| 1 | // Copyright 2016 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Image transform methods for lossless encoder. |
| 11 | // |
| 12 | // Authors: Vikas Arora (vikaas.arora@gmail.com) |
| 13 | // Jyrki Alakuijala (jyrki@google.com) |
| 14 | // Urvang Joshi (urvang@google.com) |
| 15 | // Vincent Rabaud (vrabaud@google.com) |
| 16 | |
| 17 | #include "src/dsp/lossless.h" |
| 18 | #include "src/dsp/lossless_common.h" |
| 19 | #include "src/enc/vp8li_enc.h" |
| 20 | |
| 21 | #define MAX_DIFF_COST (1e30f) |
| 22 | |
| 23 | static const float kSpatialPredictorBias = 15.f; |
| 24 | static const int kPredLowEffort = 11; |
| 25 | static const uint32_t kMaskAlpha = 0xff000000; |
| 26 | |
| 27 | // Mostly used to reduce code size + readability |
| 28 | static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } |
| 29 | |
| 30 | //------------------------------------------------------------------------------ |
| 31 | // Methods to calculate Entropy (Shannon). |
| 32 | |
| 33 | static float PredictionCostSpatial(const int counts[256], int weight_0, |
| 34 | double exp_val) { |
| 35 | const int significant_symbols = 256 >> 4; |
| 36 | const double exp_decay_factor = 0.6; |
| 37 | double bits = weight_0 * counts[0]; |
| 38 | int i; |
| 39 | for (i = 1; i < significant_symbols; ++i) { |
| 40 | bits += exp_val * (counts[i] + counts[256 - i]); |
| 41 | exp_val *= exp_decay_factor; |
| 42 | } |
| 43 | return (float)(-0.1 * bits); |
| 44 | } |
| 45 | |
| 46 | static float PredictionCostSpatialHistogram(const int accumulated[4][256], |
| 47 | const int tile[4][256]) { |
| 48 | int i; |
| 49 | double retval = 0; |
| 50 | for (i = 0; i < 4; ++i) { |
| 51 | const double kExpValue = 0.94; |
| 52 | retval += PredictionCostSpatial(tile[i], 1, kExpValue); |
| 53 | retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]); |
| 54 | } |
| 55 | return (float)retval; |
| 56 | } |
| 57 | |
| 58 | static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) { |
| 59 | ++histo_argb[0][argb >> 24]; |
| 60 | ++histo_argb[1][(argb >> 16) & 0xff]; |
| 61 | ++histo_argb[2][(argb >> 8) & 0xff]; |
| 62 | ++histo_argb[3][argb & 0xff]; |
| 63 | } |
| 64 | |
| 65 | //------------------------------------------------------------------------------ |
| 66 | // Spatial transform functions. |
| 67 | |
| 68 | static WEBP_INLINE void PredictBatch(int mode, int x_start, int y, |
| 69 | int num_pixels, const uint32_t* current, |
| 70 | const uint32_t* upper, uint32_t* out) { |
| 71 | if (x_start == 0) { |
| 72 | if (y == 0) { |
| 73 | // ARGB_BLACK. |
| 74 | VP8LPredictorsSub[0](current, NULL, 1, out); |
| 75 | } else { |
| 76 | // Top one. |
| 77 | VP8LPredictorsSub[2](current, upper, 1, out); |
| 78 | } |
| 79 | ++x_start; |
| 80 | ++out; |
| 81 | --num_pixels; |
| 82 | } |
| 83 | if (y == 0) { |
| 84 | // Left one. |
| 85 | VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out); |
| 86 | } else { |
| 87 | VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels, |
| 88 | out); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | #if (WEBP_NEAR_LOSSLESS == 1) |
| 93 | static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; } |
| 94 | |
| 95 | static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) { |
| 96 | const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24)); |
| 97 | const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff)); |
| 98 | const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff)); |
| 99 | const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff)); |
| 100 | return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b)); |
| 101 | } |
| 102 | |
| 103 | static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down, |
| 104 | uint32_t left, uint32_t right) { |
| 105 | const int diff_up = MaxDiffBetweenPixels(current, up); |
| 106 | const int diff_down = MaxDiffBetweenPixels(current, down); |
| 107 | const int diff_left = MaxDiffBetweenPixels(current, left); |
| 108 | const int diff_right = MaxDiffBetweenPixels(current, right); |
| 109 | return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right)); |
| 110 | } |
| 111 | |
| 112 | static uint32_t AddGreenToBlueAndRed(uint32_t argb) { |
| 113 | const uint32_t green = (argb >> 8) & 0xff; |
| 114 | uint32_t red_blue = argb & 0x00ff00ffu; |
| 115 | red_blue += (green << 16) | green; |
| 116 | red_blue &= 0x00ff00ffu; |
| 117 | return (argb & 0xff00ff00u) | red_blue; |
| 118 | } |
| 119 | |
| 120 | static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb, |
| 121 | uint8_t* const max_diffs, int used_subtract_green) { |
| 122 | uint32_t current, up, down, left, right; |
| 123 | int x; |
| 124 | if (width <= 2) return; |
| 125 | current = argb[0]; |
| 126 | right = argb[1]; |
| 127 | if (used_subtract_green) { |
| 128 | current = AddGreenToBlueAndRed(current); |
| 129 | right = AddGreenToBlueAndRed(right); |
| 130 | } |
| 131 | // max_diffs[0] and max_diffs[width - 1] are never used. |
| 132 | for (x = 1; x < width - 1; ++x) { |
| 133 | up = argb[-stride + x]; |
| 134 | down = argb[stride + x]; |
| 135 | left = current; |
| 136 | current = right; |
| 137 | right = argb[x + 1]; |
| 138 | if (used_subtract_green) { |
| 139 | up = AddGreenToBlueAndRed(up); |
| 140 | down = AddGreenToBlueAndRed(down); |
| 141 | right = AddGreenToBlueAndRed(right); |
| 142 | } |
| 143 | max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right); |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | // Quantize the difference between the actual component value and its prediction |
| 148 | // to a multiple of quantization, working modulo 256, taking care not to cross |
| 149 | // a boundary (inclusive upper limit). |
| 150 | static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, |
| 151 | uint8_t boundary, int quantization) { |
| 152 | const int residual = (value - predict) & 0xff; |
| 153 | const int boundary_residual = (boundary - predict) & 0xff; |
| 154 | const int lower = residual & ~(quantization - 1); |
| 155 | const int upper = lower + quantization; |
| 156 | // Resolve ties towards a value closer to the prediction (i.e. towards lower |
| 157 | // if value comes after prediction and towards upper otherwise). |
| 158 | const int bias = ((boundary - value) & 0xff) < boundary_residual; |
| 159 | if (residual - lower < upper - residual + bias) { |
| 160 | // lower is closer to residual than upper. |
| 161 | if (residual > boundary_residual && lower <= boundary_residual) { |
| 162 | // Halve quantization step to avoid crossing boundary. This midpoint is |
| 163 | // on the same side of boundary as residual because midpoint >= residual |
| 164 | // (since lower is closer than upper) and residual is above the boundary. |
| 165 | return lower + (quantization >> 1); |
| 166 | } |
| 167 | return lower; |
| 168 | } else { |
| 169 | // upper is closer to residual than lower. |
| 170 | if (residual <= boundary_residual && upper > boundary_residual) { |
| 171 | // Halve quantization step to avoid crossing boundary. This midpoint is |
| 172 | // on the same side of boundary as residual because midpoint <= residual |
| 173 | // (since upper is closer than lower) and residual is below the boundary. |
| 174 | return lower + (quantization >> 1); |
| 175 | } |
| 176 | return upper & 0xff; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) { |
| 181 | return (uint8_t)((((int)(a) - (int)(b))) & 0xff); |
| 182 | } |
| 183 | |
| 184 | // Quantize every component of the difference between the actual pixel value and |
| 185 | // its prediction to a multiple of a quantization (a power of 2, not larger than |
| 186 | // max_quantization which is a power of 2, smaller than max_diff). Take care if |
| 187 | // value and predict have undergone subtract green, which means that red and |
| 188 | // blue are represented as offsets from green. |
| 189 | static uint32_t NearLossless(uint32_t value, uint32_t predict, |
| 190 | int max_quantization, int max_diff, |
| 191 | int used_subtract_green) { |
| 192 | int quantization; |
| 193 | uint8_t new_green = 0; |
| 194 | uint8_t green_diff = 0; |
| 195 | uint8_t a, r, g, b; |
| 196 | if (max_diff <= 2) { |
| 197 | return VP8LSubPixels(value, predict); |
| 198 | } |
| 199 | quantization = max_quantization; |
| 200 | while (quantization >= max_diff) { |
| 201 | quantization >>= 1; |
| 202 | } |
| 203 | if ((value >> 24) == 0 || (value >> 24) == 0xff) { |
| 204 | // Preserve transparency of fully transparent or fully opaque pixels. |
| 205 | a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff); |
| 206 | } else { |
| 207 | a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); |
| 208 | } |
| 209 | g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, |
| 210 | quantization); |
| 211 | if (used_subtract_green) { |
| 212 | // The green offset will be added to red and blue components during decoding |
| 213 | // to obtain the actual red and blue values. |
| 214 | new_green = ((predict >> 8) + g) & 0xff; |
| 215 | // The amount by which green has been adjusted during quantization. It is |
| 216 | // subtracted from red and blue for compensation, to avoid accumulating two |
| 217 | // quantization errors in them. |
| 218 | green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff); |
| 219 | } |
| 220 | r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff), |
| 221 | (predict >> 16) & 0xff, 0xff - new_green, |
| 222 | quantization); |
| 223 | b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff), |
| 224 | predict & 0xff, 0xff - new_green, quantization); |
| 225 | return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; |
| 226 | } |
| 227 | #endif // (WEBP_NEAR_LOSSLESS == 1) |
| 228 | |
| 229 | // Stores the difference between the pixel and its prediction in "out". |
| 230 | // In case of a lossy encoding, updates the source image to avoid propagating |
| 231 | // the deviation further to pixels which depend on the current pixel for their |
| 232 | // predictions. |
| 233 | static WEBP_INLINE void GetResidual( |
| 234 | int width, int height, uint32_t* const upper_row, |
| 235 | uint32_t* const current_row, const uint8_t* const max_diffs, int mode, |
| 236 | int x_start, int x_end, int y, int max_quantization, int exact, |
| 237 | int used_subtract_green, uint32_t* const out) { |
| 238 | if (exact) { |
| 239 | PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row, |
| 240 | out); |
| 241 | } else { |
| 242 | const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; |
| 243 | int x; |
| 244 | for (x = x_start; x < x_end; ++x) { |
| 245 | uint32_t predict; |
| 246 | uint32_t residual; |
| 247 | if (y == 0) { |
| 248 | predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left. |
| 249 | } else if (x == 0) { |
| 250 | predict = upper_row[x]; // Top. |
| 251 | } else { |
| 252 | predict = pred_func(current_row[x - 1], upper_row + x); |
| 253 | } |
| 254 | #if (WEBP_NEAR_LOSSLESS == 1) |
| 255 | if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 || |
| 256 | x == 0 || x == width - 1) { |
| 257 | residual = VP8LSubPixels(current_row[x], predict); |
| 258 | } else { |
| 259 | residual = NearLossless(current_row[x], predict, max_quantization, |
| 260 | max_diffs[x], used_subtract_green); |
| 261 | // Update the source image. |
| 262 | current_row[x] = VP8LAddPixels(predict, residual); |
| 263 | // x is never 0 here so we do not need to update upper_row like below. |
| 264 | } |
| 265 | #else |
| 266 | (void)max_diffs; |
| 267 | (void)height; |
| 268 | (void)max_quantization; |
| 269 | (void)used_subtract_green; |
| 270 | residual = VP8LSubPixels(current_row[x], predict); |
| 271 | #endif |
| 272 | if ((current_row[x] & kMaskAlpha) == 0) { |
| 273 | // If alpha is 0, cleanup RGB. We can choose the RGB values of the |
| 274 | // residual for best compression. The prediction of alpha itself can be |
| 275 | // non-zero and must be kept though. We choose RGB of the residual to be |
| 276 | // 0. |
| 277 | residual &= kMaskAlpha; |
| 278 | // Update the source image. |
| 279 | current_row[x] = predict & ~kMaskAlpha; |
| 280 | // The prediction for the rightmost pixel in a row uses the leftmost |
| 281 | // pixel |
| 282 | // in that row as its top-right context pixel. Hence if we change the |
| 283 | // leftmost pixel of current_row, the corresponding change must be |
| 284 | // applied |
| 285 | // to upper_row as well where top-right context is being read from. |
| 286 | if (x == 0 && y != 0) upper_row[width] = current_row[0]; |
| 287 | } |
| 288 | out[x - x_start] = residual; |
| 289 | } |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | // Returns best predictor and updates the accumulated histogram. |
| 294 | // If max_quantization > 1, assumes that near lossless processing will be |
| 295 | // applied, quantizing residuals to multiples of quantization levels up to |
| 296 | // max_quantization (the actual quantization level depends on smoothness near |
| 297 | // the given pixel). |
| 298 | static int GetBestPredictorForTile(int width, int height, |
| 299 | int tile_x, int tile_y, int bits, |
| 300 | int accumulated[4][256], |
| 301 | uint32_t* const argb_scratch, |
| 302 | const uint32_t* const argb, |
| 303 | int max_quantization, |
| 304 | int exact, int used_subtract_green, |
| 305 | const uint32_t* const modes) { |
| 306 | const int kNumPredModes = 14; |
| 307 | const int start_x = tile_x << bits; |
| 308 | const int start_y = tile_y << bits; |
| 309 | const int tile_size = 1 << bits; |
| 310 | const int max_y = GetMin(tile_size, height - start_y); |
| 311 | const int max_x = GetMin(tile_size, width - start_x); |
| 312 | // Whether there exist columns just outside the tile. |
| 313 | const int have_left = (start_x > 0); |
| 314 | // Position and size of the strip covering the tile and adjacent columns if |
| 315 | // they exist. |
| 316 | const int context_start_x = start_x - have_left; |
| 317 | #if (WEBP_NEAR_LOSSLESS == 1) |
| 318 | const int context_width = max_x + have_left + (max_x < width - start_x); |
| 319 | #endif |
| 320 | const int tiles_per_row = VP8LSubSampleSize(width, bits); |
| 321 | // Prediction modes of the left and above neighbor tiles. |
| 322 | const int left_mode = (tile_x > 0) ? |
| 323 | (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff; |
| 324 | const int above_mode = (tile_y > 0) ? |
| 325 | (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff; |
| 326 | // The width of upper_row and current_row is one pixel larger than image width |
| 327 | // to allow the top right pixel to point to the leftmost pixel of the next row |
| 328 | // when at the right edge. |
| 329 | uint32_t* upper_row = argb_scratch; |
| 330 | uint32_t* current_row = upper_row + width + 1; |
| 331 | uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1); |
| 332 | float best_diff = MAX_DIFF_COST; |
| 333 | int best_mode = 0; |
| 334 | int mode; |
| 335 | int histo_stack_1[4][256]; |
| 336 | int histo_stack_2[4][256]; |
| 337 | // Need pointers to be able to swap arrays. |
| 338 | int (*histo_argb)[256] = histo_stack_1; |
| 339 | int (*best_histo)[256] = histo_stack_2; |
| 340 | int i, j; |
| 341 | uint32_t residuals[1 << MAX_TRANSFORM_BITS]; |
| 342 | assert(bits <= MAX_TRANSFORM_BITS); |
| 343 | assert(max_x <= (1 << MAX_TRANSFORM_BITS)); |
| 344 | |
| 345 | for (mode = 0; mode < kNumPredModes; ++mode) { |
| 346 | float cur_diff; |
| 347 | int relative_y; |
| 348 | memset(histo_argb, 0, sizeof(histo_stack_1)); |
| 349 | if (start_y > 0) { |
| 350 | // Read the row above the tile which will become the first upper_row. |
| 351 | // Include a pixel to the left if it exists; include a pixel to the right |
| 352 | // in all cases (wrapping to the leftmost pixel of the next row if it does |
| 353 | // not exist). |
| 354 | memcpy(current_row + context_start_x, |
| 355 | argb + (start_y - 1) * width + context_start_x, |
| 356 | sizeof(*argb) * (max_x + have_left + 1)); |
| 357 | } |
| 358 | for (relative_y = 0; relative_y < max_y; ++relative_y) { |
| 359 | const int y = start_y + relative_y; |
| 360 | int relative_x; |
| 361 | uint32_t* tmp = upper_row; |
| 362 | upper_row = current_row; |
| 363 | current_row = tmp; |
| 364 | // Read current_row. Include a pixel to the left if it exists; include a |
| 365 | // pixel to the right in all cases except at the bottom right corner of |
| 366 | // the image (wrapping to the leftmost pixel of the next row if it does |
| 367 | // not exist in the current row). |
| 368 | memcpy(current_row + context_start_x, |
| 369 | argb + y * width + context_start_x, |
| 370 | sizeof(*argb) * (max_x + have_left + (y + 1 < height))); |
| 371 | #if (WEBP_NEAR_LOSSLESS == 1) |
| 372 | if (max_quantization > 1 && y >= 1 && y + 1 < height) { |
| 373 | MaxDiffsForRow(context_width, width, argb + y * width + context_start_x, |
| 374 | max_diffs + context_start_x, used_subtract_green); |
| 375 | } |
| 376 | #endif |
| 377 | |
| 378 | GetResidual(width, height, upper_row, current_row, max_diffs, mode, |
| 379 | start_x, start_x + max_x, y, max_quantization, exact, |
| 380 | used_subtract_green, residuals); |
| 381 | for (relative_x = 0; relative_x < max_x; ++relative_x) { |
| 382 | UpdateHisto(histo_argb, residuals[relative_x]); |
| 383 | } |
| 384 | } |
| 385 | cur_diff = PredictionCostSpatialHistogram( |
| 386 | (const int (*)[256])accumulated, (const int (*)[256])histo_argb); |
| 387 | // Favor keeping the areas locally similar. |
| 388 | if (mode == left_mode) cur_diff -= kSpatialPredictorBias; |
| 389 | if (mode == above_mode) cur_diff -= kSpatialPredictorBias; |
| 390 | |
| 391 | if (cur_diff < best_diff) { |
| 392 | int (*tmp)[256] = histo_argb; |
| 393 | histo_argb = best_histo; |
| 394 | best_histo = tmp; |
| 395 | best_diff = cur_diff; |
| 396 | best_mode = mode; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | for (i = 0; i < 4; i++) { |
| 401 | for (j = 0; j < 256; j++) { |
| 402 | accumulated[i][j] += best_histo[i][j]; |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | return best_mode; |
| 407 | } |
| 408 | |
| 409 | // Converts pixels of the image to residuals with respect to predictions. |
| 410 | // If max_quantization > 1, applies near lossless processing, quantizing |
| 411 | // residuals to multiples of quantization levels up to max_quantization |
| 412 | // (the actual quantization level depends on smoothness near the given pixel). |
| 413 | static void CopyImageWithPrediction(int width, int height, |
| 414 | int bits, uint32_t* const modes, |
| 415 | uint32_t* const argb_scratch, |
| 416 | uint32_t* const argb, |
| 417 | int low_effort, int max_quantization, |
| 418 | int exact, int used_subtract_green) { |
| 419 | const int tiles_per_row = VP8LSubSampleSize(width, bits); |
| 420 | // The width of upper_row and current_row is one pixel larger than image width |
| 421 | // to allow the top right pixel to point to the leftmost pixel of the next row |
| 422 | // when at the right edge. |
| 423 | uint32_t* upper_row = argb_scratch; |
| 424 | uint32_t* current_row = upper_row + width + 1; |
| 425 | uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1); |
| 426 | #if (WEBP_NEAR_LOSSLESS == 1) |
| 427 | uint8_t* lower_max_diffs = current_max_diffs + width; |
| 428 | #endif |
| 429 | int y; |
| 430 | |
| 431 | for (y = 0; y < height; ++y) { |
| 432 | int x; |
| 433 | uint32_t* const tmp32 = upper_row; |
| 434 | upper_row = current_row; |
| 435 | current_row = tmp32; |
| 436 | memcpy(current_row, argb + y * width, |
| 437 | sizeof(*argb) * (width + (y + 1 < height))); |
| 438 | |
| 439 | if (low_effort) { |
| 440 | PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row, |
| 441 | argb + y * width); |
| 442 | } else { |
| 443 | #if (WEBP_NEAR_LOSSLESS == 1) |
| 444 | if (max_quantization > 1) { |
| 445 | // Compute max_diffs for the lower row now, because that needs the |
| 446 | // contents of argb for the current row, which we will overwrite with |
| 447 | // residuals before proceeding with the next row. |
| 448 | uint8_t* const tmp8 = current_max_diffs; |
| 449 | current_max_diffs = lower_max_diffs; |
| 450 | lower_max_diffs = tmp8; |
| 451 | if (y + 2 < height) { |
| 452 | MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs, |
| 453 | used_subtract_green); |
| 454 | } |
| 455 | } |
| 456 | #endif |
| 457 | for (x = 0; x < width;) { |
| 458 | const int mode = |
| 459 | (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; |
| 460 | int x_end = x + (1 << bits); |
| 461 | if (x_end > width) x_end = width; |
| 462 | GetResidual(width, height, upper_row, current_row, current_max_diffs, |
| 463 | mode, x, x_end, y, max_quantization, exact, |
| 464 | used_subtract_green, argb + y * width + x); |
| 465 | x = x_end; |
| 466 | } |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | // Finds the best predictor for each tile, and converts the image to residuals |
| 472 | // with respect to predictions. If near_lossless_quality < 100, applies |
| 473 | // near lossless processing, shaving off more bits of residuals for lower |
| 474 | // qualities. |
| 475 | void VP8LResidualImage(int width, int height, int bits, int low_effort, |
| 476 | uint32_t* const argb, uint32_t* const argb_scratch, |
| 477 | uint32_t* const image, int near_lossless_quality, |
| 478 | int exact, int used_subtract_green) { |
| 479 | const int tiles_per_row = VP8LSubSampleSize(width, bits); |
| 480 | const int tiles_per_col = VP8LSubSampleSize(height, bits); |
| 481 | int tile_y; |
| 482 | int histo[4][256]; |
| 483 | const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality); |
| 484 | if (low_effort) { |
| 485 | int i; |
| 486 | for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { |
| 487 | image[i] = ARGB_BLACK | (kPredLowEffort << 8); |
| 488 | } |
| 489 | } else { |
| 490 | memset(histo, 0, sizeof(histo)); |
| 491 | for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
| 492 | int tile_x; |
| 493 | for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
| 494 | const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y, |
| 495 | bits, histo, argb_scratch, argb, max_quantization, exact, |
| 496 | used_subtract_green, image); |
| 497 | image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb, |
| 503 | low_effort, max_quantization, exact, |
| 504 | used_subtract_green); |
| 505 | } |
| 506 | |
| 507 | //------------------------------------------------------------------------------ |
| 508 | // Color transform functions. |
| 509 | |
| 510 | static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { |
| 511 | m->green_to_red_ = 0; |
| 512 | m->green_to_blue_ = 0; |
| 513 | m->red_to_blue_ = 0; |
| 514 | } |
| 515 | |
| 516 | static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
| 517 | VP8LMultipliers* const m) { |
| 518 | m->green_to_red_ = (color_code >> 0) & 0xff; |
| 519 | m->green_to_blue_ = (color_code >> 8) & 0xff; |
| 520 | m->red_to_blue_ = (color_code >> 16) & 0xff; |
| 521 | } |
| 522 | |
| 523 | static WEBP_INLINE uint32_t MultipliersToColorCode( |
| 524 | const VP8LMultipliers* const m) { |
| 525 | return 0xff000000u | |
| 526 | ((uint32_t)(m->red_to_blue_) << 16) | |
| 527 | ((uint32_t)(m->green_to_blue_) << 8) | |
| 528 | m->green_to_red_; |
| 529 | } |
| 530 | |
| 531 | static float PredictionCostCrossColor(const int accumulated[256], |
| 532 | const int counts[256]) { |
| 533 | // Favor low entropy, locally and globally. |
| 534 | // Favor small absolute values for PredictionCostSpatial |
| 535 | static const double kExpValue = 2.4; |
| 536 | return VP8LCombinedShannonEntropy(counts, accumulated) + |
| 537 | PredictionCostSpatial(counts, 3, kExpValue); |
| 538 | } |
| 539 | |
| 540 | static float GetPredictionCostCrossColorRed( |
| 541 | const uint32_t* argb, int stride, int tile_width, int tile_height, |
| 542 | VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, |
| 543 | const int accumulated_red_histo[256]) { |
| 544 | int histo[256] = { 0 }; |
| 545 | float cur_diff; |
| 546 | |
| 547 | VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height, |
| 548 | green_to_red, histo); |
| 549 | |
| 550 | cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); |
| 551 | if ((uint8_t)green_to_red == prev_x.green_to_red_) { |
| 552 | cur_diff -= 3; // favor keeping the areas locally similar |
| 553 | } |
| 554 | if ((uint8_t)green_to_red == prev_y.green_to_red_) { |
| 555 | cur_diff -= 3; // favor keeping the areas locally similar |
| 556 | } |
| 557 | if (green_to_red == 0) { |
| 558 | cur_diff -= 3; |
| 559 | } |
| 560 | return cur_diff; |
| 561 | } |
| 562 | |
| 563 | static void GetBestGreenToRed( |
| 564 | const uint32_t* argb, int stride, int tile_width, int tile_height, |
| 565 | VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, |
| 566 | const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) { |
| 567 | const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6] |
| 568 | int green_to_red_best = 0; |
| 569 | int iter, offset; |
| 570 | float best_diff = GetPredictionCostCrossColorRed( |
| 571 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
| 572 | green_to_red_best, accumulated_red_histo); |
| 573 | for (iter = 0; iter < kMaxIters; ++iter) { |
| 574 | // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to |
| 575 | // one in color computation. Having initial delta here as 1 is sufficient |
| 576 | // to explore the range of (-2, 2). |
| 577 | const int delta = 32 >> iter; |
| 578 | // Try a negative and a positive delta from the best known value. |
| 579 | for (offset = -delta; offset <= delta; offset += 2 * delta) { |
| 580 | const int green_to_red_cur = offset + green_to_red_best; |
| 581 | const float cur_diff = GetPredictionCostCrossColorRed( |
| 582 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
| 583 | green_to_red_cur, accumulated_red_histo); |
| 584 | if (cur_diff < best_diff) { |
| 585 | best_diff = cur_diff; |
| 586 | green_to_red_best = green_to_red_cur; |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | best_tx->green_to_red_ = (green_to_red_best & 0xff); |
| 591 | } |
| 592 | |
| 593 | static float GetPredictionCostCrossColorBlue( |
| 594 | const uint32_t* argb, int stride, int tile_width, int tile_height, |
| 595 | VP8LMultipliers prev_x, VP8LMultipliers prev_y, |
| 596 | int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) { |
| 597 | int histo[256] = { 0 }; |
| 598 | float cur_diff; |
| 599 | |
| 600 | VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height, |
| 601 | green_to_blue, red_to_blue, histo); |
| 602 | |
| 603 | cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); |
| 604 | if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { |
| 605 | cur_diff -= 3; // favor keeping the areas locally similar |
| 606 | } |
| 607 | if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { |
| 608 | cur_diff -= 3; // favor keeping the areas locally similar |
| 609 | } |
| 610 | if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { |
| 611 | cur_diff -= 3; // favor keeping the areas locally similar |
| 612 | } |
| 613 | if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { |
| 614 | cur_diff -= 3; // favor keeping the areas locally similar |
| 615 | } |
| 616 | if (green_to_blue == 0) { |
| 617 | cur_diff -= 3; |
| 618 | } |
| 619 | if (red_to_blue == 0) { |
| 620 | cur_diff -= 3; |
| 621 | } |
| 622 | return cur_diff; |
| 623 | } |
| 624 | |
| 625 | #define kGreenRedToBlueNumAxis 8 |
| 626 | #define kGreenRedToBlueMaxIters 7 |
| 627 | static void GetBestGreenRedToBlue( |
| 628 | const uint32_t* argb, int stride, int tile_width, int tile_height, |
| 629 | VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, |
| 630 | const int accumulated_blue_histo[256], |
| 631 | VP8LMultipliers* const best_tx) { |
| 632 | const int8_t offset[kGreenRedToBlueNumAxis][2] = |
| 633 | {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}; |
| 634 | const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 }; |
| 635 | const int iters = |
| 636 | (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4; |
| 637 | int green_to_blue_best = 0; |
| 638 | int red_to_blue_best = 0; |
| 639 | int iter; |
| 640 | // Initial value at origin: |
| 641 | float best_diff = GetPredictionCostCrossColorBlue( |
| 642 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
| 643 | green_to_blue_best, red_to_blue_best, accumulated_blue_histo); |
| 644 | for (iter = 0; iter < iters; ++iter) { |
| 645 | const int delta = delta_lut[iter]; |
| 646 | int axis; |
| 647 | for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) { |
| 648 | const int green_to_blue_cur = |
| 649 | offset[axis][0] * delta + green_to_blue_best; |
| 650 | const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best; |
| 651 | const float cur_diff = GetPredictionCostCrossColorBlue( |
| 652 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
| 653 | green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo); |
| 654 | if (cur_diff < best_diff) { |
| 655 | best_diff = cur_diff; |
| 656 | green_to_blue_best = green_to_blue_cur; |
| 657 | red_to_blue_best = red_to_blue_cur; |
| 658 | } |
| 659 | if (quality < 25 && iter == 4) { |
| 660 | // Only axis aligned diffs for lower quality. |
| 661 | break; // next iter. |
| 662 | } |
| 663 | } |
| 664 | if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) { |
| 665 | // Further iterations would not help. |
| 666 | break; // out of iter-loop. |
| 667 | } |
| 668 | } |
| 669 | best_tx->green_to_blue_ = green_to_blue_best & 0xff; |
| 670 | best_tx->red_to_blue_ = red_to_blue_best & 0xff; |
| 671 | } |
| 672 | #undef kGreenRedToBlueMaxIters |
| 673 | #undef kGreenRedToBlueNumAxis |
| 674 | |
| 675 | static VP8LMultipliers GetBestColorTransformForTile( |
| 676 | int tile_x, int tile_y, int bits, |
| 677 | VP8LMultipliers prev_x, |
| 678 | VP8LMultipliers prev_y, |
| 679 | int quality, int xsize, int ysize, |
| 680 | const int accumulated_red_histo[256], |
| 681 | const int accumulated_blue_histo[256], |
| 682 | const uint32_t* const argb) { |
| 683 | const int max_tile_size = 1 << bits; |
| 684 | const int tile_y_offset = tile_y * max_tile_size; |
| 685 | const int tile_x_offset = tile_x * max_tile_size; |
| 686 | const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); |
| 687 | const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); |
| 688 | const int tile_width = all_x_max - tile_x_offset; |
| 689 | const int tile_height = all_y_max - tile_y_offset; |
| 690 | const uint32_t* const tile_argb = argb + tile_y_offset * xsize |
| 691 | + tile_x_offset; |
| 692 | VP8LMultipliers best_tx; |
| 693 | MultipliersClear(&best_tx); |
| 694 | |
| 695 | GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height, |
| 696 | prev_x, prev_y, quality, accumulated_red_histo, &best_tx); |
| 697 | GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height, |
| 698 | prev_x, prev_y, quality, accumulated_blue_histo, |
| 699 | &best_tx); |
| 700 | return best_tx; |
| 701 | } |
| 702 | |
| 703 | static void CopyTileWithColorTransform(int xsize, int ysize, |
| 704 | int tile_x, int tile_y, |
| 705 | int max_tile_size, |
| 706 | VP8LMultipliers color_transform, |
| 707 | uint32_t* argb) { |
| 708 | const int xscan = GetMin(max_tile_size, xsize - tile_x); |
| 709 | int yscan = GetMin(max_tile_size, ysize - tile_y); |
| 710 | argb += tile_y * xsize + tile_x; |
| 711 | while (yscan-- > 0) { |
| 712 | VP8LTransformColor(&color_transform, argb, xscan); |
| 713 | argb += xsize; |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | void VP8LColorSpaceTransform(int width, int height, int bits, int quality, |
| 718 | uint32_t* const argb, uint32_t* image) { |
| 719 | const int max_tile_size = 1 << bits; |
| 720 | const int tile_xsize = VP8LSubSampleSize(width, bits); |
| 721 | const int tile_ysize = VP8LSubSampleSize(height, bits); |
| 722 | int accumulated_red_histo[256] = { 0 }; |
| 723 | int accumulated_blue_histo[256] = { 0 }; |
| 724 | int tile_x, tile_y; |
| 725 | VP8LMultipliers prev_x, prev_y; |
| 726 | MultipliersClear(&prev_y); |
| 727 | MultipliersClear(&prev_x); |
| 728 | for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { |
| 729 | for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { |
| 730 | int y; |
| 731 | const int tile_x_offset = tile_x * max_tile_size; |
| 732 | const int tile_y_offset = tile_y * max_tile_size; |
| 733 | const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); |
| 734 | const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); |
| 735 | const int offset = tile_y * tile_xsize + tile_x; |
| 736 | if (tile_y != 0) { |
| 737 | ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); |
| 738 | } |
| 739 | prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, |
| 740 | prev_x, prev_y, |
| 741 | quality, width, height, |
| 742 | accumulated_red_histo, |
| 743 | accumulated_blue_histo, |
| 744 | argb); |
| 745 | image[offset] = MultipliersToColorCode(&prev_x); |
| 746 | CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, |
| 747 | max_tile_size, prev_x, argb); |
| 748 | |
| 749 | // Gather accumulated histogram data. |
| 750 | for (y = tile_y_offset; y < all_y_max; ++y) { |
| 751 | int ix = y * width + tile_x_offset; |
| 752 | const int ix_end = ix + all_x_max - tile_x_offset; |
| 753 | for (; ix < ix_end; ++ix) { |
| 754 | const uint32_t pix = argb[ix]; |
| 755 | if (ix >= 2 && |
| 756 | pix == argb[ix - 2] && |
| 757 | pix == argb[ix - 1]) { |
| 758 | continue; // repeated pixels are handled by backward references |
| 759 | } |
| 760 | if (ix >= width + 2 && |
| 761 | argb[ix - 2] == argb[ix - width - 2] && |
| 762 | argb[ix - 1] == argb[ix - width - 1] && |
| 763 | pix == argb[ix - width]) { |
| 764 | continue; // repeated pixels are handled by backward references |
| 765 | } |
| 766 | ++accumulated_red_histo[(pix >> 16) & 0xff]; |
| 767 | ++accumulated_blue_histo[(pix >> 0) & 0xff]; |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |