1 | // Copyright (c) 2018 Google LLC. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASI, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
16 | #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
17 | |
18 | #include <algorithm> |
19 | #include <memory> |
20 | #include <string> |
21 | #include <vector> |
22 | |
23 | #include "source/opt/tree_iterator.h" |
24 | |
25 | namespace spvtools { |
26 | namespace opt { |
27 | |
28 | class Loop; |
29 | class ScalarEvolutionAnalysis; |
30 | class SEConstantNode; |
31 | class SERecurrentNode; |
32 | class SEAddNode; |
33 | class SEMultiplyNode; |
34 | class SENegative; |
35 | class SEValueUnknown; |
36 | class SECantCompute; |
37 | |
38 | // Abstract class representing a node in the scalar evolution DAG. Each node |
39 | // contains a vector of pointers to its children and each subclass of SENode |
40 | // implements GetType and an As method to allow casting. SENodes can be hashed |
41 | // using the SENodeHash functor. The vector of children is sorted when a node is |
42 | // added. This is important as it allows the hash of X+Y to be the same as Y+X. |
43 | class SENode { |
44 | public: |
45 | enum SENodeType { |
46 | Constant, |
47 | RecurrentAddExpr, |
48 | Add, |
49 | Multiply, |
50 | Negative, |
51 | ValueUnknown, |
52 | CanNotCompute |
53 | }; |
54 | |
55 | using ChildContainerType = std::vector<SENode*>; |
56 | |
57 | explicit SENode(ScalarEvolutionAnalysis* parent_analysis) |
58 | : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {} |
59 | |
60 | virtual SENodeType GetType() const = 0; |
61 | |
62 | virtual ~SENode() {} |
63 | |
64 | virtual inline void AddChild(SENode* child) { |
65 | // If this is a constant node, assert. |
66 | if (AsSEConstantNode()) { |
67 | assert(false && "Trying to add a child node to a constant!" ); |
68 | } |
69 | |
70 | // Find the first point in the vector where |child| is greater than the node |
71 | // currently in the vector. |
72 | auto find_first_less_than = [child](const SENode* node) { |
73 | return child->unique_id_ <= node->unique_id_; |
74 | }; |
75 | |
76 | auto position = std::find_if_not(children_.begin(), children_.end(), |
77 | find_first_less_than); |
78 | // Children are sorted so the hashing and equality operator will be the same |
79 | // for a node with the same children. X+Y should be the same as Y+X. |
80 | children_.insert(position, child); |
81 | } |
82 | |
83 | // Get the type as an std::string. This is used to represent the node in the |
84 | // dot output and is used to hash the type as well. |
85 | std::string AsString() const; |
86 | |
87 | // Dump the SENode and its immediate children, if |recurse| is true then it |
88 | // will recurse through all children to print the DAG starting from this node |
89 | // as a root. |
90 | void DumpDot(std::ostream& out, bool recurse = false) const; |
91 | |
92 | // Checks if two nodes are the same by hashing them. |
93 | bool operator==(const SENode& other) const; |
94 | |
95 | // Checks if two nodes are not the same by comparing the hashes. |
96 | bool operator!=(const SENode& other) const; |
97 | |
98 | // Return the child node at |index|. |
99 | inline SENode* GetChild(size_t index) { return children_[index]; } |
100 | inline const SENode* GetChild(size_t index) const { return children_[index]; } |
101 | |
102 | // Iterator to iterate over the child nodes. |
103 | using iterator = ChildContainerType::iterator; |
104 | using const_iterator = ChildContainerType::const_iterator; |
105 | |
106 | // Iterate over immediate child nodes. |
107 | iterator begin() { return children_.begin(); } |
108 | iterator end() { return children_.end(); } |
109 | |
110 | // Constant overloads for iterating over immediate child nodes. |
111 | const_iterator begin() const { return children_.cbegin(); } |
112 | const_iterator end() const { return children_.cend(); } |
113 | const_iterator cbegin() { return children_.cbegin(); } |
114 | const_iterator cend() { return children_.cend(); } |
115 | |
116 | // Collect all the recurrent nodes in this SENode |
117 | std::vector<SERecurrentNode*> CollectRecurrentNodes() { |
118 | std::vector<SERecurrentNode*> recurrent_nodes{}; |
119 | |
120 | if (auto recurrent_node = AsSERecurrentNode()) { |
121 | recurrent_nodes.push_back(recurrent_node); |
122 | } |
123 | |
124 | for (auto child : GetChildren()) { |
125 | auto child_recurrent_nodes = child->CollectRecurrentNodes(); |
126 | recurrent_nodes.insert(recurrent_nodes.end(), |
127 | child_recurrent_nodes.begin(), |
128 | child_recurrent_nodes.end()); |
129 | } |
130 | |
131 | return recurrent_nodes; |
132 | } |
133 | |
134 | // Collect all the value unknown nodes in this SENode |
135 | std::vector<SEValueUnknown*> CollectValueUnknownNodes() { |
136 | std::vector<SEValueUnknown*> value_unknown_nodes{}; |
137 | |
138 | if (auto value_unknown_node = AsSEValueUnknown()) { |
139 | value_unknown_nodes.push_back(value_unknown_node); |
140 | } |
141 | |
142 | for (auto child : GetChildren()) { |
143 | auto child_value_unknown_nodes = child->CollectValueUnknownNodes(); |
144 | value_unknown_nodes.insert(value_unknown_nodes.end(), |
145 | child_value_unknown_nodes.begin(), |
146 | child_value_unknown_nodes.end()); |
147 | } |
148 | |
149 | return value_unknown_nodes; |
150 | } |
151 | |
152 | // Iterator to iterate over the entire DAG. Even though we are using the tree |
153 | // iterator it should still be safe to iterate over. However, nodes with |
154 | // multiple parents will be visited multiple times, unlike in a tree. |
155 | using dag_iterator = TreeDFIterator<SENode>; |
156 | using const_dag_iterator = TreeDFIterator<const SENode>; |
157 | |
158 | // Iterate over all child nodes in the graph. |
159 | dag_iterator graph_begin() { return dag_iterator(this); } |
160 | dag_iterator graph_end() { return dag_iterator(); } |
161 | const_dag_iterator graph_begin() const { return graph_cbegin(); } |
162 | const_dag_iterator graph_end() const { return graph_cend(); } |
163 | const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); } |
164 | const_dag_iterator graph_cend() const { return const_dag_iterator(); } |
165 | |
166 | // Return the vector of immediate children. |
167 | const ChildContainerType& GetChildren() const { return children_; } |
168 | ChildContainerType& GetChildren() { return children_; } |
169 | |
170 | // Return true if this node is a cant compute node. |
171 | bool IsCantCompute() const { return GetType() == CanNotCompute; } |
172 | |
173 | // Implements a casting method for each type. |
174 | // clang-format off |
175 | #define DeclareCastMethod(target) \ |
176 | virtual target* As##target() { return nullptr; } \ |
177 | virtual const target* As##target() const { return nullptr; } |
178 | DeclareCastMethod(SEConstantNode) |
179 | DeclareCastMethod(SERecurrentNode) |
180 | DeclareCastMethod(SEAddNode) |
181 | DeclareCastMethod(SEMultiplyNode) |
182 | DeclareCastMethod(SENegative) |
183 | DeclareCastMethod(SEValueUnknown) |
184 | DeclareCastMethod(SECantCompute) |
185 | #undef DeclareCastMethod |
186 | |
187 | // Get the analysis which has this node in its cache. |
188 | inline ScalarEvolutionAnalysis* GetParentAnalysis() const { |
189 | return parent_analysis_; |
190 | } |
191 | |
192 | protected: |
193 | ChildContainerType children_; |
194 | |
195 | ScalarEvolutionAnalysis* parent_analysis_; |
196 | |
197 | // The unique id of this node, assigned on creation by incrementing the static |
198 | // node count. |
199 | uint32_t unique_id_; |
200 | |
201 | // The number of nodes created. |
202 | static uint32_t NumberOfNodes; |
203 | }; |
204 | // clang-format on |
205 | |
206 | // Function object to handle the hashing of SENodes. Hashing algorithm hashes |
207 | // the type (as a string), the literal value of any constants, and the child |
208 | // pointers which are assumed to be unique. |
209 | struct SENodeHash { |
210 | size_t operator()(const std::unique_ptr<SENode>& node) const; |
211 | size_t operator()(const SENode* node) const; |
212 | }; |
213 | |
214 | // A node representing a constant integer. |
215 | class SEConstantNode : public SENode { |
216 | public: |
217 | SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value) |
218 | : SENode(parent_analysis), literal_value_(value) {} |
219 | |
220 | SENodeType GetType() const final { return Constant; } |
221 | |
222 | int64_t FoldToSingleValue() const { return literal_value_; } |
223 | |
224 | SEConstantNode* AsSEConstantNode() override { return this; } |
225 | const SEConstantNode* AsSEConstantNode() const override { return this; } |
226 | |
227 | inline void AddChild(SENode*) final { |
228 | assert(false && "Attempting to add a child to a constant node!" ); |
229 | } |
230 | |
231 | protected: |
232 | int64_t literal_value_; |
233 | }; |
234 | |
235 | // A node representing a recurrent expression in the code. A recurrent |
236 | // expression is an expression whose value can be expressed as a linear |
237 | // expression of the loop iterations. Such as an induction variable. The actual |
238 | // value of a recurrent expression is coefficent_ * iteration + offset_, hence |
239 | // an induction variable i=0, i++ becomes a recurrent expression with an offset |
240 | // of zero and a coefficient of one. |
241 | class SERecurrentNode : public SENode { |
242 | public: |
243 | SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop) |
244 | : SENode(parent_analysis), loop_(loop) {} |
245 | |
246 | SENodeType GetType() const final { return RecurrentAddExpr; } |
247 | |
248 | inline void AddCoefficient(SENode* child) { |
249 | coefficient_ = child; |
250 | SENode::AddChild(child); |
251 | } |
252 | |
253 | inline void AddOffset(SENode* child) { |
254 | offset_ = child; |
255 | SENode::AddChild(child); |
256 | } |
257 | |
258 | inline const SENode* GetCoefficient() const { return coefficient_; } |
259 | inline SENode* GetCoefficient() { return coefficient_; } |
260 | |
261 | inline const SENode* GetOffset() const { return offset_; } |
262 | inline SENode* GetOffset() { return offset_; } |
263 | |
264 | // Return the loop which this recurrent expression is recurring within. |
265 | const Loop* GetLoop() const { return loop_; } |
266 | |
267 | SERecurrentNode* AsSERecurrentNode() override { return this; } |
268 | const SERecurrentNode* AsSERecurrentNode() const override { return this; } |
269 | |
270 | private: |
271 | SENode* coefficient_; |
272 | SENode* offset_; |
273 | const Loop* loop_; |
274 | }; |
275 | |
276 | // A node representing an addition operation between child nodes. |
277 | class SEAddNode : public SENode { |
278 | public: |
279 | explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis) |
280 | : SENode(parent_analysis) {} |
281 | |
282 | SENodeType GetType() const final { return Add; } |
283 | |
284 | SEAddNode* AsSEAddNode() override { return this; } |
285 | const SEAddNode* AsSEAddNode() const override { return this; } |
286 | }; |
287 | |
288 | // A node representing a multiply operation between child nodes. |
289 | class SEMultiplyNode : public SENode { |
290 | public: |
291 | explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis) |
292 | : SENode(parent_analysis) {} |
293 | |
294 | SENodeType GetType() const final { return Multiply; } |
295 | |
296 | SEMultiplyNode* AsSEMultiplyNode() override { return this; } |
297 | const SEMultiplyNode* AsSEMultiplyNode() const override { return this; } |
298 | }; |
299 | |
300 | // A node representing a unary negative operation. |
301 | class SENegative : public SENode { |
302 | public: |
303 | explicit SENegative(ScalarEvolutionAnalysis* parent_analysis) |
304 | : SENode(parent_analysis) {} |
305 | |
306 | SENodeType GetType() const final { return Negative; } |
307 | |
308 | SENegative* AsSENegative() override { return this; } |
309 | const SENegative* AsSENegative() const override { return this; } |
310 | }; |
311 | |
312 | // A node representing a value which we do not know the value of, such as a load |
313 | // instruction. |
314 | class SEValueUnknown : public SENode { |
315 | public: |
316 | // SEValueUnknowns must come from an instruction |unique_id| is the unique id |
317 | // of that instruction. This is so we cancompare value unknowns and have a |
318 | // unique value unknown for each instruction. |
319 | SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id) |
320 | : SENode(parent_analysis), result_id_(result_id) {} |
321 | |
322 | SENodeType GetType() const final { return ValueUnknown; } |
323 | |
324 | SEValueUnknown* AsSEValueUnknown() override { return this; } |
325 | const SEValueUnknown* AsSEValueUnknown() const override { return this; } |
326 | |
327 | inline uint32_t ResultId() const { return result_id_; } |
328 | |
329 | private: |
330 | uint32_t result_id_; |
331 | }; |
332 | |
333 | // A node which we cannot reason about at all. |
334 | class SECantCompute : public SENode { |
335 | public: |
336 | explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis) |
337 | : SENode(parent_analysis) {} |
338 | |
339 | SENodeType GetType() const final { return CanNotCompute; } |
340 | |
341 | SECantCompute* AsSECantCompute() override { return this; } |
342 | const SECantCompute* AsSECantCompute() const override { return this; } |
343 | }; |
344 | |
345 | } // namespace opt |
346 | } // namespace spvtools |
347 | #endif // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
348 | |