| 1 | // Copyright (c) 2018 Google LLC. | 
|---|
| 2 | // | 
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|---|
| 4 | // you may not use this file except in compliance with the License. | 
|---|
| 5 | // You may obtain a copy of the License at | 
|---|
| 6 | // | 
|---|
| 7 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|---|
| 8 | // | 
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software | 
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASI, | 
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|---|
| 12 | // See the License for the specific language governing permissions and | 
|---|
| 13 | // limitations under the License. | 
|---|
| 14 |  | 
|---|
| 15 | #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ | 
|---|
| 16 | #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ | 
|---|
| 17 |  | 
|---|
| 18 | #include <algorithm> | 
|---|
| 19 | #include <memory> | 
|---|
| 20 | #include <string> | 
|---|
| 21 | #include <vector> | 
|---|
| 22 |  | 
|---|
| 23 | #include "source/opt/tree_iterator.h" | 
|---|
| 24 |  | 
|---|
| 25 | namespace spvtools { | 
|---|
| 26 | namespace opt { | 
|---|
| 27 |  | 
|---|
| 28 | class Loop; | 
|---|
| 29 | class ScalarEvolutionAnalysis; | 
|---|
| 30 | class SEConstantNode; | 
|---|
| 31 | class SERecurrentNode; | 
|---|
| 32 | class SEAddNode; | 
|---|
| 33 | class SEMultiplyNode; | 
|---|
| 34 | class SENegative; | 
|---|
| 35 | class SEValueUnknown; | 
|---|
| 36 | class SECantCompute; | 
|---|
| 37 |  | 
|---|
| 38 | // Abstract class representing a node in the scalar evolution DAG. Each node | 
|---|
| 39 | // contains a vector of pointers to its children and each subclass of SENode | 
|---|
| 40 | // implements GetType and an As method to allow casting. SENodes can be hashed | 
|---|
| 41 | // using the SENodeHash functor. The vector of children is sorted when a node is | 
|---|
| 42 | // added. This is important as it allows the hash of X+Y to be the same as Y+X. | 
|---|
| 43 | class SENode { | 
|---|
| 44 | public: | 
|---|
| 45 | enum SENodeType { | 
|---|
| 46 | Constant, | 
|---|
| 47 | RecurrentAddExpr, | 
|---|
| 48 | Add, | 
|---|
| 49 | Multiply, | 
|---|
| 50 | Negative, | 
|---|
| 51 | ValueUnknown, | 
|---|
| 52 | CanNotCompute | 
|---|
| 53 | }; | 
|---|
| 54 |  | 
|---|
| 55 | using ChildContainerType = std::vector<SENode*>; | 
|---|
| 56 |  | 
|---|
| 57 | explicit SENode(ScalarEvolutionAnalysis* parent_analysis) | 
|---|
| 58 | : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {} | 
|---|
| 59 |  | 
|---|
| 60 | virtual SENodeType GetType() const = 0; | 
|---|
| 61 |  | 
|---|
| 62 | virtual ~SENode() {} | 
|---|
| 63 |  | 
|---|
| 64 | virtual inline void AddChild(SENode* child) { | 
|---|
| 65 | // If this is a constant node, assert. | 
|---|
| 66 | if (AsSEConstantNode()) { | 
|---|
| 67 | assert(false && "Trying to add a child node to a constant!"); | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | // Find the first point in the vector where |child| is greater than the node | 
|---|
| 71 | // currently in the vector. | 
|---|
| 72 | auto find_first_less_than = [child](const SENode* node) { | 
|---|
| 73 | return child->unique_id_ <= node->unique_id_; | 
|---|
| 74 | }; | 
|---|
| 75 |  | 
|---|
| 76 | auto position = std::find_if_not(children_.begin(), children_.end(), | 
|---|
| 77 | find_first_less_than); | 
|---|
| 78 | // Children are sorted so the hashing and equality operator will be the same | 
|---|
| 79 | // for a node with the same children. X+Y should be the same as Y+X. | 
|---|
| 80 | children_.insert(position, child); | 
|---|
| 81 | } | 
|---|
| 82 |  | 
|---|
| 83 | // Get the type as an std::string. This is used to represent the node in the | 
|---|
| 84 | // dot output and is used to hash the type as well. | 
|---|
| 85 | std::string AsString() const; | 
|---|
| 86 |  | 
|---|
| 87 | // Dump the SENode and its immediate children, if |recurse| is true then it | 
|---|
| 88 | // will recurse through all children to print the DAG starting from this node | 
|---|
| 89 | // as a root. | 
|---|
| 90 | void DumpDot(std::ostream& out, bool recurse = false) const; | 
|---|
| 91 |  | 
|---|
| 92 | // Checks if two nodes are the same by hashing them. | 
|---|
| 93 | bool operator==(const SENode& other) const; | 
|---|
| 94 |  | 
|---|
| 95 | // Checks if two nodes are not the same by comparing the hashes. | 
|---|
| 96 | bool operator!=(const SENode& other) const; | 
|---|
| 97 |  | 
|---|
| 98 | // Return the child node at |index|. | 
|---|
| 99 | inline SENode* GetChild(size_t index) { return children_[index]; } | 
|---|
| 100 | inline const SENode* GetChild(size_t index) const { return children_[index]; } | 
|---|
| 101 |  | 
|---|
| 102 | // Iterator to iterate over the child nodes. | 
|---|
| 103 | using iterator = ChildContainerType::iterator; | 
|---|
| 104 | using const_iterator = ChildContainerType::const_iterator; | 
|---|
| 105 |  | 
|---|
| 106 | // Iterate over immediate child nodes. | 
|---|
| 107 | iterator begin() { return children_.begin(); } | 
|---|
| 108 | iterator end() { return children_.end(); } | 
|---|
| 109 |  | 
|---|
| 110 | // Constant overloads for iterating over immediate child nodes. | 
|---|
| 111 | const_iterator begin() const { return children_.cbegin(); } | 
|---|
| 112 | const_iterator end() const { return children_.cend(); } | 
|---|
| 113 | const_iterator cbegin() { return children_.cbegin(); } | 
|---|
| 114 | const_iterator cend() { return children_.cend(); } | 
|---|
| 115 |  | 
|---|
| 116 | // Collect all the recurrent nodes in this SENode | 
|---|
| 117 | std::vector<SERecurrentNode*> CollectRecurrentNodes() { | 
|---|
| 118 | std::vector<SERecurrentNode*> recurrent_nodes{}; | 
|---|
| 119 |  | 
|---|
| 120 | if (auto recurrent_node = AsSERecurrentNode()) { | 
|---|
| 121 | recurrent_nodes.push_back(recurrent_node); | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | for (auto child : GetChildren()) { | 
|---|
| 125 | auto child_recurrent_nodes = child->CollectRecurrentNodes(); | 
|---|
| 126 | recurrent_nodes.insert(recurrent_nodes.end(), | 
|---|
| 127 | child_recurrent_nodes.begin(), | 
|---|
| 128 | child_recurrent_nodes.end()); | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | return recurrent_nodes; | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 | // Collect all the value unknown nodes in this SENode | 
|---|
| 135 | std::vector<SEValueUnknown*> CollectValueUnknownNodes() { | 
|---|
| 136 | std::vector<SEValueUnknown*> value_unknown_nodes{}; | 
|---|
| 137 |  | 
|---|
| 138 | if (auto value_unknown_node = AsSEValueUnknown()) { | 
|---|
| 139 | value_unknown_nodes.push_back(value_unknown_node); | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | for (auto child : GetChildren()) { | 
|---|
| 143 | auto child_value_unknown_nodes = child->CollectValueUnknownNodes(); | 
|---|
| 144 | value_unknown_nodes.insert(value_unknown_nodes.end(), | 
|---|
| 145 | child_value_unknown_nodes.begin(), | 
|---|
| 146 | child_value_unknown_nodes.end()); | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | return value_unknown_nodes; | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | // Iterator to iterate over the entire DAG. Even though we are using the tree | 
|---|
| 153 | // iterator it should still be safe to iterate over. However, nodes with | 
|---|
| 154 | // multiple parents will be visited multiple times, unlike in a tree. | 
|---|
| 155 | using dag_iterator = TreeDFIterator<SENode>; | 
|---|
| 156 | using const_dag_iterator = TreeDFIterator<const SENode>; | 
|---|
| 157 |  | 
|---|
| 158 | // Iterate over all child nodes in the graph. | 
|---|
| 159 | dag_iterator graph_begin() { return dag_iterator(this); } | 
|---|
| 160 | dag_iterator graph_end() { return dag_iterator(); } | 
|---|
| 161 | const_dag_iterator graph_begin() const { return graph_cbegin(); } | 
|---|
| 162 | const_dag_iterator graph_end() const { return graph_cend(); } | 
|---|
| 163 | const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); } | 
|---|
| 164 | const_dag_iterator graph_cend() const { return const_dag_iterator(); } | 
|---|
| 165 |  | 
|---|
| 166 | // Return the vector of immediate children. | 
|---|
| 167 | const ChildContainerType& GetChildren() const { return children_; } | 
|---|
| 168 | ChildContainerType& GetChildren() { return children_; } | 
|---|
| 169 |  | 
|---|
| 170 | // Return true if this node is a cant compute node. | 
|---|
| 171 | bool IsCantCompute() const { return GetType() == CanNotCompute; } | 
|---|
| 172 |  | 
|---|
| 173 | // Implements a casting method for each type. | 
|---|
| 174 | // clang-format off | 
|---|
| 175 | #define DeclareCastMethod(target)                  \ | 
|---|
| 176 | virtual target* As##target() { return nullptr; } \ | 
|---|
| 177 | virtual const target* As##target() const { return nullptr; } | 
|---|
| 178 | DeclareCastMethod(SEConstantNode) | 
|---|
| 179 | DeclareCastMethod(SERecurrentNode) | 
|---|
| 180 | DeclareCastMethod(SEAddNode) | 
|---|
| 181 | DeclareCastMethod(SEMultiplyNode) | 
|---|
| 182 | DeclareCastMethod(SENegative) | 
|---|
| 183 | DeclareCastMethod(SEValueUnknown) | 
|---|
| 184 | DeclareCastMethod(SECantCompute) | 
|---|
| 185 | #undef DeclareCastMethod | 
|---|
| 186 |  | 
|---|
| 187 | // Get the analysis which has this node in its cache. | 
|---|
| 188 | inline ScalarEvolutionAnalysis* GetParentAnalysis() const { | 
|---|
| 189 | return parent_analysis_; | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | protected: | 
|---|
| 193 | ChildContainerType children_; | 
|---|
| 194 |  | 
|---|
| 195 | ScalarEvolutionAnalysis* parent_analysis_; | 
|---|
| 196 |  | 
|---|
| 197 | // The unique id of this node, assigned on creation by incrementing the static | 
|---|
| 198 | // node count. | 
|---|
| 199 | uint32_t unique_id_; | 
|---|
| 200 |  | 
|---|
| 201 | // The number of nodes created. | 
|---|
| 202 | static uint32_t NumberOfNodes; | 
|---|
| 203 | }; | 
|---|
| 204 | // clang-format on | 
|---|
| 205 |  | 
|---|
| 206 | // Function object to handle the hashing of SENodes. Hashing algorithm hashes | 
|---|
| 207 | // the type (as a string), the literal value of any constants, and the child | 
|---|
| 208 | // pointers which are assumed to be unique. | 
|---|
| 209 | struct SENodeHash { | 
|---|
| 210 | size_t operator()(const std::unique_ptr<SENode>& node) const; | 
|---|
| 211 | size_t operator()(const SENode* node) const; | 
|---|
| 212 | }; | 
|---|
| 213 |  | 
|---|
| 214 | // A node representing a constant integer. | 
|---|
| 215 | class SEConstantNode : public SENode { | 
|---|
| 216 | public: | 
|---|
| 217 | SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value) | 
|---|
| 218 | : SENode(parent_analysis), literal_value_(value) {} | 
|---|
| 219 |  | 
|---|
| 220 | SENodeType GetType() const final { return Constant; } | 
|---|
| 221 |  | 
|---|
| 222 | int64_t FoldToSingleValue() const { return literal_value_; } | 
|---|
| 223 |  | 
|---|
| 224 | SEConstantNode* AsSEConstantNode() override { return this; } | 
|---|
| 225 | const SEConstantNode* AsSEConstantNode() const override { return this; } | 
|---|
| 226 |  | 
|---|
| 227 | inline void AddChild(SENode*) final { | 
|---|
| 228 | assert(false && "Attempting to add a child to a constant node!"); | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | protected: | 
|---|
| 232 | int64_t literal_value_; | 
|---|
| 233 | }; | 
|---|
| 234 |  | 
|---|
| 235 | // A node representing a recurrent expression in the code. A recurrent | 
|---|
| 236 | // expression is an expression whose value can be expressed as a linear | 
|---|
| 237 | // expression of the loop iterations. Such as an induction variable. The actual | 
|---|
| 238 | // value of a recurrent expression is coefficent_ * iteration + offset_, hence | 
|---|
| 239 | // an induction variable i=0, i++ becomes a recurrent expression with an offset | 
|---|
| 240 | // of zero and a coefficient of one. | 
|---|
| 241 | class SERecurrentNode : public SENode { | 
|---|
| 242 | public: | 
|---|
| 243 | SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop) | 
|---|
| 244 | : SENode(parent_analysis), loop_(loop) {} | 
|---|
| 245 |  | 
|---|
| 246 | SENodeType GetType() const final { return RecurrentAddExpr; } | 
|---|
| 247 |  | 
|---|
| 248 | inline void AddCoefficient(SENode* child) { | 
|---|
| 249 | coefficient_ = child; | 
|---|
| 250 | SENode::AddChild(child); | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | inline void AddOffset(SENode* child) { | 
|---|
| 254 | offset_ = child; | 
|---|
| 255 | SENode::AddChild(child); | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | inline const SENode* GetCoefficient() const { return coefficient_; } | 
|---|
| 259 | inline SENode* GetCoefficient() { return coefficient_; } | 
|---|
| 260 |  | 
|---|
| 261 | inline const SENode* GetOffset() const { return offset_; } | 
|---|
| 262 | inline SENode* GetOffset() { return offset_; } | 
|---|
| 263 |  | 
|---|
| 264 | // Return the loop which this recurrent expression is recurring within. | 
|---|
| 265 | const Loop* GetLoop() const { return loop_; } | 
|---|
| 266 |  | 
|---|
| 267 | SERecurrentNode* AsSERecurrentNode() override { return this; } | 
|---|
| 268 | const SERecurrentNode* AsSERecurrentNode() const override { return this; } | 
|---|
| 269 |  | 
|---|
| 270 | private: | 
|---|
| 271 | SENode* coefficient_; | 
|---|
| 272 | SENode* offset_; | 
|---|
| 273 | const Loop* loop_; | 
|---|
| 274 | }; | 
|---|
| 275 |  | 
|---|
| 276 | // A node representing an addition operation between child nodes. | 
|---|
| 277 | class SEAddNode : public SENode { | 
|---|
| 278 | public: | 
|---|
| 279 | explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis) | 
|---|
| 280 | : SENode(parent_analysis) {} | 
|---|
| 281 |  | 
|---|
| 282 | SENodeType GetType() const final { return Add; } | 
|---|
| 283 |  | 
|---|
| 284 | SEAddNode* AsSEAddNode() override { return this; } | 
|---|
| 285 | const SEAddNode* AsSEAddNode() const override { return this; } | 
|---|
| 286 | }; | 
|---|
| 287 |  | 
|---|
| 288 | // A node representing a multiply operation between child nodes. | 
|---|
| 289 | class SEMultiplyNode : public SENode { | 
|---|
| 290 | public: | 
|---|
| 291 | explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis) | 
|---|
| 292 | : SENode(parent_analysis) {} | 
|---|
| 293 |  | 
|---|
| 294 | SENodeType GetType() const final { return Multiply; } | 
|---|
| 295 |  | 
|---|
| 296 | SEMultiplyNode* AsSEMultiplyNode() override { return this; } | 
|---|
| 297 | const SEMultiplyNode* AsSEMultiplyNode() const override { return this; } | 
|---|
| 298 | }; | 
|---|
| 299 |  | 
|---|
| 300 | // A node representing a unary negative operation. | 
|---|
| 301 | class SENegative : public SENode { | 
|---|
| 302 | public: | 
|---|
| 303 | explicit SENegative(ScalarEvolutionAnalysis* parent_analysis) | 
|---|
| 304 | : SENode(parent_analysis) {} | 
|---|
| 305 |  | 
|---|
| 306 | SENodeType GetType() const final { return Negative; } | 
|---|
| 307 |  | 
|---|
| 308 | SENegative* AsSENegative() override { return this; } | 
|---|
| 309 | const SENegative* AsSENegative() const override { return this; } | 
|---|
| 310 | }; | 
|---|
| 311 |  | 
|---|
| 312 | // A node representing a value which we do not know the value of, such as a load | 
|---|
| 313 | // instruction. | 
|---|
| 314 | class SEValueUnknown : public SENode { | 
|---|
| 315 | public: | 
|---|
| 316 | // SEValueUnknowns must come from an instruction |unique_id| is the unique id | 
|---|
| 317 | // of that instruction. This is so we cancompare value unknowns and have a | 
|---|
| 318 | // unique value unknown for each instruction. | 
|---|
| 319 | SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id) | 
|---|
| 320 | : SENode(parent_analysis), result_id_(result_id) {} | 
|---|
| 321 |  | 
|---|
| 322 | SENodeType GetType() const final { return ValueUnknown; } | 
|---|
| 323 |  | 
|---|
| 324 | SEValueUnknown* AsSEValueUnknown() override { return this; } | 
|---|
| 325 | const SEValueUnknown* AsSEValueUnknown() const override { return this; } | 
|---|
| 326 |  | 
|---|
| 327 | inline uint32_t ResultId() const { return result_id_; } | 
|---|
| 328 |  | 
|---|
| 329 | private: | 
|---|
| 330 | uint32_t result_id_; | 
|---|
| 331 | }; | 
|---|
| 332 |  | 
|---|
| 333 | // A node which we cannot reason about at all. | 
|---|
| 334 | class SECantCompute : public SENode { | 
|---|
| 335 | public: | 
|---|
| 336 | explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis) | 
|---|
| 337 | : SENode(parent_analysis) {} | 
|---|
| 338 |  | 
|---|
| 339 | SENodeType GetType() const final { return CanNotCompute; } | 
|---|
| 340 |  | 
|---|
| 341 | SECantCompute* AsSECantCompute() override { return this; } | 
|---|
| 342 | const SECantCompute* AsSECantCompute() const override { return this; } | 
|---|
| 343 | }; | 
|---|
| 344 |  | 
|---|
| 345 | }  // namespace opt | 
|---|
| 346 | }  // namespace spvtools | 
|---|
| 347 | #endif  // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ | 
|---|
| 348 |  | 
|---|