1 | // Copyright (c) 2018 Google LLC. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #ifndef SOURCE_OPT_COPY_PROP_ARRAYS_H_ |
16 | #define SOURCE_OPT_COPY_PROP_ARRAYS_H_ |
17 | |
18 | #include <memory> |
19 | #include <vector> |
20 | |
21 | #include "source/opt/mem_pass.h" |
22 | |
23 | namespace spvtools { |
24 | namespace opt { |
25 | |
26 | // This pass implements a simple array copy propagation. It does not do a full |
27 | // array data flow. It looks for simple cases that meet the following |
28 | // conditions: |
29 | // |
30 | // 1) The source must never be stored to. |
31 | // 2) The target must be stored to exactly once. |
32 | // 3) The store to the target must be a store to the entire array, and be a |
33 | // copy of the entire source. |
34 | // 4) All loads of the target must be dominated by the store. |
35 | // |
36 | // The hard part is keeping all of the types correct. We do not want to |
37 | // have to do too large a search to update everything, which may not be |
38 | // possible, do we give up if we see any instruction that might be hard to |
39 | // update. |
40 | |
41 | class CopyPropagateArrays : public MemPass { |
42 | public: |
43 | const char* name() const override { return "copy-propagate-arrays" ; } |
44 | Status Process() override; |
45 | |
46 | IRContext::Analysis GetPreservedAnalyses() override { |
47 | return IRContext::kAnalysisDefUse | IRContext::kAnalysisCFG | |
48 | IRContext::kAnalysisInstrToBlockMapping | |
49 | IRContext::kAnalysisLoopAnalysis | IRContext::kAnalysisDecorations | |
50 | IRContext::kAnalysisDominatorAnalysis | IRContext::kAnalysisNameMap | |
51 | IRContext::kAnalysisConstants | IRContext::kAnalysisTypes; |
52 | } |
53 | |
54 | private: |
55 | // The class used to identify a particular memory object. This memory object |
56 | // will be owned by a particular variable, meaning that the memory is part of |
57 | // that variable. It could be the entire variable or a member of the |
58 | // variable. |
59 | class MemoryObject { |
60 | public: |
61 | // Construction a memory object that is owned by |var_inst|. The iterator |
62 | // |begin| and |end| traverse a container of integers that identify which |
63 | // member of |var_inst| this memory object will represent. These integers |
64 | // are interpreted the same way they would be in an |OpAccessChain| |
65 | // instruction. |
66 | template <class iterator> |
67 | MemoryObject(Instruction* var_inst, iterator begin, iterator end); |
68 | |
69 | // Change |this| to now point to the member identified by |access_chain| |
70 | // (starting from the current member). The elements in |access_chain| are |
71 | // interpreted the same as the indices in the |OpAccessChain| |
72 | // instruction. |
73 | void GetMember(const std::vector<uint32_t>& access_chain); |
74 | |
75 | // Change |this| to now represent the first enclosing object to which it |
76 | // belongs. (Remove the last element off the access_chain). It is invalid |
77 | // to call this function if |this| does not represent a member of its owner. |
78 | void GetParent() { |
79 | assert(IsMember()); |
80 | access_chain_.pop_back(); |
81 | } |
82 | |
83 | // Returns true if |this| represents a member of its owner, and not the |
84 | // entire variable. |
85 | bool IsMember() const { return !access_chain_.empty(); } |
86 | |
87 | // Returns the number of members in the object represented by |this|. If |
88 | // |this| does not represent a composite type, the return value will be 0. |
89 | uint32_t GetNumberOfMembers(); |
90 | |
91 | // Returns the owning variable that the memory object is contained in. |
92 | Instruction* GetVariable() const { return variable_inst_; } |
93 | |
94 | // Returns a vector of integers that can be used to access the specific |
95 | // member that |this| represents starting from the owning variable. These |
96 | // values are to be interpreted the same way the indices are in an |
97 | // |OpAccessChain| instruction. |
98 | const std::vector<uint32_t>& AccessChain() const { return access_chain_; } |
99 | |
100 | // Returns the type id of the pointer type that can be used to point to this |
101 | // memory object. |
102 | uint32_t GetPointerTypeId(const CopyPropagateArrays* pass) const { |
103 | analysis::DefUseManager* def_use_mgr = |
104 | GetVariable()->context()->get_def_use_mgr(); |
105 | analysis::TypeManager* type_mgr = |
106 | GetVariable()->context()->get_type_mgr(); |
107 | |
108 | Instruction* var_pointer_inst = |
109 | def_use_mgr->GetDef(GetVariable()->type_id()); |
110 | |
111 | uint32_t member_type_id = pass->GetMemberTypeId( |
112 | var_pointer_inst->GetSingleWordInOperand(1), GetAccessIds()); |
113 | |
114 | uint32_t member_pointer_type_id = type_mgr->FindPointerToType( |
115 | member_type_id, static_cast<SpvStorageClass>( |
116 | var_pointer_inst->GetSingleWordInOperand(0))); |
117 | return member_pointer_type_id; |
118 | } |
119 | |
120 | // Returns the storage class of the memory object. |
121 | SpvStorageClass GetStorageClass() const { |
122 | analysis::TypeManager* type_mgr = |
123 | GetVariable()->context()->get_type_mgr(); |
124 | const analysis::Pointer* pointer_type = |
125 | type_mgr->GetType(GetVariable()->type_id())->AsPointer(); |
126 | return pointer_type->storage_class(); |
127 | } |
128 | |
129 | // Returns true if |other| represents memory that is contains inside of the |
130 | // memory represented by |this|. |
131 | bool Contains(MemoryObject* other); |
132 | |
133 | private: |
134 | // The variable that owns this memory object. |
135 | Instruction* variable_inst_; |
136 | |
137 | // The access chain to reach the particular member the memory object |
138 | // represents. It should be interpreted the same way the indices in an |
139 | // |OpAccessChain| are interpreted. |
140 | std::vector<uint32_t> access_chain_; |
141 | std::vector<uint32_t> GetAccessIds() const; |
142 | }; |
143 | |
144 | // Returns the memory object being stored to |var_inst| in the store |
145 | // instruction |store_inst|, if one exists, that can be used in place of |
146 | // |var_inst| in all of the loads of |var_inst|. This code is conservative |
147 | // and only identifies very simple cases. If no such memory object can be |
148 | // found, the return value is |nullptr|. |
149 | std::unique_ptr<CopyPropagateArrays::MemoryObject> FindSourceObjectIfPossible( |
150 | Instruction* var_inst, Instruction* store_inst); |
151 | |
152 | // Replaces all loads of |var_inst| with a load from |source| instead. |
153 | // |insertion_pos| is a position where it is possible to construct the |
154 | // address of |source| and also dominates all of the loads of |var_inst|. |
155 | void PropagateObject(Instruction* var_inst, MemoryObject* source, |
156 | Instruction* insertion_pos); |
157 | |
158 | // Returns true if all of the references to |ptr_inst| can be rewritten and |
159 | // are dominated by |store_inst|. |
160 | bool HasValidReferencesOnly(Instruction* ptr_inst, Instruction* store_inst); |
161 | |
162 | // Returns a memory object that at one time was equivalent to the value in |
163 | // |result|. If no such memory object exists, the return value is |nullptr|. |
164 | std::unique_ptr<MemoryObject> GetSourceObjectIfAny(uint32_t result); |
165 | |
166 | // Returns the memory object that is loaded by |load_inst|. If a memory |
167 | // object cannot be identified, the return value is |nullptr|. The opcode of |
168 | // |load_inst| must be |OpLoad|. |
169 | std::unique_ptr<MemoryObject> BuildMemoryObjectFromLoad( |
170 | Instruction* load_inst); |
171 | |
172 | // Returns the memory object that at some point was equivalent to the result |
173 | // of |extract_inst|. If a memory object cannot be identified, the return |
174 | // value is |nullptr|. The opcode of |extract_inst| must be |
175 | // |OpCompositeExtract|. |
176 | std::unique_ptr<MemoryObject> ( |
177 | Instruction* ); |
178 | |
179 | // Returns the memory object that at some point was equivalent to the result |
180 | // of |construct_inst|. If a memory object cannot be identified, the return |
181 | // value is |nullptr|. The opcode of |constuct_inst| must be |
182 | // |OpCompositeConstruct|. |
183 | std::unique_ptr<MemoryObject> BuildMemoryObjectFromCompositeConstruct( |
184 | Instruction* conststruct_inst); |
185 | |
186 | // Returns the memory object that at some point was equivalent to the result |
187 | // of |insert_inst|. If a memory object cannot be identified, the return |
188 | // value is |nullptr\. The opcode of |insert_inst| must be |
189 | // |OpCompositeInsert|. This function looks for a series of |
190 | // |OpCompositeInsert| instructions that insert the elements one at a time in |
191 | // order from beginning to end. |
192 | std::unique_ptr<MemoryObject> BuildMemoryObjectFromInsert( |
193 | Instruction* insert_inst); |
194 | |
195 | // Return true if |type_id| is a pointer type whose pointee type is an array. |
196 | bool IsPointerToArrayType(uint32_t type_id); |
197 | |
198 | // Returns true of there are not stores using |ptr_inst| or something derived |
199 | // from it. |
200 | bool HasNoStores(Instruction* ptr_inst); |
201 | |
202 | // Creates an |OpAccessChain| instruction whose result is a pointer the memory |
203 | // represented by |source|. The new instruction will be placed before |
204 | // |insertion_point|. |insertion_point| must be part of a function. Returns |
205 | // the new instruction. |
206 | Instruction* BuildNewAccessChain(Instruction* insertion_point, |
207 | MemoryObject* source) const; |
208 | |
209 | // Rewrites all uses of |original_ptr| to use |new_pointer_inst| updating |
210 | // types of other instructions as needed. This function should not be called |
211 | // if |CanUpdateUses(original_ptr_inst, new_pointer_inst->type_id())| returns |
212 | // false. |
213 | void UpdateUses(Instruction* original_ptr_inst, |
214 | Instruction* new_pointer_inst); |
215 | |
216 | // Return true if |UpdateUses| is able to change all of the uses of |
217 | // |original_ptr_inst| to |type_id| and still have valid code. |
218 | bool CanUpdateUses(Instruction* original_ptr_inst, uint32_t type_id); |
219 | |
220 | // Returns a store to |var_inst| that writes to the entire variable, and is |
221 | // the only store that does so. Note it does not look through OpAccessChain |
222 | // instruction, so partial stores are not considered. |
223 | Instruction* FindStoreInstruction(const Instruction* var_inst) const; |
224 | |
225 | // Return the type id of the member of the type |id| access using |
226 | // |access_chain|. The elements of |access_chain| are to be interpreted the |
227 | // same way the indexes are used in an |OpCompositeExtract| instruction. |
228 | uint32_t GetMemberTypeId(uint32_t id, |
229 | const std::vector<uint32_t>& access_chain) const; |
230 | }; |
231 | |
232 | } // namespace opt |
233 | } // namespace spvtools |
234 | |
235 | #endif // SOURCE_OPT_COPY_PROP_ARRAYS_H_ |
236 | |