1 | // Copyright (c) 2018 Google LLC |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #ifndef SOURCE_UTIL_SMALL_VECTOR_H_ |
16 | #define SOURCE_UTIL_SMALL_VECTOR_H_ |
17 | |
18 | #include <cassert> |
19 | #include <iostream> |
20 | #include <memory> |
21 | #include <utility> |
22 | #include <vector> |
23 | |
24 | #include "source/util/make_unique.h" |
25 | |
26 | namespace spvtools { |
27 | namespace utils { |
28 | |
29 | // The |SmallVector| class is intended to be a drop-in replacement for |
30 | // |std::vector|. The difference is in the implementation. A |SmallVector| is |
31 | // optimized for when the number of elements in the vector are small. Small is |
32 | // defined by the template parameter |small_size|. |
33 | // |
34 | // Note that |SmallVector| is not always faster than an |std::vector|, so you |
35 | // should experiment with different values for |small_size| and compare to |
36 | // using and |std::vector|. |
37 | // |
38 | // TODO: I have implemented the public member functions from |std::vector| that |
39 | // I needed. If others are needed they should be implemented. Do not implement |
40 | // public member functions that are not defined by std::vector. |
41 | template <class T, size_t small_size> |
42 | class SmallVector { |
43 | public: |
44 | using iterator = T*; |
45 | using const_iterator = const T*; |
46 | |
47 | SmallVector() |
48 | : size_(0), |
49 | small_data_(reinterpret_cast<T*>(buffer)), |
50 | large_data_(nullptr) {} |
51 | |
52 | SmallVector(const SmallVector& that) : SmallVector() { *this = that; } |
53 | |
54 | SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); } |
55 | |
56 | SmallVector(const std::vector<T>& vec) : SmallVector() { |
57 | if (vec.size() > small_size) { |
58 | large_data_ = MakeUnique<std::vector<T>>(vec); |
59 | } else { |
60 | size_ = vec.size(); |
61 | for (uint32_t i = 0; i < size_; i++) { |
62 | new (small_data_ + i) T(vec[i]); |
63 | } |
64 | } |
65 | } |
66 | |
67 | SmallVector(std::vector<T>&& vec) : SmallVector() { |
68 | if (vec.size() > small_size) { |
69 | large_data_ = MakeUnique<std::vector<T>>(std::move(vec)); |
70 | } else { |
71 | size_ = vec.size(); |
72 | for (uint32_t i = 0; i < size_; i++) { |
73 | new (small_data_ + i) T(std::move(vec[i])); |
74 | } |
75 | } |
76 | vec.clear(); |
77 | } |
78 | |
79 | SmallVector(std::initializer_list<T> init_list) : SmallVector() { |
80 | if (init_list.size() < small_size) { |
81 | for (auto it = init_list.begin(); it != init_list.end(); ++it) { |
82 | new (small_data_ + (size_++)) T(std::move(*it)); |
83 | } |
84 | } else { |
85 | large_data_ = MakeUnique<std::vector<T>>(std::move(init_list)); |
86 | } |
87 | } |
88 | |
89 | SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); } |
90 | |
91 | virtual ~SmallVector() { |
92 | for (T* p = small_data_; p < small_data_ + size_; ++p) { |
93 | p->~T(); |
94 | } |
95 | } |
96 | |
97 | SmallVector& operator=(const SmallVector& that) { |
98 | assert(small_data_); |
99 | if (that.large_data_) { |
100 | if (large_data_) { |
101 | *large_data_ = *that.large_data_; |
102 | } else { |
103 | large_data_ = MakeUnique<std::vector<T>>(*that.large_data_); |
104 | } |
105 | } else { |
106 | large_data_.reset(nullptr); |
107 | size_t i = 0; |
108 | // Do a copy for any element in |this| that is already constructed. |
109 | for (; i < size_ && i < that.size_; ++i) { |
110 | small_data_[i] = that.small_data_[i]; |
111 | } |
112 | |
113 | if (i >= that.size_) { |
114 | // If the size of |this| becomes smaller after the assignment, then |
115 | // destroy any extra elements. |
116 | for (; i < size_; ++i) { |
117 | small_data_[i].~T(); |
118 | } |
119 | } else { |
120 | // If the size of |this| becomes larger after the assignement, copy |
121 | // construct the new elements that are needed. |
122 | for (; i < that.size_; ++i) { |
123 | new (small_data_ + i) T(that.small_data_[i]); |
124 | } |
125 | } |
126 | size_ = that.size_; |
127 | } |
128 | return *this; |
129 | } |
130 | |
131 | SmallVector& operator=(SmallVector&& that) { |
132 | if (that.large_data_) { |
133 | large_data_.reset(that.large_data_.release()); |
134 | } else { |
135 | large_data_.reset(nullptr); |
136 | size_t i = 0; |
137 | // Do a move for any element in |this| that is already constructed. |
138 | for (; i < size_ && i < that.size_; ++i) { |
139 | small_data_[i] = std::move(that.small_data_[i]); |
140 | } |
141 | |
142 | if (i >= that.size_) { |
143 | // If the size of |this| becomes smaller after the assignment, then |
144 | // destroy any extra elements. |
145 | for (; i < size_; ++i) { |
146 | small_data_[i].~T(); |
147 | } |
148 | } else { |
149 | // If the size of |this| becomes larger after the assignement, move |
150 | // construct the new elements that are needed. |
151 | for (; i < that.size_; ++i) { |
152 | new (small_data_ + i) T(std::move(that.small_data_[i])); |
153 | } |
154 | } |
155 | size_ = that.size_; |
156 | } |
157 | |
158 | // Reset |that| because all of the data has been moved to |this|. |
159 | that.DestructSmallData(); |
160 | return *this; |
161 | } |
162 | |
163 | template <class OtherVector> |
164 | friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) { |
165 | if (lhs.size() != rhs.size()) { |
166 | return false; |
167 | } |
168 | |
169 | auto rit = rhs.begin(); |
170 | for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) { |
171 | if (*lit != *rit) { |
172 | return false; |
173 | } |
174 | } |
175 | return true; |
176 | } |
177 | |
178 | friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) { |
179 | return rhs == lhs; |
180 | } |
181 | |
182 | friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) { |
183 | return !(lhs == rhs); |
184 | } |
185 | |
186 | friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) { |
187 | return rhs != lhs; |
188 | } |
189 | |
190 | T& operator[](size_t i) { |
191 | if (!large_data_) { |
192 | return small_data_[i]; |
193 | } else { |
194 | return (*large_data_)[i]; |
195 | } |
196 | } |
197 | |
198 | const T& operator[](size_t i) const { |
199 | if (!large_data_) { |
200 | return small_data_[i]; |
201 | } else { |
202 | return (*large_data_)[i]; |
203 | } |
204 | } |
205 | |
206 | size_t size() const { |
207 | if (!large_data_) { |
208 | return size_; |
209 | } else { |
210 | return large_data_->size(); |
211 | } |
212 | } |
213 | |
214 | iterator begin() { |
215 | if (large_data_) { |
216 | return large_data_->data(); |
217 | } else { |
218 | return small_data_; |
219 | } |
220 | } |
221 | |
222 | const_iterator begin() const { |
223 | if (large_data_) { |
224 | return large_data_->data(); |
225 | } else { |
226 | return small_data_; |
227 | } |
228 | } |
229 | |
230 | const_iterator cbegin() const { return begin(); } |
231 | |
232 | iterator end() { |
233 | if (large_data_) { |
234 | return large_data_->data() + large_data_->size(); |
235 | } else { |
236 | return small_data_ + size_; |
237 | } |
238 | } |
239 | |
240 | const_iterator end() const { |
241 | if (large_data_) { |
242 | return large_data_->data() + large_data_->size(); |
243 | } else { |
244 | return small_data_ + size_; |
245 | } |
246 | } |
247 | |
248 | const_iterator cend() const { return end(); } |
249 | |
250 | T* data() { return begin(); } |
251 | |
252 | const T* data() const { return cbegin(); } |
253 | |
254 | T& front() { return (*this)[0]; } |
255 | |
256 | const T& front() const { return (*this)[0]; } |
257 | |
258 | iterator erase(const_iterator pos) { return erase(pos, pos + 1); } |
259 | |
260 | iterator erase(const_iterator first, const_iterator last) { |
261 | if (large_data_) { |
262 | size_t start_index = first - large_data_->data(); |
263 | size_t end_index = last - large_data_->data(); |
264 | auto r = large_data_->erase(large_data_->begin() + start_index, |
265 | large_data_->begin() + end_index); |
266 | return large_data_->data() + (r - large_data_->begin()); |
267 | } |
268 | |
269 | // Since C++11, std::vector has |const_iterator| for the parameters, so I |
270 | // follow that. However, I need iterators to modify the current container, |
271 | // which is not const. This is why I cast away the const. |
272 | iterator f = const_cast<iterator>(first); |
273 | iterator l = const_cast<iterator>(last); |
274 | iterator e = end(); |
275 | |
276 | size_t num_of_del_elements = last - first; |
277 | iterator ret = f; |
278 | if (first == last) { |
279 | return ret; |
280 | } |
281 | |
282 | // Move |last| and any elements after it their earlier position. |
283 | while (l != e) { |
284 | *f = std::move(*l); |
285 | ++f; |
286 | ++l; |
287 | } |
288 | |
289 | // Destroy the elements that were supposed to be deleted. |
290 | while (f != l) { |
291 | f->~T(); |
292 | ++f; |
293 | } |
294 | |
295 | // Update the size. |
296 | size_ -= num_of_del_elements; |
297 | return ret; |
298 | } |
299 | |
300 | void push_back(const T& value) { |
301 | if (!large_data_ && size_ == small_size) { |
302 | MoveToLargeData(); |
303 | } |
304 | |
305 | if (large_data_) { |
306 | large_data_->push_back(value); |
307 | return; |
308 | } |
309 | |
310 | new (small_data_ + size_) T(value); |
311 | ++size_; |
312 | } |
313 | |
314 | void push_back(T&& value) { |
315 | if (!large_data_ && size_ == small_size) { |
316 | MoveToLargeData(); |
317 | } |
318 | |
319 | if (large_data_) { |
320 | large_data_->push_back(std::move(value)); |
321 | return; |
322 | } |
323 | |
324 | new (small_data_ + size_) T(std::move(value)); |
325 | ++size_; |
326 | } |
327 | |
328 | template <class InputIt> |
329 | iterator insert(iterator pos, InputIt first, InputIt last) { |
330 | size_t element_idx = (pos - begin()); |
331 | size_t num_of_new_elements = std::distance(first, last); |
332 | size_t new_size = size_ + num_of_new_elements; |
333 | if (!large_data_ && new_size > small_size) { |
334 | MoveToLargeData(); |
335 | } |
336 | |
337 | if (large_data_) { |
338 | typename std::vector<T>::iterator new_pos = |
339 | large_data_->begin() + element_idx; |
340 | large_data_->insert(new_pos, first, last); |
341 | return begin() + element_idx; |
342 | } |
343 | |
344 | // Move |pos| and all of the elements after it over |num_of_new_elements| |
345 | // places. We start at the end and work backwards, to make sure we do not |
346 | // overwrite data that we have not moved yet. |
347 | for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos; |
348 | --i, --j) { |
349 | if (i >= begin() + size_) { |
350 | new (i) T(std::move(*j)); |
351 | } else { |
352 | *i = std::move(*j); |
353 | } |
354 | } |
355 | |
356 | // Copy the new elements into position. |
357 | iterator p = pos; |
358 | for (; first != last; ++p, ++first) { |
359 | if (p >= small_data_ + size_) { |
360 | new (p) T(*first); |
361 | } else { |
362 | *p = *first; |
363 | } |
364 | } |
365 | |
366 | // Upate the size. |
367 | size_ += num_of_new_elements; |
368 | return pos; |
369 | } |
370 | |
371 | bool empty() const { |
372 | if (large_data_) { |
373 | return large_data_->empty(); |
374 | } |
375 | return size_ == 0; |
376 | } |
377 | |
378 | void clear() { |
379 | if (large_data_) { |
380 | large_data_->clear(); |
381 | } else { |
382 | DestructSmallData(); |
383 | } |
384 | } |
385 | |
386 | template <class... Args> |
387 | void emplace_back(Args&&... args) { |
388 | if (!large_data_ && size_ == small_size) { |
389 | MoveToLargeData(); |
390 | } |
391 | |
392 | if (large_data_) { |
393 | large_data_->emplace_back(std::forward<Args>(args)...); |
394 | } else { |
395 | new (small_data_ + size_) T(std::forward<Args>(args)...); |
396 | ++size_; |
397 | } |
398 | } |
399 | |
400 | void resize(size_t new_size, const T& v) { |
401 | if (!large_data_ && new_size > small_size) { |
402 | MoveToLargeData(); |
403 | } |
404 | |
405 | if (large_data_) { |
406 | large_data_->resize(new_size, v); |
407 | return; |
408 | } |
409 | |
410 | // If |new_size| < |size_|, then destroy the extra elements. |
411 | for (size_t i = new_size; i < size_; ++i) { |
412 | small_data_[i].~T(); |
413 | } |
414 | |
415 | // If |new_size| > |size_|, the copy construct the new elements. |
416 | for (size_t i = size_; i < new_size; ++i) { |
417 | new (small_data_ + i) T(v); |
418 | } |
419 | |
420 | // Update the size. |
421 | size_ = new_size; |
422 | } |
423 | |
424 | private: |
425 | // Moves all of the element from |small_data_| into a new std::vector that can |
426 | // be access through |large_data|. |
427 | void MoveToLargeData() { |
428 | assert(!large_data_); |
429 | large_data_ = MakeUnique<std::vector<T>>(); |
430 | for (size_t i = 0; i < size_; ++i) { |
431 | large_data_->emplace_back(std::move(small_data_[i])); |
432 | } |
433 | DestructSmallData(); |
434 | } |
435 | |
436 | // Destroys all of the elements in |small_data_| that have been constructed. |
437 | void DestructSmallData() { |
438 | for (size_t i = 0; i < size_; ++i) { |
439 | small_data_[i].~T(); |
440 | } |
441 | size_ = 0; |
442 | } |
443 | |
444 | // The number of elements in |small_data_| that have been constructed. |
445 | size_t size_; |
446 | |
447 | // The pointed used to access the array of elements when the number of |
448 | // elements is small. |
449 | T* small_data_; |
450 | |
451 | // The actual data used to store the array elements. It must never be used |
452 | // directly, but must only be accesed through |small_data_|. |
453 | typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type |
454 | buffer[small_size]; |
455 | |
456 | // A pointer to a vector that is used to store the elements of the vector when |
457 | // this size exceeds |small_size|. If |large_data_| is nullptr, then the data |
458 | // is stored in |small_data_|. Otherwise, the data is stored in |
459 | // |large_data_|. |
460 | std::unique_ptr<std::vector<T>> large_data_; |
461 | }; // namespace utils |
462 | |
463 | } // namespace utils |
464 | } // namespace spvtools |
465 | |
466 | #endif // SOURCE_UTIL_SMALL_VECTOR_H_ |
467 | |