1 | /* trees.c -- output deflated data using Huffman coding |
2 | * Copyright (C) 1995-2017 Jean-loup Gailly |
3 | * detect_data_type() function provided freely by Cosmin Truta, 2006 |
4 | * For conditions of distribution and use, see copyright notice in zlib.h |
5 | */ |
6 | |
7 | /* |
8 | * ALGORITHM |
9 | * |
10 | * The "deflation" process uses several Huffman trees. The more |
11 | * common source values are represented by shorter bit sequences. |
12 | * |
13 | * Each code tree is stored in a compressed form which is itself |
14 | * a Huffman encoding of the lengths of all the code strings (in |
15 | * ascending order by source values). The actual code strings are |
16 | * reconstructed from the lengths in the inflate process, as described |
17 | * in the deflate specification. |
18 | * |
19 | * REFERENCES |
20 | * |
21 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
22 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
23 | * |
24 | * Storer, James A. |
25 | * Data Compression: Methods and Theory, pp. 49-50. |
26 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
27 | * |
28 | * Sedgewick, R. |
29 | * Algorithms, p290. |
30 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
31 | */ |
32 | |
33 | /* @(#) $Id$ */ |
34 | |
35 | /* #define GEN_TREES_H */ |
36 | |
37 | #include "deflate.h" |
38 | |
39 | #ifdef ZLIB_DEBUG |
40 | # include <ctype.h> |
41 | #endif |
42 | |
43 | /* =========================================================================== |
44 | * Constants |
45 | */ |
46 | |
47 | #define MAX_BL_BITS 7 |
48 | /* Bit length codes must not exceed MAX_BL_BITS bits */ |
49 | |
50 | #define END_BLOCK 256 |
51 | /* end of block literal code */ |
52 | |
53 | #define REP_3_6 16 |
54 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
55 | |
56 | #define REPZ_3_10 17 |
57 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
58 | |
59 | #define REPZ_11_138 18 |
60 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
61 | |
62 | local const int [LENGTH_CODES] /* extra bits for each length code */ |
63 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
64 | |
65 | local const int [D_CODES] /* extra bits for each distance code */ |
66 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
67 | |
68 | local const int [BL_CODES]/* extra bits for each bit length code */ |
69 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
70 | |
71 | local const uch bl_order[BL_CODES] |
72 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
73 | /* The lengths of the bit length codes are sent in order of decreasing |
74 | * probability, to avoid transmitting the lengths for unused bit length codes. |
75 | */ |
76 | |
77 | /* =========================================================================== |
78 | * Local data. These are initialized only once. |
79 | */ |
80 | |
81 | #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
82 | |
83 | #if defined(GEN_TREES_H) || !defined(STDC) |
84 | /* non ANSI compilers may not accept trees.h */ |
85 | |
86 | local ct_data static_ltree[L_CODES+2]; |
87 | /* The static literal tree. Since the bit lengths are imposed, there is no |
88 | * need for the L_CODES extra codes used during heap construction. However |
89 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
90 | * below). |
91 | */ |
92 | |
93 | local ct_data static_dtree[D_CODES]; |
94 | /* The static distance tree. (Actually a trivial tree since all codes use |
95 | * 5 bits.) |
96 | */ |
97 | |
98 | uch _dist_code[DIST_CODE_LEN]; |
99 | /* Distance codes. The first 256 values correspond to the distances |
100 | * 3 .. 258, the last 256 values correspond to the top 8 bits of |
101 | * the 15 bit distances. |
102 | */ |
103 | |
104 | uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
105 | /* length code for each normalized match length (0 == MIN_MATCH) */ |
106 | |
107 | local int base_length[LENGTH_CODES]; |
108 | /* First normalized length for each code (0 = MIN_MATCH) */ |
109 | |
110 | local int base_dist[D_CODES]; |
111 | /* First normalized distance for each code (0 = distance of 1) */ |
112 | |
113 | #else |
114 | # include "trees.h" |
115 | #endif /* GEN_TREES_H */ |
116 | |
117 | struct static_tree_desc_s { |
118 | const ct_data *static_tree; /* static tree or NULL */ |
119 | const intf *; /* extra bits for each code or NULL */ |
120 | int ; /* base index for extra_bits */ |
121 | int elems; /* max number of elements in the tree */ |
122 | int max_length; /* max bit length for the codes */ |
123 | }; |
124 | |
125 | local const static_tree_desc static_l_desc = |
126 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
127 | |
128 | local const static_tree_desc static_d_desc = |
129 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
130 | |
131 | local const static_tree_desc static_bl_desc = |
132 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
133 | |
134 | /* =========================================================================== |
135 | * Local (static) routines in this file. |
136 | */ |
137 | |
138 | local void tr_static_init OF((void)); |
139 | local void init_block OF((deflate_state *s)); |
140 | local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
141 | local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
142 | local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
143 | local void build_tree OF((deflate_state *s, tree_desc *desc)); |
144 | local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
145 | local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
146 | local int build_bl_tree OF((deflate_state *s)); |
147 | local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
148 | int blcodes)); |
149 | local void compress_block OF((deflate_state *s, const ct_data *ltree, |
150 | const ct_data *dtree)); |
151 | local int detect_data_type OF((deflate_state *s)); |
152 | local unsigned bi_reverse OF((unsigned value, int length)); |
153 | local void bi_windup OF((deflate_state *s)); |
154 | local void bi_flush OF((deflate_state *s)); |
155 | |
156 | #ifdef GEN_TREES_H |
157 | local void gen_trees_header OF((void)); |
158 | #endif |
159 | |
160 | #ifndef ZLIB_DEBUG |
161 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
162 | /* Send a code of the given tree. c and tree must not have side effects */ |
163 | |
164 | #else /* !ZLIB_DEBUG */ |
165 | # define send_code(s, c, tree) \ |
166 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
167 | send_bits(s, tree[c].Code, tree[c].Len); } |
168 | #endif |
169 | |
170 | /* =========================================================================== |
171 | * Output a short LSB first on the stream. |
172 | * IN assertion: there is enough room in pendingBuf. |
173 | */ |
174 | #define put_short(s, w) { \ |
175 | put_byte(s, (uch)((w) & 0xff)); \ |
176 | put_byte(s, (uch)((ush)(w) >> 8)); \ |
177 | } |
178 | |
179 | /* =========================================================================== |
180 | * Send a value on a given number of bits. |
181 | * IN assertion: length <= 16 and value fits in length bits. |
182 | */ |
183 | #ifdef ZLIB_DEBUG |
184 | local void send_bits OF((deflate_state *s, int value, int length)); |
185 | |
186 | local void send_bits(s, value, length) |
187 | deflate_state *s; |
188 | int value; /* value to send */ |
189 | int length; /* number of bits */ |
190 | { |
191 | Tracevv((stderr," l %2d v %4x " , length, value)); |
192 | Assert(length > 0 && length <= 15, "invalid length" ); |
193 | s->bits_sent += (ulg)length; |
194 | |
195 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
196 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
197 | * unused bits in value. |
198 | */ |
199 | if (s->bi_valid > (int)Buf_size - length) { |
200 | s->bi_buf |= (ush)value << s->bi_valid; |
201 | put_short(s, s->bi_buf); |
202 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
203 | s->bi_valid += length - Buf_size; |
204 | } else { |
205 | s->bi_buf |= (ush)value << s->bi_valid; |
206 | s->bi_valid += length; |
207 | } |
208 | } |
209 | #else /* !ZLIB_DEBUG */ |
210 | |
211 | #define send_bits(s, value, length) \ |
212 | { int len = length;\ |
213 | if (s->bi_valid > (int)Buf_size - len) {\ |
214 | int val = (int)value;\ |
215 | s->bi_buf |= (ush)val << s->bi_valid;\ |
216 | put_short(s, s->bi_buf);\ |
217 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
218 | s->bi_valid += len - Buf_size;\ |
219 | } else {\ |
220 | s->bi_buf |= (ush)(value) << s->bi_valid;\ |
221 | s->bi_valid += len;\ |
222 | }\ |
223 | } |
224 | #endif /* ZLIB_DEBUG */ |
225 | |
226 | |
227 | /* the arguments must not have side effects */ |
228 | |
229 | /* =========================================================================== |
230 | * Initialize the various 'constant' tables. |
231 | */ |
232 | local void tr_static_init() |
233 | { |
234 | #if defined(GEN_TREES_H) || !defined(STDC) |
235 | static int static_init_done = 0; |
236 | int n; /* iterates over tree elements */ |
237 | int bits; /* bit counter */ |
238 | int length; /* length value */ |
239 | int code; /* code value */ |
240 | int dist; /* distance index */ |
241 | ush bl_count[MAX_BITS+1]; |
242 | /* number of codes at each bit length for an optimal tree */ |
243 | |
244 | if (static_init_done) return; |
245 | |
246 | /* For some embedded targets, global variables are not initialized: */ |
247 | #ifdef NO_INIT_GLOBAL_POINTERS |
248 | static_l_desc.static_tree = static_ltree; |
249 | static_l_desc.extra_bits = extra_lbits; |
250 | static_d_desc.static_tree = static_dtree; |
251 | static_d_desc.extra_bits = extra_dbits; |
252 | static_bl_desc.extra_bits = extra_blbits; |
253 | #endif |
254 | |
255 | /* Initialize the mapping length (0..255) -> length code (0..28) */ |
256 | length = 0; |
257 | for (code = 0; code < LENGTH_CODES-1; code++) { |
258 | base_length[code] = length; |
259 | for (n = 0; n < (1<<extra_lbits[code]); n++) { |
260 | _length_code[length++] = (uch)code; |
261 | } |
262 | } |
263 | Assert (length == 256, "tr_static_init: length != 256" ); |
264 | /* Note that the length 255 (match length 258) can be represented |
265 | * in two different ways: code 284 + 5 bits or code 285, so we |
266 | * overwrite length_code[255] to use the best encoding: |
267 | */ |
268 | _length_code[length-1] = (uch)code; |
269 | |
270 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
271 | dist = 0; |
272 | for (code = 0 ; code < 16; code++) { |
273 | base_dist[code] = dist; |
274 | for (n = 0; n < (1<<extra_dbits[code]); n++) { |
275 | _dist_code[dist++] = (uch)code; |
276 | } |
277 | } |
278 | Assert (dist == 256, "tr_static_init: dist != 256" ); |
279 | dist >>= 7; /* from now on, all distances are divided by 128 */ |
280 | for ( ; code < D_CODES; code++) { |
281 | base_dist[code] = dist << 7; |
282 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
283 | _dist_code[256 + dist++] = (uch)code; |
284 | } |
285 | } |
286 | Assert (dist == 256, "tr_static_init: 256+dist != 512" ); |
287 | |
288 | /* Construct the codes of the static literal tree */ |
289 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
290 | n = 0; |
291 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
292 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
293 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
294 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
295 | /* Codes 286 and 287 do not exist, but we must include them in the |
296 | * tree construction to get a canonical Huffman tree (longest code |
297 | * all ones) |
298 | */ |
299 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
300 | |
301 | /* The static distance tree is trivial: */ |
302 | for (n = 0; n < D_CODES; n++) { |
303 | static_dtree[n].Len = 5; |
304 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
305 | } |
306 | static_init_done = 1; |
307 | |
308 | # ifdef GEN_TREES_H |
309 | gen_trees_header(); |
310 | # endif |
311 | #endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
312 | } |
313 | |
314 | /* =========================================================================== |
315 | * Genererate the file trees.h describing the static trees. |
316 | */ |
317 | #ifdef GEN_TREES_H |
318 | # ifndef ZLIB_DEBUG |
319 | # include <stdio.h> |
320 | # endif |
321 | |
322 | # define SEPARATOR(i, last, width) \ |
323 | ((i) == (last)? "\n};\n\n" : \ |
324 | ((i) % (width) == (width)-1 ? ",\n" : ", ")) |
325 | |
326 | void gen_trees_header() |
327 | { |
328 | FILE *header = fopen("trees.h" , "w" ); |
329 | int i; |
330 | |
331 | Assert (header != NULL, "Can't open trees.h" ); |
332 | fprintf(header, |
333 | "/* header created automatically with -DGEN_TREES_H */\n\n" ); |
334 | |
335 | fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n" ); |
336 | for (i = 0; i < L_CODES+2; i++) { |
337 | fprintf(header, "{{%3u},{%3u}}%s" , static_ltree[i].Code, |
338 | static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
339 | } |
340 | |
341 | fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n" ); |
342 | for (i = 0; i < D_CODES; i++) { |
343 | fprintf(header, "{{%2u},{%2u}}%s" , static_dtree[i].Code, |
344 | static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
345 | } |
346 | |
347 | fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n" ); |
348 | for (i = 0; i < DIST_CODE_LEN; i++) { |
349 | fprintf(header, "%2u%s" , _dist_code[i], |
350 | SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
351 | } |
352 | |
353 | fprintf(header, |
354 | "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n" ); |
355 | for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
356 | fprintf(header, "%2u%s" , _length_code[i], |
357 | SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
358 | } |
359 | |
360 | fprintf(header, "local const int base_length[LENGTH_CODES] = {\n" ); |
361 | for (i = 0; i < LENGTH_CODES; i++) { |
362 | fprintf(header, "%1u%s" , base_length[i], |
363 | SEPARATOR(i, LENGTH_CODES-1, 20)); |
364 | } |
365 | |
366 | fprintf(header, "local const int base_dist[D_CODES] = {\n" ); |
367 | for (i = 0; i < D_CODES; i++) { |
368 | fprintf(header, "%5u%s" , base_dist[i], |
369 | SEPARATOR(i, D_CODES-1, 10)); |
370 | } |
371 | |
372 | fclose(header); |
373 | } |
374 | #endif /* GEN_TREES_H */ |
375 | |
376 | /* =========================================================================== |
377 | * Initialize the tree data structures for a new zlib stream. |
378 | */ |
379 | void ZLIB_INTERNAL _tr_init(s) |
380 | deflate_state *s; |
381 | { |
382 | tr_static_init(); |
383 | |
384 | s->l_desc.dyn_tree = s->dyn_ltree; |
385 | s->l_desc.stat_desc = &static_l_desc; |
386 | |
387 | s->d_desc.dyn_tree = s->dyn_dtree; |
388 | s->d_desc.stat_desc = &static_d_desc; |
389 | |
390 | s->bl_desc.dyn_tree = s->bl_tree; |
391 | s->bl_desc.stat_desc = &static_bl_desc; |
392 | |
393 | s->bi_buf = 0; |
394 | s->bi_valid = 0; |
395 | #ifdef ZLIB_DEBUG |
396 | s->compressed_len = 0L; |
397 | s->bits_sent = 0L; |
398 | #endif |
399 | |
400 | /* Initialize the first block of the first file: */ |
401 | init_block(s); |
402 | } |
403 | |
404 | /* =========================================================================== |
405 | * Initialize a new block. |
406 | */ |
407 | local void init_block(s) |
408 | deflate_state *s; |
409 | { |
410 | int n; /* iterates over tree elements */ |
411 | |
412 | /* Initialize the trees. */ |
413 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
414 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
415 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
416 | |
417 | s->dyn_ltree[END_BLOCK].Freq = 1; |
418 | s->opt_len = s->static_len = 0L; |
419 | s->sym_next = s->matches = 0; |
420 | } |
421 | |
422 | #define SMALLEST 1 |
423 | /* Index within the heap array of least frequent node in the Huffman tree */ |
424 | |
425 | |
426 | /* =========================================================================== |
427 | * Remove the smallest element from the heap and recreate the heap with |
428 | * one less element. Updates heap and heap_len. |
429 | */ |
430 | #define pqremove(s, tree, top) \ |
431 | {\ |
432 | top = s->heap[SMALLEST]; \ |
433 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
434 | pqdownheap(s, tree, SMALLEST); \ |
435 | } |
436 | |
437 | /* =========================================================================== |
438 | * Compares to subtrees, using the tree depth as tie breaker when |
439 | * the subtrees have equal frequency. This minimizes the worst case length. |
440 | */ |
441 | #define smaller(tree, n, m, depth) \ |
442 | (tree[n].Freq < tree[m].Freq || \ |
443 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
444 | |
445 | /* =========================================================================== |
446 | * Restore the heap property by moving down the tree starting at node k, |
447 | * exchanging a node with the smallest of its two sons if necessary, stopping |
448 | * when the heap property is re-established (each father smaller than its |
449 | * two sons). |
450 | */ |
451 | local void pqdownheap(s, tree, k) |
452 | deflate_state *s; |
453 | ct_data *tree; /* the tree to restore */ |
454 | int k; /* node to move down */ |
455 | { |
456 | int v = s->heap[k]; |
457 | int j = k << 1; /* left son of k */ |
458 | while (j <= s->heap_len) { |
459 | /* Set j to the smallest of the two sons: */ |
460 | if (j < s->heap_len && |
461 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
462 | j++; |
463 | } |
464 | /* Exit if v is smaller than both sons */ |
465 | if (smaller(tree, v, s->heap[j], s->depth)) break; |
466 | |
467 | /* Exchange v with the smallest son */ |
468 | s->heap[k] = s->heap[j]; k = j; |
469 | |
470 | /* And continue down the tree, setting j to the left son of k */ |
471 | j <<= 1; |
472 | } |
473 | s->heap[k] = v; |
474 | } |
475 | |
476 | /* =========================================================================== |
477 | * Compute the optimal bit lengths for a tree and update the total bit length |
478 | * for the current block. |
479 | * IN assertion: the fields freq and dad are set, heap[heap_max] and |
480 | * above are the tree nodes sorted by increasing frequency. |
481 | * OUT assertions: the field len is set to the optimal bit length, the |
482 | * array bl_count contains the frequencies for each bit length. |
483 | * The length opt_len is updated; static_len is also updated if stree is |
484 | * not null. |
485 | */ |
486 | local void gen_bitlen(s, desc) |
487 | deflate_state *s; |
488 | tree_desc *desc; /* the tree descriptor */ |
489 | { |
490 | ct_data *tree = desc->dyn_tree; |
491 | int max_code = desc->max_code; |
492 | const ct_data *stree = desc->stat_desc->static_tree; |
493 | const intf * = desc->stat_desc->extra_bits; |
494 | int base = desc->stat_desc->extra_base; |
495 | int max_length = desc->stat_desc->max_length; |
496 | int h; /* heap index */ |
497 | int n, m; /* iterate over the tree elements */ |
498 | int bits; /* bit length */ |
499 | int xbits; /* extra bits */ |
500 | ush f; /* frequency */ |
501 | int overflow = 0; /* number of elements with bit length too large */ |
502 | |
503 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
504 | |
505 | /* In a first pass, compute the optimal bit lengths (which may |
506 | * overflow in the case of the bit length tree). |
507 | */ |
508 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
509 | |
510 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
511 | n = s->heap[h]; |
512 | bits = tree[tree[n].Dad].Len + 1; |
513 | if (bits > max_length) bits = max_length, overflow++; |
514 | tree[n].Len = (ush)bits; |
515 | /* We overwrite tree[n].Dad which is no longer needed */ |
516 | |
517 | if (n > max_code) continue; /* not a leaf node */ |
518 | |
519 | s->bl_count[bits]++; |
520 | xbits = 0; |
521 | if (n >= base) xbits = extra[n-base]; |
522 | f = tree[n].Freq; |
523 | s->opt_len += (ulg)f * (unsigned)(bits + xbits); |
524 | if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); |
525 | } |
526 | if (overflow == 0) return; |
527 | |
528 | Tracev((stderr,"\nbit length overflow\n" )); |
529 | /* This happens for example on obj2 and pic of the Calgary corpus */ |
530 | |
531 | /* Find the first bit length which could increase: */ |
532 | do { |
533 | bits = max_length-1; |
534 | while (s->bl_count[bits] == 0) bits--; |
535 | s->bl_count[bits]--; /* move one leaf down the tree */ |
536 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
537 | s->bl_count[max_length]--; |
538 | /* The brother of the overflow item also moves one step up, |
539 | * but this does not affect bl_count[max_length] |
540 | */ |
541 | overflow -= 2; |
542 | } while (overflow > 0); |
543 | |
544 | /* Now recompute all bit lengths, scanning in increasing frequency. |
545 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
546 | * lengths instead of fixing only the wrong ones. This idea is taken |
547 | * from 'ar' written by Haruhiko Okumura.) |
548 | */ |
549 | for (bits = max_length; bits != 0; bits--) { |
550 | n = s->bl_count[bits]; |
551 | while (n != 0) { |
552 | m = s->heap[--h]; |
553 | if (m > max_code) continue; |
554 | if ((unsigned) tree[m].Len != (unsigned) bits) { |
555 | Tracev((stderr,"code %d bits %d->%d\n" , m, tree[m].Len, bits)); |
556 | s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; |
557 | tree[m].Len = (ush)bits; |
558 | } |
559 | n--; |
560 | } |
561 | } |
562 | } |
563 | |
564 | /* =========================================================================== |
565 | * Generate the codes for a given tree and bit counts (which need not be |
566 | * optimal). |
567 | * IN assertion: the array bl_count contains the bit length statistics for |
568 | * the given tree and the field len is set for all tree elements. |
569 | * OUT assertion: the field code is set for all tree elements of non |
570 | * zero code length. |
571 | */ |
572 | local void gen_codes (tree, max_code, bl_count) |
573 | ct_data *tree; /* the tree to decorate */ |
574 | int max_code; /* largest code with non zero frequency */ |
575 | ushf *bl_count; /* number of codes at each bit length */ |
576 | { |
577 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
578 | unsigned code = 0; /* running code value */ |
579 | int bits; /* bit index */ |
580 | int n; /* code index */ |
581 | |
582 | /* The distribution counts are first used to generate the code values |
583 | * without bit reversal. |
584 | */ |
585 | for (bits = 1; bits <= MAX_BITS; bits++) { |
586 | code = (code + bl_count[bits-1]) << 1; |
587 | next_code[bits] = (ush)code; |
588 | } |
589 | /* Check that the bit counts in bl_count are consistent. The last code |
590 | * must be all ones. |
591 | */ |
592 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
593 | "inconsistent bit counts" ); |
594 | Tracev((stderr,"\ngen_codes: max_code %d " , max_code)); |
595 | |
596 | for (n = 0; n <= max_code; n++) { |
597 | int len = tree[n].Len; |
598 | if (len == 0) continue; |
599 | /* Now reverse the bits */ |
600 | tree[n].Code = (ush)bi_reverse(next_code[len]++, len); |
601 | |
602 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) " , |
603 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
604 | } |
605 | } |
606 | |
607 | /* =========================================================================== |
608 | * Construct one Huffman tree and assigns the code bit strings and lengths. |
609 | * Update the total bit length for the current block. |
610 | * IN assertion: the field freq is set for all tree elements. |
611 | * OUT assertions: the fields len and code are set to the optimal bit length |
612 | * and corresponding code. The length opt_len is updated; static_len is |
613 | * also updated if stree is not null. The field max_code is set. |
614 | */ |
615 | local void build_tree(s, desc) |
616 | deflate_state *s; |
617 | tree_desc *desc; /* the tree descriptor */ |
618 | { |
619 | ct_data *tree = desc->dyn_tree; |
620 | const ct_data *stree = desc->stat_desc->static_tree; |
621 | int elems = desc->stat_desc->elems; |
622 | int n, m; /* iterate over heap elements */ |
623 | int max_code = -1; /* largest code with non zero frequency */ |
624 | int node; /* new node being created */ |
625 | |
626 | /* Construct the initial heap, with least frequent element in |
627 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
628 | * heap[0] is not used. |
629 | */ |
630 | s->heap_len = 0, s->heap_max = HEAP_SIZE; |
631 | |
632 | for (n = 0; n < elems; n++) { |
633 | if (tree[n].Freq != 0) { |
634 | s->heap[++(s->heap_len)] = max_code = n; |
635 | s->depth[n] = 0; |
636 | } else { |
637 | tree[n].Len = 0; |
638 | } |
639 | } |
640 | |
641 | /* The pkzip format requires that at least one distance code exists, |
642 | * and that at least one bit should be sent even if there is only one |
643 | * possible code. So to avoid special checks later on we force at least |
644 | * two codes of non zero frequency. |
645 | */ |
646 | while (s->heap_len < 2) { |
647 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
648 | tree[node].Freq = 1; |
649 | s->depth[node] = 0; |
650 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
651 | /* node is 0 or 1 so it does not have extra bits */ |
652 | } |
653 | desc->max_code = max_code; |
654 | |
655 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
656 | * establish sub-heaps of increasing lengths: |
657 | */ |
658 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
659 | |
660 | /* Construct the Huffman tree by repeatedly combining the least two |
661 | * frequent nodes. |
662 | */ |
663 | node = elems; /* next internal node of the tree */ |
664 | do { |
665 | pqremove(s, tree, n); /* n = node of least frequency */ |
666 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
667 | |
668 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
669 | s->heap[--(s->heap_max)] = m; |
670 | |
671 | /* Create a new node father of n and m */ |
672 | tree[node].Freq = tree[n].Freq + tree[m].Freq; |
673 | s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
674 | s->depth[n] : s->depth[m]) + 1); |
675 | tree[n].Dad = tree[m].Dad = (ush)node; |
676 | #ifdef DUMP_BL_TREE |
677 | if (tree == s->bl_tree) { |
678 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)" , |
679 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
680 | } |
681 | #endif |
682 | /* and insert the new node in the heap */ |
683 | s->heap[SMALLEST] = node++; |
684 | pqdownheap(s, tree, SMALLEST); |
685 | |
686 | } while (s->heap_len >= 2); |
687 | |
688 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
689 | |
690 | /* At this point, the fields freq and dad are set. We can now |
691 | * generate the bit lengths. |
692 | */ |
693 | gen_bitlen(s, (tree_desc *)desc); |
694 | |
695 | /* The field len is now set, we can generate the bit codes */ |
696 | gen_codes ((ct_data *)tree, max_code, s->bl_count); |
697 | } |
698 | |
699 | /* =========================================================================== |
700 | * Scan a literal or distance tree to determine the frequencies of the codes |
701 | * in the bit length tree. |
702 | */ |
703 | local void scan_tree (s, tree, max_code) |
704 | deflate_state *s; |
705 | ct_data *tree; /* the tree to be scanned */ |
706 | int max_code; /* and its largest code of non zero frequency */ |
707 | { |
708 | int n; /* iterates over all tree elements */ |
709 | int prevlen = -1; /* last emitted length */ |
710 | int curlen; /* length of current code */ |
711 | int nextlen = tree[0].Len; /* length of next code */ |
712 | int count = 0; /* repeat count of the current code */ |
713 | int max_count = 7; /* max repeat count */ |
714 | int min_count = 4; /* min repeat count */ |
715 | |
716 | if (nextlen == 0) max_count = 138, min_count = 3; |
717 | tree[max_code+1].Len = (ush)0xffff; /* guard */ |
718 | |
719 | for (n = 0; n <= max_code; n++) { |
720 | curlen = nextlen; nextlen = tree[n+1].Len; |
721 | if (++count < max_count && curlen == nextlen) { |
722 | continue; |
723 | } else if (count < min_count) { |
724 | s->bl_tree[curlen].Freq += count; |
725 | } else if (curlen != 0) { |
726 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
727 | s->bl_tree[REP_3_6].Freq++; |
728 | } else if (count <= 10) { |
729 | s->bl_tree[REPZ_3_10].Freq++; |
730 | } else { |
731 | s->bl_tree[REPZ_11_138].Freq++; |
732 | } |
733 | count = 0; prevlen = curlen; |
734 | if (nextlen == 0) { |
735 | max_count = 138, min_count = 3; |
736 | } else if (curlen == nextlen) { |
737 | max_count = 6, min_count = 3; |
738 | } else { |
739 | max_count = 7, min_count = 4; |
740 | } |
741 | } |
742 | } |
743 | |
744 | /* =========================================================================== |
745 | * Send a literal or distance tree in compressed form, using the codes in |
746 | * bl_tree. |
747 | */ |
748 | local void send_tree (s, tree, max_code) |
749 | deflate_state *s; |
750 | ct_data *tree; /* the tree to be scanned */ |
751 | int max_code; /* and its largest code of non zero frequency */ |
752 | { |
753 | int n; /* iterates over all tree elements */ |
754 | int prevlen = -1; /* last emitted length */ |
755 | int curlen; /* length of current code */ |
756 | int nextlen = tree[0].Len; /* length of next code */ |
757 | int count = 0; /* repeat count of the current code */ |
758 | int max_count = 7; /* max repeat count */ |
759 | int min_count = 4; /* min repeat count */ |
760 | |
761 | /* tree[max_code+1].Len = -1; */ /* guard already set */ |
762 | if (nextlen == 0) max_count = 138, min_count = 3; |
763 | |
764 | for (n = 0; n <= max_code; n++) { |
765 | curlen = nextlen; nextlen = tree[n+1].Len; |
766 | if (++count < max_count && curlen == nextlen) { |
767 | continue; |
768 | } else if (count < min_count) { |
769 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
770 | |
771 | } else if (curlen != 0) { |
772 | if (curlen != prevlen) { |
773 | send_code(s, curlen, s->bl_tree); count--; |
774 | } |
775 | Assert(count >= 3 && count <= 6, " 3_6?" ); |
776 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
777 | |
778 | } else if (count <= 10) { |
779 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
780 | |
781 | } else { |
782 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
783 | } |
784 | count = 0; prevlen = curlen; |
785 | if (nextlen == 0) { |
786 | max_count = 138, min_count = 3; |
787 | } else if (curlen == nextlen) { |
788 | max_count = 6, min_count = 3; |
789 | } else { |
790 | max_count = 7, min_count = 4; |
791 | } |
792 | } |
793 | } |
794 | |
795 | /* =========================================================================== |
796 | * Construct the Huffman tree for the bit lengths and return the index in |
797 | * bl_order of the last bit length code to send. |
798 | */ |
799 | local int build_bl_tree(s) |
800 | deflate_state *s; |
801 | { |
802 | int max_blindex; /* index of last bit length code of non zero freq */ |
803 | |
804 | /* Determine the bit length frequencies for literal and distance trees */ |
805 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
806 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
807 | |
808 | /* Build the bit length tree: */ |
809 | build_tree(s, (tree_desc *)(&(s->bl_desc))); |
810 | /* opt_len now includes the length of the tree representations, except |
811 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
812 | */ |
813 | |
814 | /* Determine the number of bit length codes to send. The pkzip format |
815 | * requires that at least 4 bit length codes be sent. (appnote.txt says |
816 | * 3 but the actual value used is 4.) |
817 | */ |
818 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
819 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
820 | } |
821 | /* Update opt_len to include the bit length tree and counts */ |
822 | s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4; |
823 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld" , |
824 | s->opt_len, s->static_len)); |
825 | |
826 | return max_blindex; |
827 | } |
828 | |
829 | /* =========================================================================== |
830 | * Send the header for a block using dynamic Huffman trees: the counts, the |
831 | * lengths of the bit length codes, the literal tree and the distance tree. |
832 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
833 | */ |
834 | local void send_all_trees(s, lcodes, dcodes, blcodes) |
835 | deflate_state *s; |
836 | int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
837 | { |
838 | int rank; /* index in bl_order */ |
839 | |
840 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes" ); |
841 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
842 | "too many codes" ); |
843 | Tracev((stderr, "\nbl counts: " )); |
844 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
845 | send_bits(s, dcodes-1, 5); |
846 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
847 | for (rank = 0; rank < blcodes; rank++) { |
848 | Tracev((stderr, "\nbl code %2d " , bl_order[rank])); |
849 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
850 | } |
851 | Tracev((stderr, "\nbl tree: sent %ld" , s->bits_sent)); |
852 | |
853 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
854 | Tracev((stderr, "\nlit tree: sent %ld" , s->bits_sent)); |
855 | |
856 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
857 | Tracev((stderr, "\ndist tree: sent %ld" , s->bits_sent)); |
858 | } |
859 | |
860 | /* =========================================================================== |
861 | * Send a stored block |
862 | */ |
863 | void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) |
864 | deflate_state *s; |
865 | charf *buf; /* input block */ |
866 | ulg stored_len; /* length of input block */ |
867 | int last; /* one if this is the last block for a file */ |
868 | { |
869 | send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ |
870 | bi_windup(s); /* align on byte boundary */ |
871 | put_short(s, (ush)stored_len); |
872 | put_short(s, (ush)~stored_len); |
873 | zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); |
874 | s->pending += stored_len; |
875 | #ifdef ZLIB_DEBUG |
876 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
877 | s->compressed_len += (stored_len + 4) << 3; |
878 | s->bits_sent += 2*16; |
879 | s->bits_sent += stored_len<<3; |
880 | #endif |
881 | } |
882 | |
883 | /* =========================================================================== |
884 | * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
885 | */ |
886 | void ZLIB_INTERNAL _tr_flush_bits(s) |
887 | deflate_state *s; |
888 | { |
889 | bi_flush(s); |
890 | } |
891 | |
892 | /* =========================================================================== |
893 | * Send one empty static block to give enough lookahead for inflate. |
894 | * This takes 10 bits, of which 7 may remain in the bit buffer. |
895 | */ |
896 | void ZLIB_INTERNAL _tr_align(s) |
897 | deflate_state *s; |
898 | { |
899 | send_bits(s, STATIC_TREES<<1, 3); |
900 | send_code(s, END_BLOCK, static_ltree); |
901 | #ifdef ZLIB_DEBUG |
902 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
903 | #endif |
904 | bi_flush(s); |
905 | } |
906 | |
907 | /* =========================================================================== |
908 | * Determine the best encoding for the current block: dynamic trees, static |
909 | * trees or store, and write out the encoded block. |
910 | */ |
911 | void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) |
912 | deflate_state *s; |
913 | charf *buf; /* input block, or NULL if too old */ |
914 | ulg stored_len; /* length of input block */ |
915 | int last; /* one if this is the last block for a file */ |
916 | { |
917 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
918 | int max_blindex = 0; /* index of last bit length code of non zero freq */ |
919 | |
920 | /* Build the Huffman trees unless a stored block is forced */ |
921 | if (s->level > 0) { |
922 | |
923 | /* Check if the file is binary or text */ |
924 | if (s->strm->data_type == Z_UNKNOWN) |
925 | s->strm->data_type = detect_data_type(s); |
926 | |
927 | /* Construct the literal and distance trees */ |
928 | build_tree(s, (tree_desc *)(&(s->l_desc))); |
929 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld" , s->opt_len, |
930 | s->static_len)); |
931 | |
932 | build_tree(s, (tree_desc *)(&(s->d_desc))); |
933 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld" , s->opt_len, |
934 | s->static_len)); |
935 | /* At this point, opt_len and static_len are the total bit lengths of |
936 | * the compressed block data, excluding the tree representations. |
937 | */ |
938 | |
939 | /* Build the bit length tree for the above two trees, and get the index |
940 | * in bl_order of the last bit length code to send. |
941 | */ |
942 | max_blindex = build_bl_tree(s); |
943 | |
944 | /* Determine the best encoding. Compute the block lengths in bytes. */ |
945 | opt_lenb = (s->opt_len+3+7)>>3; |
946 | static_lenb = (s->static_len+3+7)>>3; |
947 | |
948 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u " , |
949 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
950 | s->sym_next / 3)); |
951 | |
952 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
953 | |
954 | } else { |
955 | Assert(buf != (char*)0, "lost buf" ); |
956 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
957 | } |
958 | |
959 | #ifdef FORCE_STORED |
960 | if (buf != (char*)0) { /* force stored block */ |
961 | #else |
962 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
963 | /* 4: two words for the lengths */ |
964 | #endif |
965 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
966 | * Otherwise we can't have processed more than WSIZE input bytes since |
967 | * the last block flush, because compression would have been |
968 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
969 | * transform a block into a stored block. |
970 | */ |
971 | _tr_stored_block(s, buf, stored_len, last); |
972 | |
973 | #ifdef FORCE_STATIC |
974 | } else if (static_lenb >= 0) { /* force static trees */ |
975 | #else |
976 | } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { |
977 | #endif |
978 | send_bits(s, (STATIC_TREES<<1)+last, 3); |
979 | compress_block(s, (const ct_data *)static_ltree, |
980 | (const ct_data *)static_dtree); |
981 | #ifdef ZLIB_DEBUG |
982 | s->compressed_len += 3 + s->static_len; |
983 | #endif |
984 | } else { |
985 | send_bits(s, (DYN_TREES<<1)+last, 3); |
986 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
987 | max_blindex+1); |
988 | compress_block(s, (const ct_data *)s->dyn_ltree, |
989 | (const ct_data *)s->dyn_dtree); |
990 | #ifdef ZLIB_DEBUG |
991 | s->compressed_len += 3 + s->opt_len; |
992 | #endif |
993 | } |
994 | Assert (s->compressed_len == s->bits_sent, "bad compressed size" ); |
995 | /* The above check is made mod 2^32, for files larger than 512 MB |
996 | * and uLong implemented on 32 bits. |
997 | */ |
998 | init_block(s); |
999 | |
1000 | if (last) { |
1001 | bi_windup(s); |
1002 | #ifdef ZLIB_DEBUG |
1003 | s->compressed_len += 7; /* align on byte boundary */ |
1004 | #endif |
1005 | } |
1006 | Tracev((stderr,"\ncomprlen %lu(%lu) " , s->compressed_len>>3, |
1007 | s->compressed_len-7*last)); |
1008 | } |
1009 | |
1010 | /* =========================================================================== |
1011 | * Save the match info and tally the frequency counts. Return true if |
1012 | * the current block must be flushed. |
1013 | */ |
1014 | int ZLIB_INTERNAL _tr_tally (s, dist, lc) |
1015 | deflate_state *s; |
1016 | unsigned dist; /* distance of matched string */ |
1017 | unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
1018 | { |
1019 | s->sym_buf[s->sym_next++] = dist; |
1020 | s->sym_buf[s->sym_next++] = dist >> 8; |
1021 | s->sym_buf[s->sym_next++] = lc; |
1022 | if (dist == 0) { |
1023 | /* lc is the unmatched char */ |
1024 | s->dyn_ltree[lc].Freq++; |
1025 | } else { |
1026 | s->matches++; |
1027 | /* Here, lc is the match length - MIN_MATCH */ |
1028 | dist--; /* dist = match distance - 1 */ |
1029 | Assert((ush)dist < (ush)MAX_DIST(s) && |
1030 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
1031 | (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match" ); |
1032 | |
1033 | s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; |
1034 | s->dyn_dtree[d_code(dist)].Freq++; |
1035 | } |
1036 | return (s->sym_next == s->sym_end); |
1037 | } |
1038 | |
1039 | /* =========================================================================== |
1040 | * Send the block data compressed using the given Huffman trees |
1041 | */ |
1042 | local void compress_block(s, ltree, dtree) |
1043 | deflate_state *s; |
1044 | const ct_data *ltree; /* literal tree */ |
1045 | const ct_data *dtree; /* distance tree */ |
1046 | { |
1047 | unsigned dist; /* distance of matched string */ |
1048 | int lc; /* match length or unmatched char (if dist == 0) */ |
1049 | unsigned sx = 0; /* running index in sym_buf */ |
1050 | unsigned code; /* the code to send */ |
1051 | int ; /* number of extra bits to send */ |
1052 | |
1053 | if (s->sym_next != 0) do { |
1054 | dist = s->sym_buf[sx++] & 0xff; |
1055 | dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; |
1056 | lc = s->sym_buf[sx++]; |
1057 | if (dist == 0) { |
1058 | send_code(s, lc, ltree); /* send a literal byte */ |
1059 | Tracecv(isgraph(lc), (stderr," '%c' " , lc)); |
1060 | } else { |
1061 | /* Here, lc is the match length - MIN_MATCH */ |
1062 | code = _length_code[lc]; |
1063 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
1064 | extra = extra_lbits[code]; |
1065 | if (extra != 0) { |
1066 | lc -= base_length[code]; |
1067 | send_bits(s, lc, extra); /* send the extra length bits */ |
1068 | } |
1069 | dist--; /* dist is now the match distance - 1 */ |
1070 | code = d_code(dist); |
1071 | Assert (code < D_CODES, "bad d_code" ); |
1072 | |
1073 | send_code(s, code, dtree); /* send the distance code */ |
1074 | extra = extra_dbits[code]; |
1075 | if (extra != 0) { |
1076 | dist -= (unsigned)base_dist[code]; |
1077 | send_bits(s, dist, extra); /* send the extra distance bits */ |
1078 | } |
1079 | } /* literal or match pair ? */ |
1080 | |
1081 | /* Check that the overlay between pending_buf and sym_buf is ok: */ |
1082 | Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow" ); |
1083 | |
1084 | } while (sx < s->sym_next); |
1085 | |
1086 | send_code(s, END_BLOCK, ltree); |
1087 | } |
1088 | |
1089 | /* =========================================================================== |
1090 | * Check if the data type is TEXT or BINARY, using the following algorithm: |
1091 | * - TEXT if the two conditions below are satisfied: |
1092 | * a) There are no non-portable control characters belonging to the |
1093 | * "black list" (0..6, 14..25, 28..31). |
1094 | * b) There is at least one printable character belonging to the |
1095 | * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
1096 | * - BINARY otherwise. |
1097 | * - The following partially-portable control characters form a |
1098 | * "gray list" that is ignored in this detection algorithm: |
1099 | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
1100 | * IN assertion: the fields Freq of dyn_ltree are set. |
1101 | */ |
1102 | local int detect_data_type(s) |
1103 | deflate_state *s; |
1104 | { |
1105 | /* black_mask is the bit mask of black-listed bytes |
1106 | * set bits 0..6, 14..25, and 28..31 |
1107 | * 0xf3ffc07f = binary 11110011111111111100000001111111 |
1108 | */ |
1109 | unsigned long black_mask = 0xf3ffc07fUL; |
1110 | int n; |
1111 | |
1112 | /* Check for non-textual ("black-listed") bytes. */ |
1113 | for (n = 0; n <= 31; n++, black_mask >>= 1) |
1114 | if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
1115 | return Z_BINARY; |
1116 | |
1117 | /* Check for textual ("white-listed") bytes. */ |
1118 | if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 |
1119 | || s->dyn_ltree[13].Freq != 0) |
1120 | return Z_TEXT; |
1121 | for (n = 32; n < LITERALS; n++) |
1122 | if (s->dyn_ltree[n].Freq != 0) |
1123 | return Z_TEXT; |
1124 | |
1125 | /* There are no "black-listed" or "white-listed" bytes: |
1126 | * this stream either is empty or has tolerated ("gray-listed") bytes only. |
1127 | */ |
1128 | return Z_BINARY; |
1129 | } |
1130 | |
1131 | /* =========================================================================== |
1132 | * Reverse the first len bits of a code, using straightforward code (a faster |
1133 | * method would use a table) |
1134 | * IN assertion: 1 <= len <= 15 |
1135 | */ |
1136 | local unsigned bi_reverse(code, len) |
1137 | unsigned code; /* the value to invert */ |
1138 | int len; /* its bit length */ |
1139 | { |
1140 | register unsigned res = 0; |
1141 | do { |
1142 | res |= code & 1; |
1143 | code >>= 1, res <<= 1; |
1144 | } while (--len > 0); |
1145 | return res >> 1; |
1146 | } |
1147 | |
1148 | /* =========================================================================== |
1149 | * Flush the bit buffer, keeping at most 7 bits in it. |
1150 | */ |
1151 | local void bi_flush(s) |
1152 | deflate_state *s; |
1153 | { |
1154 | if (s->bi_valid == 16) { |
1155 | put_short(s, s->bi_buf); |
1156 | s->bi_buf = 0; |
1157 | s->bi_valid = 0; |
1158 | } else if (s->bi_valid >= 8) { |
1159 | put_byte(s, (Byte)s->bi_buf); |
1160 | s->bi_buf >>= 8; |
1161 | s->bi_valid -= 8; |
1162 | } |
1163 | } |
1164 | |
1165 | /* =========================================================================== |
1166 | * Flush the bit buffer and align the output on a byte boundary |
1167 | */ |
1168 | local void bi_windup(s) |
1169 | deflate_state *s; |
1170 | { |
1171 | if (s->bi_valid > 8) { |
1172 | put_short(s, s->bi_buf); |
1173 | } else if (s->bi_valid > 0) { |
1174 | put_byte(s, (Byte)s->bi_buf); |
1175 | } |
1176 | s->bi_buf = 0; |
1177 | s->bi_valid = 0; |
1178 | #ifdef ZLIB_DEBUG |
1179 | s->bits_sent = (s->bits_sent+7) & ~7; |
1180 | #endif |
1181 | } |
1182 | |