1 | // This file is part of SmallBASIC |
2 | // |
3 | // Math RTL |
4 | // |
5 | // This program is distributed under the terms of the GPL v2.0 or later |
6 | // Download the GNU Public License (GPL) from www.gnu.org |
7 | // |
8 | // Original headers from matrx042.zip follow: |
9 | |
10 | /*----------------------------------------------------------------------------- |
11 | * desc: matrix mathematics |
12 | * by: ko shu pui, patrick |
13 | * date: 24 nov 91 v0.1b |
14 | * ref: |
15 | * [1] Mary L.Boas, "Mathematical Methods in the Physical Sciene," |
16 | * John Wiley & Sons, 2nd Ed., 1983. Chap 3. |
17 | * |
18 | * [2] Kendall E.Atkinson, "An Introduction to Numberical Analysis," |
19 | * John Wiley & Sons, 1978. |
20 | * |
21 | * [3] Alfred V.Aho, John E.Hopcroft, Jeffrey D.Ullman, "The Design |
22 | * and Analysis of Computer Algorithms," 1974. |
23 | * |
24 | *----------------------------------------------------------------------------*/ |
25 | |
26 | #include "common/sys.h" |
27 | #include "common/blib_math.h" |
28 | |
29 | // creates a matrix of the given size |
30 | var_num_t **mat_create(int row, int col) { |
31 | var_num_t **m = (var_num_t **)malloc(sizeof(var_num_t *) * row); |
32 | int i; |
33 | for (i = 0; i < row; i++) { |
34 | m[i] = (var_num_t *)malloc(sizeof(var_num_t) * col); |
35 | } |
36 | |
37 | return m; |
38 | } |
39 | |
40 | // free an allocated matrix |
41 | void mat_free(var_num_t **m, int n) { |
42 | int i; |
43 | for (i = 0; i < n; i++) { |
44 | free(m[i]); |
45 | } |
46 | free(m); |
47 | } |
48 | |
49 | // fill the matrix with zero values |
50 | void mat_fill(var_num_t **A, int row, int col) { |
51 | int i, j; |
52 | |
53 | for (i = 0; i < row; i++) { |
54 | for (j = 0; j < col; j++) { |
55 | A[i][j] = 0.0; |
56 | } |
57 | } |
58 | } |
59 | |
60 | /* |
61 | *----------------------------------------------------------------------------- |
62 | * funct: mat_lu |
63 | * desct: in-place LU decomposition with partial pivoting |
64 | * given: !! A = square matrix (n x n) !ATTENTION! see commen |
65 | * P = permutation vector (n x 1) |
66 | * retrn: number of permutation performed |
67 | * -1 means suspected singular matrix |
68 | * comen: A will be overwritten to be a LU-composite matrix |
69 | * |
70 | * note: the LU decomposed may NOT be equal to the LU of |
71 | * the orignal matrix a. But equal to the LU of the |
72 | * rows interchanged matrix. |
73 | *----------------------------------------------------------------------------- |
74 | */ |
75 | int mat_lu(var_num_t **A, var_num_t **P, int n) { |
76 | int i, j, k, maxi, tmp, p; |
77 | var_num_t c, c1; |
78 | |
79 | for (p = 0, i = 0; i < n; i++) { |
80 | P[i][0] = i; |
81 | } |
82 | |
83 | for (k = 0; k < n; k++) { |
84 | /* |
85 | * --- partial pivoting --- |
86 | */ |
87 | for (i = k, maxi = k, c = 0.0; i < n; i++) { |
88 | c1 = fabsl(A[(int) P[i][0]][k]); |
89 | if (c1 > c) { |
90 | c = c1; |
91 | maxi = i; |
92 | } |
93 | } |
94 | |
95 | /* |
96 | * row exchange, update permutation vector |
97 | */ |
98 | if (k != maxi) { |
99 | p++; |
100 | tmp = P[k][0]; |
101 | P[k][0] = P[maxi][0]; |
102 | P[maxi][0] = tmp; |
103 | } |
104 | |
105 | /* |
106 | * suspected singular matrix |
107 | */ |
108 | if (A[(int) P[k][0]][k] == 0.0) { |
109 | return -1; |
110 | } |
111 | |
112 | for (i = k + 1; i < n; i++) { |
113 | /* |
114 | * --- calculate m(i,j) --- |
115 | */ |
116 | A[(int) P[i][0]][k] = A[(int) P[i][0]][k] / A[(int) P[k][0]][k]; |
117 | |
118 | /* |
119 | * --- elimination --- |
120 | */ |
121 | for (j = k + 1; j < n; j++) { |
122 | A[(int) P[i][0]][j] -= A[(int) P[i][0]][k] * A[(int) P[k][0]][j]; |
123 | } |
124 | } |
125 | } |
126 | |
127 | return p; |
128 | } |
129 | |
130 | /* |
131 | *----------------------------------------------------------------------------- |
132 | * funct: mat_backsubs1 |
133 | * desct: back substitution |
134 | * given: A = square matrix A (LU composite) |
135 | * !! B = column matrix B (attention!, see comen) |
136 | * !! X = place to put the result of X |
137 | * P = Permutation vector (after calling mat_lu) |
138 | * xcol = column of x to put the result |
139 | * retrn: column matrix X (of AX = B) |
140 | * comen: B will be overwritten |
141 | *----------------------------------------------------------------------------- |
142 | */ |
143 | var_num_t **mat_backsubs1(var_num_t **A, var_num_t **B, var_num_t **X, var_num_t **P, int xcol, int n) { |
144 | int i, j, k; |
145 | var_num_t sum; |
146 | |
147 | for (k = 0; k < n; k++) { |
148 | for (i = k + 1; i < n; i++) { |
149 | B[(int) P[i][0]][0] -= A[(int) P[i][0]][k] * B[(int) P[k][0]][0]; |
150 | } |
151 | } |
152 | |
153 | X[n - 1][xcol] = B[(int) P[n - 1][0]][0] / A[(int) P[n - 1][0]][n - 1]; |
154 | for (k = n - 2; k >= 0; k--) { |
155 | sum = 0.0; |
156 | for (j = k + 1; j < n; j++) { |
157 | sum += A[(int) P[k][0]][j] * X[j][xcol]; |
158 | } |
159 | X[k][xcol] = (B[(int) P[k][0]][0] - sum) / A[(int) P[k][0]][k]; |
160 | } |
161 | |
162 | return X; |
163 | } |
164 | |
165 | /* |
166 | *----------------------------------------------------------------------------- |
167 | * funct: mat_inv |
168 | * desct: find inverse of a matrix |
169 | * given: a = square matrix a |
170 | * retrn: square matrix Inverse(A) |
171 | * NULL = fails, singular matrix, or malloc() fails |
172 | *----------------------------------------------------------------------------- |
173 | */ |
174 | void mat_inverse(var_num_t *a, const int n) { |
175 | var_num_t **A = mat_create(n, n); |
176 | var_num_t **B = mat_create(n, 1); |
177 | var_num_t **C = mat_create(n, n); |
178 | var_num_t **P = mat_create(n, 1); |
179 | |
180 | int i, j; |
181 | |
182 | // copy input matrix to working buffer |
183 | for (i = 0; i < n; i++) { |
184 | for (j = 0; j < n; j++) { |
185 | A[i][j] = a[i * n + j]; |
186 | } |
187 | } |
188 | |
189 | // LU-decomposition, also check for singular matrix |
190 | if (mat_lu(A, P, n) != -1) { |
191 | for (i = 0; i < n; i++) { |
192 | mat_fill(B, n, 1); |
193 | B[i][0] = 1.0; |
194 | mat_backsubs1(A, B, C, P, i, n); |
195 | } |
196 | |
197 | // copy the result in C back to a |
198 | for (i = 0; i < n; i++) { |
199 | for (j = 0; j < n; j++) { |
200 | a[i * n + j] = C[i][j]; |
201 | } |
202 | } |
203 | } |
204 | |
205 | // release memory |
206 | mat_free(P, n); |
207 | mat_free(C, n); |
208 | mat_free(B, n); |
209 | mat_free(A, n); |
210 | } |
211 | |