| 1 | // This file is part of SmallBASIC | 
|---|
| 2 | // | 
|---|
| 3 | // Math RTL | 
|---|
| 4 | // | 
|---|
| 5 | // This program is distributed under the terms of the GPL v2.0 or later | 
|---|
| 6 | // Download the GNU Public License (GPL) from www.gnu.org | 
|---|
| 7 | // | 
|---|
| 8 | // Original headers from matrx042.zip follow: | 
|---|
| 9 |  | 
|---|
| 10 | /*----------------------------------------------------------------------------- | 
|---|
| 11 | *      desc:   matrix mathematics | 
|---|
| 12 | *      by:     ko shu pui, patrick | 
|---|
| 13 | *      date:   24 nov 91       v0.1b | 
|---|
| 14 | *      ref: | 
|---|
| 15 | *      [1] Mary L.Boas, "Mathematical Methods in the Physical Sciene," | 
|---|
| 16 | *      John Wiley & Sons, 2nd Ed., 1983. Chap 3. | 
|---|
| 17 | * | 
|---|
| 18 | *      [2] Kendall E.Atkinson, "An Introduction to Numberical Analysis," | 
|---|
| 19 | *      John Wiley & Sons, 1978. | 
|---|
| 20 | * | 
|---|
| 21 | *      [3] Alfred V.Aho, John E.Hopcroft, Jeffrey D.Ullman, "The Design | 
|---|
| 22 | *      and Analysis of Computer Algorithms," 1974. | 
|---|
| 23 | * | 
|---|
| 24 | *----------------------------------------------------------------------------*/ | 
|---|
| 25 |  | 
|---|
| 26 | #include "common/sys.h" | 
|---|
| 27 | #include "common/blib_math.h" | 
|---|
| 28 |  | 
|---|
| 29 | // creates a matrix of the given size | 
|---|
| 30 | var_num_t **mat_create(int row, int col) { | 
|---|
| 31 | var_num_t **m = (var_num_t **)malloc(sizeof(var_num_t *) * row); | 
|---|
| 32 | int i; | 
|---|
| 33 | for (i = 0; i < row; i++) { | 
|---|
| 34 | m[i] = (var_num_t *)malloc(sizeof(var_num_t) * col); | 
|---|
| 35 | } | 
|---|
| 36 |  | 
|---|
| 37 | return m; | 
|---|
| 38 | } | 
|---|
| 39 |  | 
|---|
| 40 | // free an allocated matrix | 
|---|
| 41 | void mat_free(var_num_t **m, int n) { | 
|---|
| 42 | int i; | 
|---|
| 43 | for (i = 0; i < n; i++) { | 
|---|
| 44 | free(m[i]); | 
|---|
| 45 | } | 
|---|
| 46 | free(m); | 
|---|
| 47 | } | 
|---|
| 48 |  | 
|---|
| 49 | // fill the matrix with zero values | 
|---|
| 50 | void mat_fill(var_num_t **A, int row, int col) { | 
|---|
| 51 | int i, j; | 
|---|
| 52 |  | 
|---|
| 53 | for (i = 0; i < row; i++) { | 
|---|
| 54 | for (j = 0; j < col; j++) { | 
|---|
| 55 | A[i][j] = 0.0; | 
|---|
| 56 | } | 
|---|
| 57 | } | 
|---|
| 58 | } | 
|---|
| 59 |  | 
|---|
| 60 | /* | 
|---|
| 61 | *----------------------------------------------------------------------------- | 
|---|
| 62 | *       funct:  mat_lu | 
|---|
| 63 | *       desct:  in-place LU decomposition with partial pivoting | 
|---|
| 64 | *       given:  !! A = square matrix (n x n) !ATTENTION! see commen | 
|---|
| 65 | *               P = permutation vector (n x 1) | 
|---|
| 66 | *       retrn:  number of permutation performed | 
|---|
| 67 | *               -1 means suspected singular matrix | 
|---|
| 68 | *       comen:  A will be overwritten to be a LU-composite matrix | 
|---|
| 69 | * | 
|---|
| 70 | *       note:   the LU decomposed may NOT be equal to the LU of | 
|---|
| 71 | *               the orignal matrix a. But equal to the LU of the | 
|---|
| 72 | *               rows interchanged matrix. | 
|---|
| 73 | *----------------------------------------------------------------------------- | 
|---|
| 74 | */ | 
|---|
| 75 | int mat_lu(var_num_t **A, var_num_t **P, int n) { | 
|---|
| 76 | int i, j, k, maxi, tmp, p; | 
|---|
| 77 | var_num_t c, c1; | 
|---|
| 78 |  | 
|---|
| 79 | for (p = 0, i = 0; i < n; i++) { | 
|---|
| 80 | P[i][0] = i; | 
|---|
| 81 | } | 
|---|
| 82 |  | 
|---|
| 83 | for (k = 0; k < n; k++) { | 
|---|
| 84 | /* | 
|---|
| 85 | * --- partial pivoting --- | 
|---|
| 86 | */ | 
|---|
| 87 | for (i = k, maxi = k, c = 0.0; i < n; i++) { | 
|---|
| 88 | c1 = fabsl(A[(int) P[i][0]][k]); | 
|---|
| 89 | if (c1 > c) { | 
|---|
| 90 | c = c1; | 
|---|
| 91 | maxi = i; | 
|---|
| 92 | } | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | /* | 
|---|
| 96 | * row exchange, update permutation vector | 
|---|
| 97 | */ | 
|---|
| 98 | if (k != maxi) { | 
|---|
| 99 | p++; | 
|---|
| 100 | tmp = P[k][0]; | 
|---|
| 101 | P[k][0] = P[maxi][0]; | 
|---|
| 102 | P[maxi][0] = tmp; | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | /* | 
|---|
| 106 | * suspected singular matrix | 
|---|
| 107 | */ | 
|---|
| 108 | if (A[(int) P[k][0]][k] == 0.0) { | 
|---|
| 109 | return -1; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | for (i = k + 1; i < n; i++) { | 
|---|
| 113 | /* | 
|---|
| 114 | * --- calculate m(i,j) --- | 
|---|
| 115 | */ | 
|---|
| 116 | A[(int) P[i][0]][k] = A[(int) P[i][0]][k] / A[(int) P[k][0]][k]; | 
|---|
| 117 |  | 
|---|
| 118 | /* | 
|---|
| 119 | * --- elimination --- | 
|---|
| 120 | */ | 
|---|
| 121 | for (j = k + 1; j < n; j++) { | 
|---|
| 122 | A[(int) P[i][0]][j] -= A[(int) P[i][0]][k] * A[(int) P[k][0]][j]; | 
|---|
| 123 | } | 
|---|
| 124 | } | 
|---|
| 125 | } | 
|---|
| 126 |  | 
|---|
| 127 | return p; | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | /* | 
|---|
| 131 | *----------------------------------------------------------------------------- | 
|---|
| 132 | *       funct:  mat_backsubs1 | 
|---|
| 133 | *       desct:  back substitution | 
|---|
| 134 | *       given:  A = square matrix A (LU composite) | 
|---|
| 135 | *               !! B = column matrix B (attention!, see comen) | 
|---|
| 136 | *               !! X = place to put the result of X | 
|---|
| 137 | *               P = Permutation vector (after calling mat_lu) | 
|---|
| 138 | *               xcol = column of x to put the result | 
|---|
| 139 | *       retrn:  column matrix X (of AX = B) | 
|---|
| 140 | *       comen:  B will be overwritten | 
|---|
| 141 | *----------------------------------------------------------------------------- | 
|---|
| 142 | */ | 
|---|
| 143 | var_num_t **mat_backsubs1(var_num_t **A, var_num_t **B, var_num_t **X, var_num_t **P, int xcol, int n) { | 
|---|
| 144 | int i, j, k; | 
|---|
| 145 | var_num_t sum; | 
|---|
| 146 |  | 
|---|
| 147 | for (k = 0; k < n; k++) { | 
|---|
| 148 | for (i = k + 1; i < n; i++) { | 
|---|
| 149 | B[(int) P[i][0]][0] -= A[(int) P[i][0]][k] * B[(int) P[k][0]][0]; | 
|---|
| 150 | } | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | X[n - 1][xcol] = B[(int) P[n - 1][0]][0] / A[(int) P[n - 1][0]][n - 1]; | 
|---|
| 154 | for (k = n - 2; k >= 0; k--) { | 
|---|
| 155 | sum = 0.0; | 
|---|
| 156 | for (j = k + 1; j < n; j++) { | 
|---|
| 157 | sum += A[(int) P[k][0]][j] * X[j][xcol]; | 
|---|
| 158 | } | 
|---|
| 159 | X[k][xcol] = (B[(int) P[k][0]][0] - sum) / A[(int) P[k][0]][k]; | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | return X; | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | /* | 
|---|
| 166 | *----------------------------------------------------------------------------- | 
|---|
| 167 | *      funct:  mat_inv | 
|---|
| 168 | *      desct:  find inverse of a matrix | 
|---|
| 169 | *      given:  a = square matrix a | 
|---|
| 170 | *      retrn:  square matrix Inverse(A) | 
|---|
| 171 | *              NULL = fails, singular matrix, or malloc() fails | 
|---|
| 172 | *----------------------------------------------------------------------------- | 
|---|
| 173 | */ | 
|---|
| 174 | void mat_inverse(var_num_t *a, const int n) { | 
|---|
| 175 | var_num_t **A = mat_create(n, n); | 
|---|
| 176 | var_num_t **B = mat_create(n, 1); | 
|---|
| 177 | var_num_t **C = mat_create(n, n); | 
|---|
| 178 | var_num_t **P = mat_create(n, 1); | 
|---|
| 179 |  | 
|---|
| 180 | int i, j; | 
|---|
| 181 |  | 
|---|
| 182 | // copy input matrix to working buffer | 
|---|
| 183 | for (i = 0; i < n; i++) { | 
|---|
| 184 | for (j = 0; j < n; j++) { | 
|---|
| 185 | A[i][j] = a[i * n + j]; | 
|---|
| 186 | } | 
|---|
| 187 | } | 
|---|
| 188 |  | 
|---|
| 189 | // LU-decomposition, also check for singular matrix | 
|---|
| 190 | if (mat_lu(A, P, n) != -1) { | 
|---|
| 191 | for (i = 0; i < n; i++) { | 
|---|
| 192 | mat_fill(B, n, 1); | 
|---|
| 193 | B[i][0] = 1.0; | 
|---|
| 194 | mat_backsubs1(A, B, C, P, i, n); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | // copy the result in C back to a | 
|---|
| 198 | for (i = 0; i < n; i++) { | 
|---|
| 199 | for (j = 0; j < n; j++) { | 
|---|
| 200 | a[i * n + j] = C[i][j]; | 
|---|
| 201 | } | 
|---|
| 202 | } | 
|---|
| 203 | } | 
|---|
| 204 |  | 
|---|
| 205 | // release memory | 
|---|
| 206 | mat_free(P, n); | 
|---|
| 207 | mat_free(C, n); | 
|---|
| 208 | mat_free(B, n); | 
|---|
| 209 | mat_free(A, n); | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|