| 1 | // Copyright (c) 2018 Google LLC |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef SOURCE_UTIL_SMALL_VECTOR_H_ |
| 16 | #define SOURCE_UTIL_SMALL_VECTOR_H_ |
| 17 | |
| 18 | #include <cassert> |
| 19 | #include <iostream> |
| 20 | #include <memory> |
| 21 | #include <utility> |
| 22 | #include <vector> |
| 23 | |
| 24 | #include "source/util/make_unique.h" |
| 25 | |
| 26 | namespace spvtools { |
| 27 | namespace utils { |
| 28 | |
| 29 | // The |SmallVector| class is intended to be a drop-in replacement for |
| 30 | // |std::vector|. The difference is in the implementation. A |SmallVector| is |
| 31 | // optimized for when the number of elements in the vector are small. Small is |
| 32 | // defined by the template parameter |small_size|. |
| 33 | // |
| 34 | // Note that |SmallVector| is not always faster than an |std::vector|, so you |
| 35 | // should experiment with different values for |small_size| and compare to |
| 36 | // using and |std::vector|. |
| 37 | // |
| 38 | // TODO: I have implemented the public member functions from |std::vector| that |
| 39 | // I needed. If others are needed they should be implemented. Do not implement |
| 40 | // public member functions that are not defined by std::vector. |
| 41 | template <class T, size_t small_size> |
| 42 | class SmallVector { |
| 43 | public: |
| 44 | using iterator = T*; |
| 45 | using const_iterator = const T*; |
| 46 | |
| 47 | SmallVector() |
| 48 | : size_(0), |
| 49 | small_data_(reinterpret_cast<T*>(buffer)), |
| 50 | large_data_(nullptr) {} |
| 51 | |
| 52 | SmallVector(const SmallVector& that) : SmallVector() { *this = that; } |
| 53 | |
| 54 | SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); } |
| 55 | |
| 56 | SmallVector(const std::vector<T>& vec) : SmallVector() { |
| 57 | if (vec.size() > small_size) { |
| 58 | large_data_ = MakeUnique<std::vector<T>>(vec); |
| 59 | } else { |
| 60 | size_ = vec.size(); |
| 61 | for (uint32_t i = 0; i < size_; i++) { |
| 62 | new (small_data_ + i) T(vec[i]); |
| 63 | } |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | SmallVector(std::vector<T>&& vec) : SmallVector() { |
| 68 | if (vec.size() > small_size) { |
| 69 | large_data_ = MakeUnique<std::vector<T>>(std::move(vec)); |
| 70 | } else { |
| 71 | size_ = vec.size(); |
| 72 | for (uint32_t i = 0; i < size_; i++) { |
| 73 | new (small_data_ + i) T(std::move(vec[i])); |
| 74 | } |
| 75 | } |
| 76 | vec.clear(); |
| 77 | } |
| 78 | |
| 79 | SmallVector(std::initializer_list<T> init_list) : SmallVector() { |
| 80 | if (init_list.size() < small_size) { |
| 81 | for (auto it = init_list.begin(); it != init_list.end(); ++it) { |
| 82 | new (small_data_ + (size_++)) T(std::move(*it)); |
| 83 | } |
| 84 | } else { |
| 85 | large_data_ = MakeUnique<std::vector<T>>(std::move(init_list)); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); } |
| 90 | |
| 91 | virtual ~SmallVector() { |
| 92 | for (T* p = small_data_; p < small_data_ + size_; ++p) { |
| 93 | p->~T(); |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | SmallVector& operator=(const SmallVector& that) { |
| 98 | assert(small_data_); |
| 99 | if (that.large_data_) { |
| 100 | if (large_data_) { |
| 101 | *large_data_ = *that.large_data_; |
| 102 | } else { |
| 103 | large_data_ = MakeUnique<std::vector<T>>(*that.large_data_); |
| 104 | } |
| 105 | } else { |
| 106 | large_data_.reset(nullptr); |
| 107 | size_t i = 0; |
| 108 | // Do a copy for any element in |this| that is already constructed. |
| 109 | for (; i < size_ && i < that.size_; ++i) { |
| 110 | small_data_[i] = that.small_data_[i]; |
| 111 | } |
| 112 | |
| 113 | if (i >= that.size_) { |
| 114 | // If the size of |this| becomes smaller after the assignment, then |
| 115 | // destroy any extra elements. |
| 116 | for (; i < size_; ++i) { |
| 117 | small_data_[i].~T(); |
| 118 | } |
| 119 | } else { |
| 120 | // If the size of |this| becomes larger after the assignement, copy |
| 121 | // construct the new elements that are needed. |
| 122 | for (; i < that.size_; ++i) { |
| 123 | new (small_data_ + i) T(that.small_data_[i]); |
| 124 | } |
| 125 | } |
| 126 | size_ = that.size_; |
| 127 | } |
| 128 | return *this; |
| 129 | } |
| 130 | |
| 131 | SmallVector& operator=(SmallVector&& that) { |
| 132 | if (that.large_data_) { |
| 133 | large_data_.reset(that.large_data_.release()); |
| 134 | } else { |
| 135 | large_data_.reset(nullptr); |
| 136 | size_t i = 0; |
| 137 | // Do a move for any element in |this| that is already constructed. |
| 138 | for (; i < size_ && i < that.size_; ++i) { |
| 139 | small_data_[i] = std::move(that.small_data_[i]); |
| 140 | } |
| 141 | |
| 142 | if (i >= that.size_) { |
| 143 | // If the size of |this| becomes smaller after the assignment, then |
| 144 | // destroy any extra elements. |
| 145 | for (; i < size_; ++i) { |
| 146 | small_data_[i].~T(); |
| 147 | } |
| 148 | } else { |
| 149 | // If the size of |this| becomes larger after the assignement, move |
| 150 | // construct the new elements that are needed. |
| 151 | for (; i < that.size_; ++i) { |
| 152 | new (small_data_ + i) T(std::move(that.small_data_[i])); |
| 153 | } |
| 154 | } |
| 155 | size_ = that.size_; |
| 156 | } |
| 157 | |
| 158 | // Reset |that| because all of the data has been moved to |this|. |
| 159 | that.DestructSmallData(); |
| 160 | return *this; |
| 161 | } |
| 162 | |
| 163 | template <class OtherVector> |
| 164 | friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) { |
| 165 | if (lhs.size() != rhs.size()) { |
| 166 | return false; |
| 167 | } |
| 168 | |
| 169 | auto rit = rhs.begin(); |
| 170 | for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) { |
| 171 | if (*lit != *rit) { |
| 172 | return false; |
| 173 | } |
| 174 | } |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) { |
| 179 | return rhs == lhs; |
| 180 | } |
| 181 | |
| 182 | friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) { |
| 183 | return !(lhs == rhs); |
| 184 | } |
| 185 | |
| 186 | friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) { |
| 187 | return rhs != lhs; |
| 188 | } |
| 189 | |
| 190 | T& operator[](size_t i) { |
| 191 | if (!large_data_) { |
| 192 | return small_data_[i]; |
| 193 | } else { |
| 194 | return (*large_data_)[i]; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | const T& operator[](size_t i) const { |
| 199 | if (!large_data_) { |
| 200 | return small_data_[i]; |
| 201 | } else { |
| 202 | return (*large_data_)[i]; |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | size_t size() const { |
| 207 | if (!large_data_) { |
| 208 | return size_; |
| 209 | } else { |
| 210 | return large_data_->size(); |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | iterator begin() { |
| 215 | if (large_data_) { |
| 216 | return large_data_->data(); |
| 217 | } else { |
| 218 | return small_data_; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | const_iterator begin() const { |
| 223 | if (large_data_) { |
| 224 | return large_data_->data(); |
| 225 | } else { |
| 226 | return small_data_; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | const_iterator cbegin() const { return begin(); } |
| 231 | |
| 232 | iterator end() { |
| 233 | if (large_data_) { |
| 234 | return large_data_->data() + large_data_->size(); |
| 235 | } else { |
| 236 | return small_data_ + size_; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | const_iterator end() const { |
| 241 | if (large_data_) { |
| 242 | return large_data_->data() + large_data_->size(); |
| 243 | } else { |
| 244 | return small_data_ + size_; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | const_iterator cend() const { return end(); } |
| 249 | |
| 250 | T* data() { return begin(); } |
| 251 | |
| 252 | const T* data() const { return cbegin(); } |
| 253 | |
| 254 | T& front() { return (*this)[0]; } |
| 255 | |
| 256 | const T& front() const { return (*this)[0]; } |
| 257 | |
| 258 | iterator erase(const_iterator pos) { return erase(pos, pos + 1); } |
| 259 | |
| 260 | iterator erase(const_iterator first, const_iterator last) { |
| 261 | if (large_data_) { |
| 262 | size_t start_index = first - large_data_->data(); |
| 263 | size_t end_index = last - large_data_->data(); |
| 264 | auto r = large_data_->erase(large_data_->begin() + start_index, |
| 265 | large_data_->begin() + end_index); |
| 266 | return large_data_->data() + (r - large_data_->begin()); |
| 267 | } |
| 268 | |
| 269 | // Since C++11, std::vector has |const_iterator| for the parameters, so I |
| 270 | // follow that. However, I need iterators to modify the current container, |
| 271 | // which is not const. This is why I cast away the const. |
| 272 | iterator f = const_cast<iterator>(first); |
| 273 | iterator l = const_cast<iterator>(last); |
| 274 | iterator e = end(); |
| 275 | |
| 276 | size_t num_of_del_elements = last - first; |
| 277 | iterator ret = f; |
| 278 | if (first == last) { |
| 279 | return ret; |
| 280 | } |
| 281 | |
| 282 | // Move |last| and any elements after it their earlier position. |
| 283 | while (l != e) { |
| 284 | *f = std::move(*l); |
| 285 | ++f; |
| 286 | ++l; |
| 287 | } |
| 288 | |
| 289 | // Destroy the elements that were supposed to be deleted. |
| 290 | while (f != l) { |
| 291 | f->~T(); |
| 292 | ++f; |
| 293 | } |
| 294 | |
| 295 | // Update the size. |
| 296 | size_ -= num_of_del_elements; |
| 297 | return ret; |
| 298 | } |
| 299 | |
| 300 | void push_back(const T& value) { |
| 301 | if (!large_data_ && size_ == small_size) { |
| 302 | MoveToLargeData(); |
| 303 | } |
| 304 | |
| 305 | if (large_data_) { |
| 306 | large_data_->push_back(value); |
| 307 | return; |
| 308 | } |
| 309 | |
| 310 | new (small_data_ + size_) T(value); |
| 311 | ++size_; |
| 312 | } |
| 313 | |
| 314 | void push_back(T&& value) { |
| 315 | if (!large_data_ && size_ == small_size) { |
| 316 | MoveToLargeData(); |
| 317 | } |
| 318 | |
| 319 | if (large_data_) { |
| 320 | large_data_->push_back(std::move(value)); |
| 321 | return; |
| 322 | } |
| 323 | |
| 324 | new (small_data_ + size_) T(std::move(value)); |
| 325 | ++size_; |
| 326 | } |
| 327 | |
| 328 | template <class InputIt> |
| 329 | iterator insert(iterator pos, InputIt first, InputIt last) { |
| 330 | size_t element_idx = (pos - begin()); |
| 331 | size_t num_of_new_elements = std::distance(first, last); |
| 332 | size_t new_size = size_ + num_of_new_elements; |
| 333 | if (!large_data_ && new_size > small_size) { |
| 334 | MoveToLargeData(); |
| 335 | } |
| 336 | |
| 337 | if (large_data_) { |
| 338 | typename std::vector<T>::iterator new_pos = |
| 339 | large_data_->begin() + element_idx; |
| 340 | large_data_->insert(new_pos, first, last); |
| 341 | return begin() + element_idx; |
| 342 | } |
| 343 | |
| 344 | // Move |pos| and all of the elements after it over |num_of_new_elements| |
| 345 | // places. We start at the end and work backwards, to make sure we do not |
| 346 | // overwrite data that we have not moved yet. |
| 347 | for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos; |
| 348 | --i, --j) { |
| 349 | if (i >= begin() + size_) { |
| 350 | new (i) T(std::move(*j)); |
| 351 | } else { |
| 352 | *i = std::move(*j); |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | // Copy the new elements into position. |
| 357 | iterator p = pos; |
| 358 | for (; first != last; ++p, ++first) { |
| 359 | if (p >= small_data_ + size_) { |
| 360 | new (p) T(*first); |
| 361 | } else { |
| 362 | *p = *first; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | // Upate the size. |
| 367 | size_ += num_of_new_elements; |
| 368 | return pos; |
| 369 | } |
| 370 | |
| 371 | bool empty() const { |
| 372 | if (large_data_) { |
| 373 | return large_data_->empty(); |
| 374 | } |
| 375 | return size_ == 0; |
| 376 | } |
| 377 | |
| 378 | void clear() { |
| 379 | if (large_data_) { |
| 380 | large_data_->clear(); |
| 381 | } else { |
| 382 | DestructSmallData(); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | template <class... Args> |
| 387 | void emplace_back(Args&&... args) { |
| 388 | if (!large_data_ && size_ == small_size) { |
| 389 | MoveToLargeData(); |
| 390 | } |
| 391 | |
| 392 | if (large_data_) { |
| 393 | large_data_->emplace_back(std::forward<Args>(args)...); |
| 394 | } else { |
| 395 | new (small_data_ + size_) T(std::forward<Args>(args)...); |
| 396 | ++size_; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | void resize(size_t new_size, const T& v) { |
| 401 | if (!large_data_ && new_size > small_size) { |
| 402 | MoveToLargeData(); |
| 403 | } |
| 404 | |
| 405 | if (large_data_) { |
| 406 | large_data_->resize(new_size, v); |
| 407 | return; |
| 408 | } |
| 409 | |
| 410 | // If |new_size| < |size_|, then destroy the extra elements. |
| 411 | for (size_t i = new_size; i < size_; ++i) { |
| 412 | small_data_[i].~T(); |
| 413 | } |
| 414 | |
| 415 | // If |new_size| > |size_|, the copy construct the new elements. |
| 416 | for (size_t i = size_; i < new_size; ++i) { |
| 417 | new (small_data_ + i) T(v); |
| 418 | } |
| 419 | |
| 420 | // Update the size. |
| 421 | size_ = new_size; |
| 422 | } |
| 423 | |
| 424 | private: |
| 425 | // Moves all of the element from |small_data_| into a new std::vector that can |
| 426 | // be access through |large_data|. |
| 427 | void MoveToLargeData() { |
| 428 | assert(!large_data_); |
| 429 | large_data_ = MakeUnique<std::vector<T>>(); |
| 430 | for (size_t i = 0; i < size_; ++i) { |
| 431 | large_data_->emplace_back(std::move(small_data_[i])); |
| 432 | } |
| 433 | DestructSmallData(); |
| 434 | } |
| 435 | |
| 436 | // Destroys all of the elements in |small_data_| that have been constructed. |
| 437 | void DestructSmallData() { |
| 438 | for (size_t i = 0; i < size_; ++i) { |
| 439 | small_data_[i].~T(); |
| 440 | } |
| 441 | size_ = 0; |
| 442 | } |
| 443 | |
| 444 | // The number of elements in |small_data_| that have been constructed. |
| 445 | size_t size_; |
| 446 | |
| 447 | // The pointed used to access the array of elements when the number of |
| 448 | // elements is small. |
| 449 | T* small_data_; |
| 450 | |
| 451 | // The actual data used to store the array elements. It must never be used |
| 452 | // directly, but must only be accesed through |small_data_|. |
| 453 | typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type |
| 454 | buffer[small_size]; |
| 455 | |
| 456 | // A pointer to a vector that is used to store the elements of the vector when |
| 457 | // this size exceeds |small_size|. If |large_data_| is nullptr, then the data |
| 458 | // is stored in |small_data_|. Otherwise, the data is stored in |
| 459 | // |large_data_|. |
| 460 | std::unique_ptr<std::vector<T>> large_data_; |
| 461 | }; // namespace utils |
| 462 | |
| 463 | } // namespace utils |
| 464 | } // namespace spvtools |
| 465 | |
| 466 | #endif // SOURCE_UTIL_SMALL_VECTOR_H_ |
| 467 | |