| 1 | // Copyright (c) 2017 Google Inc. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef SOURCE_OPT_DOMINATOR_TREE_H_ |
| 16 | #define SOURCE_OPT_DOMINATOR_TREE_H_ |
| 17 | |
| 18 | #include <algorithm> |
| 19 | #include <cstdint> |
| 20 | #include <map> |
| 21 | #include <utility> |
| 22 | #include <vector> |
| 23 | |
| 24 | #include "source/opt/cfg.h" |
| 25 | #include "source/opt/tree_iterator.h" |
| 26 | |
| 27 | namespace spvtools { |
| 28 | namespace opt { |
| 29 | // This helper struct forms the nodes in the tree, with each node containing its |
| 30 | // children. It also contains two values, for the pre and post indexes in the |
| 31 | // tree which are used to compare two nodes. |
| 32 | struct DominatorTreeNode { |
| 33 | explicit DominatorTreeNode(BasicBlock* bb) |
| 34 | : bb_(bb), |
| 35 | parent_(nullptr), |
| 36 | children_({}), |
| 37 | dfs_num_pre_(-1), |
| 38 | dfs_num_post_(-1) {} |
| 39 | |
| 40 | using iterator = std::vector<DominatorTreeNode*>::iterator; |
| 41 | using const_iterator = std::vector<DominatorTreeNode*>::const_iterator; |
| 42 | |
| 43 | // depth first preorder iterator. |
| 44 | using df_iterator = TreeDFIterator<DominatorTreeNode>; |
| 45 | using const_df_iterator = TreeDFIterator<const DominatorTreeNode>; |
| 46 | // depth first postorder iterator. |
| 47 | using post_iterator = PostOrderTreeDFIterator<DominatorTreeNode>; |
| 48 | using const_post_iterator = PostOrderTreeDFIterator<const DominatorTreeNode>; |
| 49 | |
| 50 | iterator begin() { return children_.begin(); } |
| 51 | iterator end() { return children_.end(); } |
| 52 | const_iterator begin() const { return cbegin(); } |
| 53 | const_iterator end() const { return cend(); } |
| 54 | const_iterator cbegin() const { return children_.begin(); } |
| 55 | const_iterator cend() const { return children_.end(); } |
| 56 | |
| 57 | // Depth first preorder iterator using this node as root. |
| 58 | df_iterator df_begin() { return df_iterator(this); } |
| 59 | df_iterator df_end() { return df_iterator(); } |
| 60 | const_df_iterator df_begin() const { return df_cbegin(); } |
| 61 | const_df_iterator df_end() const { return df_cend(); } |
| 62 | const_df_iterator df_cbegin() const { return const_df_iterator(this); } |
| 63 | const_df_iterator df_cend() const { return const_df_iterator(); } |
| 64 | |
| 65 | // Depth first postorder iterator using this node as root. |
| 66 | post_iterator post_begin() { return post_iterator::begin(this); } |
| 67 | post_iterator post_end() { return post_iterator::end(nullptr); } |
| 68 | const_post_iterator post_begin() const { return post_cbegin(); } |
| 69 | const_post_iterator post_end() const { return post_cend(); } |
| 70 | const_post_iterator post_cbegin() const { |
| 71 | return const_post_iterator::begin(this); |
| 72 | } |
| 73 | const_post_iterator post_cend() const { |
| 74 | return const_post_iterator::end(nullptr); |
| 75 | } |
| 76 | |
| 77 | inline uint32_t id() const { return bb_->id(); } |
| 78 | |
| 79 | BasicBlock* bb_; |
| 80 | DominatorTreeNode* parent_; |
| 81 | std::vector<DominatorTreeNode*> children_; |
| 82 | |
| 83 | // These indexes are used to compare two given nodes. A node is a child or |
| 84 | // grandchild of another node if its preorder index is greater than the |
| 85 | // first nodes preorder index AND if its postorder index is less than the |
| 86 | // first nodes postorder index. |
| 87 | int dfs_num_pre_; |
| 88 | int dfs_num_post_; |
| 89 | }; |
| 90 | |
| 91 | // A class representing a tree of BasicBlocks in a given function, where each |
| 92 | // node is dominated by its parent. |
| 93 | class DominatorTree { |
| 94 | public: |
| 95 | // Map OpLabel ids to dominator tree nodes |
| 96 | using DominatorTreeNodeMap = std::map<uint32_t, DominatorTreeNode>; |
| 97 | using iterator = TreeDFIterator<DominatorTreeNode>; |
| 98 | using const_iterator = TreeDFIterator<const DominatorTreeNode>; |
| 99 | using post_iterator = PostOrderTreeDFIterator<DominatorTreeNode>; |
| 100 | using const_post_iterator = PostOrderTreeDFIterator<const DominatorTreeNode>; |
| 101 | |
| 102 | // List of DominatorTreeNode to define the list of roots |
| 103 | using DominatorTreeNodeList = std::vector<DominatorTreeNode*>; |
| 104 | using roots_iterator = DominatorTreeNodeList::iterator; |
| 105 | using roots_const_iterator = DominatorTreeNodeList::const_iterator; |
| 106 | |
| 107 | DominatorTree() : postdominator_(false) {} |
| 108 | explicit DominatorTree(bool post) : postdominator_(post) {} |
| 109 | |
| 110 | // Depth first iterators. |
| 111 | // Traverse the dominator tree in a depth first pre-order. |
| 112 | // The pseudo-block is ignored. |
| 113 | iterator begin() { return ++iterator(GetRoot()); } |
| 114 | iterator end() { return iterator(); } |
| 115 | const_iterator begin() const { return cbegin(); } |
| 116 | const_iterator end() const { return cend(); } |
| 117 | const_iterator cbegin() const { return ++const_iterator(GetRoot()); } |
| 118 | const_iterator cend() const { return const_iterator(); } |
| 119 | |
| 120 | // Traverse the dominator tree in a depth first post-order. |
| 121 | // The pseudo-block is ignored. |
| 122 | post_iterator post_begin() { return post_iterator::begin(GetRoot()); } |
| 123 | post_iterator post_end() { return post_iterator::end(GetRoot()); } |
| 124 | const_post_iterator post_begin() const { return post_cbegin(); } |
| 125 | const_post_iterator post_end() const { return post_cend(); } |
| 126 | const_post_iterator post_cbegin() const { |
| 127 | return const_post_iterator::begin(GetRoot()); |
| 128 | } |
| 129 | const_post_iterator post_cend() const { |
| 130 | return const_post_iterator::end(GetRoot()); |
| 131 | } |
| 132 | |
| 133 | roots_iterator roots_begin() { return roots_.begin(); } |
| 134 | roots_iterator roots_end() { return roots_.end(); } |
| 135 | roots_const_iterator roots_begin() const { return roots_cbegin(); } |
| 136 | roots_const_iterator roots_end() const { return roots_cend(); } |
| 137 | roots_const_iterator roots_cbegin() const { return roots_.begin(); } |
| 138 | roots_const_iterator roots_cend() const { return roots_.end(); } |
| 139 | |
| 140 | // Get the unique root of the tree. |
| 141 | // It is guaranteed to work on a dominator tree. |
| 142 | // post-dominator might have a list. |
| 143 | DominatorTreeNode* GetRoot() { |
| 144 | assert(roots_.size() == 1); |
| 145 | return *roots_.begin(); |
| 146 | } |
| 147 | |
| 148 | const DominatorTreeNode* GetRoot() const { |
| 149 | assert(roots_.size() == 1); |
| 150 | return *roots_.begin(); |
| 151 | } |
| 152 | |
| 153 | const DominatorTreeNodeList& Roots() const { return roots_; } |
| 154 | |
| 155 | // Dumps the tree in the graphvis dot format into the |out_stream|. |
| 156 | void DumpTreeAsDot(std::ostream& out_stream) const; |
| 157 | |
| 158 | // Build the (post-)dominator tree for the given control flow graph |
| 159 | // |cfg| and the function |f|. |f| must exist in the |cfg|. Any |
| 160 | // existing data in the dominator tree will be overwritten |
| 161 | void InitializeTree(const CFG& cfg, const Function* f); |
| 162 | |
| 163 | // Check if the basic block |a| dominates the basic block |b|. |
| 164 | bool Dominates(const BasicBlock* a, const BasicBlock* b) const; |
| 165 | |
| 166 | // Check if the basic block id |a| dominates the basic block id |b|. |
| 167 | bool Dominates(uint32_t a, uint32_t b) const; |
| 168 | |
| 169 | // Check if the dominator tree node |a| dominates the dominator tree node |b|. |
| 170 | bool Dominates(const DominatorTreeNode* a, const DominatorTreeNode* b) const; |
| 171 | |
| 172 | // Check if the basic block |a| strictly dominates the basic block |b|. |
| 173 | bool StrictlyDominates(const BasicBlock* a, const BasicBlock* b) const; |
| 174 | |
| 175 | // Check if the basic block id |a| strictly dominates the basic block id |b|. |
| 176 | bool StrictlyDominates(uint32_t a, uint32_t b) const; |
| 177 | |
| 178 | // Check if the dominator tree node |a| strictly dominates the dominator tree |
| 179 | // node |b|. |
| 180 | bool StrictlyDominates(const DominatorTreeNode* a, |
| 181 | const DominatorTreeNode* b) const; |
| 182 | |
| 183 | // Returns the immediate dominator of basic block |a|. |
| 184 | BasicBlock* ImmediateDominator(const BasicBlock* A) const; |
| 185 | |
| 186 | // Returns the immediate dominator of basic block id |a|. |
| 187 | BasicBlock* ImmediateDominator(uint32_t a) const; |
| 188 | |
| 189 | // Returns true if the basic block |a| is reachable by this tree. A node would |
| 190 | // be unreachable if it cannot be reached by traversal from the start node or |
| 191 | // for a postdominator tree, cannot be reached from the exit nodes. |
| 192 | inline bool ReachableFromRoots(const BasicBlock* a) const { |
| 193 | if (!a) return false; |
| 194 | return ReachableFromRoots(a->id()); |
| 195 | } |
| 196 | |
| 197 | // Returns true if the basic block id |a| is reachable by this tree. |
| 198 | bool ReachableFromRoots(uint32_t a) const { |
| 199 | return GetTreeNode(a) != nullptr; |
| 200 | } |
| 201 | |
| 202 | // Returns true if this tree is a post dominator tree. |
| 203 | bool IsPostDominator() const { return postdominator_; } |
| 204 | |
| 205 | // Clean up the tree. |
| 206 | void ClearTree() { |
| 207 | nodes_.clear(); |
| 208 | roots_.clear(); |
| 209 | } |
| 210 | |
| 211 | // Applies the std::function |func| to all nodes in the dominator tree. |
| 212 | // Tree nodes are visited in a depth first pre-order. |
| 213 | bool Visit(std::function<bool(DominatorTreeNode*)> func) { |
| 214 | for (auto n : *this) { |
| 215 | if (!func(&n)) return false; |
| 216 | } |
| 217 | return true; |
| 218 | } |
| 219 | |
| 220 | // Applies the std::function |func| to all nodes in the dominator tree. |
| 221 | // Tree nodes are visited in a depth first pre-order. |
| 222 | bool Visit(std::function<bool(const DominatorTreeNode*)> func) const { |
| 223 | for (auto n : *this) { |
| 224 | if (!func(&n)) return false; |
| 225 | } |
| 226 | return true; |
| 227 | } |
| 228 | |
| 229 | // Applies the std::function |func| to all nodes in the dominator tree from |
| 230 | // |node| downwards. The boolean return from |func| is used to determine |
| 231 | // whether or not the children should also be traversed. Tree nodes are |
| 232 | // visited in a depth first pre-order. |
| 233 | void VisitChildrenIf(std::function<bool(DominatorTreeNode*)> func, |
| 234 | iterator node) { |
| 235 | if (func(&*node)) { |
| 236 | for (auto n : *node) { |
| 237 | VisitChildrenIf(func, n->df_begin()); |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | // Returns the DominatorTreeNode associated with the basic block |bb|. |
| 243 | // If the |bb| is unknown to the dominator tree, it returns null. |
| 244 | inline DominatorTreeNode* GetTreeNode(BasicBlock* bb) { |
| 245 | return GetTreeNode(bb->id()); |
| 246 | } |
| 247 | // Returns the DominatorTreeNode associated with the basic block |bb|. |
| 248 | // If the |bb| is unknown to the dominator tree, it returns null. |
| 249 | inline const DominatorTreeNode* GetTreeNode(BasicBlock* bb) const { |
| 250 | return GetTreeNode(bb->id()); |
| 251 | } |
| 252 | |
| 253 | // Returns the DominatorTreeNode associated with the basic block id |id|. |
| 254 | // If the id |id| is unknown to the dominator tree, it returns null. |
| 255 | inline DominatorTreeNode* GetTreeNode(uint32_t id) { |
| 256 | DominatorTreeNodeMap::iterator node_iter = nodes_.find(id); |
| 257 | if (node_iter == nodes_.end()) { |
| 258 | return nullptr; |
| 259 | } |
| 260 | return &node_iter->second; |
| 261 | } |
| 262 | // Returns the DominatorTreeNode associated with the basic block id |id|. |
| 263 | // If the id |id| is unknown to the dominator tree, it returns null. |
| 264 | inline const DominatorTreeNode* GetTreeNode(uint32_t id) const { |
| 265 | DominatorTreeNodeMap::const_iterator node_iter = nodes_.find(id); |
| 266 | if (node_iter == nodes_.end()) { |
| 267 | return nullptr; |
| 268 | } |
| 269 | return &node_iter->second; |
| 270 | } |
| 271 | |
| 272 | // Adds the basic block |bb| to the tree structure if it doesn't already |
| 273 | // exist. |
| 274 | DominatorTreeNode* GetOrInsertNode(BasicBlock* bb); |
| 275 | |
| 276 | // Recomputes the DF numbering of the tree. |
| 277 | void ResetDFNumbering(); |
| 278 | |
| 279 | private: |
| 280 | // Wrapper function which gets the list of pairs of each BasicBlocks to its |
| 281 | // immediately dominating BasicBlock and stores the result in the the edges |
| 282 | // parameter. |
| 283 | // |
| 284 | // The |edges| vector will contain the dominator tree as pairs of nodes. |
| 285 | // The first node in the pair is a node in the graph. The second node in the |
| 286 | // pair is its immediate dominator. |
| 287 | // The root of the tree has themself as immediate dominator. |
| 288 | void GetDominatorEdges( |
| 289 | const Function* f, const BasicBlock* dummy_start_node, |
| 290 | std::vector<std::pair<BasicBlock*, BasicBlock*>>* edges); |
| 291 | |
| 292 | // The roots of the tree. |
| 293 | std::vector<DominatorTreeNode*> roots_; |
| 294 | |
| 295 | // Pairs each basic block id to the tree node containing that basic block. |
| 296 | DominatorTreeNodeMap nodes_; |
| 297 | |
| 298 | // True if this is a post dominator tree. |
| 299 | bool postdominator_; |
| 300 | }; |
| 301 | |
| 302 | } // namespace opt |
| 303 | } // namespace spvtools |
| 304 | |
| 305 | #endif // SOURCE_OPT_DOMINATOR_TREE_H_ |
| 306 | |