1 | // Copyright (c) 2015-2016 The Khronos Group Inc. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #ifndef SOURCE_UTIL_HEX_FLOAT_H_ |
16 | #define SOURCE_UTIL_HEX_FLOAT_H_ |
17 | |
18 | #include <cassert> |
19 | #include <cctype> |
20 | #include <cmath> |
21 | #include <cstdint> |
22 | #include <iomanip> |
23 | #include <limits> |
24 | #include <sstream> |
25 | #include <vector> |
26 | |
27 | #include "source/util/bitutils.h" |
28 | |
29 | #ifndef __GNUC__ |
30 | #define GCC_VERSION 0 |
31 | #else |
32 | #define GCC_VERSION \ |
33 | (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) |
34 | #endif |
35 | |
36 | namespace spvtools { |
37 | namespace utils { |
38 | |
39 | class Float16 { |
40 | public: |
41 | Float16(uint16_t v) : val(v) {} |
42 | Float16() = default; |
43 | static bool isNan(const Float16& val) { |
44 | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); |
45 | } |
46 | // Returns true if the given value is any kind of infinity. |
47 | static bool isInfinity(const Float16& val) { |
48 | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); |
49 | } |
50 | Float16(const Float16& other) { val = other.val; } |
51 | uint16_t get_value() const { return val; } |
52 | |
53 | // Returns the maximum normal value. |
54 | static Float16 max() { return Float16(0x7bff); } |
55 | // Returns the lowest normal value. |
56 | static Float16 lowest() { return Float16(0xfbff); } |
57 | |
58 | private: |
59 | uint16_t val; |
60 | }; |
61 | |
62 | // To specialize this type, you must override uint_type to define |
63 | // an unsigned integer that can fit your floating point type. |
64 | // You must also add a isNan function that returns true if |
65 | // a value is Nan. |
66 | template <typename T> |
67 | struct FloatProxyTraits { |
68 | using uint_type = void; |
69 | }; |
70 | |
71 | template <> |
72 | struct FloatProxyTraits<float> { |
73 | using uint_type = uint32_t; |
74 | static bool isNan(float f) { return std::isnan(f); } |
75 | // Returns true if the given value is any kind of infinity. |
76 | static bool isInfinity(float f) { return std::isinf(f); } |
77 | // Returns the maximum normal value. |
78 | static float max() { return std::numeric_limits<float>::max(); } |
79 | // Returns the lowest normal value. |
80 | static float lowest() { return std::numeric_limits<float>::lowest(); } |
81 | // Returns the value as the native floating point format. |
82 | static float getAsFloat(const uint_type& t) { return BitwiseCast<float>(t); } |
83 | // Returns the bits from the given floating pointer number. |
84 | static uint_type getBitsFromFloat(const float& t) { |
85 | return BitwiseCast<uint_type>(t); |
86 | } |
87 | // Returns the bitwidth. |
88 | static uint32_t width() { return 32u; } |
89 | }; |
90 | |
91 | template <> |
92 | struct FloatProxyTraits<double> { |
93 | using uint_type = uint64_t; |
94 | static bool isNan(double f) { return std::isnan(f); } |
95 | // Returns true if the given value is any kind of infinity. |
96 | static bool isInfinity(double f) { return std::isinf(f); } |
97 | // Returns the maximum normal value. |
98 | static double max() { return std::numeric_limits<double>::max(); } |
99 | // Returns the lowest normal value. |
100 | static double lowest() { return std::numeric_limits<double>::lowest(); } |
101 | // Returns the value as the native floating point format. |
102 | static double getAsFloat(const uint_type& t) { |
103 | return BitwiseCast<double>(t); |
104 | } |
105 | // Returns the bits from the given floating pointer number. |
106 | static uint_type getBitsFromFloat(const double& t) { |
107 | return BitwiseCast<uint_type>(t); |
108 | } |
109 | // Returns the bitwidth. |
110 | static uint32_t width() { return 64u; } |
111 | }; |
112 | |
113 | template <> |
114 | struct FloatProxyTraits<Float16> { |
115 | using uint_type = uint16_t; |
116 | static bool isNan(Float16 f) { return Float16::isNan(f); } |
117 | // Returns true if the given value is any kind of infinity. |
118 | static bool isInfinity(Float16 f) { return Float16::isInfinity(f); } |
119 | // Returns the maximum normal value. |
120 | static Float16 max() { return Float16::max(); } |
121 | // Returns the lowest normal value. |
122 | static Float16 lowest() { return Float16::lowest(); } |
123 | // Returns the value as the native floating point format. |
124 | static Float16 getAsFloat(const uint_type& t) { return Float16(t); } |
125 | // Returns the bits from the given floating pointer number. |
126 | static uint_type getBitsFromFloat(const Float16& t) { return t.get_value(); } |
127 | // Returns the bitwidth. |
128 | static uint32_t width() { return 16u; } |
129 | }; |
130 | |
131 | // Since copying a floating point number (especially if it is NaN) |
132 | // does not guarantee that bits are preserved, this class lets us |
133 | // store the type and use it as a float when necessary. |
134 | template <typename T> |
135 | class FloatProxy { |
136 | public: |
137 | using uint_type = typename FloatProxyTraits<T>::uint_type; |
138 | |
139 | // Since this is to act similar to the normal floats, |
140 | // do not initialize the data by default. |
141 | FloatProxy() = default; |
142 | |
143 | // Intentionally non-explicit. This is a proxy type so |
144 | // implicit conversions allow us to use it more transparently. |
145 | FloatProxy(T val) { data_ = FloatProxyTraits<T>::getBitsFromFloat(val); } |
146 | |
147 | // Intentionally non-explicit. This is a proxy type so |
148 | // implicit conversions allow us to use it more transparently. |
149 | FloatProxy(uint_type val) { data_ = val; } |
150 | |
151 | // This is helpful to have and is guaranteed not to stomp bits. |
152 | FloatProxy<T> operator-() const { |
153 | return static_cast<uint_type>(data_ ^ |
154 | (uint_type(0x1) << (sizeof(T) * 8 - 1))); |
155 | } |
156 | |
157 | // Returns the data as a floating point value. |
158 | T getAsFloat() const { return FloatProxyTraits<T>::getAsFloat(data_); } |
159 | |
160 | // Returns the raw data. |
161 | uint_type data() const { return data_; } |
162 | |
163 | // Returns a vector of words suitable for use in an Operand. |
164 | std::vector<uint32_t> GetWords() const { |
165 | std::vector<uint32_t> words; |
166 | if (FloatProxyTraits<T>::width() == 64) { |
167 | FloatProxyTraits<double>::uint_type d = data(); |
168 | words.push_back(static_cast<uint32_t>(d)); |
169 | words.push_back(static_cast<uint32_t>(d >> 32)); |
170 | } else { |
171 | words.push_back(static_cast<uint32_t>(data())); |
172 | } |
173 | return words; |
174 | } |
175 | |
176 | // Returns true if the value represents any type of NaN. |
177 | bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } |
178 | // Returns true if the value represents any type of infinity. |
179 | bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } |
180 | |
181 | // Returns the maximum normal value. |
182 | static FloatProxy<T> max() { |
183 | return FloatProxy<T>(FloatProxyTraits<T>::max()); |
184 | } |
185 | // Returns the lowest normal value. |
186 | static FloatProxy<T> lowest() { |
187 | return FloatProxy<T>(FloatProxyTraits<T>::lowest()); |
188 | } |
189 | |
190 | private: |
191 | uint_type data_; |
192 | }; |
193 | |
194 | template <typename T> |
195 | bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { |
196 | return first.data() == second.data(); |
197 | } |
198 | |
199 | // Reads a FloatProxy value as a normal float from a stream. |
200 | template <typename T> |
201 | std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { |
202 | T float_val; |
203 | is >> float_val; |
204 | value = FloatProxy<T>(float_val); |
205 | return is; |
206 | } |
207 | |
208 | // This is an example traits. It is not meant to be used in practice, but will |
209 | // be the default for any non-specialized type. |
210 | template <typename T> |
211 | struct HexFloatTraits { |
212 | // Integer type that can store this hex-float. |
213 | using uint_type = void; |
214 | // Signed integer type that can store this hex-float. |
215 | using int_type = void; |
216 | // The numerical type that this HexFloat represents. |
217 | using underlying_type = void; |
218 | // The type needed to construct the underlying type. |
219 | using native_type = void; |
220 | // The number of bits that are actually relevant in the uint_type. |
221 | // This allows us to deal with, for example, 24-bit values in a 32-bit |
222 | // integer. |
223 | static const uint32_t num_used_bits = 0; |
224 | // Number of bits that represent the exponent. |
225 | static const uint32_t num_exponent_bits = 0; |
226 | // Number of bits that represent the fractional part. |
227 | static const uint32_t num_fraction_bits = 0; |
228 | // The bias of the exponent. (How much we need to subtract from the stored |
229 | // value to get the correct value.) |
230 | static const uint32_t exponent_bias = 0; |
231 | }; |
232 | |
233 | // Traits for IEEE float. |
234 | // 1 sign bit, 8 exponent bits, 23 fractional bits. |
235 | template <> |
236 | struct HexFloatTraits<FloatProxy<float>> { |
237 | using uint_type = uint32_t; |
238 | using int_type = int32_t; |
239 | using underlying_type = FloatProxy<float>; |
240 | using native_type = float; |
241 | static const uint_type num_used_bits = 32; |
242 | static const uint_type num_exponent_bits = 8; |
243 | static const uint_type num_fraction_bits = 23; |
244 | static const uint_type exponent_bias = 127; |
245 | }; |
246 | |
247 | // Traits for IEEE double. |
248 | // 1 sign bit, 11 exponent bits, 52 fractional bits. |
249 | template <> |
250 | struct HexFloatTraits<FloatProxy<double>> { |
251 | using uint_type = uint64_t; |
252 | using int_type = int64_t; |
253 | using underlying_type = FloatProxy<double>; |
254 | using native_type = double; |
255 | static const uint_type num_used_bits = 64; |
256 | static const uint_type num_exponent_bits = 11; |
257 | static const uint_type num_fraction_bits = 52; |
258 | static const uint_type exponent_bias = 1023; |
259 | }; |
260 | |
261 | // Traits for IEEE half. |
262 | // 1 sign bit, 5 exponent bits, 10 fractional bits. |
263 | template <> |
264 | struct HexFloatTraits<FloatProxy<Float16>> { |
265 | using uint_type = uint16_t; |
266 | using int_type = int16_t; |
267 | using underlying_type = uint16_t; |
268 | using native_type = uint16_t; |
269 | static const uint_type num_used_bits = 16; |
270 | static const uint_type num_exponent_bits = 5; |
271 | static const uint_type num_fraction_bits = 10; |
272 | static const uint_type exponent_bias = 15; |
273 | }; |
274 | |
275 | enum class round_direction { |
276 | kToZero, |
277 | kToNearestEven, |
278 | kToPositiveInfinity, |
279 | kToNegativeInfinity, |
280 | max = kToNegativeInfinity |
281 | }; |
282 | |
283 | // Template class that houses a floating pointer number. |
284 | // It exposes a number of constants based on the provided traits to |
285 | // assist in interpreting the bits of the value. |
286 | template <typename T, typename Traits = HexFloatTraits<T>> |
287 | class HexFloat { |
288 | public: |
289 | using uint_type = typename Traits::uint_type; |
290 | using int_type = typename Traits::int_type; |
291 | using underlying_type = typename Traits::underlying_type; |
292 | using native_type = typename Traits::native_type; |
293 | |
294 | explicit HexFloat(T f) : value_(f) {} |
295 | |
296 | T value() const { return value_; } |
297 | void set_value(T f) { value_ = f; } |
298 | |
299 | // These are all written like this because it is convenient to have |
300 | // compile-time constants for all of these values. |
301 | |
302 | // Pass-through values to save typing. |
303 | static const uint32_t num_used_bits = Traits::num_used_bits; |
304 | static const uint32_t exponent_bias = Traits::exponent_bias; |
305 | static const uint32_t num_exponent_bits = Traits::num_exponent_bits; |
306 | static const uint32_t num_fraction_bits = Traits::num_fraction_bits; |
307 | |
308 | // Number of bits to shift left to set the highest relevant bit. |
309 | static const uint32_t top_bit_left_shift = num_used_bits - 1; |
310 | // How many nibbles (hex characters) the fractional part takes up. |
311 | static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; |
312 | // If the fractional part does not fit evenly into a hex character (4-bits) |
313 | // then we have to left-shift to get rid of leading 0s. This is the amount |
314 | // we have to shift (might be 0). |
315 | static const uint32_t num_overflow_bits = |
316 | fraction_nibbles * 4 - num_fraction_bits; |
317 | |
318 | // The representation of the fraction, not the actual bits. This |
319 | // includes the leading bit that is usually implicit. |
320 | static const uint_type fraction_represent_mask = |
321 | SetBits<uint_type, 0, num_fraction_bits + num_overflow_bits>::get; |
322 | |
323 | // The topmost bit in the nibble-aligned fraction. |
324 | static const uint_type fraction_top_bit = |
325 | uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); |
326 | |
327 | // The least significant bit in the exponent, which is also the bit |
328 | // immediately to the left of the significand. |
329 | static const uint_type first_exponent_bit = uint_type(1) |
330 | << (num_fraction_bits); |
331 | |
332 | // The mask for the encoded fraction. It does not include the |
333 | // implicit bit. |
334 | static const uint_type fraction_encode_mask = |
335 | SetBits<uint_type, 0, num_fraction_bits>::get; |
336 | |
337 | // The bit that is used as a sign. |
338 | static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; |
339 | |
340 | // The bits that represent the exponent. |
341 | static const uint_type exponent_mask = |
342 | SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; |
343 | |
344 | // How far left the exponent is shifted. |
345 | static const uint32_t exponent_left_shift = num_fraction_bits; |
346 | |
347 | // How far from the right edge the fraction is shifted. |
348 | static const uint32_t fraction_right_shift = |
349 | static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; |
350 | |
351 | // The maximum representable unbiased exponent. |
352 | static const int_type max_exponent = |
353 | (exponent_mask >> num_fraction_bits) - exponent_bias; |
354 | // The minimum representable exponent for normalized numbers. |
355 | static const int_type min_exponent = -static_cast<int_type>(exponent_bias); |
356 | |
357 | // Returns the bits associated with the value. |
358 | uint_type getBits() const { return value_.data(); } |
359 | |
360 | // Returns the bits associated with the value, without the leading sign bit. |
361 | uint_type getUnsignedBits() const { |
362 | return static_cast<uint_type>(value_.data() & ~sign_mask); |
363 | } |
364 | |
365 | // Returns the bits associated with the exponent, shifted to start at the |
366 | // lsb of the type. |
367 | const uint_type getExponentBits() const { |
368 | return static_cast<uint_type>((getBits() & exponent_mask) >> |
369 | num_fraction_bits); |
370 | } |
371 | |
372 | // Returns the exponent in unbiased form. This is the exponent in the |
373 | // human-friendly form. |
374 | const int_type getUnbiasedExponent() const { |
375 | return static_cast<int_type>(getExponentBits() - exponent_bias); |
376 | } |
377 | |
378 | // Returns just the significand bits from the value. |
379 | const uint_type getSignificandBits() const { |
380 | return getBits() & fraction_encode_mask; |
381 | } |
382 | |
383 | // If the number was normalized, returns the unbiased exponent. |
384 | // If the number was denormal, normalize the exponent first. |
385 | const int_type getUnbiasedNormalizedExponent() const { |
386 | if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0 |
387 | return 0; |
388 | } |
389 | int_type exp = getUnbiasedExponent(); |
390 | if (exp == min_exponent) { // We are in denorm land. |
391 | uint_type significand_bits = getSignificandBits(); |
392 | while ((significand_bits & (first_exponent_bit >> 1)) == 0) { |
393 | significand_bits = static_cast<uint_type>(significand_bits << 1); |
394 | exp = static_cast<int_type>(exp - 1); |
395 | } |
396 | significand_bits &= fraction_encode_mask; |
397 | } |
398 | return exp; |
399 | } |
400 | |
401 | // Returns the signficand after it has been normalized. |
402 | const uint_type getNormalizedSignificand() const { |
403 | int_type unbiased_exponent = getUnbiasedNormalizedExponent(); |
404 | uint_type significand = getSignificandBits(); |
405 | for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { |
406 | significand = static_cast<uint_type>(significand << 1); |
407 | } |
408 | significand &= fraction_encode_mask; |
409 | return significand; |
410 | } |
411 | |
412 | // Returns true if this number represents a negative value. |
413 | bool isNegative() const { return (getBits() & sign_mask) != 0; } |
414 | |
415 | // Sets this HexFloat from the individual components. |
416 | // Note this assumes EVERY significand is normalized, and has an implicit |
417 | // leading one. This means that the only way that this method will set 0, |
418 | // is if you set a number so denormalized that it underflows. |
419 | // Do not use this method with raw bits extracted from a subnormal number, |
420 | // since subnormals do not have an implicit leading 1 in the significand. |
421 | // The significand is also expected to be in the |
422 | // lowest-most num_fraction_bits of the uint_type. |
423 | // The exponent is expected to be unbiased, meaning an exponent of |
424 | // 0 actually means 0. |
425 | // If underflow_round_up is set, then on underflow, if a number is non-0 |
426 | // and would underflow, we round up to the smallest denorm. |
427 | void setFromSignUnbiasedExponentAndNormalizedSignificand( |
428 | bool negative, int_type exponent, uint_type significand, |
429 | bool round_denorm_up) { |
430 | bool significand_is_zero = significand == 0; |
431 | |
432 | if (exponent <= min_exponent) { |
433 | // If this was denormalized, then we have to shift the bit on, meaning |
434 | // the significand is not zero. |
435 | significand_is_zero = false; |
436 | significand |= first_exponent_bit; |
437 | significand = static_cast<uint_type>(significand >> 1); |
438 | } |
439 | |
440 | while (exponent < min_exponent) { |
441 | significand = static_cast<uint_type>(significand >> 1); |
442 | ++exponent; |
443 | } |
444 | |
445 | if (exponent == min_exponent) { |
446 | if (significand == 0 && !significand_is_zero && round_denorm_up) { |
447 | significand = static_cast<uint_type>(0x1); |
448 | } |
449 | } |
450 | |
451 | uint_type new_value = 0; |
452 | if (negative) { |
453 | new_value = static_cast<uint_type>(new_value | sign_mask); |
454 | } |
455 | exponent = static_cast<int_type>(exponent + exponent_bias); |
456 | assert(exponent >= 0); |
457 | |
458 | // put it all together |
459 | exponent = static_cast<uint_type>((exponent << exponent_left_shift) & |
460 | exponent_mask); |
461 | significand = static_cast<uint_type>(significand & fraction_encode_mask); |
462 | new_value = static_cast<uint_type>(new_value | (exponent | significand)); |
463 | value_ = T(new_value); |
464 | } |
465 | |
466 | // Increments the significand of this number by the given amount. |
467 | // If this would spill the significand into the implicit bit, |
468 | // carry is set to true and the significand is shifted to fit into |
469 | // the correct location, otherwise carry is set to false. |
470 | // All significands and to_increment are assumed to be within the bounds |
471 | // for a valid significand. |
472 | static uint_type incrementSignificand(uint_type significand, |
473 | uint_type to_increment, bool* carry) { |
474 | significand = static_cast<uint_type>(significand + to_increment); |
475 | *carry = false; |
476 | if (significand & first_exponent_bit) { |
477 | *carry = true; |
478 | // The implicit 1-bit will have carried, so we should zero-out the |
479 | // top bit and shift back. |
480 | significand = static_cast<uint_type>(significand & ~first_exponent_bit); |
481 | significand = static_cast<uint_type>(significand >> 1); |
482 | } |
483 | return significand; |
484 | } |
485 | |
486 | #if GCC_VERSION == 40801 |
487 | // These exist because MSVC throws warnings on negative right-shifts |
488 | // even if they are not going to be executed. Eg: |
489 | // constant_number < 0? 0: constant_number |
490 | // These convert the negative left-shifts into right shifts. |
491 | template <int_type N> |
492 | struct negatable_left_shift { |
493 | static uint_type val(uint_type val) { |
494 | if (N > 0) { |
495 | return static_cast<uint_type>(val << N); |
496 | } else { |
497 | return static_cast<uint_type>(val >> N); |
498 | } |
499 | } |
500 | }; |
501 | |
502 | template <int_type N> |
503 | struct negatable_right_shift { |
504 | static uint_type val(uint_type val) { |
505 | if (N > 0) { |
506 | return static_cast<uint_type>(val >> N); |
507 | } else { |
508 | return static_cast<uint_type>(val << N); |
509 | } |
510 | } |
511 | }; |
512 | |
513 | #else |
514 | // These exist because MSVC throws warnings on negative right-shifts |
515 | // even if they are not going to be executed. Eg: |
516 | // constant_number < 0? 0: constant_number |
517 | // These convert the negative left-shifts into right shifts. |
518 | template <int_type N, typename enable = void> |
519 | struct negatable_left_shift { |
520 | static uint_type val(uint_type val) { |
521 | return static_cast<uint_type>(val >> -N); |
522 | } |
523 | }; |
524 | |
525 | template <int_type N> |
526 | struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> { |
527 | static uint_type val(uint_type val) { |
528 | return static_cast<uint_type>(val << N); |
529 | } |
530 | }; |
531 | |
532 | template <int_type N, typename enable = void> |
533 | struct negatable_right_shift { |
534 | static uint_type val(uint_type val) { |
535 | return static_cast<uint_type>(val << -N); |
536 | } |
537 | }; |
538 | |
539 | template <int_type N> |
540 | struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> { |
541 | static uint_type val(uint_type val) { |
542 | return static_cast<uint_type>(val >> N); |
543 | } |
544 | }; |
545 | #endif |
546 | |
547 | // Returns the significand, rounded to fit in a significand in |
548 | // other_T. This is shifted so that the most significant |
549 | // bit of the rounded number lines up with the most significant bit |
550 | // of the returned significand. |
551 | template <typename other_T> |
552 | typename other_T::uint_type getRoundedNormalizedSignificand( |
553 | round_direction dir, bool* carry_bit) { |
554 | using other_uint_type = typename other_T::uint_type; |
555 | static const int_type num_throwaway_bits = |
556 | static_cast<int_type>(num_fraction_bits) - |
557 | static_cast<int_type>(other_T::num_fraction_bits); |
558 | |
559 | static const uint_type last_significant_bit = |
560 | (num_throwaway_bits < 0) |
561 | ? 0 |
562 | : negatable_left_shift<num_throwaway_bits>::val(1u); |
563 | static const uint_type first_rounded_bit = |
564 | (num_throwaway_bits < 1) |
565 | ? 0 |
566 | : negatable_left_shift<num_throwaway_bits - 1>::val(1u); |
567 | |
568 | static const uint_type throwaway_mask_bits = |
569 | num_throwaway_bits > 0 ? num_throwaway_bits : 0; |
570 | static const uint_type throwaway_mask = |
571 | SetBits<uint_type, 0, throwaway_mask_bits>::get; |
572 | |
573 | *carry_bit = false; |
574 | other_uint_type out_val = 0; |
575 | uint_type significand = getNormalizedSignificand(); |
576 | // If we are up-casting, then we just have to shift to the right location. |
577 | if (num_throwaway_bits <= 0) { |
578 | out_val = static_cast<other_uint_type>(significand); |
579 | uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); |
580 | out_val = static_cast<other_uint_type>(out_val << shift_amount); |
581 | return out_val; |
582 | } |
583 | |
584 | // If every non-representable bit is 0, then we don't have any casting to |
585 | // do. |
586 | if ((significand & throwaway_mask) == 0) { |
587 | return static_cast<other_uint_type>( |
588 | negatable_right_shift<num_throwaway_bits>::val(significand)); |
589 | } |
590 | |
591 | bool round_away_from_zero = false; |
592 | // We actually have to narrow the significand here, so we have to follow the |
593 | // rounding rules. |
594 | switch (dir) { |
595 | case round_direction::kToZero: |
596 | break; |
597 | case round_direction::kToPositiveInfinity: |
598 | round_away_from_zero = !isNegative(); |
599 | break; |
600 | case round_direction::kToNegativeInfinity: |
601 | round_away_from_zero = isNegative(); |
602 | break; |
603 | case round_direction::kToNearestEven: |
604 | // Have to round down, round bit is 0 |
605 | if ((first_rounded_bit & significand) == 0) { |
606 | break; |
607 | } |
608 | if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { |
609 | // If any subsequent bit of the rounded portion is non-0 then we round |
610 | // up. |
611 | round_away_from_zero = true; |
612 | break; |
613 | } |
614 | // We are exactly half-way between 2 numbers, pick even. |
615 | if ((significand & last_significant_bit) != 0) { |
616 | // 1 for our last bit, round up. |
617 | round_away_from_zero = true; |
618 | break; |
619 | } |
620 | break; |
621 | } |
622 | |
623 | if (round_away_from_zero) { |
624 | return static_cast<other_uint_type>( |
625 | negatable_right_shift<num_throwaway_bits>::val(incrementSignificand( |
626 | significand, last_significant_bit, carry_bit))); |
627 | } else { |
628 | return static_cast<other_uint_type>( |
629 | negatable_right_shift<num_throwaway_bits>::val(significand)); |
630 | } |
631 | } |
632 | |
633 | // Casts this value to another HexFloat. If the cast is widening, |
634 | // then round_dir is ignored. If the cast is narrowing, then |
635 | // the result is rounded in the direction specified. |
636 | // This number will retain Nan and Inf values. |
637 | // It will also saturate to Inf if the number overflows, and |
638 | // underflow to (0 or min depending on rounding) if the number underflows. |
639 | template <typename other_T> |
640 | void castTo(other_T& other, round_direction round_dir) { |
641 | other = other_T(static_cast<typename other_T::native_type>(0)); |
642 | bool negate = isNegative(); |
643 | if (getUnsignedBits() == 0) { |
644 | if (negate) { |
645 | other.set_value(-other.value()); |
646 | } |
647 | return; |
648 | } |
649 | uint_type significand = getSignificandBits(); |
650 | bool carried = false; |
651 | typename other_T::uint_type rounded_significand = |
652 | getRoundedNormalizedSignificand<other_T>(round_dir, &carried); |
653 | |
654 | int_type exponent = getUnbiasedExponent(); |
655 | if (exponent == min_exponent) { |
656 | // If we are denormal, normalize the exponent, so that we can encode |
657 | // easily. |
658 | exponent = static_cast<int_type>(exponent + 1); |
659 | for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; |
660 | check_bit = static_cast<uint_type>(check_bit >> 1)) { |
661 | exponent = static_cast<int_type>(exponent - 1); |
662 | if (check_bit & significand) break; |
663 | } |
664 | } |
665 | |
666 | bool is_nan = |
667 | (getBits() & exponent_mask) == exponent_mask && significand != 0; |
668 | bool is_inf = |
669 | !is_nan && |
670 | ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) || |
671 | (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); |
672 | |
673 | // If we are Nan or Inf we should pass that through. |
674 | if (is_inf) { |
675 | other.set_value(typename other_T::underlying_type( |
676 | static_cast<typename other_T::uint_type>( |
677 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); |
678 | return; |
679 | } |
680 | if (is_nan) { |
681 | typename other_T::uint_type shifted_significand; |
682 | shifted_significand = static_cast<typename other_T::uint_type>( |
683 | negatable_left_shift< |
684 | static_cast<int_type>(other_T::num_fraction_bits) - |
685 | static_cast<int_type>(num_fraction_bits)>::val(significand)); |
686 | |
687 | // We are some sort of Nan. We try to keep the bit-pattern of the Nan |
688 | // as close as possible. If we had to shift off bits so we are 0, then we |
689 | // just set the last bit. |
690 | other.set_value(typename other_T::underlying_type( |
691 | static_cast<typename other_T::uint_type>( |
692 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | |
693 | (shifted_significand == 0 ? 0x1 : shifted_significand)))); |
694 | return; |
695 | } |
696 | |
697 | bool round_underflow_up = |
698 | isNegative() ? round_dir == round_direction::kToNegativeInfinity |
699 | : round_dir == round_direction::kToPositiveInfinity; |
700 | using other_int_type = typename other_T::int_type; |
701 | // setFromSignUnbiasedExponentAndNormalizedSignificand will |
702 | // zero out any underflowing value (but retain the sign). |
703 | other.setFromSignUnbiasedExponentAndNormalizedSignificand( |
704 | negate, static_cast<other_int_type>(exponent), rounded_significand, |
705 | round_underflow_up); |
706 | return; |
707 | } |
708 | |
709 | private: |
710 | T value_; |
711 | |
712 | static_assert(num_used_bits == |
713 | Traits::num_exponent_bits + Traits::num_fraction_bits + 1, |
714 | "The number of bits do not fit" ); |
715 | static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match" ); |
716 | }; |
717 | |
718 | // Returns 4 bits represented by the hex character. |
719 | inline uint8_t get_nibble_from_character(int character) { |
720 | const char* dec = "0123456789" ; |
721 | const char* lower = "abcdef" ; |
722 | const char* upper = "ABCDEF" ; |
723 | const char* p = nullptr; |
724 | if ((p = strchr(dec, character))) { |
725 | return static_cast<uint8_t>(p - dec); |
726 | } else if ((p = strchr(lower, character))) { |
727 | return static_cast<uint8_t>(p - lower + 0xa); |
728 | } else if ((p = strchr(upper, character))) { |
729 | return static_cast<uint8_t>(p - upper + 0xa); |
730 | } |
731 | |
732 | assert(false && "This was called with a non-hex character" ); |
733 | return 0; |
734 | } |
735 | |
736 | // Outputs the given HexFloat to the stream. |
737 | template <typename T, typename Traits> |
738 | std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { |
739 | using HF = HexFloat<T, Traits>; |
740 | using uint_type = typename HF::uint_type; |
741 | using int_type = typename HF::int_type; |
742 | |
743 | static_assert(HF::num_used_bits != 0, |
744 | "num_used_bits must be non-zero for a valid float" ); |
745 | static_assert(HF::num_exponent_bits != 0, |
746 | "num_exponent_bits must be non-zero for a valid float" ); |
747 | static_assert(HF::num_fraction_bits != 0, |
748 | "num_fractin_bits must be non-zero for a valid float" ); |
749 | |
750 | const uint_type bits = value.value().data(); |
751 | const char* const sign = (bits & HF::sign_mask) ? "-" : "" ; |
752 | const uint_type exponent = static_cast<uint_type>( |
753 | (bits & HF::exponent_mask) >> HF::num_fraction_bits); |
754 | |
755 | uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) |
756 | << HF::num_overflow_bits); |
757 | |
758 | const bool is_zero = exponent == 0 && fraction == 0; |
759 | const bool is_denorm = exponent == 0 && !is_zero; |
760 | |
761 | // exponent contains the biased exponent we have to convert it back into |
762 | // the normal range. |
763 | int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); |
764 | // If the number is all zeros, then we actually have to NOT shift the |
765 | // exponent. |
766 | int_exponent = is_zero ? 0 : int_exponent; |
767 | |
768 | // If we are denorm, then start shifting, and decreasing the exponent until |
769 | // our leading bit is 1. |
770 | |
771 | if (is_denorm) { |
772 | while ((fraction & HF::fraction_top_bit) == 0) { |
773 | fraction = static_cast<uint_type>(fraction << 1); |
774 | int_exponent = static_cast<int_type>(int_exponent - 1); |
775 | } |
776 | // Since this is denormalized, we have to consume the leading 1 since it |
777 | // will end up being implicit. |
778 | fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1 |
779 | fraction &= HF::fraction_represent_mask; |
780 | } |
781 | |
782 | uint_type fraction_nibbles = HF::fraction_nibbles; |
783 | // We do not have to display any trailing 0s, since this represents the |
784 | // fractional part. |
785 | while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { |
786 | // Shift off any trailing values; |
787 | fraction = static_cast<uint_type>(fraction >> 4); |
788 | --fraction_nibbles; |
789 | } |
790 | |
791 | const auto saved_flags = os.flags(); |
792 | const auto saved_fill = os.fill(); |
793 | |
794 | os << sign << "0x" << (is_zero ? '0' : '1'); |
795 | if (fraction_nibbles) { |
796 | // Make sure to keep the leading 0s in place, since this is the fractional |
797 | // part. |
798 | os << "." << std::setw(static_cast<int>(fraction_nibbles)) |
799 | << std::setfill('0') << std::hex << fraction; |
800 | } |
801 | os << "p" << std::dec << (int_exponent >= 0 ? "+" : "" ) << int_exponent; |
802 | |
803 | os.flags(saved_flags); |
804 | os.fill(saved_fill); |
805 | |
806 | return os; |
807 | } |
808 | |
809 | // Returns true if negate_value is true and the next character on the |
810 | // input stream is a plus or minus sign. In that case we also set the fail bit |
811 | // on the stream and set the value to the zero value for its type. |
812 | template <typename T, typename Traits> |
813 | inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, |
814 | HexFloat<T, Traits>& value) { |
815 | if (negate_value) { |
816 | auto next_char = is.peek(); |
817 | if (next_char == '-' || next_char == '+') { |
818 | // Fail the parse. Emulate standard behaviour by setting the value to |
819 | // the zero value, and set the fail bit on the stream. |
820 | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); |
821 | is.setstate(std::ios_base::failbit); |
822 | return true; |
823 | } |
824 | } |
825 | return false; |
826 | } |
827 | |
828 | // Parses a floating point number from the given stream and stores it into the |
829 | // value parameter. |
830 | // If negate_value is true then the number may not have a leading minus or |
831 | // plus, and if it successfully parses, then the number is negated before |
832 | // being stored into the value parameter. |
833 | // If the value cannot be correctly parsed or overflows the target floating |
834 | // point type, then set the fail bit on the stream. |
835 | // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
836 | // the error case, but only after all target platforms implement it correctly. |
837 | // In particular, the Microsoft C++ runtime appears to be out of spec. |
838 | template <typename T, typename Traits> |
839 | inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, |
840 | HexFloat<T, Traits>& value) { |
841 | if (RejectParseDueToLeadingSign(is, negate_value, value)) { |
842 | return is; |
843 | } |
844 | T val; |
845 | is >> val; |
846 | if (negate_value) { |
847 | val = -val; |
848 | } |
849 | value.set_value(val); |
850 | // In the failure case, map -0.0 to 0.0. |
851 | if (is.fail() && value.getUnsignedBits() == 0u) { |
852 | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); |
853 | } |
854 | if (val.isInfinity()) { |
855 | // Fail the parse. Emulate standard behaviour by setting the value to |
856 | // the closest normal value, and set the fail bit on the stream. |
857 | value.set_value((value.isNegative() | negate_value) ? T::lowest() |
858 | : T::max()); |
859 | is.setstate(std::ios_base::failbit); |
860 | } |
861 | return is; |
862 | } |
863 | |
864 | // Specialization of ParseNormalFloat for FloatProxy<Float16> values. |
865 | // This will parse the float as it were a 32-bit floating point number, |
866 | // and then round it down to fit into a Float16 value. |
867 | // The number is rounded towards zero. |
868 | // If negate_value is true then the number may not have a leading minus or |
869 | // plus, and if it successfully parses, then the number is negated before |
870 | // being stored into the value parameter. |
871 | // If the value cannot be correctly parsed or overflows the target floating |
872 | // point type, then set the fail bit on the stream. |
873 | // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
874 | // the error case, but only after all target platforms implement it correctly. |
875 | // In particular, the Microsoft C++ runtime appears to be out of spec. |
876 | template <> |
877 | inline std::istream& |
878 | ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( |
879 | std::istream& is, bool negate_value, |
880 | HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { |
881 | // First parse as a 32-bit float. |
882 | HexFloat<FloatProxy<float>> float_val(0.0f); |
883 | ParseNormalFloat(is, negate_value, float_val); |
884 | |
885 | // Then convert to 16-bit float, saturating at infinities, and |
886 | // rounding toward zero. |
887 | float_val.castTo(value, round_direction::kToZero); |
888 | |
889 | // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the |
890 | // fail bit and set the lowest or highest value. |
891 | if (Float16::isInfinity(value.value().getAsFloat())) { |
892 | value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); |
893 | is.setstate(std::ios_base::failbit); |
894 | } |
895 | return is; |
896 | } |
897 | |
898 | // Reads a HexFloat from the given stream. |
899 | // If the float is not encoded as a hex-float then it will be parsed |
900 | // as a regular float. |
901 | // This may fail if your stream does not support at least one unget. |
902 | // Nan values can be encoded with "0x1.<not zero>p+exponent_bias". |
903 | // This would normally overflow a float and round to |
904 | // infinity but this special pattern is the exact representation for a NaN, |
905 | // and therefore is actually encoded as the correct NaN. To encode inf, |
906 | // either 0x0p+exponent_bias can be specified or any exponent greater than |
907 | // exponent_bias. |
908 | // Examples using IEEE 32-bit float encoding. |
909 | // 0x1.0p+128 (+inf) |
910 | // -0x1.0p-128 (-inf) |
911 | // |
912 | // 0x1.1p+128 (+Nan) |
913 | // -0x1.1p+128 (-Nan) |
914 | // |
915 | // 0x1p+129 (+inf) |
916 | // -0x1p+129 (-inf) |
917 | template <typename T, typename Traits> |
918 | std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { |
919 | using HF = HexFloat<T, Traits>; |
920 | using uint_type = typename HF::uint_type; |
921 | using int_type = typename HF::int_type; |
922 | |
923 | value.set_value(static_cast<typename HF::native_type>(0.f)); |
924 | |
925 | if (is.flags() & std::ios::skipws) { |
926 | // If the user wants to skip whitespace , then we should obey that. |
927 | while (std::isspace(is.peek())) { |
928 | is.get(); |
929 | } |
930 | } |
931 | |
932 | auto next_char = is.peek(); |
933 | bool negate_value = false; |
934 | |
935 | if (next_char != '-' && next_char != '0') { |
936 | return ParseNormalFloat(is, negate_value, value); |
937 | } |
938 | |
939 | if (next_char == '-') { |
940 | negate_value = true; |
941 | is.get(); |
942 | next_char = is.peek(); |
943 | } |
944 | |
945 | if (next_char == '0') { |
946 | is.get(); // We may have to unget this. |
947 | auto maybe_hex_start = is.peek(); |
948 | if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { |
949 | is.unget(); |
950 | return ParseNormalFloat(is, negate_value, value); |
951 | } else { |
952 | is.get(); // Throw away the 'x'; |
953 | } |
954 | } else { |
955 | return ParseNormalFloat(is, negate_value, value); |
956 | } |
957 | |
958 | // This "looks" like a hex-float so treat it as one. |
959 | bool seen_p = false; |
960 | bool seen_dot = false; |
961 | uint_type fraction_index = 0; |
962 | |
963 | uint_type fraction = 0; |
964 | int_type exponent = HF::exponent_bias; |
965 | |
966 | // Strip off leading zeros so we don't have to special-case them later. |
967 | while ((next_char = is.peek()) == '0') { |
968 | is.get(); |
969 | } |
970 | |
971 | bool is_denorm = |
972 | true; // Assume denorm "representation" until we hear otherwise. |
973 | // NB: This does not mean the value is actually denorm, |
974 | // it just means that it was written 0. |
975 | bool bits_written = false; // Stays false until we write a bit. |
976 | while (!seen_p && !seen_dot) { |
977 | // Handle characters that are left of the fractional part. |
978 | if (next_char == '.') { |
979 | seen_dot = true; |
980 | } else if (next_char == 'p') { |
981 | seen_p = true; |
982 | } else if (::isxdigit(next_char)) { |
983 | // We know this is not denormalized since we have stripped all leading |
984 | // zeroes and we are not a ".". |
985 | is_denorm = false; |
986 | int number = get_nibble_from_character(next_char); |
987 | for (int i = 0; i < 4; ++i, number <<= 1) { |
988 | uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; |
989 | if (bits_written) { |
990 | // If we are here the bits represented belong in the fractional |
991 | // part of the float, and we have to adjust the exponent accordingly. |
992 | fraction = static_cast<uint_type>( |
993 | fraction | |
994 | static_cast<uint_type>( |
995 | write_bit << (HF::top_bit_left_shift - fraction_index++))); |
996 | exponent = static_cast<int_type>(exponent + 1); |
997 | } |
998 | bits_written |= write_bit != 0; |
999 | } |
1000 | } else { |
1001 | // We have not found our exponent yet, so we have to fail. |
1002 | is.setstate(std::ios::failbit); |
1003 | return is; |
1004 | } |
1005 | is.get(); |
1006 | next_char = is.peek(); |
1007 | } |
1008 | bits_written = false; |
1009 | while (seen_dot && !seen_p) { |
1010 | // Handle only fractional parts now. |
1011 | if (next_char == 'p') { |
1012 | seen_p = true; |
1013 | } else if (::isxdigit(next_char)) { |
1014 | int number = get_nibble_from_character(next_char); |
1015 | for (int i = 0; i < 4; ++i, number <<= 1) { |
1016 | uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; |
1017 | bits_written |= write_bit != 0; |
1018 | if (is_denorm && !bits_written) { |
1019 | // Handle modifying the exponent here this way we can handle |
1020 | // an arbitrary number of hex values without overflowing our |
1021 | // integer. |
1022 | exponent = static_cast<int_type>(exponent - 1); |
1023 | } else { |
1024 | fraction = static_cast<uint_type>( |
1025 | fraction | |
1026 | static_cast<uint_type>( |
1027 | write_bit << (HF::top_bit_left_shift - fraction_index++))); |
1028 | } |
1029 | } |
1030 | } else { |
1031 | // We still have not found our 'p' exponent yet, so this is not a valid |
1032 | // hex-float. |
1033 | is.setstate(std::ios::failbit); |
1034 | return is; |
1035 | } |
1036 | is.get(); |
1037 | next_char = is.peek(); |
1038 | } |
1039 | |
1040 | bool seen_sign = false; |
1041 | int8_t exponent_sign = 1; |
1042 | int_type written_exponent = 0; |
1043 | while (true) { |
1044 | if ((next_char == '-' || next_char == '+')) { |
1045 | if (seen_sign) { |
1046 | is.setstate(std::ios::failbit); |
1047 | return is; |
1048 | } |
1049 | seen_sign = true; |
1050 | exponent_sign = (next_char == '-') ? -1 : 1; |
1051 | } else if (::isdigit(next_char)) { |
1052 | // Hex-floats express their exponent as decimal. |
1053 | written_exponent = static_cast<int_type>(written_exponent * 10); |
1054 | written_exponent = |
1055 | static_cast<int_type>(written_exponent + (next_char - '0')); |
1056 | } else { |
1057 | break; |
1058 | } |
1059 | is.get(); |
1060 | next_char = is.peek(); |
1061 | } |
1062 | |
1063 | written_exponent = static_cast<int_type>(written_exponent * exponent_sign); |
1064 | exponent = static_cast<int_type>(exponent + written_exponent); |
1065 | |
1066 | bool is_zero = is_denorm && (fraction == 0); |
1067 | if (is_denorm && !is_zero) { |
1068 | fraction = static_cast<uint_type>(fraction << 1); |
1069 | exponent = static_cast<int_type>(exponent - 1); |
1070 | } else if (is_zero) { |
1071 | exponent = 0; |
1072 | } |
1073 | |
1074 | if (exponent <= 0 && !is_zero) { |
1075 | fraction = static_cast<uint_type>(fraction >> 1); |
1076 | fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; |
1077 | } |
1078 | |
1079 | fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; |
1080 | |
1081 | const int_type max_exponent = |
1082 | SetBits<uint_type, 0, HF::num_exponent_bits>::get; |
1083 | |
1084 | // Handle actual denorm numbers |
1085 | while (exponent < 0 && !is_zero) { |
1086 | fraction = static_cast<uint_type>(fraction >> 1); |
1087 | exponent = static_cast<int_type>(exponent + 1); |
1088 | |
1089 | fraction &= HF::fraction_encode_mask; |
1090 | if (fraction == 0) { |
1091 | // We have underflowed our fraction. We should clamp to zero. |
1092 | is_zero = true; |
1093 | exponent = 0; |
1094 | } |
1095 | } |
1096 | |
1097 | // We have overflowed so we should be inf/-inf. |
1098 | if (exponent > max_exponent) { |
1099 | exponent = max_exponent; |
1100 | fraction = 0; |
1101 | } |
1102 | |
1103 | uint_type output_bits = static_cast<uint_type>( |
1104 | static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); |
1105 | output_bits |= fraction; |
1106 | |
1107 | uint_type shifted_exponent = static_cast<uint_type>( |
1108 | static_cast<uint_type>(exponent << HF::exponent_left_shift) & |
1109 | HF::exponent_mask); |
1110 | output_bits |= shifted_exponent; |
1111 | |
1112 | T output_float(output_bits); |
1113 | value.set_value(output_float); |
1114 | |
1115 | return is; |
1116 | } |
1117 | |
1118 | // Writes a FloatProxy value to a stream. |
1119 | // Zero and normal numbers are printed in the usual notation, but with |
1120 | // enough digits to fully reproduce the value. Other values (subnormal, |
1121 | // NaN, and infinity) are printed as a hex float. |
1122 | template <typename T> |
1123 | std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { |
1124 | auto float_val = value.getAsFloat(); |
1125 | switch (std::fpclassify(float_val)) { |
1126 | case FP_ZERO: |
1127 | case FP_NORMAL: { |
1128 | auto saved_precision = os.precision(); |
1129 | os.precision(std::numeric_limits<T>::max_digits10); |
1130 | os << float_val; |
1131 | os.precision(saved_precision); |
1132 | } break; |
1133 | default: |
1134 | os << HexFloat<FloatProxy<T>>(value); |
1135 | break; |
1136 | } |
1137 | return os; |
1138 | } |
1139 | |
1140 | template <> |
1141 | inline std::ostream& operator<<<Float16>(std::ostream& os, |
1142 | const FloatProxy<Float16>& value) { |
1143 | os << HexFloat<FloatProxy<Float16>>(value); |
1144 | return os; |
1145 | } |
1146 | |
1147 | } // namespace utils |
1148 | } // namespace spvtools |
1149 | |
1150 | #endif // SOURCE_UTIL_HEX_FLOAT_H_ |
1151 | |