. |
| 358 | double VP8LHistogramEstimateBits(VP8LHistogram* const p) { |
| 359 | return |
| 360 | PopulationCost(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), |
| 361 | NULL, &p->is_used_[0]) |
| 362 | + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL, &p->is_used_[1]) |
| 363 | + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL, &p->is_used_[2]) |
| 364 | + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL, &p->is_used_[3]) |
| 365 | + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL, &p->is_used_[4]) |
| 366 | + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) |
| 367 | + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); |
| 368 | } |
| 369 | |
| 370 | // ----------------------------------------------------------------------------- |
| 371 | // Various histogram combine/cost-eval functions |
| 372 | |
| 373 | static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, |
| 374 | const VP8LHistogram* const b, |
| 375 | double cost_threshold, |
| 376 | double* cost) { |
| 377 | const int palette_code_bits = a->palette_code_bits_; |
| 378 | int trivial_at_end = 0; |
| 379 | assert(a->palette_code_bits_ == b->palette_code_bits_); |
| 380 | *cost += GetCombinedEntropy(a->literal_, b->literal_, |
| 381 | VP8LHistogramNumCodes(palette_code_bits), |
| 382 | a->is_used_[0], b->is_used_[0], 0); |
| 383 | *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, |
| 384 | b->literal_ + NUM_LITERAL_CODES, |
| 385 | NUM_LENGTH_CODES); |
| 386 | if (*cost > cost_threshold) return 0; |
| 387 | |
| 388 | if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM && |
| 389 | a->trivial_symbol_ == b->trivial_symbol_) { |
| 390 | // A, R and B are all 0 or 0xff. |
| 391 | const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff; |
| 392 | const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff; |
| 393 | const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff; |
| 394 | if ((color_a == 0 || color_a == 0xff) && |
| 395 | (color_r == 0 || color_r == 0xff) && |
| 396 | (color_b == 0 || color_b == 0xff)) { |
| 397 | trivial_at_end = 1; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | *cost += |
| 402 | GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, a->is_used_[1], |
| 403 | b->is_used_[1], trivial_at_end); |
| 404 | if (*cost > cost_threshold) return 0; |
| 405 | |
| 406 | *cost += |
| 407 | GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, a->is_used_[2], |
| 408 | b->is_used_[2], trivial_at_end); |
| 409 | if (*cost > cost_threshold) return 0; |
| 410 | |
| 411 | *cost += |
| 412 | GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES, |
| 413 | a->is_used_[3], b->is_used_[3], trivial_at_end); |
| 414 | if (*cost > cost_threshold) return 0; |
| 415 | |
| 416 | *cost += |
| 417 | GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, |
| 418 | a->is_used_[4], b->is_used_[4], 0); |
| 419 | *cost += |
| 420 | VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES); |
| 421 | if (*cost > cost_threshold) return 0; |
| 422 | |
| 423 | return 1; |
| 424 | } |
| 425 | |
| 426 | static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a, |
| 427 | const VP8LHistogram* const b, |
| 428 | VP8LHistogram* const out) { |
| 429 | VP8LHistogramAdd(a, b, out); |
| 430 | out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) |
| 431 | ? a->trivial_symbol_ |
| 432 | : VP8L_NON_TRIVIAL_SYM; |
| 433 | } |
| 434 | |
| 435 | // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing |
| 436 | // to the threshold value 'cost_threshold'. The score returned is |
| 437 | // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. |
| 438 | // Since the previous score passed is 'cost_threshold', we only need to compare |
| 439 | // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out |
| 440 | // early. |
| 441 | static double HistogramAddEval(const VP8LHistogram* const a, |
| 442 | const VP8LHistogram* const b, |
| 443 | VP8LHistogram* const out, |
| 444 | double cost_threshold) { |
| 445 | double cost = 0; |
| 446 | const double sum_cost = a->bit_cost_ + b->bit_cost_; |
| 447 | cost_threshold += sum_cost; |
| 448 | |
| 449 | if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { |
| 450 | HistogramAdd(a, b, out); |
| 451 | out->bit_cost_ = cost; |
| 452 | out->palette_code_bits_ = a->palette_code_bits_; |
| 453 | } |
| 454 | |
| 455 | return cost - sum_cost; |
| 456 | } |
| 457 | |
| 458 | // Same as HistogramAddEval(), except that the resulting histogram |
| 459 | // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit |
| 460 | // the term C(b) which is constant over all the evaluations. |
| 461 | static double HistogramAddThresh(const VP8LHistogram* const a, |
| 462 | const VP8LHistogram* const b, |
| 463 | double cost_threshold) { |
| 464 | double cost; |
| 465 | assert(a != NULL && b != NULL); |
| 466 | cost = -a->bit_cost_; |
| 467 | GetCombinedHistogramEntropy(a, b, cost_threshold, &cost); |
| 468 | return cost; |
| 469 | } |
| 470 | |
| 471 | // ----------------------------------------------------------------------------- |
| 472 | |
| 473 | // The structure to keep track of cost range for the three dominant entropy |
| 474 | // symbols. |
| 475 | // TODO(skal): Evaluate if float can be used here instead of double for |
| 476 | // representing the entropy costs. |
| 477 | typedef struct { |
| 478 | double literal_max_; |
| 479 | double literal_min_; |
| 480 | double red_max_; |
| 481 | double red_min_; |
| 482 | double blue_max_; |
| 483 | double blue_min_; |
| 484 | } DominantCostRange; |
| 485 | |
| 486 | static void DominantCostRangeInit(DominantCostRange* const c) { |
| 487 | c->literal_max_ = 0.; |
| 488 | c->literal_min_ = MAX_COST; |
| 489 | c->red_max_ = 0.; |
| 490 | c->red_min_ = MAX_COST; |
| 491 | c->blue_max_ = 0.; |
| 492 | c->blue_min_ = MAX_COST; |
| 493 | } |
| 494 | |
| 495 | static void UpdateDominantCostRange( |
| 496 | const VP8LHistogram* const h, DominantCostRange* const c) { |
| 497 | if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; |
| 498 | if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; |
| 499 | if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; |
| 500 | if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; |
| 501 | if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; |
| 502 | if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; |
| 503 | } |
| 504 | |
| 505 | static void UpdateHistogramCost(VP8LHistogram* const h) { |
| 506 | uint32_t alpha_sym, red_sym, blue_sym; |
| 507 | const double alpha_cost = |
| 508 | PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym, |
| 509 | &h->is_used_[3]); |
| 510 | const double distance_cost = |
| 511 | PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL, &h->is_used_[4]) + |
| 512 | VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); |
| 513 | const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); |
| 514 | h->literal_cost_ = |
| 515 | PopulationCost(h->literal_, num_codes, NULL, &h->is_used_[0]) + |
| 516 | VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES); |
| 517 | h->red_cost_ = |
| 518 | PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym, &h->is_used_[1]); |
| 519 | h->blue_cost_ = |
| 520 | PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym, &h->is_used_[2]); |
| 521 | h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + |
| 522 | alpha_cost + distance_cost; |
| 523 | if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) { |
| 524 | h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM; |
| 525 | } else { |
| 526 | h->trivial_symbol_ = |
| 527 | ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0); |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | static int GetBinIdForEntropy(double min, double max, double val) { |
| 532 | const double range = max - min; |
| 533 | if (range > 0.) { |
| 534 | const double delta = val - min; |
| 535 | return (int)((NUM_PARTITIONS - 1e-6) * delta / range); |
| 536 | } else { |
| 537 | return 0; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | static int GetHistoBinIndex(const VP8LHistogram* const h, |
| 542 | const DominantCostRange* const c, int low_effort) { |
| 543 | int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_, |
| 544 | h->literal_cost_); |
| 545 | assert(bin_id < NUM_PARTITIONS); |
| 546 | if (!low_effort) { |
| 547 | bin_id = bin_id * NUM_PARTITIONS |
| 548 | + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_); |
| 549 | bin_id = bin_id * NUM_PARTITIONS |
| 550 | + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_); |
| 551 | assert(bin_id < BIN_SIZE); |
| 552 | } |
| 553 | return bin_id; |
| 554 | } |
| 555 | |
| 556 | // Construct the histograms from backward references. |
| 557 | static void HistogramBuild( |
| 558 | int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, |
| 559 | VP8LHistogramSet* const image_histo) { |
| 560 | int x = 0, y = 0; |
| 561 | const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); |
| 562 | VP8LHistogram** const histograms = image_histo->histograms; |
| 563 | VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); |
| 564 | assert(histo_bits > 0); |
| 565 | VP8LHistogramSetClear(image_histo); |
| 566 | while (VP8LRefsCursorOk(&c)) { |
| 567 | const PixOrCopy* const v = c.cur_pos; |
| 568 | const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); |
| 569 | VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0); |
| 570 | x += PixOrCopyLength(v); |
| 571 | while (x >= xsize) { |
| 572 | x -= xsize; |
| 573 | ++y; |
| 574 | } |
| 575 | VP8LRefsCursorNext(&c); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | // Copies the histograms and computes its bit_cost. |
| 580 | static const uint16_t kInvalidHistogramSymbol = (uint16_t)(-1); |
| 581 | static void HistogramCopyAndAnalyze(VP8LHistogramSet* const orig_histo, |
| 582 | VP8LHistogramSet* const image_histo, |
| 583 | int* const num_used, |
| 584 | uint16_t* const histogram_symbols) { |
| 585 | int i, cluster_id; |
| 586 | int num_used_orig = *num_used; |
| 587 | VP8LHistogram** const orig_histograms = orig_histo->histograms; |
| 588 | VP8LHistogram** const histograms = image_histo->histograms; |
| 589 | assert(image_histo->max_size == orig_histo->max_size); |
| 590 | for (cluster_id = 0, i = 0; i < orig_histo->max_size; ++i) { |
| 591 | VP8LHistogram* const histo = orig_histograms[i]; |
| 592 | UpdateHistogramCost(histo); |
| 593 | |
| 594 | // Skip the histogram if it is completely empty, which can happen for tiles |
| 595 | // with no information (when they are skipped because of LZ77). |
| 596 | if (!histo->is_used_[0] && !histo->is_used_[1] && !histo->is_used_[2] |
| 597 | && !histo->is_used_[3] && !histo->is_used_[4]) { |
| 598 | // The first histogram is always used. If an histogram is empty, we set |
| 599 | // its id to be the same as the previous one: this will improve |
| 600 | // compressibility for later LZ77. |
| 601 | assert(i > 0); |
| 602 | HistogramSetRemoveHistogram(image_histo, i, num_used); |
| 603 | HistogramSetRemoveHistogram(orig_histo, i, &num_used_orig); |
| 604 | histogram_symbols[i] = kInvalidHistogramSymbol; |
| 605 | } else { |
| 606 | // Copy histograms from orig_histo[] to image_histo[]. |
| 607 | HistogramCopy(histo, histograms[i]); |
| 608 | histogram_symbols[i] = cluster_id++; |
| 609 | assert(cluster_id <= image_histo->max_size); |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | // Partition histograms to different entropy bins for three dominant (literal, |
| 615 | // red and blue) symbol costs and compute the histogram aggregate bit_cost. |
| 616 | static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo, |
| 617 | uint16_t* const bin_map, |
| 618 | int low_effort) { |
| 619 | int i; |
| 620 | VP8LHistogram** const histograms = image_histo->histograms; |
| 621 | const int histo_size = image_histo->size; |
| 622 | DominantCostRange cost_range; |
| 623 | DominantCostRangeInit(&cost_range); |
| 624 | |
| 625 | // Analyze the dominant (literal, red and blue) entropy costs. |
| 626 | for (i = 0; i < histo_size; ++i) { |
| 627 | if (histograms[i] == NULL) continue; |
| 628 | UpdateDominantCostRange(histograms[i], &cost_range); |
| 629 | } |
| 630 | |
| 631 | // bin-hash histograms on three of the dominant (literal, red and blue) |
| 632 | // symbol costs and store the resulting bin_id for each histogram. |
| 633 | for (i = 0; i < histo_size; ++i) { |
| 634 | // bin_map[i] is not set to a special value as its use will later be guarded |
| 635 | // by another (histograms[i] == NULL). |
| 636 | if (histograms[i] == NULL) continue; |
| 637 | bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort); |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | // Merges some histograms with same bin_id together if it's advantageous. |
| 642 | // Sets the remaining histograms to NULL. |
| 643 | static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo, |
| 644 | int* num_used, |
| 645 | const uint16_t* const clusters, |
| 646 | uint16_t* const cluster_mappings, |
| 647 | VP8LHistogram* cur_combo, |
| 648 | const uint16_t* const bin_map, |
| 649 | int num_bins, |
| 650 | double combine_cost_factor, |
| 651 | int low_effort) { |
| 652 | VP8LHistogram** const histograms = image_histo->histograms; |
| 653 | int idx; |
| 654 | struct { |
| 655 | int16_t first; // position of the histogram that accumulates all |
| 656 | // histograms with the same bin_id |
| 657 | uint16_t num_combine_failures; // number of combine failures per bin_id |
| 658 | } bin_info[BIN_SIZE]; |
| 659 | |
| 660 | assert(num_bins <= BIN_SIZE); |
| 661 | for (idx = 0; idx < num_bins; ++idx) { |
| 662 | bin_info[idx].first = -1; |
| 663 | bin_info[idx].num_combine_failures = 0; |
| 664 | } |
| 665 | |
| 666 | // By default, a cluster matches itself. |
| 667 | for (idx = 0; idx < *num_used; ++idx) cluster_mappings[idx] = idx; |
| 668 | for (idx = 0; idx < image_histo->size; ++idx) { |
| 669 | int bin_id, first; |
| 670 | if (histograms[idx] == NULL) continue; |
| 671 | bin_id = bin_map[idx]; |
| 672 | first = bin_info[bin_id].first; |
| 673 | if (first == -1) { |
| 674 | bin_info[bin_id].first = idx; |
| 675 | } else if (low_effort) { |
| 676 | HistogramAdd(histograms[idx], histograms[first], histograms[first]); |
| 677 | HistogramSetRemoveHistogram(image_histo, idx, num_used); |
| 678 | cluster_mappings[clusters[idx]] = clusters[first]; |
| 679 | } else { |
| 680 | // try to merge #idx into #first (both share the same bin_id) |
| 681 | const double bit_cost = histograms[idx]->bit_cost_; |
| 682 | const double bit_cost_thresh = -bit_cost * combine_cost_factor; |
| 683 | const double curr_cost_diff = |
| 684 | HistogramAddEval(histograms[first], histograms[idx], |
| 685 | cur_combo, bit_cost_thresh); |
| 686 | if (curr_cost_diff < bit_cost_thresh) { |
| 687 | // Try to merge two histograms only if the combo is a trivial one or |
| 688 | // the two candidate histograms are already non-trivial. |
| 689 | // For some images, 'try_combine' turns out to be false for a lot of |
| 690 | // histogram pairs. In that case, we fallback to combining |
| 691 | // histograms as usual to avoid increasing the header size. |
| 692 | const int try_combine = |
| 693 | (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) || |
| 694 | ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) && |
| 695 | (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM)); |
| 696 | const int max_combine_failures = 32; |
| 697 | if (try_combine || |
| 698 | bin_info[bin_id].num_combine_failures >= max_combine_failures) { |
| 699 | // move the (better) merged histogram to its final slot |
| 700 | HistogramSwap(&cur_combo, &histograms[first]); |
| 701 | HistogramSetRemoveHistogram(image_histo, idx, num_used); |
| 702 | cluster_mappings[clusters[idx]] = clusters[first]; |
| 703 | } else { |
| 704 | ++bin_info[bin_id].num_combine_failures; |
| 705 | } |
| 706 | } |
| 707 | } |
| 708 | } |
| 709 | if (low_effort) { |
| 710 | // for low_effort case, update the final cost when everything is merged |
| 711 | for (idx = 0; idx < image_histo->size; ++idx) { |
| 712 | if (histograms[idx] == NULL) continue; |
| 713 | UpdateHistogramCost(histograms[idx]); |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | // Implement a Lehmer random number generator with a multiplicative constant of |
| 719 | // 48271 and a modulo constant of 2^31 - 1. |
| 720 | static uint32_t MyRand(uint32_t* const seed) { |
| 721 | *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u); |
| 722 | assert(*seed > 0); |
| 723 | return *seed; |
| 724 | } |
| 725 | |
| 726 | // ----------------------------------------------------------------------------- |
| 727 | // Histogram pairs priority queue |
| 728 | |
| 729 | // Pair of histograms. Negative idx1 value means that pair is out-of-date. |
| 730 | typedef struct { |
| 731 | int idx1; |
| 732 | int idx2; |
| 733 | double cost_diff; |
| 734 | double cost_combo; |
| 735 | } HistogramPair; |
| 736 | |
| 737 | typedef struct { |
| 738 | HistogramPair* queue; |
| 739 | int size; |
| 740 | int max_size; |
| 741 | } HistoQueue; |
| 742 | |
| 743 | static int HistoQueueInit(HistoQueue* const histo_queue, const int max_size) { |
| 744 | histo_queue->size = 0; |
| 745 | histo_queue->max_size = max_size; |
| 746 | // We allocate max_size + 1 because the last element at index "size" is |
| 747 | // used as temporary data (and it could be up to max_size). |
| 748 | histo_queue->queue = (HistogramPair*)WebPSafeMalloc( |
| 749 | histo_queue->max_size + 1, sizeof(*histo_queue->queue)); |
| 750 | return histo_queue->queue != NULL; |
| 751 | } |
| 752 | |
| 753 | static void HistoQueueClear(HistoQueue* const histo_queue) { |
| 754 | assert(histo_queue != NULL); |
| 755 | WebPSafeFree(histo_queue->queue); |
| 756 | histo_queue->size = 0; |
| 757 | histo_queue->max_size = 0; |
| 758 | } |
| 759 | |
| 760 | // Pop a specific pair in the queue by replacing it with the last one |
| 761 | // and shrinking the queue. |
| 762 | static void HistoQueuePopPair(HistoQueue* const histo_queue, |
| 763 | HistogramPair* const pair) { |
| 764 | assert(pair >= histo_queue->queue && |
| 765 | pair < (histo_queue->queue + histo_queue->size)); |
| 766 | assert(histo_queue->size > 0); |
| 767 | *pair = histo_queue->queue[histo_queue->size - 1]; |
| 768 | --histo_queue->size; |
| 769 | } |
| 770 | |
| 771 | // Check whether a pair in the queue should be updated as head or not. |
| 772 | static void HistoQueueUpdateHead(HistoQueue* const histo_queue, |
| 773 | HistogramPair* const pair) { |
| 774 | assert(pair->cost_diff < 0.); |
| 775 | assert(pair >= histo_queue->queue && |
| 776 | pair < (histo_queue->queue + histo_queue->size)); |
| 777 | assert(histo_queue->size > 0); |
| 778 | if (pair->cost_diff < histo_queue->queue[0].cost_diff) { |
| 779 | // Replace the best pair. |
| 780 | const HistogramPair tmp = histo_queue->queue[0]; |
| 781 | histo_queue->queue[0] = *pair; |
| 782 | *pair = tmp; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | // Update the cost diff and combo of a pair of histograms. This needs to be |
| 787 | // called when the the histograms have been merged with a third one. |
| 788 | static void HistoQueueUpdatePair(const VP8LHistogram* const h1, |
| 789 | const VP8LHistogram* const h2, |
| 790 | double threshold, |
| 791 | HistogramPair* const pair) { |
| 792 | const double sum_cost = h1->bit_cost_ + h2->bit_cost_; |
| 793 | pair->cost_combo = 0.; |
| 794 | GetCombinedHistogramEntropy(h1, h2, sum_cost + threshold, &pair->cost_combo); |
| 795 | pair->cost_diff = pair->cost_combo - sum_cost; |
| 796 | } |
| 797 | |
| 798 | // Create a pair from indices "idx1" and "idx2" provided its cost |
| 799 | // is inferior to "threshold", a negative entropy. |
| 800 | // It returns the cost of the pair, or 0. if it superior to threshold. |
| 801 | static double HistoQueuePush(HistoQueue* const histo_queue, |
| 802 | VP8LHistogram** const histograms, int idx1, |
| 803 | int idx2, double threshold) { |
| 804 | const VP8LHistogram* h1; |
| 805 | const VP8LHistogram* h2; |
| 806 | HistogramPair pair; |
| 807 | |
| 808 | // Stop here if the queue is full. |
| 809 | if (histo_queue->size == histo_queue->max_size) return 0.; |
| 810 | assert(threshold <= 0.); |
| 811 | if (idx1 > idx2) { |
| 812 | const int tmp = idx2; |
| 813 | idx2 = idx1; |
| 814 | idx1 = tmp; |
| 815 | } |
| 816 | pair.idx1 = idx1; |
| 817 | pair.idx2 = idx2; |
| 818 | h1 = histograms[idx1]; |
| 819 | h2 = histograms[idx2]; |
| 820 | |
| 821 | HistoQueueUpdatePair(h1, h2, threshold, &pair); |
| 822 | |
| 823 | // Do not even consider the pair if it does not improve the entropy. |
| 824 | if (pair.cost_diff >= threshold) return 0.; |
| 825 | |
| 826 | histo_queue->queue[histo_queue->size++] = pair; |
| 827 | HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]); |
| 828 | |
| 829 | return pair.cost_diff; |
| 830 | } |
| 831 | |
| 832 | // ----------------------------------------------------------------------------- |
| 833 | |
| 834 | // Combines histograms by continuously choosing the one with the highest cost |
| 835 | // reduction. |
| 836 | static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo, |
| 837 | int* const num_used) { |
| 838 | int ok = 0; |
| 839 | const int image_histo_size = image_histo->size; |
| 840 | int i, j; |
| 841 | VP8LHistogram** const histograms = image_histo->histograms; |
| 842 | // Priority queue of histogram pairs. |
| 843 | HistoQueue histo_queue; |
| 844 | |
| 845 | // image_histo_size^2 for the queue size is safe. If you look at |
| 846 | // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes |
| 847 | // data to the queue, you insert at most: |
| 848 | // - image_histo_size*(image_histo_size-1)/2 (the first two for loops) |
| 849 | // - image_histo_size - 1 in the last for loop at the first iteration of |
| 850 | // the while loop, image_histo_size - 2 at the second iteration ... |
| 851 | // therefore image_histo_size*(image_histo_size-1)/2 overall too |
| 852 | if (!HistoQueueInit(&histo_queue, image_histo_size * image_histo_size)) { |
| 853 | goto End; |
| 854 | } |
| 855 | |
| 856 | for (i = 0; i < image_histo_size; ++i) { |
| 857 | if (image_histo->histograms[i] == NULL) continue; |
| 858 | for (j = i + 1; j < image_histo_size; ++j) { |
| 859 | // Initialize queue. |
| 860 | if (image_histo->histograms[j] == NULL) continue; |
| 861 | HistoQueuePush(&histo_queue, histograms, i, j, 0.); |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | while (histo_queue.size > 0) { |
| 866 | const int idx1 = histo_queue.queue[0].idx1; |
| 867 | const int idx2 = histo_queue.queue[0].idx2; |
| 868 | HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]); |
| 869 | histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; |
| 870 | |
| 871 | // Remove merged histogram. |
| 872 | HistogramSetRemoveHistogram(image_histo, idx2, num_used); |
| 873 | |
| 874 | // Remove pairs intersecting the just combined best pair. |
| 875 | for (i = 0; i < histo_queue.size;) { |
| 876 | HistogramPair* const p = histo_queue.queue + i; |
| 877 | if (p->idx1 == idx1 || p->idx2 == idx1 || |
| 878 | p->idx1 == idx2 || p->idx2 == idx2) { |
| 879 | HistoQueuePopPair(&histo_queue, p); |
| 880 | } else { |
| 881 | HistoQueueUpdateHead(&histo_queue, p); |
| 882 | ++i; |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | // Push new pairs formed with combined histogram to the queue. |
| 887 | for (i = 0; i < image_histo->size; ++i) { |
| 888 | if (i == idx1 || image_histo->histograms[i] == NULL) continue; |
| 889 | HistoQueuePush(&histo_queue, image_histo->histograms, idx1, i, 0.); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | ok = 1; |
| 894 | |
| 895 | End: |
| 896 | HistoQueueClear(&histo_queue); |
| 897 | return ok; |
| 898 | } |
| 899 | |
| 900 | // Perform histogram aggregation using a stochastic approach. |
| 901 | // 'do_greedy' is set to 1 if a greedy approach needs to be performed |
| 902 | // afterwards, 0 otherwise. |
| 903 | static int PairComparison(const void* idx1, const void* idx2) { |
| 904 | // To be used with bsearch: <0 when *idx1<*idx2, >0 if >, 0 when ==. |
| 905 | return (*(int*) idx1 - *(int*) idx2); |
| 906 | } |
| 907 | static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo, |
| 908 | int* const num_used, int min_cluster_size, |
| 909 | int* const do_greedy) { |
| 910 | int j, iter; |
| 911 | uint32_t seed = 1; |
| 912 | int tries_with_no_success = 0; |
| 913 | const int outer_iters = *num_used; |
| 914 | const int num_tries_no_success = outer_iters / 2; |
| 915 | VP8LHistogram** const histograms = image_histo->histograms; |
| 916 | // Priority queue of histogram pairs. Its size of 'kHistoQueueSize' |
| 917 | // impacts the quality of the compression and the speed: the smaller the |
| 918 | // faster but the worse for the compression. |
| 919 | HistoQueue histo_queue; |
| 920 | const int kHistoQueueSize = 9; |
| 921 | int ok = 0; |
| 922 | // mapping from an index in image_histo with no NULL histogram to the full |
| 923 | // blown image_histo. |
| 924 | int* mappings; |
| 925 | |
| 926 | if (*num_used < min_cluster_size) { |
| 927 | *do_greedy = 1; |
| 928 | return 1; |
| 929 | } |
| 930 | |
| 931 | mappings = (int*) WebPSafeMalloc(*num_used, sizeof(*mappings)); |
| 932 | if (mappings == NULL) return 0; |
| 933 | if (!HistoQueueInit(&histo_queue, kHistoQueueSize)) goto End; |
| 934 | // Fill the initial mapping. |
| 935 | for (j = 0, iter = 0; iter < image_histo->size; ++iter) { |
| 936 | if (histograms[iter] == NULL) continue; |
| 937 | mappings[j++] = iter; |
| 938 | } |
| 939 | assert(j == *num_used); |
| 940 | |
| 941 | // Collapse similar histograms in 'image_histo'. |
| 942 | for (iter = 0; |
| 943 | iter < outer_iters && *num_used >= min_cluster_size && |
| 944 | ++tries_with_no_success < num_tries_no_success; |
| 945 | ++iter) { |
| 946 | int* mapping_index; |
| 947 | double best_cost = |
| 948 | (histo_queue.size == 0) ? 0. : histo_queue.queue[0].cost_diff; |
| 949 | int best_idx1 = -1, best_idx2 = 1; |
| 950 | const uint32_t rand_range = (*num_used - 1) * (*num_used); |
| 951 | // (*num_used) / 2 was chosen empirically. Less means faster but worse |
| 952 | // compression. |
| 953 | const int num_tries = (*num_used) / 2; |
| 954 | |
| 955 | // Pick random samples. |
| 956 | for (j = 0; *num_used >= 2 && j < num_tries; ++j) { |
| 957 | double curr_cost; |
| 958 | // Choose two different histograms at random and try to combine them. |
| 959 | const uint32_t tmp = MyRand(&seed) % rand_range; |
| 960 | uint32_t idx1 = tmp / (*num_used - 1); |
| 961 | uint32_t idx2 = tmp % (*num_used - 1); |
| 962 | if (idx2 >= idx1) ++idx2; |
| 963 | idx1 = mappings[idx1]; |
| 964 | idx2 = mappings[idx2]; |
| 965 | |
| 966 | // Calculate cost reduction on combination. |
| 967 | curr_cost = |
| 968 | HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost); |
| 969 | if (curr_cost < 0) { // found a better pair? |
| 970 | best_cost = curr_cost; |
| 971 | // Empty the queue if we reached full capacity. |
| 972 | if (histo_queue.size == histo_queue.max_size) break; |
| 973 | } |
| 974 | } |
| 975 | if (histo_queue.size == 0) continue; |
| 976 | |
| 977 | // Get the best histograms. |
| 978 | best_idx1 = histo_queue.queue[0].idx1; |
| 979 | best_idx2 = histo_queue.queue[0].idx2; |
| 980 | assert(best_idx1 < best_idx2); |
| 981 | // Pop best_idx2 from mappings. |
| 982 | mapping_index = (int*) bsearch(&best_idx2, mappings, *num_used, |
| 983 | sizeof(best_idx2), &PairComparison); |
| 984 | assert(mapping_index != NULL); |
| 985 | memmove(mapping_index, mapping_index + 1, sizeof(*mapping_index) * |
| 986 | ((*num_used) - (mapping_index - mappings) - 1)); |
| 987 | // Merge the histograms and remove best_idx2 from the queue. |
| 988 | HistogramAdd(histograms[best_idx2], histograms[best_idx1], |
| 989 | histograms[best_idx1]); |
| 990 | histograms[best_idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; |
| 991 | HistogramSetRemoveHistogram(image_histo, best_idx2, num_used); |
| 992 | // Parse the queue and update each pair that deals with best_idx1, |
| 993 | // best_idx2 or image_histo_size. |
| 994 | for (j = 0; j < histo_queue.size;) { |
| 995 | HistogramPair* const p = histo_queue.queue + j; |
| 996 | const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2; |
| 997 | const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2; |
| 998 | int do_eval = 0; |
| 999 | // The front pair could have been duplicated by a random pick so |
| 1000 | // check for it all the time nevertheless. |
| 1001 | if (is_idx1_best && is_idx2_best) { |
| 1002 | HistoQueuePopPair(&histo_queue, p); |
| 1003 | continue; |
| 1004 | } |
| 1005 | // Any pair containing one of the two best indices should only refer to |
| 1006 | // best_idx1. Its cost should also be updated. |
| 1007 | if (is_idx1_best) { |
| 1008 | p->idx1 = best_idx1; |
| 1009 | do_eval = 1; |
| 1010 | } else if (is_idx2_best) { |
| 1011 | p->idx2 = best_idx1; |
| 1012 | do_eval = 1; |
| 1013 | } |
| 1014 | // Make sure the index order is respected. |
| 1015 | if (p->idx1 > p->idx2) { |
| 1016 | const int tmp = p->idx2; |
| 1017 | p->idx2 = p->idx1; |
| 1018 | p->idx1 = tmp; |
| 1019 | } |
| 1020 | if (do_eval) { |
| 1021 | // Re-evaluate the cost of an updated pair. |
| 1022 | HistoQueueUpdatePair(histograms[p->idx1], histograms[p->idx2], 0., p); |
| 1023 | if (p->cost_diff >= 0.) { |
| 1024 | HistoQueuePopPair(&histo_queue, p); |
| 1025 | continue; |
| 1026 | } |
| 1027 | } |
| 1028 | HistoQueueUpdateHead(&histo_queue, p); |
| 1029 | ++j; |
| 1030 | } |
| 1031 | tries_with_no_success = 0; |
| 1032 | } |
| 1033 | *do_greedy = (*num_used <= min_cluster_size); |
| 1034 | ok = 1; |
| 1035 | |
| 1036 | End: |
| 1037 | HistoQueueClear(&histo_queue); |
| 1038 | WebPSafeFree(mappings); |
| 1039 | return ok; |
| 1040 | } |
| 1041 | |
| 1042 | // ----------------------------------------------------------------------------- |
| 1043 | // Histogram refinement |
| 1044 | |
| 1045 | // Find the best 'out' histogram for each of the 'in' histograms. |
| 1046 | // At call-time, 'out' contains the histograms of the clusters. |
| 1047 | // Note: we assume that out[]->bit_cost_ is already up-to-date. |
| 1048 | static void HistogramRemap(const VP8LHistogramSet* const in, |
| 1049 | VP8LHistogramSet* const out, |
| 1050 | uint16_t* const symbols) { |
| 1051 | int i; |
| 1052 | VP8LHistogram** const in_histo = in->histograms; |
| 1053 | VP8LHistogram** const out_histo = out->histograms; |
| 1054 | const int in_size = out->max_size; |
| 1055 | const int out_size = out->size; |
| 1056 | if (out_size > 1) { |
| 1057 | for (i = 0; i < in_size; ++i) { |
| 1058 | int best_out = 0; |
| 1059 | double best_bits = MAX_COST; |
| 1060 | int k; |
| 1061 | if (in_histo[i] == NULL) { |
| 1062 | // Arbitrarily set to the previous value if unused to help future LZ77. |
| 1063 | symbols[i] = symbols[i - 1]; |
| 1064 | continue; |
| 1065 | } |
| 1066 | for (k = 0; k < out_size; ++k) { |
| 1067 | double cur_bits; |
| 1068 | cur_bits = HistogramAddThresh(out_histo[k], in_histo[i], best_bits); |
| 1069 | if (k == 0 || cur_bits < best_bits) { |
| 1070 | best_bits = cur_bits; |
| 1071 | best_out = k; |
| 1072 | } |
| 1073 | } |
| 1074 | symbols[i] = best_out; |
| 1075 | } |
| 1076 | } else { |
| 1077 | assert(out_size == 1); |
| 1078 | for (i = 0; i < in_size; ++i) { |
| 1079 | symbols[i] = 0; |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | // Recompute each out based on raw and symbols. |
| 1084 | VP8LHistogramSetClear(out); |
| 1085 | out->size = out_size; |
| 1086 | |
| 1087 | for (i = 0; i < in_size; ++i) { |
| 1088 | int idx; |
| 1089 | if (in_histo[i] == NULL) continue; |
| 1090 | idx = symbols[i]; |
| 1091 | HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]); |
| 1092 | } |
| 1093 | } |
| 1094 | |
| 1095 | static double GetCombineCostFactor(int histo_size, int quality) { |
| 1096 | double combine_cost_factor = 0.16; |
| 1097 | if (quality < 90) { |
| 1098 | if (histo_size > 256) combine_cost_factor /= 2.; |
| 1099 | if (histo_size > 512) combine_cost_factor /= 2.; |
| 1100 | if (histo_size > 1024) combine_cost_factor /= 2.; |
| 1101 | if (quality <= 50) combine_cost_factor /= 2.; |
| 1102 | } |
| 1103 | return combine_cost_factor; |
| 1104 | } |
| 1105 | |
| 1106 | // Given a HistogramSet 'set', the mapping of clusters 'cluster_mapping' and the |
| 1107 | // current assignment of the cells in 'symbols', merge the clusters and |
| 1108 | // assign the smallest possible clusters values. |
| 1109 | static void OptimizeHistogramSymbols(const VP8LHistogramSet* const set, |
| 1110 | uint16_t* const cluster_mappings, |
| 1111 | int num_clusters, |
| 1112 | uint16_t* const cluster_mappings_tmp, |
| 1113 | uint16_t* const symbols) { |
| 1114 | int i, cluster_max; |
| 1115 | int do_continue = 1; |
| 1116 | // First, assign the lowest cluster to each pixel. |
| 1117 | while (do_continue) { |
| 1118 | do_continue = 0; |
| 1119 | for (i = 0; i < num_clusters; ++i) { |
| 1120 | int k; |
| 1121 | k = cluster_mappings[i]; |
| 1122 | while (k != cluster_mappings[k]) { |
| 1123 | cluster_mappings[k] = cluster_mappings[cluster_mappings[k]]; |
| 1124 | k = cluster_mappings[k]; |
| 1125 | } |
| 1126 | if (k != cluster_mappings[i]) { |
| 1127 | do_continue = 1; |
| 1128 | cluster_mappings[i] = k; |
| 1129 | } |
| 1130 | } |
| 1131 | } |
| 1132 | // Create a mapping from a cluster id to its minimal version. |
| 1133 | cluster_max = 0; |
| 1134 | memset(cluster_mappings_tmp, 0, |
| 1135 | set->max_size * sizeof(*cluster_mappings_tmp)); |
| 1136 | assert(cluster_mappings[0] == 0); |
| 1137 | // Re-map the ids. |
| 1138 | for (i = 0; i < set->max_size; ++i) { |
| 1139 | int cluster; |
| 1140 | if (symbols[i] == kInvalidHistogramSymbol) continue; |
| 1141 | cluster = cluster_mappings[symbols[i]]; |
| 1142 | assert(symbols[i] < num_clusters); |
| 1143 | if (cluster > 0 && cluster_mappings_tmp[cluster] == 0) { |
| 1144 | ++cluster_max; |
| 1145 | cluster_mappings_tmp[cluster] = cluster_max; |
| 1146 | } |
| 1147 | symbols[i] = cluster_mappings_tmp[cluster]; |
| 1148 | } |
| 1149 | |
| 1150 | // Make sure all cluster values are used. |
| 1151 | cluster_max = 0; |
| 1152 | for (i = 0; i < set->max_size; ++i) { |
| 1153 | if (symbols[i] == kInvalidHistogramSymbol) continue; |
| 1154 | if (symbols[i] <= cluster_max) continue; |
| 1155 | ++cluster_max; |
| 1156 | assert(symbols[i] == cluster_max); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | static void RemoveEmptyHistograms(VP8LHistogramSet* const image_histo) { |
| 1161 | uint32_t size; |
| 1162 | int i; |
| 1163 | for (i = 0, size = 0; i < image_histo->size; ++i) { |
| 1164 | if (image_histo->histograms[i] == NULL) continue; |
| 1165 | image_histo->histograms[size++] = image_histo->histograms[i]; |
| 1166 | } |
| 1167 | image_histo->size = size; |
| 1168 | } |
| 1169 | |
| 1170 | int VP8LGetHistoImageSymbols(int xsize, int ysize, |
| 1171 | const VP8LBackwardRefs* const refs, |
| 1172 | int quality, int low_effort, |
| 1173 | int histo_bits, int cache_bits, |
| 1174 | VP8LHistogramSet* const image_histo, |
| 1175 | VP8LHistogram* const tmp_histo, |
| 1176 | uint16_t* const histogram_symbols) { |
| 1177 | int ok = 0; |
| 1178 | const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; |
| 1179 | const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; |
| 1180 | const int image_histo_raw_size = histo_xsize * histo_ysize; |
| 1181 | VP8LHistogramSet* const orig_histo = |
| 1182 | VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); |
| 1183 | // Don't attempt linear bin-partition heuristic for |
| 1184 | // histograms of small sizes (as bin_map will be very sparse) and |
| 1185 | // maximum quality q==100 (to preserve the compression gains at that level). |
| 1186 | const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE; |
| 1187 | int entropy_combine; |
| 1188 | uint16_t* const map_tmp = |
| 1189 | WebPSafeMalloc(2 * image_histo_raw_size, sizeof(map_tmp)); |
| 1190 | uint16_t* const cluster_mappings = map_tmp + image_histo_raw_size; |
| 1191 | int num_used = image_histo_raw_size; |
| 1192 | if (orig_histo == NULL || map_tmp == NULL) goto Error; |
| 1193 | |
| 1194 | // Construct the histograms from backward references. |
| 1195 | HistogramBuild(xsize, histo_bits, refs, orig_histo); |
| 1196 | // Copies the histograms and computes its bit_cost. |
| 1197 | // histogram_symbols is optimized |
| 1198 | HistogramCopyAndAnalyze(orig_histo, image_histo, &num_used, |
| 1199 | histogram_symbols); |
| 1200 | |
| 1201 | entropy_combine = |
| 1202 | (num_used > entropy_combine_num_bins * 2) && (quality < 100); |
| 1203 | |
| 1204 | if (entropy_combine) { |
| 1205 | uint16_t* const bin_map = map_tmp; |
| 1206 | const double combine_cost_factor = |
| 1207 | GetCombineCostFactor(image_histo_raw_size, quality); |
| 1208 | const uint32_t num_clusters = num_used; |
| 1209 | |
| 1210 | HistogramAnalyzeEntropyBin(image_histo, bin_map, low_effort); |
| 1211 | // Collapse histograms with similar entropy. |
| 1212 | HistogramCombineEntropyBin(image_histo, &num_used, histogram_symbols, |
| 1213 | cluster_mappings, tmp_histo, bin_map, |
| 1214 | entropy_combine_num_bins, combine_cost_factor, |
| 1215 | low_effort); |
| 1216 | OptimizeHistogramSymbols(image_histo, cluster_mappings, num_clusters, |
| 1217 | map_tmp, histogram_symbols); |
| 1218 | } |
| 1219 | |
| 1220 | // Don't combine the histograms using stochastic and greedy heuristics for |
| 1221 | // low-effort compression mode. |
| 1222 | if (!low_effort || !entropy_combine) { |
| 1223 | const float x = quality / 100.f; |
| 1224 | // cubic ramp between 1 and MAX_HISTO_GREEDY: |
| 1225 | const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1)); |
| 1226 | int do_greedy; |
| 1227 | if (!HistogramCombineStochastic(image_histo, &num_used, threshold_size, |
| 1228 | &do_greedy)) { |
| 1229 | goto Error; |
| 1230 | } |
| 1231 | if (do_greedy) { |
| 1232 | RemoveEmptyHistograms(image_histo); |
| 1233 | if (!HistogramCombineGreedy(image_histo, &num_used)) { |
| 1234 | goto Error; |
| 1235 | } |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | // Find the optimal map from original histograms to the final ones. |
| 1240 | RemoveEmptyHistograms(image_histo); |
| 1241 | HistogramRemap(orig_histo, image_histo, histogram_symbols); |
| 1242 | |
| 1243 | ok = 1; |
| 1244 | |
| 1245 | Error: |
| 1246 | VP8LFreeHistogramSet(orig_histo); |
| 1247 | WebPSafeFree(map_tmp); |
| 1248 | return ok; |
| 1249 | } |
| 1250 | |