1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
2 | |
3 | // Copyright (C) 2010-2019 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/hashtable_policy.h |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. |
28 | * @headername{unordered_map,unordered_set} |
29 | */ |
30 | |
31 | #ifndef _HASHTABLE_POLICY_H |
32 | #define _HASHTABLE_POLICY_H 1 |
33 | |
34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
35 | #include <limits> // for std::numeric_limits |
36 | #include <bits/stl_algobase.h> // for std::min. |
37 | |
38 | namespace std _GLIBCXX_VISIBILITY(default) |
39 | { |
40 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
41 | |
42 | template<typename _Key, typename _Value, typename _Alloc, |
43 | typename _ExtractKey, typename _Equal, |
44 | typename _H1, typename _H2, typename _Hash, |
45 | typename _RehashPolicy, typename _Traits> |
46 | class _Hashtable; |
47 | |
48 | namespace __detail |
49 | { |
50 | /** |
51 | * @defgroup hashtable-detail Base and Implementation Classes |
52 | * @ingroup unordered_associative_containers |
53 | * @{ |
54 | */ |
55 | template<typename _Key, typename _Value, |
56 | typename _ExtractKey, typename _Equal, |
57 | typename _H1, typename _H2, typename _Hash, typename _Traits> |
58 | struct _Hashtable_base; |
59 | |
60 | // Helper function: return distance(first, last) for forward |
61 | // iterators, or 0/1 for input iterators. |
62 | template<class _Iterator> |
63 | inline typename std::iterator_traits<_Iterator>::difference_type |
64 | __distance_fw(_Iterator __first, _Iterator __last, |
65 | std::input_iterator_tag) |
66 | { return __first != __last ? 1 : 0; } |
67 | |
68 | template<class _Iterator> |
69 | inline typename std::iterator_traits<_Iterator>::difference_type |
70 | __distance_fw(_Iterator __first, _Iterator __last, |
71 | std::forward_iterator_tag) |
72 | { return std::distance(__first, __last); } |
73 | |
74 | template<class _Iterator> |
75 | inline typename std::iterator_traits<_Iterator>::difference_type |
76 | __distance_fw(_Iterator __first, _Iterator __last) |
77 | { return __distance_fw(__first, __last, |
78 | std::__iterator_category(__first)); } |
79 | |
80 | struct _Identity |
81 | { |
82 | template<typename _Tp> |
83 | _Tp&& |
84 | operator()(_Tp&& __x) const |
85 | { return std::forward<_Tp>(__x); } |
86 | }; |
87 | |
88 | struct _Select1st |
89 | { |
90 | template<typename _Tp> |
91 | auto |
92 | operator()(_Tp&& __x) const |
93 | -> decltype(std::get<0>(std::forward<_Tp>(__x))) |
94 | { return std::get<0>(std::forward<_Tp>(__x)); } |
95 | }; |
96 | |
97 | template<typename _NodeAlloc> |
98 | struct _Hashtable_alloc; |
99 | |
100 | // Functor recycling a pool of nodes and using allocation once the pool is |
101 | // empty. |
102 | template<typename _NodeAlloc> |
103 | struct _ReuseOrAllocNode |
104 | { |
105 | private: |
106 | using __node_alloc_type = _NodeAlloc; |
107 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
108 | using __node_alloc_traits = |
109 | typename __hashtable_alloc::__node_alloc_traits; |
110 | using __node_type = typename __hashtable_alloc::__node_type; |
111 | |
112 | public: |
113 | _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) |
114 | : _M_nodes(__nodes), _M_h(__h) { } |
115 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
116 | |
117 | ~_ReuseOrAllocNode() |
118 | { _M_h._M_deallocate_nodes(_M_nodes); } |
119 | |
120 | template<typename _Arg> |
121 | __node_type* |
122 | operator()(_Arg&& __arg) const |
123 | { |
124 | if (_M_nodes) |
125 | { |
126 | __node_type* __node = _M_nodes; |
127 | _M_nodes = _M_nodes->_M_next(); |
128 | __node->_M_nxt = nullptr; |
129 | auto& __a = _M_h._M_node_allocator(); |
130 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
131 | __try |
132 | { |
133 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
134 | std::forward<_Arg>(__arg)); |
135 | } |
136 | __catch(...) |
137 | { |
138 | _M_h._M_deallocate_node_ptr(__node); |
139 | __throw_exception_again; |
140 | } |
141 | return __node; |
142 | } |
143 | return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); |
144 | } |
145 | |
146 | private: |
147 | mutable __node_type* _M_nodes; |
148 | __hashtable_alloc& _M_h; |
149 | }; |
150 | |
151 | // Functor similar to the previous one but without any pool of nodes to |
152 | // recycle. |
153 | template<typename _NodeAlloc> |
154 | struct _AllocNode |
155 | { |
156 | private: |
157 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
158 | using __node_type = typename __hashtable_alloc::__node_type; |
159 | |
160 | public: |
161 | _AllocNode(__hashtable_alloc& __h) |
162 | : _M_h(__h) { } |
163 | |
164 | template<typename _Arg> |
165 | __node_type* |
166 | operator()(_Arg&& __arg) const |
167 | { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); } |
168 | |
169 | private: |
170 | __hashtable_alloc& _M_h; |
171 | }; |
172 | |
173 | // Auxiliary types used for all instantiations of _Hashtable nodes |
174 | // and iterators. |
175 | |
176 | /** |
177 | * struct _Hashtable_traits |
178 | * |
179 | * Important traits for hash tables. |
180 | * |
181 | * @tparam _Cache_hash_code Boolean value. True if the value of |
182 | * the hash function is stored along with the value. This is a |
183 | * time-space tradeoff. Storing it may improve lookup speed by |
184 | * reducing the number of times we need to call the _Equal |
185 | * function. |
186 | * |
187 | * @tparam _Constant_iterators Boolean value. True if iterator and |
188 | * const_iterator are both constant iterator types. This is true |
189 | * for unordered_set and unordered_multiset, false for |
190 | * unordered_map and unordered_multimap. |
191 | * |
192 | * @tparam _Unique_keys Boolean value. True if the return value |
193 | * of _Hashtable::count(k) is always at most one, false if it may |
194 | * be an arbitrary number. This is true for unordered_set and |
195 | * unordered_map, false for unordered_multiset and |
196 | * unordered_multimap. |
197 | */ |
198 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
199 | struct _Hashtable_traits |
200 | { |
201 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
202 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
203 | using __unique_keys = __bool_constant<_Unique_keys>; |
204 | }; |
205 | |
206 | /** |
207 | * struct _Hash_node_base |
208 | * |
209 | * Nodes, used to wrap elements stored in the hash table. A policy |
210 | * template parameter of class template _Hashtable controls whether |
211 | * nodes also store a hash code. In some cases (e.g. strings) this |
212 | * may be a performance win. |
213 | */ |
214 | struct _Hash_node_base |
215 | { |
216 | _Hash_node_base* _M_nxt; |
217 | |
218 | _Hash_node_base() noexcept : _M_nxt() { } |
219 | |
220 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
221 | }; |
222 | |
223 | /** |
224 | * struct _Hash_node_value_base |
225 | * |
226 | * Node type with the value to store. |
227 | */ |
228 | template<typename _Value> |
229 | struct _Hash_node_value_base : _Hash_node_base |
230 | { |
231 | typedef _Value value_type; |
232 | |
233 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
234 | |
235 | _Value* |
236 | _M_valptr() noexcept |
237 | { return _M_storage._M_ptr(); } |
238 | |
239 | const _Value* |
240 | _M_valptr() const noexcept |
241 | { return _M_storage._M_ptr(); } |
242 | |
243 | _Value& |
244 | _M_v() noexcept |
245 | { return *_M_valptr(); } |
246 | |
247 | const _Value& |
248 | _M_v() const noexcept |
249 | { return *_M_valptr(); } |
250 | }; |
251 | |
252 | /** |
253 | * Primary template struct _Hash_node. |
254 | */ |
255 | template<typename _Value, bool _Cache_hash_code> |
256 | struct _Hash_node; |
257 | |
258 | /** |
259 | * Specialization for nodes with caches, struct _Hash_node. |
260 | * |
261 | * Base class is __detail::_Hash_node_value_base. |
262 | */ |
263 | template<typename _Value> |
264 | struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value> |
265 | { |
266 | std::size_t _M_hash_code; |
267 | |
268 | _Hash_node* |
269 | _M_next() const noexcept |
270 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
271 | }; |
272 | |
273 | /** |
274 | * Specialization for nodes without caches, struct _Hash_node. |
275 | * |
276 | * Base class is __detail::_Hash_node_value_base. |
277 | */ |
278 | template<typename _Value> |
279 | struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value> |
280 | { |
281 | _Hash_node* |
282 | _M_next() const noexcept |
283 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
284 | }; |
285 | |
286 | /// Base class for node iterators. |
287 | template<typename _Value, bool _Cache_hash_code> |
288 | struct _Node_iterator_base |
289 | { |
290 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
291 | |
292 | __node_type* _M_cur; |
293 | |
294 | _Node_iterator_base(__node_type* __p) noexcept |
295 | : _M_cur(__p) { } |
296 | |
297 | void |
298 | _M_incr() noexcept |
299 | { _M_cur = _M_cur->_M_next(); } |
300 | }; |
301 | |
302 | template<typename _Value, bool _Cache_hash_code> |
303 | inline bool |
304 | operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, |
305 | const _Node_iterator_base<_Value, _Cache_hash_code >& __y) |
306 | noexcept |
307 | { return __x._M_cur == __y._M_cur; } |
308 | |
309 | template<typename _Value, bool _Cache_hash_code> |
310 | inline bool |
311 | operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, |
312 | const _Node_iterator_base<_Value, _Cache_hash_code>& __y) |
313 | noexcept |
314 | { return __x._M_cur != __y._M_cur; } |
315 | |
316 | /// Node iterators, used to iterate through all the hashtable. |
317 | template<typename _Value, bool __constant_iterators, bool __cache> |
318 | struct _Node_iterator |
319 | : public _Node_iterator_base<_Value, __cache> |
320 | { |
321 | private: |
322 | using __base_type = _Node_iterator_base<_Value, __cache>; |
323 | using __node_type = typename __base_type::__node_type; |
324 | |
325 | public: |
326 | typedef _Value value_type; |
327 | typedef std::ptrdiff_t difference_type; |
328 | typedef std::forward_iterator_tag iterator_category; |
329 | |
330 | using pointer = typename std::conditional<__constant_iterators, |
331 | const _Value*, _Value*>::type; |
332 | |
333 | using reference = typename std::conditional<__constant_iterators, |
334 | const _Value&, _Value&>::type; |
335 | |
336 | _Node_iterator() noexcept |
337 | : __base_type(0) { } |
338 | |
339 | explicit |
340 | _Node_iterator(__node_type* __p) noexcept |
341 | : __base_type(__p) { } |
342 | |
343 | reference |
344 | operator*() const noexcept |
345 | { return this->_M_cur->_M_v(); } |
346 | |
347 | pointer |
348 | operator->() const noexcept |
349 | { return this->_M_cur->_M_valptr(); } |
350 | |
351 | _Node_iterator& |
352 | operator++() noexcept |
353 | { |
354 | this->_M_incr(); |
355 | return *this; |
356 | } |
357 | |
358 | _Node_iterator |
359 | operator++(int) noexcept |
360 | { |
361 | _Node_iterator __tmp(*this); |
362 | this->_M_incr(); |
363 | return __tmp; |
364 | } |
365 | }; |
366 | |
367 | /// Node const_iterators, used to iterate through all the hashtable. |
368 | template<typename _Value, bool __constant_iterators, bool __cache> |
369 | struct _Node_const_iterator |
370 | : public _Node_iterator_base<_Value, __cache> |
371 | { |
372 | private: |
373 | using __base_type = _Node_iterator_base<_Value, __cache>; |
374 | using __node_type = typename __base_type::__node_type; |
375 | |
376 | public: |
377 | typedef _Value value_type; |
378 | typedef std::ptrdiff_t difference_type; |
379 | typedef std::forward_iterator_tag iterator_category; |
380 | |
381 | typedef const _Value* pointer; |
382 | typedef const _Value& reference; |
383 | |
384 | _Node_const_iterator() noexcept |
385 | : __base_type(0) { } |
386 | |
387 | explicit |
388 | _Node_const_iterator(__node_type* __p) noexcept |
389 | : __base_type(__p) { } |
390 | |
391 | _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
392 | __cache>& __x) noexcept |
393 | : __base_type(__x._M_cur) { } |
394 | |
395 | reference |
396 | operator*() const noexcept |
397 | { return this->_M_cur->_M_v(); } |
398 | |
399 | pointer |
400 | operator->() const noexcept |
401 | { return this->_M_cur->_M_valptr(); } |
402 | |
403 | _Node_const_iterator& |
404 | operator++() noexcept |
405 | { |
406 | this->_M_incr(); |
407 | return *this; |
408 | } |
409 | |
410 | _Node_const_iterator |
411 | operator++(int) noexcept |
412 | { |
413 | _Node_const_iterator __tmp(*this); |
414 | this->_M_incr(); |
415 | return __tmp; |
416 | } |
417 | }; |
418 | |
419 | // Many of class template _Hashtable's template parameters are policy |
420 | // classes. These are defaults for the policies. |
421 | |
422 | /// Default range hashing function: use division to fold a large number |
423 | /// into the range [0, N). |
424 | struct _Mod_range_hashing |
425 | { |
426 | typedef std::size_t first_argument_type; |
427 | typedef std::size_t second_argument_type; |
428 | typedef std::size_t result_type; |
429 | |
430 | result_type |
431 | operator()(first_argument_type __num, |
432 | second_argument_type __den) const noexcept |
433 | { return __num % __den; } |
434 | }; |
435 | |
436 | /// Default ranged hash function H. In principle it should be a |
437 | /// function object composed from objects of type H1 and H2 such that |
438 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
439 | /// h1 and h2. So instead we'll just use a tag to tell class template |
440 | /// hashtable to do that composition. |
441 | struct _Default_ranged_hash { }; |
442 | |
443 | /// Default value for rehash policy. Bucket size is (usually) the |
444 | /// smallest prime that keeps the load factor small enough. |
445 | struct _Prime_rehash_policy |
446 | { |
447 | using __has_load_factor = std::true_type; |
448 | |
449 | _Prime_rehash_policy(float __z = 1.0) noexcept |
450 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
451 | |
452 | float |
453 | max_load_factor() const noexcept |
454 | { return _M_max_load_factor; } |
455 | |
456 | // Return a bucket size no smaller than n. |
457 | std::size_t |
458 | _M_next_bkt(std::size_t __n) const; |
459 | |
460 | // Return a bucket count appropriate for n elements |
461 | std::size_t |
462 | _M_bkt_for_elements(std::size_t __n) const |
463 | { return __builtin_ceil(__n / (long double)_M_max_load_factor); } |
464 | |
465 | // __n_bkt is current bucket count, __n_elt is current element count, |
466 | // and __n_ins is number of elements to be inserted. Do we need to |
467 | // increase bucket count? If so, return make_pair(true, n), where n |
468 | // is the new bucket count. If not, return make_pair(false, 0). |
469 | std::pair<bool, std::size_t> |
470 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
471 | std::size_t __n_ins) const; |
472 | |
473 | typedef std::size_t _State; |
474 | |
475 | _State |
476 | _M_state() const |
477 | { return _M_next_resize; } |
478 | |
479 | void |
480 | _M_reset() noexcept |
481 | { _M_next_resize = 0; } |
482 | |
483 | void |
484 | _M_reset(_State __state) |
485 | { _M_next_resize = __state; } |
486 | |
487 | static const std::size_t _S_growth_factor = 2; |
488 | |
489 | float _M_max_load_factor; |
490 | mutable std::size_t _M_next_resize; |
491 | }; |
492 | |
493 | /// Range hashing function assuming that second arg is a power of 2. |
494 | struct _Mask_range_hashing |
495 | { |
496 | typedef std::size_t first_argument_type; |
497 | typedef std::size_t second_argument_type; |
498 | typedef std::size_t result_type; |
499 | |
500 | result_type |
501 | operator()(first_argument_type __num, |
502 | second_argument_type __den) const noexcept |
503 | { return __num & (__den - 1); } |
504 | }; |
505 | |
506 | /// Compute closest power of 2 not less than __n |
507 | inline std::size_t |
508 | __clp2(std::size_t __n) noexcept |
509 | { |
510 | // Equivalent to return __n ? std::ceil2(__n) : 0; |
511 | if (__n < 2) |
512 | return __n; |
513 | const unsigned __lz = sizeof(size_t) > sizeof(long) |
514 | ? __builtin_clzll(__n - 1ull) |
515 | : __builtin_clzl(__n - 1ul); |
516 | // Doing two shifts avoids undefined behaviour when __lz == 0. |
517 | return (size_t(1) << (numeric_limits<size_t>::digits - __lz - 1)) << 1; |
518 | } |
519 | |
520 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
521 | /// operations. |
522 | struct _Power2_rehash_policy |
523 | { |
524 | using __has_load_factor = std::true_type; |
525 | |
526 | _Power2_rehash_policy(float __z = 1.0) noexcept |
527 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
528 | |
529 | float |
530 | max_load_factor() const noexcept |
531 | { return _M_max_load_factor; } |
532 | |
533 | // Return a bucket size no smaller than n (as long as n is not above the |
534 | // highest power of 2). |
535 | std::size_t |
536 | _M_next_bkt(std::size_t __n) noexcept |
537 | { |
538 | const auto __max_width = std::min<size_t>(sizeof(size_t), 8); |
539 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
540 | std::size_t __res = __clp2(__n); |
541 | |
542 | if (__res == __n) |
543 | __res <<= 1; |
544 | |
545 | if (__res == 0) |
546 | __res = __max_bkt; |
547 | |
548 | if (__res == __max_bkt) |
549 | // Set next resize to the max value so that we never try to rehash again |
550 | // as we already reach the biggest possible bucket number. |
551 | // Note that it might result in max_load_factor not being respected. |
552 | _M_next_resize = std::size_t(-1); |
553 | else |
554 | _M_next_resize |
555 | = __builtin_ceil(__res * (long double)_M_max_load_factor); |
556 | |
557 | return __res; |
558 | } |
559 | |
560 | // Return a bucket count appropriate for n elements |
561 | std::size_t |
562 | _M_bkt_for_elements(std::size_t __n) const noexcept |
563 | { return __builtin_ceil(__n / (long double)_M_max_load_factor); } |
564 | |
565 | // __n_bkt is current bucket count, __n_elt is current element count, |
566 | // and __n_ins is number of elements to be inserted. Do we need to |
567 | // increase bucket count? If so, return make_pair(true, n), where n |
568 | // is the new bucket count. If not, return make_pair(false, 0). |
569 | std::pair<bool, std::size_t> |
570 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
571 | std::size_t __n_ins) noexcept |
572 | { |
573 | if (__n_elt + __n_ins >= _M_next_resize) |
574 | { |
575 | long double __min_bkts = (__n_elt + __n_ins) |
576 | / (long double)_M_max_load_factor; |
577 | if (__min_bkts >= __n_bkt) |
578 | return std::make_pair(true, |
579 | _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1, |
580 | __n_bkt * _S_growth_factor))); |
581 | |
582 | _M_next_resize |
583 | = __builtin_floor(__n_bkt * (long double)_M_max_load_factor); |
584 | return std::make_pair(false, 0); |
585 | } |
586 | else |
587 | return std::make_pair(false, 0); |
588 | } |
589 | |
590 | typedef std::size_t _State; |
591 | |
592 | _State |
593 | _M_state() const noexcept |
594 | { return _M_next_resize; } |
595 | |
596 | void |
597 | _M_reset() noexcept |
598 | { _M_next_resize = 0; } |
599 | |
600 | void |
601 | _M_reset(_State __state) noexcept |
602 | { _M_next_resize = __state; } |
603 | |
604 | static const std::size_t _S_growth_factor = 2; |
605 | |
606 | float _M_max_load_factor; |
607 | std::size_t _M_next_resize; |
608 | }; |
609 | |
610 | // Base classes for std::_Hashtable. We define these base classes |
611 | // because in some cases we want to do different things depending on |
612 | // the value of a policy class. In some cases the policy class |
613 | // affects which member functions and nested typedefs are defined; |
614 | // we handle that by specializing base class templates. Several of |
615 | // the base class templates need to access other members of class |
616 | // template _Hashtable, so we use a variant of the "Curiously |
617 | // Recurring Template Pattern" (CRTP) technique. |
618 | |
619 | /** |
620 | * Primary class template _Map_base. |
621 | * |
622 | * If the hashtable has a value type of the form pair<T1, T2> and a |
623 | * key extraction policy (_ExtractKey) that returns the first part |
624 | * of the pair, the hashtable gets a mapped_type typedef. If it |
625 | * satisfies those criteria and also has unique keys, then it also |
626 | * gets an operator[]. |
627 | */ |
628 | template<typename _Key, typename _Value, typename _Alloc, |
629 | typename _ExtractKey, typename _Equal, |
630 | typename _H1, typename _H2, typename _Hash, |
631 | typename _RehashPolicy, typename _Traits, |
632 | bool _Unique_keys = _Traits::__unique_keys::value> |
633 | struct _Map_base { }; |
634 | |
635 | /// Partial specialization, __unique_keys set to false. |
636 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
637 | typename _H1, typename _H2, typename _Hash, |
638 | typename _RehashPolicy, typename _Traits> |
639 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
640 | _H1, _H2, _Hash, _RehashPolicy, _Traits, false> |
641 | { |
642 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
643 | }; |
644 | |
645 | /// Partial specialization, __unique_keys set to true. |
646 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
647 | typename _H1, typename _H2, typename _Hash, |
648 | typename _RehashPolicy, typename _Traits> |
649 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
650 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true> |
651 | { |
652 | private: |
653 | using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair, |
654 | _Select1st, |
655 | _Equal, _H1, _H2, _Hash, |
656 | _Traits>; |
657 | |
658 | using __hashtable = _Hashtable<_Key, _Pair, _Alloc, |
659 | _Select1st, _Equal, |
660 | _H1, _H2, _Hash, _RehashPolicy, _Traits>; |
661 | |
662 | using __hash_code = typename __hashtable_base::__hash_code; |
663 | using __node_type = typename __hashtable_base::__node_type; |
664 | |
665 | public: |
666 | using key_type = typename __hashtable_base::key_type; |
667 | using iterator = typename __hashtable_base::iterator; |
668 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
669 | |
670 | mapped_type& |
671 | operator[](const key_type& __k); |
672 | |
673 | mapped_type& |
674 | operator[](key_type&& __k); |
675 | |
676 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
677 | // DR 761. unordered_map needs an at() member function. |
678 | mapped_type& |
679 | at(const key_type& __k); |
680 | |
681 | const mapped_type& |
682 | at(const key_type& __k) const; |
683 | }; |
684 | |
685 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
686 | typename _H1, typename _H2, typename _Hash, |
687 | typename _RehashPolicy, typename _Traits> |
688 | auto |
689 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
690 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
691 | operator[](const key_type& __k) |
692 | -> mapped_type& |
693 | { |
694 | __hashtable* __h = static_cast<__hashtable*>(this); |
695 | __hash_code __code = __h->_M_hash_code(__k); |
696 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
697 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
698 | |
699 | if (!__p) |
700 | { |
701 | __p = __h->_M_allocate_node(std::piecewise_construct, |
702 | std::tuple<const key_type&>(__k), |
703 | std::tuple<>()); |
704 | return __h->_M_insert_unique_node(__n, __code, __p)->second; |
705 | } |
706 | |
707 | return __p->_M_v().second; |
708 | } |
709 | |
710 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
711 | typename _H1, typename _H2, typename _Hash, |
712 | typename _RehashPolicy, typename _Traits> |
713 | auto |
714 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
715 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
716 | operator[](key_type&& __k) |
717 | -> mapped_type& |
718 | { |
719 | __hashtable* __h = static_cast<__hashtable*>(this); |
720 | __hash_code __code = __h->_M_hash_code(__k); |
721 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
722 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
723 | |
724 | if (!__p) |
725 | { |
726 | __p = __h->_M_allocate_node(std::piecewise_construct, |
727 | std::forward_as_tuple(std::move(__k)), |
728 | std::tuple<>()); |
729 | return __h->_M_insert_unique_node(__n, __code, __p)->second; |
730 | } |
731 | |
732 | return __p->_M_v().second; |
733 | } |
734 | |
735 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
736 | typename _H1, typename _H2, typename _Hash, |
737 | typename _RehashPolicy, typename _Traits> |
738 | auto |
739 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
740 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
741 | at(const key_type& __k) |
742 | -> mapped_type& |
743 | { |
744 | __hashtable* __h = static_cast<__hashtable*>(this); |
745 | __hash_code __code = __h->_M_hash_code(__k); |
746 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
747 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
748 | |
749 | if (!__p) |
750 | __throw_out_of_range(__N("_Map_base::at" )); |
751 | return __p->_M_v().second; |
752 | } |
753 | |
754 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
755 | typename _H1, typename _H2, typename _Hash, |
756 | typename _RehashPolicy, typename _Traits> |
757 | auto |
758 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
759 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
760 | at(const key_type& __k) const |
761 | -> const mapped_type& |
762 | { |
763 | const __hashtable* __h = static_cast<const __hashtable*>(this); |
764 | __hash_code __code = __h->_M_hash_code(__k); |
765 | std::size_t __n = __h->_M_bucket_index(__k, __code); |
766 | __node_type* __p = __h->_M_find_node(__n, __k, __code); |
767 | |
768 | if (!__p) |
769 | __throw_out_of_range(__N("_Map_base::at" )); |
770 | return __p->_M_v().second; |
771 | } |
772 | |
773 | /** |
774 | * Primary class template _Insert_base. |
775 | * |
776 | * Defines @c insert member functions appropriate to all _Hashtables. |
777 | */ |
778 | template<typename _Key, typename _Value, typename _Alloc, |
779 | typename _ExtractKey, typename _Equal, |
780 | typename _H1, typename _H2, typename _Hash, |
781 | typename _RehashPolicy, typename _Traits> |
782 | struct _Insert_base |
783 | { |
784 | protected: |
785 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
786 | _Equal, _H1, _H2, _Hash, |
787 | _RehashPolicy, _Traits>; |
788 | |
789 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
790 | _Equal, _H1, _H2, _Hash, |
791 | _Traits>; |
792 | |
793 | using value_type = typename __hashtable_base::value_type; |
794 | using iterator = typename __hashtable_base::iterator; |
795 | using const_iterator = typename __hashtable_base::const_iterator; |
796 | using size_type = typename __hashtable_base::size_type; |
797 | |
798 | using __unique_keys = typename __hashtable_base::__unique_keys; |
799 | using __ireturn_type = typename __hashtable_base::__ireturn_type; |
800 | using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>; |
801 | using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>; |
802 | using __node_gen_type = _AllocNode<__node_alloc_type>; |
803 | |
804 | __hashtable& |
805 | _M_conjure_hashtable() |
806 | { return *(static_cast<__hashtable*>(this)); } |
807 | |
808 | template<typename _InputIterator, typename _NodeGetter> |
809 | void |
810 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
811 | const _NodeGetter&, true_type); |
812 | |
813 | template<typename _InputIterator, typename _NodeGetter> |
814 | void |
815 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
816 | const _NodeGetter&, false_type); |
817 | |
818 | public: |
819 | __ireturn_type |
820 | insert(const value_type& __v) |
821 | { |
822 | __hashtable& __h = _M_conjure_hashtable(); |
823 | __node_gen_type __node_gen(__h); |
824 | return __h._M_insert(__v, __node_gen, __unique_keys()); |
825 | } |
826 | |
827 | iterator |
828 | insert(const_iterator __hint, const value_type& __v) |
829 | { |
830 | __hashtable& __h = _M_conjure_hashtable(); |
831 | __node_gen_type __node_gen(__h); |
832 | return __h._M_insert(__hint, __v, __node_gen, __unique_keys()); |
833 | } |
834 | |
835 | void |
836 | insert(initializer_list<value_type> __l) |
837 | { this->insert(__l.begin(), __l.end()); } |
838 | |
839 | template<typename _InputIterator> |
840 | void |
841 | insert(_InputIterator __first, _InputIterator __last) |
842 | { |
843 | __hashtable& __h = _M_conjure_hashtable(); |
844 | __node_gen_type __node_gen(__h); |
845 | return _M_insert_range(__first, __last, __node_gen, __unique_keys()); |
846 | } |
847 | }; |
848 | |
849 | template<typename _Key, typename _Value, typename _Alloc, |
850 | typename _ExtractKey, typename _Equal, |
851 | typename _H1, typename _H2, typename _Hash, |
852 | typename _RehashPolicy, typename _Traits> |
853 | template<typename _InputIterator, typename _NodeGetter> |
854 | void |
855 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
856 | _RehashPolicy, _Traits>:: |
857 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
858 | const _NodeGetter& __node_gen, true_type) |
859 | { |
860 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
861 | if (__n_elt == 0) |
862 | return; |
863 | |
864 | __hashtable& __h = _M_conjure_hashtable(); |
865 | for (; __first != __last; ++__first) |
866 | { |
867 | if (__h._M_insert(*__first, __node_gen, __unique_keys(), |
868 | __n_elt).second) |
869 | __n_elt = 1; |
870 | else if (__n_elt != 1) |
871 | --__n_elt; |
872 | } |
873 | } |
874 | |
875 | template<typename _Key, typename _Value, typename _Alloc, |
876 | typename _ExtractKey, typename _Equal, |
877 | typename _H1, typename _H2, typename _Hash, |
878 | typename _RehashPolicy, typename _Traits> |
879 | template<typename _InputIterator, typename _NodeGetter> |
880 | void |
881 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
882 | _RehashPolicy, _Traits>:: |
883 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
884 | const _NodeGetter& __node_gen, false_type) |
885 | { |
886 | using __rehash_type = typename __hashtable::__rehash_type; |
887 | using __rehash_state = typename __hashtable::__rehash_state; |
888 | using pair_type = std::pair<bool, std::size_t>; |
889 | |
890 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
891 | if (__n_elt == 0) |
892 | return; |
893 | |
894 | __hashtable& __h = _M_conjure_hashtable(); |
895 | __rehash_type& __rehash = __h._M_rehash_policy; |
896 | const __rehash_state& __saved_state = __rehash._M_state(); |
897 | pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, |
898 | __h._M_element_count, |
899 | __n_elt); |
900 | |
901 | if (__do_rehash.first) |
902 | __h._M_rehash(__do_rehash.second, __saved_state); |
903 | |
904 | for (; __first != __last; ++__first) |
905 | __h._M_insert(*__first, __node_gen, __unique_keys()); |
906 | } |
907 | |
908 | /** |
909 | * Primary class template _Insert. |
910 | * |
911 | * Defines @c insert member functions that depend on _Hashtable policies, |
912 | * via partial specializations. |
913 | */ |
914 | template<typename _Key, typename _Value, typename _Alloc, |
915 | typename _ExtractKey, typename _Equal, |
916 | typename _H1, typename _H2, typename _Hash, |
917 | typename _RehashPolicy, typename _Traits, |
918 | bool _Constant_iterators = _Traits::__constant_iterators::value> |
919 | struct _Insert; |
920 | |
921 | /// Specialization. |
922 | template<typename _Key, typename _Value, typename _Alloc, |
923 | typename _ExtractKey, typename _Equal, |
924 | typename _H1, typename _H2, typename _Hash, |
925 | typename _RehashPolicy, typename _Traits> |
926 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
927 | _RehashPolicy, _Traits, true> |
928 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
929 | _H1, _H2, _Hash, _RehashPolicy, _Traits> |
930 | { |
931 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
932 | _Equal, _H1, _H2, _Hash, |
933 | _RehashPolicy, _Traits>; |
934 | |
935 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
936 | _Equal, _H1, _H2, _Hash, |
937 | _Traits>; |
938 | |
939 | using value_type = typename __base_type::value_type; |
940 | using iterator = typename __base_type::iterator; |
941 | using const_iterator = typename __base_type::const_iterator; |
942 | |
943 | using __unique_keys = typename __base_type::__unique_keys; |
944 | using __ireturn_type = typename __hashtable_base::__ireturn_type; |
945 | using __hashtable = typename __base_type::__hashtable; |
946 | using __node_gen_type = typename __base_type::__node_gen_type; |
947 | |
948 | using __base_type::insert; |
949 | |
950 | __ireturn_type |
951 | insert(value_type&& __v) |
952 | { |
953 | __hashtable& __h = this->_M_conjure_hashtable(); |
954 | __node_gen_type __node_gen(__h); |
955 | return __h._M_insert(std::move(__v), __node_gen, __unique_keys()); |
956 | } |
957 | |
958 | iterator |
959 | insert(const_iterator __hint, value_type&& __v) |
960 | { |
961 | __hashtable& __h = this->_M_conjure_hashtable(); |
962 | __node_gen_type __node_gen(__h); |
963 | return __h._M_insert(__hint, std::move(__v), __node_gen, |
964 | __unique_keys()); |
965 | } |
966 | }; |
967 | |
968 | /// Specialization. |
969 | template<typename _Key, typename _Value, typename _Alloc, |
970 | typename _ExtractKey, typename _Equal, |
971 | typename _H1, typename _H2, typename _Hash, |
972 | typename _RehashPolicy, typename _Traits> |
973 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, |
974 | _RehashPolicy, _Traits, false> |
975 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
976 | _H1, _H2, _Hash, _RehashPolicy, _Traits> |
977 | { |
978 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
979 | _Equal, _H1, _H2, _Hash, |
980 | _RehashPolicy, _Traits>; |
981 | using value_type = typename __base_type::value_type; |
982 | using iterator = typename __base_type::iterator; |
983 | using const_iterator = typename __base_type::const_iterator; |
984 | |
985 | using __unique_keys = typename __base_type::__unique_keys; |
986 | using __hashtable = typename __base_type::__hashtable; |
987 | using __ireturn_type = typename __base_type::__ireturn_type; |
988 | |
989 | using __base_type::insert; |
990 | |
991 | template<typename _Pair> |
992 | using __is_cons = std::is_constructible<value_type, _Pair&&>; |
993 | |
994 | template<typename _Pair> |
995 | using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
996 | |
997 | template<typename _Pair> |
998 | using _IFconsp = typename _IFcons<_Pair>::type; |
999 | |
1000 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1001 | __ireturn_type |
1002 | insert(_Pair&& __v) |
1003 | { |
1004 | __hashtable& __h = this->_M_conjure_hashtable(); |
1005 | return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v)); |
1006 | } |
1007 | |
1008 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1009 | iterator |
1010 | insert(const_iterator __hint, _Pair&& __v) |
1011 | { |
1012 | __hashtable& __h = this->_M_conjure_hashtable(); |
1013 | return __h._M_emplace(__hint, __unique_keys(), |
1014 | std::forward<_Pair>(__v)); |
1015 | } |
1016 | }; |
1017 | |
1018 | template<typename _Policy> |
1019 | using __has_load_factor = typename _Policy::__has_load_factor; |
1020 | |
1021 | /** |
1022 | * Primary class template _Rehash_base. |
1023 | * |
1024 | * Give hashtable the max_load_factor functions and reserve iff the |
1025 | * rehash policy supports it. |
1026 | */ |
1027 | template<typename _Key, typename _Value, typename _Alloc, |
1028 | typename _ExtractKey, typename _Equal, |
1029 | typename _H1, typename _H2, typename _Hash, |
1030 | typename _RehashPolicy, typename _Traits, |
1031 | typename = |
1032 | __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>> |
1033 | struct _Rehash_base; |
1034 | |
1035 | /// Specialization when rehash policy doesn't provide load factor management. |
1036 | template<typename _Key, typename _Value, typename _Alloc, |
1037 | typename _ExtractKey, typename _Equal, |
1038 | typename _H1, typename _H2, typename _Hash, |
1039 | typename _RehashPolicy, typename _Traits> |
1040 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1041 | _H1, _H2, _Hash, _RehashPolicy, _Traits, |
1042 | std::false_type> |
1043 | { |
1044 | }; |
1045 | |
1046 | /// Specialization when rehash policy provide load factor management. |
1047 | template<typename _Key, typename _Value, typename _Alloc, |
1048 | typename _ExtractKey, typename _Equal, |
1049 | typename _H1, typename _H2, typename _Hash, |
1050 | typename _RehashPolicy, typename _Traits> |
1051 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1052 | _H1, _H2, _Hash, _RehashPolicy, _Traits, |
1053 | std::true_type> |
1054 | { |
1055 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
1056 | _Equal, _H1, _H2, _Hash, |
1057 | _RehashPolicy, _Traits>; |
1058 | |
1059 | float |
1060 | max_load_factor() const noexcept |
1061 | { |
1062 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1063 | return __this->__rehash_policy().max_load_factor(); |
1064 | } |
1065 | |
1066 | void |
1067 | max_load_factor(float __z) |
1068 | { |
1069 | __hashtable* __this = static_cast<__hashtable*>(this); |
1070 | __this->__rehash_policy(_RehashPolicy(__z)); |
1071 | } |
1072 | |
1073 | void |
1074 | reserve(std::size_t __n) |
1075 | { |
1076 | __hashtable* __this = static_cast<__hashtable*>(this); |
1077 | __this->rehash(__builtin_ceil(__n / max_load_factor())); |
1078 | } |
1079 | }; |
1080 | |
1081 | /** |
1082 | * Primary class template _Hashtable_ebo_helper. |
1083 | * |
1084 | * Helper class using EBO when it is not forbidden (the type is not |
1085 | * final) and when it is worth it (the type is empty.) |
1086 | */ |
1087 | template<int _Nm, typename _Tp, |
1088 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
1089 | struct _Hashtable_ebo_helper; |
1090 | |
1091 | /// Specialization using EBO. |
1092 | template<int _Nm, typename _Tp> |
1093 | struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
1094 | : private _Tp |
1095 | { |
1096 | _Hashtable_ebo_helper() = default; |
1097 | |
1098 | template<typename _OtherTp> |
1099 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1100 | : _Tp(std::forward<_OtherTp>(__tp)) |
1101 | { } |
1102 | |
1103 | static const _Tp& |
1104 | _S_cget(const _Hashtable_ebo_helper& __eboh) |
1105 | { return static_cast<const _Tp&>(__eboh); } |
1106 | |
1107 | static _Tp& |
1108 | _S_get(_Hashtable_ebo_helper& __eboh) |
1109 | { return static_cast<_Tp&>(__eboh); } |
1110 | }; |
1111 | |
1112 | /// Specialization not using EBO. |
1113 | template<int _Nm, typename _Tp> |
1114 | struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
1115 | { |
1116 | _Hashtable_ebo_helper() = default; |
1117 | |
1118 | template<typename _OtherTp> |
1119 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1120 | : _M_tp(std::forward<_OtherTp>(__tp)) |
1121 | { } |
1122 | |
1123 | static const _Tp& |
1124 | _S_cget(const _Hashtable_ebo_helper& __eboh) |
1125 | { return __eboh._M_tp; } |
1126 | |
1127 | static _Tp& |
1128 | _S_get(_Hashtable_ebo_helper& __eboh) |
1129 | { return __eboh._M_tp; } |
1130 | |
1131 | private: |
1132 | _Tp _M_tp; |
1133 | }; |
1134 | |
1135 | /** |
1136 | * Primary class template _Local_iterator_base. |
1137 | * |
1138 | * Base class for local iterators, used to iterate within a bucket |
1139 | * but not between buckets. |
1140 | */ |
1141 | template<typename _Key, typename _Value, typename _ExtractKey, |
1142 | typename _H1, typename _H2, typename _Hash, |
1143 | bool __cache_hash_code> |
1144 | struct _Local_iterator_base; |
1145 | |
1146 | /** |
1147 | * Primary class template _Hash_code_base. |
1148 | * |
1149 | * Encapsulates two policy issues that aren't quite orthogonal. |
1150 | * (1) the difference between using a ranged hash function and using |
1151 | * the combination of a hash function and a range-hashing function. |
1152 | * In the former case we don't have such things as hash codes, so |
1153 | * we have a dummy type as placeholder. |
1154 | * (2) Whether or not we cache hash codes. Caching hash codes is |
1155 | * meaningless if we have a ranged hash function. |
1156 | * |
1157 | * We also put the key extraction objects here, for convenience. |
1158 | * Each specialization derives from one or more of the template |
1159 | * parameters to benefit from Ebo. This is important as this type |
1160 | * is inherited in some cases by the _Local_iterator_base type used |
1161 | * to implement local_iterator and const_local_iterator. As with |
1162 | * any iterator type we prefer to make it as small as possible. |
1163 | * |
1164 | * Primary template is unused except as a hook for specializations. |
1165 | */ |
1166 | template<typename _Key, typename _Value, typename _ExtractKey, |
1167 | typename _H1, typename _H2, typename _Hash, |
1168 | bool __cache_hash_code> |
1169 | struct _Hash_code_base; |
1170 | |
1171 | /// Specialization: ranged hash function, no caching hash codes. H1 |
1172 | /// and H2 are provided but ignored. We define a dummy hash code type. |
1173 | template<typename _Key, typename _Value, typename _ExtractKey, |
1174 | typename _H1, typename _H2, typename _Hash> |
1175 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> |
1176 | : private _Hashtable_ebo_helper<0, _ExtractKey>, |
1177 | private _Hashtable_ebo_helper<1, _Hash> |
1178 | { |
1179 | private: |
1180 | using = _Hashtable_ebo_helper<0, _ExtractKey>; |
1181 | using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
1182 | |
1183 | protected: |
1184 | typedef void* __hash_code; |
1185 | typedef _Hash_node<_Value, false> __node_type; |
1186 | |
1187 | // We need the default constructor for the local iterators and _Hashtable |
1188 | // default constructor. |
1189 | _Hash_code_base() = default; |
1190 | |
1191 | _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&, |
1192 | const _Hash& __h) |
1193 | : __ebo_extract_key(__ex), __ebo_hash(__h) { } |
1194 | |
1195 | __hash_code |
1196 | _M_hash_code(const _Key& __key) const |
1197 | { return 0; } |
1198 | |
1199 | std::size_t |
1200 | _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const |
1201 | { return _M_ranged_hash()(__k, __n); } |
1202 | |
1203 | std::size_t |
1204 | _M_bucket_index(const __node_type* __p, std::size_t __n) const |
1205 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(), |
1206 | (std::size_t)0)) ) |
1207 | { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); } |
1208 | |
1209 | void |
1210 | _M_store_code(__node_type*, __hash_code) const |
1211 | { } |
1212 | |
1213 | void |
1214 | _M_copy_code(__node_type*, const __node_type*) const |
1215 | { } |
1216 | |
1217 | void |
1218 | _M_swap(_Hash_code_base& __x) |
1219 | { |
1220 | std::swap(_M_extract(), __x._M_extract()); |
1221 | std::swap(_M_ranged_hash(), __x._M_ranged_hash()); |
1222 | } |
1223 | |
1224 | const _ExtractKey& |
1225 | () const { return __ebo_extract_key::_S_cget(*this); } |
1226 | |
1227 | _ExtractKey& |
1228 | () { return __ebo_extract_key::_S_get(*this); } |
1229 | |
1230 | const _Hash& |
1231 | _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); } |
1232 | |
1233 | _Hash& |
1234 | _M_ranged_hash() { return __ebo_hash::_S_get(*this); } |
1235 | }; |
1236 | |
1237 | // No specialization for ranged hash function while caching hash codes. |
1238 | // That combination is meaningless, and trying to do it is an error. |
1239 | |
1240 | /// Specialization: ranged hash function, cache hash codes. This |
1241 | /// combination is meaningless, so we provide only a declaration |
1242 | /// and no definition. |
1243 | template<typename _Key, typename _Value, typename _ExtractKey, |
1244 | typename _H1, typename _H2, typename _Hash> |
1245 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>; |
1246 | |
1247 | /// Specialization: hash function and range-hashing function, no |
1248 | /// caching of hash codes. |
1249 | /// Provides typedef and accessor required by C++ 11. |
1250 | template<typename _Key, typename _Value, typename _ExtractKey, |
1251 | typename _H1, typename _H2> |
1252 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1253 | _Default_ranged_hash, false> |
1254 | : private _Hashtable_ebo_helper<0, _ExtractKey>, |
1255 | private _Hashtable_ebo_helper<1, _H1>, |
1256 | private _Hashtable_ebo_helper<2, _H2> |
1257 | { |
1258 | private: |
1259 | using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; |
1260 | using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; |
1261 | using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; |
1262 | |
1263 | // Gives the local iterator implementation access to _M_bucket_index(). |
1264 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1265 | _Default_ranged_hash, false>; |
1266 | |
1267 | public: |
1268 | typedef _H1 hasher; |
1269 | |
1270 | hasher |
1271 | hash_function() const |
1272 | { return _M_h1(); } |
1273 | |
1274 | protected: |
1275 | typedef std::size_t __hash_code; |
1276 | typedef _Hash_node<_Value, false> __node_type; |
1277 | |
1278 | // We need the default constructor for the local iterators and _Hashtable |
1279 | // default constructor. |
1280 | _Hash_code_base() = default; |
1281 | |
1282 | _Hash_code_base(const _ExtractKey& __ex, |
1283 | const _H1& __h1, const _H2& __h2, |
1284 | const _Default_ranged_hash&) |
1285 | : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } |
1286 | |
1287 | __hash_code |
1288 | _M_hash_code(const _Key& __k) const |
1289 | { return _M_h1()(__k); } |
1290 | |
1291 | std::size_t |
1292 | _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const |
1293 | { return _M_h2()(__c, __n); } |
1294 | |
1295 | std::size_t |
1296 | _M_bucket_index(const __node_type* __p, std::size_t __n) const |
1297 | noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>())) |
1298 | && noexcept(declval<const _H2&>()((__hash_code)0, |
1299 | (std::size_t)0)) ) |
1300 | { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); } |
1301 | |
1302 | void |
1303 | _M_store_code(__node_type*, __hash_code) const |
1304 | { } |
1305 | |
1306 | void |
1307 | _M_copy_code(__node_type*, const __node_type*) const |
1308 | { } |
1309 | |
1310 | void |
1311 | _M_swap(_Hash_code_base& __x) |
1312 | { |
1313 | std::swap(_M_extract(), __x._M_extract()); |
1314 | std::swap(_M_h1(), __x._M_h1()); |
1315 | std::swap(_M_h2(), __x._M_h2()); |
1316 | } |
1317 | |
1318 | const _ExtractKey& |
1319 | () const { return __ebo_extract_key::_S_cget(*this); } |
1320 | |
1321 | _ExtractKey& |
1322 | () { return __ebo_extract_key::_S_get(*this); } |
1323 | |
1324 | const _H1& |
1325 | _M_h1() const { return __ebo_h1::_S_cget(*this); } |
1326 | |
1327 | _H1& |
1328 | _M_h1() { return __ebo_h1::_S_get(*this); } |
1329 | |
1330 | const _H2& |
1331 | _M_h2() const { return __ebo_h2::_S_cget(*this); } |
1332 | |
1333 | _H2& |
1334 | _M_h2() { return __ebo_h2::_S_get(*this); } |
1335 | }; |
1336 | |
1337 | /// Specialization: hash function and range-hashing function, |
1338 | /// caching hash codes. H is provided but ignored. Provides |
1339 | /// typedef and accessor required by C++ 11. |
1340 | template<typename _Key, typename _Value, typename _ExtractKey, |
1341 | typename _H1, typename _H2> |
1342 | struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1343 | _Default_ranged_hash, true> |
1344 | : private _Hashtable_ebo_helper<0, _ExtractKey>, |
1345 | private _Hashtable_ebo_helper<1, _H1>, |
1346 | private _Hashtable_ebo_helper<2, _H2> |
1347 | { |
1348 | private: |
1349 | // Gives the local iterator implementation access to _M_h2(). |
1350 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, |
1351 | _Default_ranged_hash, true>; |
1352 | |
1353 | using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; |
1354 | using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; |
1355 | using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; |
1356 | |
1357 | public: |
1358 | typedef _H1 hasher; |
1359 | |
1360 | hasher |
1361 | hash_function() const |
1362 | { return _M_h1(); } |
1363 | |
1364 | protected: |
1365 | typedef std::size_t __hash_code; |
1366 | typedef _Hash_node<_Value, true> __node_type; |
1367 | |
1368 | // We need the default constructor for _Hashtable default constructor. |
1369 | _Hash_code_base() = default; |
1370 | _Hash_code_base(const _ExtractKey& __ex, |
1371 | const _H1& __h1, const _H2& __h2, |
1372 | const _Default_ranged_hash&) |
1373 | : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } |
1374 | |
1375 | __hash_code |
1376 | _M_hash_code(const _Key& __k) const |
1377 | { return _M_h1()(__k); } |
1378 | |
1379 | std::size_t |
1380 | _M_bucket_index(const _Key&, __hash_code __c, |
1381 | std::size_t __n) const |
1382 | { return _M_h2()(__c, __n); } |
1383 | |
1384 | std::size_t |
1385 | _M_bucket_index(const __node_type* __p, std::size_t __n) const |
1386 | noexcept( noexcept(declval<const _H2&>()((__hash_code)0, |
1387 | (std::size_t)0)) ) |
1388 | { return _M_h2()(__p->_M_hash_code, __n); } |
1389 | |
1390 | void |
1391 | _M_store_code(__node_type* __n, __hash_code __c) const |
1392 | { __n->_M_hash_code = __c; } |
1393 | |
1394 | void |
1395 | _M_copy_code(__node_type* __to, const __node_type* __from) const |
1396 | { __to->_M_hash_code = __from->_M_hash_code; } |
1397 | |
1398 | void |
1399 | _M_swap(_Hash_code_base& __x) |
1400 | { |
1401 | std::swap(_M_extract(), __x._M_extract()); |
1402 | std::swap(_M_h1(), __x._M_h1()); |
1403 | std::swap(_M_h2(), __x._M_h2()); |
1404 | } |
1405 | |
1406 | const _ExtractKey& |
1407 | () const { return __ebo_extract_key::_S_cget(*this); } |
1408 | |
1409 | _ExtractKey& |
1410 | () { return __ebo_extract_key::_S_get(*this); } |
1411 | |
1412 | const _H1& |
1413 | _M_h1() const { return __ebo_h1::_S_cget(*this); } |
1414 | |
1415 | _H1& |
1416 | _M_h1() { return __ebo_h1::_S_get(*this); } |
1417 | |
1418 | const _H2& |
1419 | _M_h2() const { return __ebo_h2::_S_cget(*this); } |
1420 | |
1421 | _H2& |
1422 | _M_h2() { return __ebo_h2::_S_get(*this); } |
1423 | }; |
1424 | |
1425 | /** |
1426 | * Primary class template _Equal_helper. |
1427 | * |
1428 | */ |
1429 | template <typename _Key, typename _Value, typename _ExtractKey, |
1430 | typename _Equal, typename _HashCodeType, |
1431 | bool __cache_hash_code> |
1432 | struct _Equal_helper; |
1433 | |
1434 | /// Specialization. |
1435 | template<typename _Key, typename _Value, typename _ExtractKey, |
1436 | typename _Equal, typename _HashCodeType> |
1437 | struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true> |
1438 | { |
1439 | static bool |
1440 | _S_equals(const _Equal& __eq, const _ExtractKey& , |
1441 | const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n) |
1442 | { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); } |
1443 | }; |
1444 | |
1445 | /// Specialization. |
1446 | template<typename _Key, typename _Value, typename _ExtractKey, |
1447 | typename _Equal, typename _HashCodeType> |
1448 | struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false> |
1449 | { |
1450 | static bool |
1451 | _S_equals(const _Equal& __eq, const _ExtractKey& , |
1452 | const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n) |
1453 | { return __eq(__k, __extract(__n->_M_v())); } |
1454 | }; |
1455 | |
1456 | |
1457 | /// Partial specialization used when nodes contain a cached hash code. |
1458 | template<typename _Key, typename _Value, typename _ExtractKey, |
1459 | typename _H1, typename _H2, typename _Hash> |
1460 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1461 | _H1, _H2, _Hash, true> |
1462 | : private _Hashtable_ebo_helper<0, _H2> |
1463 | { |
1464 | protected: |
1465 | using __base_type = _Hashtable_ebo_helper<0, _H2>; |
1466 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1467 | _H1, _H2, _Hash, true>; |
1468 | |
1469 | _Local_iterator_base() = default; |
1470 | _Local_iterator_base(const __hash_code_base& __base, |
1471 | _Hash_node<_Value, true>* __p, |
1472 | std::size_t __bkt, std::size_t __bkt_count) |
1473 | : __base_type(__base._M_h2()), |
1474 | _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } |
1475 | |
1476 | void |
1477 | _M_incr() |
1478 | { |
1479 | _M_cur = _M_cur->_M_next(); |
1480 | if (_M_cur) |
1481 | { |
1482 | std::size_t __bkt |
1483 | = __base_type::_S_get(*this)(_M_cur->_M_hash_code, |
1484 | _M_bucket_count); |
1485 | if (__bkt != _M_bucket) |
1486 | _M_cur = nullptr; |
1487 | } |
1488 | } |
1489 | |
1490 | _Hash_node<_Value, true>* _M_cur; |
1491 | std::size_t _M_bucket; |
1492 | std::size_t _M_bucket_count; |
1493 | |
1494 | public: |
1495 | const void* |
1496 | _M_curr() const { return _M_cur; } // for equality ops |
1497 | |
1498 | std::size_t |
1499 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1500 | }; |
1501 | |
1502 | // Uninitialized storage for a _Hash_code_base. |
1503 | // This type is DefaultConstructible and Assignable even if the |
1504 | // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
1505 | // can be DefaultConstructible and Assignable. |
1506 | template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
1507 | struct _Hash_code_storage |
1508 | { |
1509 | __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
1510 | |
1511 | _Tp* |
1512 | _M_h() { return _M_storage._M_ptr(); } |
1513 | |
1514 | const _Tp* |
1515 | _M_h() const { return _M_storage._M_ptr(); } |
1516 | }; |
1517 | |
1518 | // Empty partial specialization for empty _Hash_code_base types. |
1519 | template<typename _Tp> |
1520 | struct _Hash_code_storage<_Tp, true> |
1521 | { |
1522 | static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
1523 | |
1524 | // As _Tp is an empty type there will be no bytes written/read through |
1525 | // the cast pointer, so no strict-aliasing violation. |
1526 | _Tp* |
1527 | _M_h() { return reinterpret_cast<_Tp*>(this); } |
1528 | |
1529 | const _Tp* |
1530 | _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
1531 | }; |
1532 | |
1533 | template<typename _Key, typename _Value, typename _ExtractKey, |
1534 | typename _H1, typename _H2, typename _Hash> |
1535 | using __hash_code_for_local_iter |
1536 | = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
1537 | _H1, _H2, _Hash, false>>; |
1538 | |
1539 | // Partial specialization used when hash codes are not cached |
1540 | template<typename _Key, typename _Value, typename _ExtractKey, |
1541 | typename _H1, typename _H2, typename _Hash> |
1542 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1543 | _H1, _H2, _Hash, false> |
1544 | : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash> |
1545 | { |
1546 | protected: |
1547 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1548 | _H1, _H2, _Hash, false>; |
1549 | |
1550 | _Local_iterator_base() : _M_bucket_count(-1) { } |
1551 | |
1552 | _Local_iterator_base(const __hash_code_base& __base, |
1553 | _Hash_node<_Value, false>* __p, |
1554 | std::size_t __bkt, std::size_t __bkt_count) |
1555 | : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1556 | { _M_init(__base); } |
1557 | |
1558 | ~_Local_iterator_base() |
1559 | { |
1560 | if (_M_bucket_count != -1) |
1561 | _M_destroy(); |
1562 | } |
1563 | |
1564 | _Local_iterator_base(const _Local_iterator_base& __iter) |
1565 | : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket), |
1566 | _M_bucket_count(__iter._M_bucket_count) |
1567 | { |
1568 | if (_M_bucket_count != -1) |
1569 | _M_init(*__iter._M_h()); |
1570 | } |
1571 | |
1572 | _Local_iterator_base& |
1573 | operator=(const _Local_iterator_base& __iter) |
1574 | { |
1575 | if (_M_bucket_count != -1) |
1576 | _M_destroy(); |
1577 | _M_cur = __iter._M_cur; |
1578 | _M_bucket = __iter._M_bucket; |
1579 | _M_bucket_count = __iter._M_bucket_count; |
1580 | if (_M_bucket_count != -1) |
1581 | _M_init(*__iter._M_h()); |
1582 | return *this; |
1583 | } |
1584 | |
1585 | void |
1586 | _M_incr() |
1587 | { |
1588 | _M_cur = _M_cur->_M_next(); |
1589 | if (_M_cur) |
1590 | { |
1591 | std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur, |
1592 | _M_bucket_count); |
1593 | if (__bkt != _M_bucket) |
1594 | _M_cur = nullptr; |
1595 | } |
1596 | } |
1597 | |
1598 | _Hash_node<_Value, false>* _M_cur; |
1599 | std::size_t _M_bucket; |
1600 | std::size_t _M_bucket_count; |
1601 | |
1602 | void |
1603 | _M_init(const __hash_code_base& __base) |
1604 | { ::new(this->_M_h()) __hash_code_base(__base); } |
1605 | |
1606 | void |
1607 | _M_destroy() { this->_M_h()->~__hash_code_base(); } |
1608 | |
1609 | public: |
1610 | const void* |
1611 | _M_curr() const { return _M_cur; } // for equality ops and debug mode |
1612 | |
1613 | std::size_t |
1614 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1615 | }; |
1616 | |
1617 | template<typename _Key, typename _Value, typename _ExtractKey, |
1618 | typename _H1, typename _H2, typename _Hash, bool __cache> |
1619 | inline bool |
1620 | operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1621 | _H1, _H2, _Hash, __cache>& __x, |
1622 | const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1623 | _H1, _H2, _Hash, __cache>& __y) |
1624 | { return __x._M_curr() == __y._M_curr(); } |
1625 | |
1626 | template<typename _Key, typename _Value, typename _ExtractKey, |
1627 | typename _H1, typename _H2, typename _Hash, bool __cache> |
1628 | inline bool |
1629 | operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1630 | _H1, _H2, _Hash, __cache>& __x, |
1631 | const _Local_iterator_base<_Key, _Value, _ExtractKey, |
1632 | _H1, _H2, _Hash, __cache>& __y) |
1633 | { return __x._M_curr() != __y._M_curr(); } |
1634 | |
1635 | /// local iterators |
1636 | template<typename _Key, typename _Value, typename _ExtractKey, |
1637 | typename _H1, typename _H2, typename _Hash, |
1638 | bool __constant_iterators, bool __cache> |
1639 | struct _Local_iterator |
1640 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1641 | _H1, _H2, _Hash, __cache> |
1642 | { |
1643 | private: |
1644 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1645 | _H1, _H2, _Hash, __cache>; |
1646 | using __hash_code_base = typename __base_type::__hash_code_base; |
1647 | public: |
1648 | typedef _Value value_type; |
1649 | typedef typename std::conditional<__constant_iterators, |
1650 | const _Value*, _Value*>::type |
1651 | pointer; |
1652 | typedef typename std::conditional<__constant_iterators, |
1653 | const _Value&, _Value&>::type |
1654 | reference; |
1655 | typedef std::ptrdiff_t difference_type; |
1656 | typedef std::forward_iterator_tag iterator_category; |
1657 | |
1658 | _Local_iterator() = default; |
1659 | |
1660 | _Local_iterator(const __hash_code_base& __base, |
1661 | _Hash_node<_Value, __cache>* __p, |
1662 | std::size_t __bkt, std::size_t __bkt_count) |
1663 | : __base_type(__base, __p, __bkt, __bkt_count) |
1664 | { } |
1665 | |
1666 | reference |
1667 | operator*() const |
1668 | { return this->_M_cur->_M_v(); } |
1669 | |
1670 | pointer |
1671 | operator->() const |
1672 | { return this->_M_cur->_M_valptr(); } |
1673 | |
1674 | _Local_iterator& |
1675 | operator++() |
1676 | { |
1677 | this->_M_incr(); |
1678 | return *this; |
1679 | } |
1680 | |
1681 | _Local_iterator |
1682 | operator++(int) |
1683 | { |
1684 | _Local_iterator __tmp(*this); |
1685 | this->_M_incr(); |
1686 | return __tmp; |
1687 | } |
1688 | }; |
1689 | |
1690 | /// local const_iterators |
1691 | template<typename _Key, typename _Value, typename _ExtractKey, |
1692 | typename _H1, typename _H2, typename _Hash, |
1693 | bool __constant_iterators, bool __cache> |
1694 | struct _Local_const_iterator |
1695 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1696 | _H1, _H2, _Hash, __cache> |
1697 | { |
1698 | private: |
1699 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1700 | _H1, _H2, _Hash, __cache>; |
1701 | using __hash_code_base = typename __base_type::__hash_code_base; |
1702 | |
1703 | public: |
1704 | typedef _Value value_type; |
1705 | typedef const _Value* pointer; |
1706 | typedef const _Value& reference; |
1707 | typedef std::ptrdiff_t difference_type; |
1708 | typedef std::forward_iterator_tag iterator_category; |
1709 | |
1710 | _Local_const_iterator() = default; |
1711 | |
1712 | _Local_const_iterator(const __hash_code_base& __base, |
1713 | _Hash_node<_Value, __cache>* __p, |
1714 | std::size_t __bkt, std::size_t __bkt_count) |
1715 | : __base_type(__base, __p, __bkt, __bkt_count) |
1716 | { } |
1717 | |
1718 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
1719 | _H1, _H2, _Hash, |
1720 | __constant_iterators, |
1721 | __cache>& __x) |
1722 | : __base_type(__x) |
1723 | { } |
1724 | |
1725 | reference |
1726 | operator*() const |
1727 | { return this->_M_cur->_M_v(); } |
1728 | |
1729 | pointer |
1730 | operator->() const |
1731 | { return this->_M_cur->_M_valptr(); } |
1732 | |
1733 | _Local_const_iterator& |
1734 | operator++() |
1735 | { |
1736 | this->_M_incr(); |
1737 | return *this; |
1738 | } |
1739 | |
1740 | _Local_const_iterator |
1741 | operator++(int) |
1742 | { |
1743 | _Local_const_iterator __tmp(*this); |
1744 | this->_M_incr(); |
1745 | return __tmp; |
1746 | } |
1747 | }; |
1748 | |
1749 | /** |
1750 | * Primary class template _Hashtable_base. |
1751 | * |
1752 | * Helper class adding management of _Equal functor to |
1753 | * _Hash_code_base type. |
1754 | * |
1755 | * Base class templates are: |
1756 | * - __detail::_Hash_code_base |
1757 | * - __detail::_Hashtable_ebo_helper |
1758 | */ |
1759 | template<typename _Key, typename _Value, |
1760 | typename _ExtractKey, typename _Equal, |
1761 | typename _H1, typename _H2, typename _Hash, typename _Traits> |
1762 | struct _Hashtable_base |
1763 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, |
1764 | _Traits::__hash_cached::value>, |
1765 | private _Hashtable_ebo_helper<0, _Equal> |
1766 | { |
1767 | public: |
1768 | typedef _Key key_type; |
1769 | typedef _Value value_type; |
1770 | typedef _Equal key_equal; |
1771 | typedef std::size_t size_type; |
1772 | typedef std::ptrdiff_t difference_type; |
1773 | |
1774 | using __traits_type = _Traits; |
1775 | using __hash_cached = typename __traits_type::__hash_cached; |
1776 | using __constant_iterators = typename __traits_type::__constant_iterators; |
1777 | using __unique_keys = typename __traits_type::__unique_keys; |
1778 | |
1779 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1780 | _H1, _H2, _Hash, |
1781 | __hash_cached::value>; |
1782 | |
1783 | using __hash_code = typename __hash_code_base::__hash_code; |
1784 | using __node_type = typename __hash_code_base::__node_type; |
1785 | |
1786 | using iterator = __detail::_Node_iterator<value_type, |
1787 | __constant_iterators::value, |
1788 | __hash_cached::value>; |
1789 | |
1790 | using const_iterator = __detail::_Node_const_iterator<value_type, |
1791 | __constant_iterators::value, |
1792 | __hash_cached::value>; |
1793 | |
1794 | using local_iterator = __detail::_Local_iterator<key_type, value_type, |
1795 | _ExtractKey, _H1, _H2, _Hash, |
1796 | __constant_iterators::value, |
1797 | __hash_cached::value>; |
1798 | |
1799 | using const_local_iterator = __detail::_Local_const_iterator<key_type, |
1800 | value_type, |
1801 | _ExtractKey, _H1, _H2, _Hash, |
1802 | __constant_iterators::value, |
1803 | __hash_cached::value>; |
1804 | |
1805 | using __ireturn_type = typename std::conditional<__unique_keys::value, |
1806 | std::pair<iterator, bool>, |
1807 | iterator>::type; |
1808 | private: |
1809 | using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
1810 | using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal, |
1811 | __hash_code, __hash_cached::value>; |
1812 | |
1813 | protected: |
1814 | _Hashtable_base() = default; |
1815 | _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, |
1816 | const _Hash& __hash, const _Equal& __eq) |
1817 | : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq) |
1818 | { } |
1819 | |
1820 | bool |
1821 | _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const |
1822 | { |
1823 | return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(), |
1824 | __k, __c, __n); |
1825 | } |
1826 | |
1827 | void |
1828 | _M_swap(_Hashtable_base& __x) |
1829 | { |
1830 | __hash_code_base::_M_swap(__x); |
1831 | std::swap(_M_eq(), __x._M_eq()); |
1832 | } |
1833 | |
1834 | const _Equal& |
1835 | _M_eq() const { return _EqualEBO::_S_cget(*this); } |
1836 | |
1837 | _Equal& |
1838 | _M_eq() { return _EqualEBO::_S_get(*this); } |
1839 | }; |
1840 | |
1841 | /** |
1842 | * struct _Equality_base. |
1843 | * |
1844 | * Common types and functions for class _Equality. |
1845 | */ |
1846 | struct _Equality_base |
1847 | { |
1848 | protected: |
1849 | template<typename _Uiterator> |
1850 | static bool |
1851 | _S_is_permutation(_Uiterator, _Uiterator, _Uiterator); |
1852 | }; |
1853 | |
1854 | // See std::is_permutation in N3068. |
1855 | template<typename _Uiterator> |
1856 | bool |
1857 | _Equality_base:: |
1858 | _S_is_permutation(_Uiterator __first1, _Uiterator __last1, |
1859 | _Uiterator __first2) |
1860 | { |
1861 | for (; __first1 != __last1; ++__first1, ++__first2) |
1862 | if (!(*__first1 == *__first2)) |
1863 | break; |
1864 | |
1865 | if (__first1 == __last1) |
1866 | return true; |
1867 | |
1868 | _Uiterator __last2 = __first2; |
1869 | std::advance(__last2, std::distance(__first1, __last1)); |
1870 | |
1871 | for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1) |
1872 | { |
1873 | _Uiterator __tmp = __first1; |
1874 | while (__tmp != __it1 && !bool(*__tmp == *__it1)) |
1875 | ++__tmp; |
1876 | |
1877 | // We've seen this one before. |
1878 | if (__tmp != __it1) |
1879 | continue; |
1880 | |
1881 | std::ptrdiff_t __n2 = 0; |
1882 | for (__tmp = __first2; __tmp != __last2; ++__tmp) |
1883 | if (*__tmp == *__it1) |
1884 | ++__n2; |
1885 | |
1886 | if (!__n2) |
1887 | return false; |
1888 | |
1889 | std::ptrdiff_t __n1 = 0; |
1890 | for (__tmp = __it1; __tmp != __last1; ++__tmp) |
1891 | if (*__tmp == *__it1) |
1892 | ++__n1; |
1893 | |
1894 | if (__n1 != __n2) |
1895 | return false; |
1896 | } |
1897 | return true; |
1898 | } |
1899 | |
1900 | /** |
1901 | * Primary class template _Equality. |
1902 | * |
1903 | * This is for implementing equality comparison for unordered |
1904 | * containers, per N3068, by John Lakos and Pablo Halpern. |
1905 | * Algorithmically, we follow closely the reference implementations |
1906 | * therein. |
1907 | */ |
1908 | template<typename _Key, typename _Value, typename _Alloc, |
1909 | typename _ExtractKey, typename _Equal, |
1910 | typename _H1, typename _H2, typename _Hash, |
1911 | typename _RehashPolicy, typename _Traits, |
1912 | bool _Unique_keys = _Traits::__unique_keys::value> |
1913 | struct _Equality; |
1914 | |
1915 | /// Specialization. |
1916 | template<typename _Key, typename _Value, typename _Alloc, |
1917 | typename _ExtractKey, typename _Equal, |
1918 | typename _H1, typename _H2, typename _Hash, |
1919 | typename _RehashPolicy, typename _Traits> |
1920 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1921 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true> |
1922 | { |
1923 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1924 | _H1, _H2, _Hash, _RehashPolicy, _Traits>; |
1925 | |
1926 | bool |
1927 | _M_equal(const __hashtable&) const; |
1928 | }; |
1929 | |
1930 | template<typename _Key, typename _Value, typename _Alloc, |
1931 | typename _ExtractKey, typename _Equal, |
1932 | typename _H1, typename _H2, typename _Hash, |
1933 | typename _RehashPolicy, typename _Traits> |
1934 | bool |
1935 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1936 | _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: |
1937 | _M_equal(const __hashtable& __other) const |
1938 | { |
1939 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1940 | |
1941 | if (__this->size() != __other.size()) |
1942 | return false; |
1943 | |
1944 | for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) |
1945 | { |
1946 | const auto __ity = __other.find(_ExtractKey()(*__itx)); |
1947 | if (__ity == __other.end() || !bool(*__ity == *__itx)) |
1948 | return false; |
1949 | } |
1950 | return true; |
1951 | } |
1952 | |
1953 | /// Specialization. |
1954 | template<typename _Key, typename _Value, typename _Alloc, |
1955 | typename _ExtractKey, typename _Equal, |
1956 | typename _H1, typename _H2, typename _Hash, |
1957 | typename _RehashPolicy, typename _Traits> |
1958 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1959 | _H1, _H2, _Hash, _RehashPolicy, _Traits, false> |
1960 | : public _Equality_base |
1961 | { |
1962 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1963 | _H1, _H2, _Hash, _RehashPolicy, _Traits>; |
1964 | |
1965 | bool |
1966 | _M_equal(const __hashtable&) const; |
1967 | }; |
1968 | |
1969 | template<typename _Key, typename _Value, typename _Alloc, |
1970 | typename _ExtractKey, typename _Equal, |
1971 | typename _H1, typename _H2, typename _Hash, |
1972 | typename _RehashPolicy, typename _Traits> |
1973 | bool |
1974 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1975 | _H1, _H2, _Hash, _RehashPolicy, _Traits, false>:: |
1976 | _M_equal(const __hashtable& __other) const |
1977 | { |
1978 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1979 | |
1980 | if (__this->size() != __other.size()) |
1981 | return false; |
1982 | |
1983 | for (auto __itx = __this->begin(); __itx != __this->end();) |
1984 | { |
1985 | const auto __xrange = __this->equal_range(_ExtractKey()(*__itx)); |
1986 | const auto __yrange = __other.equal_range(_ExtractKey()(*__itx)); |
1987 | |
1988 | if (std::distance(__xrange.first, __xrange.second) |
1989 | != std::distance(__yrange.first, __yrange.second)) |
1990 | return false; |
1991 | |
1992 | if (!_S_is_permutation(__xrange.first, __xrange.second, |
1993 | __yrange.first)) |
1994 | return false; |
1995 | |
1996 | __itx = __xrange.second; |
1997 | } |
1998 | return true; |
1999 | } |
2000 | |
2001 | /** |
2002 | * This type deals with all allocation and keeps an allocator instance through |
2003 | * inheritance to benefit from EBO when possible. |
2004 | */ |
2005 | template<typename _NodeAlloc> |
2006 | struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
2007 | { |
2008 | private: |
2009 | using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
2010 | public: |
2011 | using __node_type = typename _NodeAlloc::value_type; |
2012 | using __node_alloc_type = _NodeAlloc; |
2013 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
2014 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
2015 | |
2016 | using __value_alloc_traits = typename __node_alloc_traits::template |
2017 | rebind_traits<typename __node_type::value_type>; |
2018 | |
2019 | using __node_base = __detail::_Hash_node_base; |
2020 | using __bucket_type = __node_base*; |
2021 | using __bucket_alloc_type = |
2022 | __alloc_rebind<__node_alloc_type, __bucket_type>; |
2023 | using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>; |
2024 | |
2025 | _Hashtable_alloc() = default; |
2026 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
2027 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
2028 | |
2029 | template<typename _Alloc> |
2030 | _Hashtable_alloc(_Alloc&& __a) |
2031 | : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
2032 | { } |
2033 | |
2034 | __node_alloc_type& |
2035 | _M_node_allocator() |
2036 | { return __ebo_node_alloc::_S_get(*this); } |
2037 | |
2038 | const __node_alloc_type& |
2039 | _M_node_allocator() const |
2040 | { return __ebo_node_alloc::_S_cget(*this); } |
2041 | |
2042 | template<typename... _Args> |
2043 | __node_type* |
2044 | _M_allocate_node(_Args&&... __args); |
2045 | |
2046 | void |
2047 | _M_deallocate_node(__node_type* __n); |
2048 | |
2049 | void |
2050 | _M_deallocate_node_ptr(__node_type* __n); |
2051 | |
2052 | // Deallocate the linked list of nodes pointed to by __n |
2053 | void |
2054 | _M_deallocate_nodes(__node_type* __n); |
2055 | |
2056 | __bucket_type* |
2057 | _M_allocate_buckets(std::size_t __n); |
2058 | |
2059 | void |
2060 | _M_deallocate_buckets(__bucket_type*, std::size_t __n); |
2061 | }; |
2062 | |
2063 | // Definitions of class template _Hashtable_alloc's out-of-line member |
2064 | // functions. |
2065 | template<typename _NodeAlloc> |
2066 | template<typename... _Args> |
2067 | typename _Hashtable_alloc<_NodeAlloc>::__node_type* |
2068 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
2069 | { |
2070 | auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); |
2071 | __node_type* __n = std::__to_address(__nptr); |
2072 | __try |
2073 | { |
2074 | ::new ((void*)__n) __node_type; |
2075 | __node_alloc_traits::construct(_M_node_allocator(), |
2076 | __n->_M_valptr(), |
2077 | std::forward<_Args>(__args)...); |
2078 | return __n; |
2079 | } |
2080 | __catch(...) |
2081 | { |
2082 | __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); |
2083 | __throw_exception_again; |
2084 | } |
2085 | } |
2086 | |
2087 | template<typename _NodeAlloc> |
2088 | void |
2089 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n) |
2090 | { |
2091 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
2092 | _M_deallocate_node_ptr(__n); |
2093 | } |
2094 | |
2095 | template<typename _NodeAlloc> |
2096 | void |
2097 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_type* __n) |
2098 | { |
2099 | typedef typename __node_alloc_traits::pointer _Ptr; |
2100 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
2101 | __n->~__node_type(); |
2102 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
2103 | } |
2104 | |
2105 | template<typename _NodeAlloc> |
2106 | void |
2107 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n) |
2108 | { |
2109 | while (__n) |
2110 | { |
2111 | __node_type* __tmp = __n; |
2112 | __n = __n->_M_next(); |
2113 | _M_deallocate_node(__tmp); |
2114 | } |
2115 | } |
2116 | |
2117 | template<typename _NodeAlloc> |
2118 | typename _Hashtable_alloc<_NodeAlloc>::__bucket_type* |
2119 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n) |
2120 | { |
2121 | __bucket_alloc_type __alloc(_M_node_allocator()); |
2122 | |
2123 | auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n); |
2124 | __bucket_type* __p = std::__to_address(__ptr); |
2125 | __builtin_memset(__p, 0, __n * sizeof(__bucket_type)); |
2126 | return __p; |
2127 | } |
2128 | |
2129 | template<typename _NodeAlloc> |
2130 | void |
2131 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts, |
2132 | std::size_t __n) |
2133 | { |
2134 | typedef typename __bucket_alloc_traits::pointer _Ptr; |
2135 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
2136 | __bucket_alloc_type __alloc(_M_node_allocator()); |
2137 | __bucket_alloc_traits::deallocate(__alloc, __ptr, __n); |
2138 | } |
2139 | |
2140 | //@} hashtable-detail |
2141 | } // namespace __detail |
2142 | _GLIBCXX_END_NAMESPACE_VERSION |
2143 | } // namespace std |
2144 | |
2145 | #endif // _HASHTABLE_POLICY_H |
2146 | |