| 1 | // Copyright (c) 2018 Google LLC. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASI, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
| 16 | #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
| 17 | |
| 18 | #include <algorithm> |
| 19 | #include <memory> |
| 20 | #include <string> |
| 21 | #include <vector> |
| 22 | |
| 23 | #include "source/opt/tree_iterator.h" |
| 24 | |
| 25 | namespace spvtools { |
| 26 | namespace opt { |
| 27 | |
| 28 | class Loop; |
| 29 | class ScalarEvolutionAnalysis; |
| 30 | class SEConstantNode; |
| 31 | class SERecurrentNode; |
| 32 | class SEAddNode; |
| 33 | class SEMultiplyNode; |
| 34 | class SENegative; |
| 35 | class SEValueUnknown; |
| 36 | class SECantCompute; |
| 37 | |
| 38 | // Abstract class representing a node in the scalar evolution DAG. Each node |
| 39 | // contains a vector of pointers to its children and each subclass of SENode |
| 40 | // implements GetType and an As method to allow casting. SENodes can be hashed |
| 41 | // using the SENodeHash functor. The vector of children is sorted when a node is |
| 42 | // added. This is important as it allows the hash of X+Y to be the same as Y+X. |
| 43 | class SENode { |
| 44 | public: |
| 45 | enum SENodeType { |
| 46 | Constant, |
| 47 | RecurrentAddExpr, |
| 48 | Add, |
| 49 | Multiply, |
| 50 | Negative, |
| 51 | ValueUnknown, |
| 52 | CanNotCompute |
| 53 | }; |
| 54 | |
| 55 | using ChildContainerType = std::vector<SENode*>; |
| 56 | |
| 57 | explicit SENode(ScalarEvolutionAnalysis* parent_analysis) |
| 58 | : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {} |
| 59 | |
| 60 | virtual SENodeType GetType() const = 0; |
| 61 | |
| 62 | virtual ~SENode() {} |
| 63 | |
| 64 | virtual inline void AddChild(SENode* child) { |
| 65 | // If this is a constant node, assert. |
| 66 | if (AsSEConstantNode()) { |
| 67 | assert(false && "Trying to add a child node to a constant!" ); |
| 68 | } |
| 69 | |
| 70 | // Find the first point in the vector where |child| is greater than the node |
| 71 | // currently in the vector. |
| 72 | auto find_first_less_than = [child](const SENode* node) { |
| 73 | return child->unique_id_ <= node->unique_id_; |
| 74 | }; |
| 75 | |
| 76 | auto position = std::find_if_not(children_.begin(), children_.end(), |
| 77 | find_first_less_than); |
| 78 | // Children are sorted so the hashing and equality operator will be the same |
| 79 | // for a node with the same children. X+Y should be the same as Y+X. |
| 80 | children_.insert(position, child); |
| 81 | } |
| 82 | |
| 83 | // Get the type as an std::string. This is used to represent the node in the |
| 84 | // dot output and is used to hash the type as well. |
| 85 | std::string AsString() const; |
| 86 | |
| 87 | // Dump the SENode and its immediate children, if |recurse| is true then it |
| 88 | // will recurse through all children to print the DAG starting from this node |
| 89 | // as a root. |
| 90 | void DumpDot(std::ostream& out, bool recurse = false) const; |
| 91 | |
| 92 | // Checks if two nodes are the same by hashing them. |
| 93 | bool operator==(const SENode& other) const; |
| 94 | |
| 95 | // Checks if two nodes are not the same by comparing the hashes. |
| 96 | bool operator!=(const SENode& other) const; |
| 97 | |
| 98 | // Return the child node at |index|. |
| 99 | inline SENode* GetChild(size_t index) { return children_[index]; } |
| 100 | inline const SENode* GetChild(size_t index) const { return children_[index]; } |
| 101 | |
| 102 | // Iterator to iterate over the child nodes. |
| 103 | using iterator = ChildContainerType::iterator; |
| 104 | using const_iterator = ChildContainerType::const_iterator; |
| 105 | |
| 106 | // Iterate over immediate child nodes. |
| 107 | iterator begin() { return children_.begin(); } |
| 108 | iterator end() { return children_.end(); } |
| 109 | |
| 110 | // Constant overloads for iterating over immediate child nodes. |
| 111 | const_iterator begin() const { return children_.cbegin(); } |
| 112 | const_iterator end() const { return children_.cend(); } |
| 113 | const_iterator cbegin() { return children_.cbegin(); } |
| 114 | const_iterator cend() { return children_.cend(); } |
| 115 | |
| 116 | // Collect all the recurrent nodes in this SENode |
| 117 | std::vector<SERecurrentNode*> CollectRecurrentNodes() { |
| 118 | std::vector<SERecurrentNode*> recurrent_nodes{}; |
| 119 | |
| 120 | if (auto recurrent_node = AsSERecurrentNode()) { |
| 121 | recurrent_nodes.push_back(recurrent_node); |
| 122 | } |
| 123 | |
| 124 | for (auto child : GetChildren()) { |
| 125 | auto child_recurrent_nodes = child->CollectRecurrentNodes(); |
| 126 | recurrent_nodes.insert(recurrent_nodes.end(), |
| 127 | child_recurrent_nodes.begin(), |
| 128 | child_recurrent_nodes.end()); |
| 129 | } |
| 130 | |
| 131 | return recurrent_nodes; |
| 132 | } |
| 133 | |
| 134 | // Collect all the value unknown nodes in this SENode |
| 135 | std::vector<SEValueUnknown*> CollectValueUnknownNodes() { |
| 136 | std::vector<SEValueUnknown*> value_unknown_nodes{}; |
| 137 | |
| 138 | if (auto value_unknown_node = AsSEValueUnknown()) { |
| 139 | value_unknown_nodes.push_back(value_unknown_node); |
| 140 | } |
| 141 | |
| 142 | for (auto child : GetChildren()) { |
| 143 | auto child_value_unknown_nodes = child->CollectValueUnknownNodes(); |
| 144 | value_unknown_nodes.insert(value_unknown_nodes.end(), |
| 145 | child_value_unknown_nodes.begin(), |
| 146 | child_value_unknown_nodes.end()); |
| 147 | } |
| 148 | |
| 149 | return value_unknown_nodes; |
| 150 | } |
| 151 | |
| 152 | // Iterator to iterate over the entire DAG. Even though we are using the tree |
| 153 | // iterator it should still be safe to iterate over. However, nodes with |
| 154 | // multiple parents will be visited multiple times, unlike in a tree. |
| 155 | using dag_iterator = TreeDFIterator<SENode>; |
| 156 | using const_dag_iterator = TreeDFIterator<const SENode>; |
| 157 | |
| 158 | // Iterate over all child nodes in the graph. |
| 159 | dag_iterator graph_begin() { return dag_iterator(this); } |
| 160 | dag_iterator graph_end() { return dag_iterator(); } |
| 161 | const_dag_iterator graph_begin() const { return graph_cbegin(); } |
| 162 | const_dag_iterator graph_end() const { return graph_cend(); } |
| 163 | const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); } |
| 164 | const_dag_iterator graph_cend() const { return const_dag_iterator(); } |
| 165 | |
| 166 | // Return the vector of immediate children. |
| 167 | const ChildContainerType& GetChildren() const { return children_; } |
| 168 | ChildContainerType& GetChildren() { return children_; } |
| 169 | |
| 170 | // Return true if this node is a cant compute node. |
| 171 | bool IsCantCompute() const { return GetType() == CanNotCompute; } |
| 172 | |
| 173 | // Implements a casting method for each type. |
| 174 | // clang-format off |
| 175 | #define DeclareCastMethod(target) \ |
| 176 | virtual target* As##target() { return nullptr; } \ |
| 177 | virtual const target* As##target() const { return nullptr; } |
| 178 | DeclareCastMethod(SEConstantNode) |
| 179 | DeclareCastMethod(SERecurrentNode) |
| 180 | DeclareCastMethod(SEAddNode) |
| 181 | DeclareCastMethod(SEMultiplyNode) |
| 182 | DeclareCastMethod(SENegative) |
| 183 | DeclareCastMethod(SEValueUnknown) |
| 184 | DeclareCastMethod(SECantCompute) |
| 185 | #undef DeclareCastMethod |
| 186 | |
| 187 | // Get the analysis which has this node in its cache. |
| 188 | inline ScalarEvolutionAnalysis* GetParentAnalysis() const { |
| 189 | return parent_analysis_; |
| 190 | } |
| 191 | |
| 192 | protected: |
| 193 | ChildContainerType children_; |
| 194 | |
| 195 | ScalarEvolutionAnalysis* parent_analysis_; |
| 196 | |
| 197 | // The unique id of this node, assigned on creation by incrementing the static |
| 198 | // node count. |
| 199 | uint32_t unique_id_; |
| 200 | |
| 201 | // The number of nodes created. |
| 202 | static uint32_t NumberOfNodes; |
| 203 | }; |
| 204 | // clang-format on |
| 205 | |
| 206 | // Function object to handle the hashing of SENodes. Hashing algorithm hashes |
| 207 | // the type (as a string), the literal value of any constants, and the child |
| 208 | // pointers which are assumed to be unique. |
| 209 | struct SENodeHash { |
| 210 | size_t operator()(const std::unique_ptr<SENode>& node) const; |
| 211 | size_t operator()(const SENode* node) const; |
| 212 | }; |
| 213 | |
| 214 | // A node representing a constant integer. |
| 215 | class SEConstantNode : public SENode { |
| 216 | public: |
| 217 | SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value) |
| 218 | : SENode(parent_analysis), literal_value_(value) {} |
| 219 | |
| 220 | SENodeType GetType() const final { return Constant; } |
| 221 | |
| 222 | int64_t FoldToSingleValue() const { return literal_value_; } |
| 223 | |
| 224 | SEConstantNode* AsSEConstantNode() override { return this; } |
| 225 | const SEConstantNode* AsSEConstantNode() const override { return this; } |
| 226 | |
| 227 | inline void AddChild(SENode*) final { |
| 228 | assert(false && "Attempting to add a child to a constant node!" ); |
| 229 | } |
| 230 | |
| 231 | protected: |
| 232 | int64_t literal_value_; |
| 233 | }; |
| 234 | |
| 235 | // A node representing a recurrent expression in the code. A recurrent |
| 236 | // expression is an expression whose value can be expressed as a linear |
| 237 | // expression of the loop iterations. Such as an induction variable. The actual |
| 238 | // value of a recurrent expression is coefficent_ * iteration + offset_, hence |
| 239 | // an induction variable i=0, i++ becomes a recurrent expression with an offset |
| 240 | // of zero and a coefficient of one. |
| 241 | class SERecurrentNode : public SENode { |
| 242 | public: |
| 243 | SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop) |
| 244 | : SENode(parent_analysis), loop_(loop) {} |
| 245 | |
| 246 | SENodeType GetType() const final { return RecurrentAddExpr; } |
| 247 | |
| 248 | inline void AddCoefficient(SENode* child) { |
| 249 | coefficient_ = child; |
| 250 | SENode::AddChild(child); |
| 251 | } |
| 252 | |
| 253 | inline void AddOffset(SENode* child) { |
| 254 | offset_ = child; |
| 255 | SENode::AddChild(child); |
| 256 | } |
| 257 | |
| 258 | inline const SENode* GetCoefficient() const { return coefficient_; } |
| 259 | inline SENode* GetCoefficient() { return coefficient_; } |
| 260 | |
| 261 | inline const SENode* GetOffset() const { return offset_; } |
| 262 | inline SENode* GetOffset() { return offset_; } |
| 263 | |
| 264 | // Return the loop which this recurrent expression is recurring within. |
| 265 | const Loop* GetLoop() const { return loop_; } |
| 266 | |
| 267 | SERecurrentNode* AsSERecurrentNode() override { return this; } |
| 268 | const SERecurrentNode* AsSERecurrentNode() const override { return this; } |
| 269 | |
| 270 | private: |
| 271 | SENode* coefficient_; |
| 272 | SENode* offset_; |
| 273 | const Loop* loop_; |
| 274 | }; |
| 275 | |
| 276 | // A node representing an addition operation between child nodes. |
| 277 | class SEAddNode : public SENode { |
| 278 | public: |
| 279 | explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis) |
| 280 | : SENode(parent_analysis) {} |
| 281 | |
| 282 | SENodeType GetType() const final { return Add; } |
| 283 | |
| 284 | SEAddNode* AsSEAddNode() override { return this; } |
| 285 | const SEAddNode* AsSEAddNode() const override { return this; } |
| 286 | }; |
| 287 | |
| 288 | // A node representing a multiply operation between child nodes. |
| 289 | class SEMultiplyNode : public SENode { |
| 290 | public: |
| 291 | explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis) |
| 292 | : SENode(parent_analysis) {} |
| 293 | |
| 294 | SENodeType GetType() const final { return Multiply; } |
| 295 | |
| 296 | SEMultiplyNode* AsSEMultiplyNode() override { return this; } |
| 297 | const SEMultiplyNode* AsSEMultiplyNode() const override { return this; } |
| 298 | }; |
| 299 | |
| 300 | // A node representing a unary negative operation. |
| 301 | class SENegative : public SENode { |
| 302 | public: |
| 303 | explicit SENegative(ScalarEvolutionAnalysis* parent_analysis) |
| 304 | : SENode(parent_analysis) {} |
| 305 | |
| 306 | SENodeType GetType() const final { return Negative; } |
| 307 | |
| 308 | SENegative* AsSENegative() override { return this; } |
| 309 | const SENegative* AsSENegative() const override { return this; } |
| 310 | }; |
| 311 | |
| 312 | // A node representing a value which we do not know the value of, such as a load |
| 313 | // instruction. |
| 314 | class SEValueUnknown : public SENode { |
| 315 | public: |
| 316 | // SEValueUnknowns must come from an instruction |unique_id| is the unique id |
| 317 | // of that instruction. This is so we cancompare value unknowns and have a |
| 318 | // unique value unknown for each instruction. |
| 319 | SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id) |
| 320 | : SENode(parent_analysis), result_id_(result_id) {} |
| 321 | |
| 322 | SENodeType GetType() const final { return ValueUnknown; } |
| 323 | |
| 324 | SEValueUnknown* AsSEValueUnknown() override { return this; } |
| 325 | const SEValueUnknown* AsSEValueUnknown() const override { return this; } |
| 326 | |
| 327 | inline uint32_t ResultId() const { return result_id_; } |
| 328 | |
| 329 | private: |
| 330 | uint32_t result_id_; |
| 331 | }; |
| 332 | |
| 333 | // A node which we cannot reason about at all. |
| 334 | class SECantCompute : public SENode { |
| 335 | public: |
| 336 | explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis) |
| 337 | : SENode(parent_analysis) {} |
| 338 | |
| 339 | SENodeType GetType() const final { return CanNotCompute; } |
| 340 | |
| 341 | SECantCompute* AsSECantCompute() override { return this; } |
| 342 | const SECantCompute* AsSECantCompute() const override { return this; } |
| 343 | }; |
| 344 | |
| 345 | } // namespace opt |
| 346 | } // namespace spvtools |
| 347 | #endif // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
| 348 | |