| 1 | /* | 
| 2 | ** 2004 April 6 | 
| 3 | ** | 
| 4 | ** The author disclaims copyright to this source code.  In place of | 
| 5 | ** a legal notice, here is a blessing: | 
| 6 | ** | 
| 7 | **    May you do good and not evil. | 
| 8 | **    May you find forgiveness for yourself and forgive others. | 
| 9 | **    May you share freely, never taking more than you give. | 
| 10 | ** | 
| 11 | ************************************************************************* | 
| 12 | ** This file implements an external (disk-based) database using BTrees. | 
| 13 | ** See the header comment on "btreeInt.h" for additional information. | 
| 14 | ** Including a description of file format and an overview of operation. | 
| 15 | */ | 
| 16 | #include "btreeInt.h" | 
| 17 |  | 
| 18 | /* | 
| 19 | ** The header string that appears at the beginning of every | 
| 20 | ** SQLite database. | 
| 21 | */ | 
| 22 | static const char [] = SQLITE_FILE_HEADER; | 
| 23 |  | 
| 24 | /* | 
| 25 | ** Set this global variable to 1 to enable tracing using the TRACE | 
| 26 | ** macro. | 
| 27 | */ | 
| 28 | #if 0 | 
| 29 | int sqlite3BtreeTrace=1;  /* True to enable tracing */ | 
| 30 | # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);} | 
| 31 | #else | 
| 32 | # define TRACE(X) | 
| 33 | #endif | 
| 34 |  | 
| 35 | /* | 
| 36 | ** Extract a 2-byte big-endian integer from an array of unsigned bytes. | 
| 37 | ** But if the value is zero, make it 65536. | 
| 38 | ** | 
| 39 | ** This routine is used to extract the "offset to cell content area" value | 
| 40 | ** from the header of a btree page.  If the page size is 65536 and the page | 
| 41 | ** is empty, the offset should be 65536, but the 2-byte value stores zero. | 
| 42 | ** This routine makes the necessary adjustment to 65536. | 
| 43 | */ | 
| 44 | #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1) | 
| 45 |  | 
| 46 | /* | 
| 47 | ** Values passed as the 5th argument to allocateBtreePage() | 
| 48 | */ | 
| 49 | #define BTALLOC_ANY   0           /* Allocate any page */ | 
| 50 | #define BTALLOC_EXACT 1           /* Allocate exact page if possible */ | 
| 51 | #define BTALLOC_LE    2           /* Allocate any page <= the parameter */ | 
| 52 |  | 
| 53 | /* | 
| 54 | ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not  | 
| 55 | ** defined, or 0 if it is. For example: | 
| 56 | ** | 
| 57 | **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); | 
| 58 | */ | 
| 59 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 60 | #define IfNotOmitAV(expr) (expr) | 
| 61 | #else | 
| 62 | #define IfNotOmitAV(expr) 0 | 
| 63 | #endif | 
| 64 |  | 
| 65 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 66 | /* | 
| 67 | ** A list of BtShared objects that are eligible for participation | 
| 68 | ** in shared cache.  This variable has file scope during normal builds, | 
| 69 | ** but the test harness needs to access it so we make it global for  | 
| 70 | ** test builds. | 
| 71 | ** | 
| 72 | ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. | 
| 73 | */ | 
| 74 | #ifdef SQLITE_TEST | 
| 75 | BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; | 
| 76 | #else | 
| 77 | static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; | 
| 78 | #endif | 
| 79 | #endif /* SQLITE_OMIT_SHARED_CACHE */ | 
| 80 |  | 
| 81 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 82 | /* | 
| 83 | ** Enable or disable the shared pager and schema features. | 
| 84 | ** | 
| 85 | ** This routine has no effect on existing database connections. | 
| 86 | ** The shared cache setting effects only future calls to | 
| 87 | ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). | 
| 88 | */ | 
| 89 | int sqlite3_enable_shared_cache(int enable){ | 
| 90 |   sqlite3GlobalConfig.sharedCacheEnabled = enable; | 
| 91 |   return SQLITE_OK; | 
| 92 | } | 
| 93 | #endif | 
| 94 |  | 
| 95 |  | 
| 96 |  | 
| 97 | #ifdef SQLITE_OMIT_SHARED_CACHE | 
| 98 |   /* | 
| 99 |   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), | 
| 100 |   ** and clearAllSharedCacheTableLocks() | 
| 101 |   ** manipulate entries in the BtShared.pLock linked list used to store | 
| 102 |   ** shared-cache table level locks. If the library is compiled with the | 
| 103 |   ** shared-cache feature disabled, then there is only ever one user | 
| 104 |   ** of each BtShared structure and so this locking is not necessary.  | 
| 105 |   ** So define the lock related functions as no-ops. | 
| 106 |   */ | 
| 107 |   #define querySharedCacheTableLock(a,b,c) SQLITE_OK | 
| 108 |   #define setSharedCacheTableLock(a,b,c) SQLITE_OK | 
| 109 |   #define clearAllSharedCacheTableLocks(a) | 
| 110 |   #define downgradeAllSharedCacheTableLocks(a) | 
| 111 |   #define hasSharedCacheTableLock(a,b,c,d) 1 | 
| 112 |   #define hasReadConflicts(a, b) 0 | 
| 113 | #endif | 
| 114 |  | 
| 115 | #ifdef SQLITE_DEBUG | 
| 116 | /* | 
| 117 | ** Return and reset the seek counter for a Btree object. | 
| 118 | */ | 
| 119 | sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ | 
| 120 |   u64 n =  pBt->nSeek; | 
| 121 |   pBt->nSeek = 0; | 
| 122 |   return n; | 
| 123 | } | 
| 124 | #endif | 
| 125 |  | 
| 126 | /* | 
| 127 | ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single | 
| 128 | ** (MemPage*) as an argument. The (MemPage*) must not be NULL. | 
| 129 | ** | 
| 130 | ** If SQLITE_DEBUG is not defined, then this macro is equivalent to | 
| 131 | ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message | 
| 132 | ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented | 
| 133 | ** with the page number and filename associated with the (MemPage*). | 
| 134 | */ | 
| 135 | #ifdef SQLITE_DEBUG | 
| 136 | int corruptPageError(int lineno, MemPage *p){ | 
| 137 |   char *zMsg; | 
| 138 |   sqlite3BeginBenignMalloc(); | 
| 139 |   zMsg = sqlite3_mprintf("database corruption page %d of %s" , | 
| 140 |       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) | 
| 141 |   ); | 
| 142 |   sqlite3EndBenignMalloc(); | 
| 143 |   if( zMsg ){ | 
| 144 |     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); | 
| 145 |   } | 
| 146 |   sqlite3_free(zMsg); | 
| 147 |   return SQLITE_CORRUPT_BKPT; | 
| 148 | } | 
| 149 | # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) | 
| 150 | #else | 
| 151 | # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) | 
| 152 | #endif | 
| 153 |  | 
| 154 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 155 |  | 
| 156 | #ifdef SQLITE_DEBUG | 
| 157 | /* | 
| 158 | **** This function is only used as part of an assert() statement. *** | 
| 159 | ** | 
| 160 | ** Check to see if pBtree holds the required locks to read or write to the  | 
| 161 | ** table with root page iRoot.   Return 1 if it does and 0 if not. | 
| 162 | ** | 
| 163 | ** For example, when writing to a table with root-page iRoot via  | 
| 164 | ** Btree connection pBtree: | 
| 165 | ** | 
| 166 | **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); | 
| 167 | ** | 
| 168 | ** When writing to an index that resides in a sharable database, the  | 
| 169 | ** caller should have first obtained a lock specifying the root page of | 
| 170 | ** the corresponding table. This makes things a bit more complicated, | 
| 171 | ** as this module treats each table as a separate structure. To determine | 
| 172 | ** the table corresponding to the index being written, this | 
| 173 | ** function has to search through the database schema. | 
| 174 | ** | 
| 175 | ** Instead of a lock on the table/index rooted at page iRoot, the caller may | 
| 176 | ** hold a write-lock on the schema table (root page 1). This is also | 
| 177 | ** acceptable. | 
| 178 | */ | 
| 179 | static int hasSharedCacheTableLock( | 
| 180 |   Btree *pBtree,         /* Handle that must hold lock */ | 
| 181 |   Pgno iRoot,            /* Root page of b-tree */ | 
| 182 |   int isIndex,           /* True if iRoot is the root of an index b-tree */ | 
| 183 |   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */ | 
| 184 | ){ | 
| 185 |   Schema *pSchema = (Schema *)pBtree->pBt->pSchema; | 
| 186 |   Pgno iTab = 0; | 
| 187 |   BtLock *pLock; | 
| 188 |  | 
| 189 |   /* If this database is not shareable, or if the client is reading | 
| 190 |   ** and has the read-uncommitted flag set, then no lock is required.  | 
| 191 |   ** Return true immediately. | 
| 192 |   */ | 
| 193 |   if( (pBtree->sharable==0) | 
| 194 |    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) | 
| 195 |   ){ | 
| 196 |     return 1; | 
| 197 |   } | 
| 198 |  | 
| 199 |   /* If the client is reading  or writing an index and the schema is | 
| 200 |   ** not loaded, then it is too difficult to actually check to see if | 
| 201 |   ** the correct locks are held.  So do not bother - just return true. | 
| 202 |   ** This case does not come up very often anyhow. | 
| 203 |   */ | 
| 204 |   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ | 
| 205 |     return 1; | 
| 206 |   } | 
| 207 |  | 
| 208 |   /* Figure out the root-page that the lock should be held on. For table | 
| 209 |   ** b-trees, this is just the root page of the b-tree being read or | 
| 210 |   ** written. For index b-trees, it is the root page of the associated | 
| 211 |   ** table.  */ | 
| 212 |   if( isIndex ){ | 
| 213 |     HashElem *p; | 
| 214 |     int bSeen = 0; | 
| 215 |     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ | 
| 216 |       Index *pIdx = (Index *)sqliteHashData(p); | 
| 217 |       if( pIdx->tnum==iRoot ){ | 
| 218 |         if( bSeen ){ | 
| 219 |           /* Two or more indexes share the same root page.  There must | 
| 220 |           ** be imposter tables.  So just return true.  The assert is not | 
| 221 |           ** useful in that case. */ | 
| 222 |           return 1; | 
| 223 |         } | 
| 224 |         iTab = pIdx->pTable->tnum; | 
| 225 |         bSeen = 1; | 
| 226 |       } | 
| 227 |     } | 
| 228 |   }else{ | 
| 229 |     iTab = iRoot; | 
| 230 |   } | 
| 231 |  | 
| 232 |   /* Search for the required lock. Either a write-lock on root-page iTab, a  | 
| 233 |   ** write-lock on the schema table, or (if the client is reading) a | 
| 234 |   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */ | 
| 235 |   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ | 
| 236 |     if( pLock->pBtree==pBtree  | 
| 237 |      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) | 
| 238 |      && pLock->eLock>=eLockType  | 
| 239 |     ){ | 
| 240 |       return 1; | 
| 241 |     } | 
| 242 |   } | 
| 243 |  | 
| 244 |   /* Failed to find the required lock. */ | 
| 245 |   return 0; | 
| 246 | } | 
| 247 | #endif /* SQLITE_DEBUG */ | 
| 248 |  | 
| 249 | #ifdef SQLITE_DEBUG | 
| 250 | /* | 
| 251 | **** This function may be used as part of assert() statements only. **** | 
| 252 | ** | 
| 253 | ** Return true if it would be illegal for pBtree to write into the | 
| 254 | ** table or index rooted at iRoot because other shared connections are | 
| 255 | ** simultaneously reading that same table or index. | 
| 256 | ** | 
| 257 | ** It is illegal for pBtree to write if some other Btree object that | 
| 258 | ** shares the same BtShared object is currently reading or writing | 
| 259 | ** the iRoot table.  Except, if the other Btree object has the | 
| 260 | ** read-uncommitted flag set, then it is OK for the other object to | 
| 261 | ** have a read cursor. | 
| 262 | ** | 
| 263 | ** For example, before writing to any part of the table or index | 
| 264 | ** rooted at page iRoot, one should call: | 
| 265 | ** | 
| 266 | **    assert( !hasReadConflicts(pBtree, iRoot) ); | 
| 267 | */ | 
| 268 | static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ | 
| 269 |   BtCursor *p; | 
| 270 |   for(p=pBtree->pBt->pCursor; p; p=p->pNext){ | 
| 271 |     if( p->pgnoRoot==iRoot  | 
| 272 |      && p->pBtree!=pBtree | 
| 273 |      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) | 
| 274 |     ){ | 
| 275 |       return 1; | 
| 276 |     } | 
| 277 |   } | 
| 278 |   return 0; | 
| 279 | } | 
| 280 | #endif    /* #ifdef SQLITE_DEBUG */ | 
| 281 |  | 
| 282 | /* | 
| 283 | ** Query to see if Btree handle p may obtain a lock of type eLock  | 
| 284 | ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return | 
| 285 | ** SQLITE_OK if the lock may be obtained (by calling | 
| 286 | ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. | 
| 287 | */ | 
| 288 | static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ | 
| 289 |   BtShared *pBt = p->pBt; | 
| 290 |   BtLock *pIter; | 
| 291 |  | 
| 292 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 293 |   assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); | 
| 294 |   assert( p->db!=0 ); | 
| 295 |   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); | 
| 296 |    | 
| 297 |   /* If requesting a write-lock, then the Btree must have an open write | 
| 298 |   ** transaction on this file. And, obviously, for this to be so there  | 
| 299 |   ** must be an open write transaction on the file itself. | 
| 300 |   */ | 
| 301 |   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); | 
| 302 |   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); | 
| 303 |    | 
| 304 |   /* This routine is a no-op if the shared-cache is not enabled */ | 
| 305 |   if( !p->sharable ){ | 
| 306 |     return SQLITE_OK; | 
| 307 |   } | 
| 308 |  | 
| 309 |   /* If some other connection is holding an exclusive lock, the | 
| 310 |   ** requested lock may not be obtained. | 
| 311 |   */ | 
| 312 |   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ | 
| 313 |     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); | 
| 314 |     return SQLITE_LOCKED_SHAREDCACHE; | 
| 315 |   } | 
| 316 |  | 
| 317 |   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ | 
| 318 |     /* The condition (pIter->eLock!=eLock) in the following if(...)  | 
| 319 |     ** statement is a simplification of: | 
| 320 |     ** | 
| 321 |     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) | 
| 322 |     ** | 
| 323 |     ** since we know that if eLock==WRITE_LOCK, then no other connection | 
| 324 |     ** may hold a WRITE_LOCK on any table in this file (since there can | 
| 325 |     ** only be a single writer). | 
| 326 |     */ | 
| 327 |     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); | 
| 328 |     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); | 
| 329 |     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ | 
| 330 |       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); | 
| 331 |       if( eLock==WRITE_LOCK ){ | 
| 332 |         assert( p==pBt->pWriter ); | 
| 333 |         pBt->btsFlags |= BTS_PENDING; | 
| 334 |       } | 
| 335 |       return SQLITE_LOCKED_SHAREDCACHE; | 
| 336 |     } | 
| 337 |   } | 
| 338 |   return SQLITE_OK; | 
| 339 | } | 
| 340 | #endif /* !SQLITE_OMIT_SHARED_CACHE */ | 
| 341 |  | 
| 342 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 343 | /* | 
| 344 | ** Add a lock on the table with root-page iTable to the shared-btree used | 
| 345 | ** by Btree handle p. Parameter eLock must be either READ_LOCK or  | 
| 346 | ** WRITE_LOCK. | 
| 347 | ** | 
| 348 | ** This function assumes the following: | 
| 349 | ** | 
| 350 | **   (a) The specified Btree object p is connected to a sharable | 
| 351 | **       database (one with the BtShared.sharable flag set), and | 
| 352 | ** | 
| 353 | **   (b) No other Btree objects hold a lock that conflicts | 
| 354 | **       with the requested lock (i.e. querySharedCacheTableLock() has | 
| 355 | **       already been called and returned SQLITE_OK). | 
| 356 | ** | 
| 357 | ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM  | 
| 358 | ** is returned if a malloc attempt fails. | 
| 359 | */ | 
| 360 | static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ | 
| 361 |   BtShared *pBt = p->pBt; | 
| 362 |   BtLock *pLock = 0; | 
| 363 |   BtLock *pIter; | 
| 364 |  | 
| 365 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 366 |   assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); | 
| 367 |   assert( p->db!=0 ); | 
| 368 |  | 
| 369 |   /* A connection with the read-uncommitted flag set will never try to | 
| 370 |   ** obtain a read-lock using this function. The only read-lock obtained | 
| 371 |   ** by a connection in read-uncommitted mode is on the sqlite_schema  | 
| 372 |   ** table, and that lock is obtained in BtreeBeginTrans().  */ | 
| 373 |   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); | 
| 374 |  | 
| 375 |   /* This function should only be called on a sharable b-tree after it  | 
| 376 |   ** has been determined that no other b-tree holds a conflicting lock.  */ | 
| 377 |   assert( p->sharable ); | 
| 378 |   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); | 
| 379 |  | 
| 380 |   /* First search the list for an existing lock on this table. */ | 
| 381 |   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ | 
| 382 |     if( pIter->iTable==iTable && pIter->pBtree==p ){ | 
| 383 |       pLock = pIter; | 
| 384 |       break; | 
| 385 |     } | 
| 386 |   } | 
| 387 |  | 
| 388 |   /* If the above search did not find a BtLock struct associating Btree p | 
| 389 |   ** with table iTable, allocate one and link it into the list. | 
| 390 |   */ | 
| 391 |   if( !pLock ){ | 
| 392 |     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); | 
| 393 |     if( !pLock ){ | 
| 394 |       return SQLITE_NOMEM_BKPT; | 
| 395 |     } | 
| 396 |     pLock->iTable = iTable; | 
| 397 |     pLock->pBtree = p; | 
| 398 |     pLock->pNext = pBt->pLock; | 
| 399 |     pBt->pLock = pLock; | 
| 400 |   } | 
| 401 |  | 
| 402 |   /* Set the BtLock.eLock variable to the maximum of the current lock | 
| 403 |   ** and the requested lock. This means if a write-lock was already held | 
| 404 |   ** and a read-lock requested, we don't incorrectly downgrade the lock. | 
| 405 |   */ | 
| 406 |   assert( WRITE_LOCK>READ_LOCK ); | 
| 407 |   if( eLock>pLock->eLock ){ | 
| 408 |     pLock->eLock = eLock; | 
| 409 |   } | 
| 410 |  | 
| 411 |   return SQLITE_OK; | 
| 412 | } | 
| 413 | #endif /* !SQLITE_OMIT_SHARED_CACHE */ | 
| 414 |  | 
| 415 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 416 | /* | 
| 417 | ** Release all the table locks (locks obtained via calls to | 
| 418 | ** the setSharedCacheTableLock() procedure) held by Btree object p. | 
| 419 | ** | 
| 420 | ** This function assumes that Btree p has an open read or write  | 
| 421 | ** transaction. If it does not, then the BTS_PENDING flag | 
| 422 | ** may be incorrectly cleared. | 
| 423 | */ | 
| 424 | static void clearAllSharedCacheTableLocks(Btree *p){ | 
| 425 |   BtShared *pBt = p->pBt; | 
| 426 |   BtLock **ppIter = &pBt->pLock; | 
| 427 |  | 
| 428 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 429 |   assert( p->sharable || 0==*ppIter ); | 
| 430 |   assert( p->inTrans>0 ); | 
| 431 |  | 
| 432 |   while( *ppIter ){ | 
| 433 |     BtLock *pLock = *ppIter; | 
| 434 |     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); | 
| 435 |     assert( pLock->pBtree->inTrans>=pLock->eLock ); | 
| 436 |     if( pLock->pBtree==p ){ | 
| 437 |       *ppIter = pLock->pNext; | 
| 438 |       assert( pLock->iTable!=1 || pLock==&p->lock ); | 
| 439 |       if( pLock->iTable!=1 ){ | 
| 440 |         sqlite3_free(pLock); | 
| 441 |       } | 
| 442 |     }else{ | 
| 443 |       ppIter = &pLock->pNext; | 
| 444 |     } | 
| 445 |   } | 
| 446 |  | 
| 447 |   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); | 
| 448 |   if( pBt->pWriter==p ){ | 
| 449 |     pBt->pWriter = 0; | 
| 450 |     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); | 
| 451 |   }else if( pBt->nTransaction==2 ){ | 
| 452 |     /* This function is called when Btree p is concluding its  | 
| 453 |     ** transaction. If there currently exists a writer, and p is not | 
| 454 |     ** that writer, then the number of locks held by connections other | 
| 455 |     ** than the writer must be about to drop to zero. In this case | 
| 456 |     ** set the BTS_PENDING flag to 0. | 
| 457 |     ** | 
| 458 |     ** If there is not currently a writer, then BTS_PENDING must | 
| 459 |     ** be zero already. So this next line is harmless in that case. | 
| 460 |     */ | 
| 461 |     pBt->btsFlags &= ~BTS_PENDING; | 
| 462 |   } | 
| 463 | } | 
| 464 |  | 
| 465 | /* | 
| 466 | ** This function changes all write-locks held by Btree p into read-locks. | 
| 467 | */ | 
| 468 | static void downgradeAllSharedCacheTableLocks(Btree *p){ | 
| 469 |   BtShared *pBt = p->pBt; | 
| 470 |   if( pBt->pWriter==p ){ | 
| 471 |     BtLock *pLock; | 
| 472 |     pBt->pWriter = 0; | 
| 473 |     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); | 
| 474 |     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ | 
| 475 |       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); | 
| 476 |       pLock->eLock = READ_LOCK; | 
| 477 |     } | 
| 478 |   } | 
| 479 | } | 
| 480 |  | 
| 481 | #endif /* SQLITE_OMIT_SHARED_CACHE */ | 
| 482 |  | 
| 483 | static void releasePage(MemPage *pPage);         /* Forward reference */ | 
| 484 | static void releasePageOne(MemPage *pPage);      /* Forward reference */ | 
| 485 | static void releasePageNotNull(MemPage *pPage);  /* Forward reference */ | 
| 486 |  | 
| 487 | /* | 
| 488 | ***** This routine is used inside of assert() only **** | 
| 489 | ** | 
| 490 | ** Verify that the cursor holds the mutex on its BtShared | 
| 491 | */ | 
| 492 | #ifdef SQLITE_DEBUG | 
| 493 | static int cursorHoldsMutex(BtCursor *p){ | 
| 494 |   return sqlite3_mutex_held(p->pBt->mutex); | 
| 495 | } | 
| 496 |  | 
| 497 | /* Verify that the cursor and the BtShared agree about what is the current | 
| 498 | ** database connetion. This is important in shared-cache mode. If the database  | 
| 499 | ** connection pointers get out-of-sync, it is possible for routines like | 
| 500 | ** btreeInitPage() to reference an stale connection pointer that references a | 
| 501 | ** a connection that has already closed.  This routine is used inside assert() | 
| 502 | ** statements only and for the purpose of double-checking that the btree code | 
| 503 | ** does keep the database connection pointers up-to-date. | 
| 504 | */ | 
| 505 | static int cursorOwnsBtShared(BtCursor *p){ | 
| 506 |   assert( cursorHoldsMutex(p) ); | 
| 507 |   return (p->pBtree->db==p->pBt->db); | 
| 508 | } | 
| 509 | #endif | 
| 510 |  | 
| 511 | /* | 
| 512 | ** Invalidate the overflow cache of the cursor passed as the first argument. | 
| 513 | ** on the shared btree structure pBt. | 
| 514 | */ | 
| 515 | #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) | 
| 516 |  | 
| 517 | /* | 
| 518 | ** Invalidate the overflow page-list cache for all cursors opened | 
| 519 | ** on the shared btree structure pBt. | 
| 520 | */ | 
| 521 | static void invalidateAllOverflowCache(BtShared *pBt){ | 
| 522 |   BtCursor *p; | 
| 523 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 524 |   for(p=pBt->pCursor; p; p=p->pNext){ | 
| 525 |     invalidateOverflowCache(p); | 
| 526 |   } | 
| 527 | } | 
| 528 |  | 
| 529 | #ifndef SQLITE_OMIT_INCRBLOB | 
| 530 | /* | 
| 531 | ** This function is called before modifying the contents of a table | 
| 532 | ** to invalidate any incrblob cursors that are open on the | 
| 533 | ** row or one of the rows being modified. | 
| 534 | ** | 
| 535 | ** If argument isClearTable is true, then the entire contents of the | 
| 536 | ** table is about to be deleted. In this case invalidate all incrblob | 
| 537 | ** cursors open on any row within the table with root-page pgnoRoot. | 
| 538 | ** | 
| 539 | ** Otherwise, if argument isClearTable is false, then the row with | 
| 540 | ** rowid iRow is being replaced or deleted. In this case invalidate | 
| 541 | ** only those incrblob cursors open on that specific row. | 
| 542 | */ | 
| 543 | static void invalidateIncrblobCursors( | 
| 544 |   Btree *pBtree,          /* The database file to check */ | 
| 545 |   Pgno pgnoRoot,          /* The table that might be changing */ | 
| 546 |   i64 iRow,               /* The rowid that might be changing */ | 
| 547 |   int isClearTable        /* True if all rows are being deleted */ | 
| 548 | ){ | 
| 549 |   BtCursor *p; | 
| 550 |   assert( pBtree->hasIncrblobCur ); | 
| 551 |   assert( sqlite3BtreeHoldsMutex(pBtree) ); | 
| 552 |   pBtree->hasIncrblobCur = 0; | 
| 553 |   for(p=pBtree->pBt->pCursor; p; p=p->pNext){ | 
| 554 |     if( (p->curFlags & BTCF_Incrblob)!=0 ){ | 
| 555 |       pBtree->hasIncrblobCur = 1; | 
| 556 |       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ | 
| 557 |         p->eState = CURSOR_INVALID; | 
| 558 |       } | 
| 559 |     } | 
| 560 |   } | 
| 561 | } | 
| 562 |  | 
| 563 | #else | 
| 564 |   /* Stub function when INCRBLOB is omitted */ | 
| 565 |   #define invalidateIncrblobCursors(w,x,y,z) | 
| 566 | #endif /* SQLITE_OMIT_INCRBLOB */ | 
| 567 |  | 
| 568 | /* | 
| 569 | ** Set bit pgno of the BtShared.pHasContent bitvec. This is called  | 
| 570 | ** when a page that previously contained data becomes a free-list leaf  | 
| 571 | ** page. | 
| 572 | ** | 
| 573 | ** The BtShared.pHasContent bitvec exists to work around an obscure | 
| 574 | ** bug caused by the interaction of two useful IO optimizations surrounding | 
| 575 | ** free-list leaf pages: | 
| 576 | ** | 
| 577 | **   1) When all data is deleted from a page and the page becomes | 
| 578 | **      a free-list leaf page, the page is not written to the database | 
| 579 | **      (as free-list leaf pages contain no meaningful data). Sometimes | 
| 580 | **      such a page is not even journalled (as it will not be modified, | 
| 581 | **      why bother journalling it?). | 
| 582 | ** | 
| 583 | **   2) When a free-list leaf page is reused, its content is not read | 
| 584 | **      from the database or written to the journal file (why should it | 
| 585 | **      be, if it is not at all meaningful?). | 
| 586 | ** | 
| 587 | ** By themselves, these optimizations work fine and provide a handy | 
| 588 | ** performance boost to bulk delete or insert operations. However, if | 
| 589 | ** a page is moved to the free-list and then reused within the same | 
| 590 | ** transaction, a problem comes up. If the page is not journalled when | 
| 591 | ** it is moved to the free-list and it is also not journalled when it | 
| 592 | ** is extracted from the free-list and reused, then the original data | 
| 593 | ** may be lost. In the event of a rollback, it may not be possible | 
| 594 | ** to restore the database to its original configuration. | 
| 595 | ** | 
| 596 | ** The solution is the BtShared.pHasContent bitvec. Whenever a page is  | 
| 597 | ** moved to become a free-list leaf page, the corresponding bit is | 
| 598 | ** set in the bitvec. Whenever a leaf page is extracted from the free-list, | 
| 599 | ** optimization 2 above is omitted if the corresponding bit is already | 
| 600 | ** set in BtShared.pHasContent. The contents of the bitvec are cleared | 
| 601 | ** at the end of every transaction. | 
| 602 | */ | 
| 603 | static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ | 
| 604 |   int rc = SQLITE_OK; | 
| 605 |   if( !pBt->pHasContent ){ | 
| 606 |     assert( pgno<=pBt->nPage ); | 
| 607 |     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); | 
| 608 |     if( !pBt->pHasContent ){ | 
| 609 |       rc = SQLITE_NOMEM_BKPT; | 
| 610 |     } | 
| 611 |   } | 
| 612 |   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ | 
| 613 |     rc = sqlite3BitvecSet(pBt->pHasContent, pgno); | 
| 614 |   } | 
| 615 |   return rc; | 
| 616 | } | 
| 617 |  | 
| 618 | /* | 
| 619 | ** Query the BtShared.pHasContent vector. | 
| 620 | ** | 
| 621 | ** This function is called when a free-list leaf page is removed from the | 
| 622 | ** free-list for reuse. It returns false if it is safe to retrieve the | 
| 623 | ** page from the pager layer with the 'no-content' flag set. True otherwise. | 
| 624 | */ | 
| 625 | static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ | 
| 626 |   Bitvec *p = pBt->pHasContent; | 
| 627 |   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); | 
| 628 | } | 
| 629 |  | 
| 630 | /* | 
| 631 | ** Clear (destroy) the BtShared.pHasContent bitvec. This should be | 
| 632 | ** invoked at the conclusion of each write-transaction. | 
| 633 | */ | 
| 634 | static void btreeClearHasContent(BtShared *pBt){ | 
| 635 |   sqlite3BitvecDestroy(pBt->pHasContent); | 
| 636 |   pBt->pHasContent = 0; | 
| 637 | } | 
| 638 |  | 
| 639 | /* | 
| 640 | ** Release all of the apPage[] pages for a cursor. | 
| 641 | */ | 
| 642 | static void btreeReleaseAllCursorPages(BtCursor *pCur){ | 
| 643 |   int i; | 
| 644 |   if( pCur->iPage>=0 ){ | 
| 645 |     for(i=0; i<pCur->iPage; i++){ | 
| 646 |       releasePageNotNull(pCur->apPage[i]); | 
| 647 |     } | 
| 648 |     releasePageNotNull(pCur->pPage); | 
| 649 |     pCur->iPage = -1; | 
| 650 |   } | 
| 651 | } | 
| 652 |  | 
| 653 | /* | 
| 654 | ** The cursor passed as the only argument must point to a valid entry | 
| 655 | ** when this function is called (i.e. have eState==CURSOR_VALID). This | 
| 656 | ** function saves the current cursor key in variables pCur->nKey and | 
| 657 | ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error  | 
| 658 | ** code otherwise. | 
| 659 | ** | 
| 660 | ** If the cursor is open on an intkey table, then the integer key | 
| 661 | ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to | 
| 662 | ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is  | 
| 663 | ** set to point to a malloced buffer pCur->nKey bytes in size containing  | 
| 664 | ** the key. | 
| 665 | */ | 
| 666 | static int saveCursorKey(BtCursor *pCur){ | 
| 667 |   int rc = SQLITE_OK; | 
| 668 |   assert( CURSOR_VALID==pCur->eState ); | 
| 669 |   assert( 0==pCur->pKey ); | 
| 670 |   assert( cursorHoldsMutex(pCur) ); | 
| 671 |  | 
| 672 |   if( pCur->curIntKey ){ | 
| 673 |     /* Only the rowid is required for a table btree */ | 
| 674 |     pCur->nKey = sqlite3BtreeIntegerKey(pCur); | 
| 675 |   }else{ | 
| 676 |     /* For an index btree, save the complete key content. It is possible | 
| 677 |     ** that the current key is corrupt. In that case, it is possible that | 
| 678 |     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by | 
| 679 |     ** up to the size of 1 varint plus 1 8-byte value when the cursor  | 
| 680 |     ** position is restored. Hence the 17 bytes of padding allocated  | 
| 681 |     ** below. */ | 
| 682 |     void *pKey; | 
| 683 |     pCur->nKey = sqlite3BtreePayloadSize(pCur); | 
| 684 |     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); | 
| 685 |     if( pKey ){ | 
| 686 |       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); | 
| 687 |       if( rc==SQLITE_OK ){ | 
| 688 |         memset(((u8*)pKey)+pCur->nKey, 0, 9+8); | 
| 689 |         pCur->pKey = pKey; | 
| 690 |       }else{ | 
| 691 |         sqlite3_free(pKey); | 
| 692 |       } | 
| 693 |     }else{ | 
| 694 |       rc = SQLITE_NOMEM_BKPT; | 
| 695 |     } | 
| 696 |   } | 
| 697 |   assert( !pCur->curIntKey || !pCur->pKey ); | 
| 698 |   return rc; | 
| 699 | } | 
| 700 |  | 
| 701 | /* | 
| 702 | ** Save the current cursor position in the variables BtCursor.nKey  | 
| 703 | ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. | 
| 704 | ** | 
| 705 | ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) | 
| 706 | ** prior to calling this routine.   | 
| 707 | */ | 
| 708 | static int saveCursorPosition(BtCursor *pCur){ | 
| 709 |   int rc; | 
| 710 |  | 
| 711 |   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); | 
| 712 |   assert( 0==pCur->pKey ); | 
| 713 |   assert( cursorHoldsMutex(pCur) ); | 
| 714 |  | 
| 715 |   if( pCur->curFlags & BTCF_Pinned ){ | 
| 716 |     return SQLITE_CONSTRAINT_PINNED; | 
| 717 |   } | 
| 718 |   if( pCur->eState==CURSOR_SKIPNEXT ){ | 
| 719 |     pCur->eState = CURSOR_VALID; | 
| 720 |   }else{ | 
| 721 |     pCur->skipNext = 0; | 
| 722 |   } | 
| 723 |  | 
| 724 |   rc = saveCursorKey(pCur); | 
| 725 |   if( rc==SQLITE_OK ){ | 
| 726 |     btreeReleaseAllCursorPages(pCur); | 
| 727 |     pCur->eState = CURSOR_REQUIRESEEK; | 
| 728 |   } | 
| 729 |  | 
| 730 |   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); | 
| 731 |   return rc; | 
| 732 | } | 
| 733 |  | 
| 734 | /* Forward reference */ | 
| 735 | static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); | 
| 736 |  | 
| 737 | /* | 
| 738 | ** Save the positions of all cursors (except pExcept) that are open on | 
| 739 | ** the table with root-page iRoot.  "Saving the cursor position" means that | 
| 740 | ** the location in the btree is remembered in such a way that it can be | 
| 741 | ** moved back to the same spot after the btree has been modified.  This | 
| 742 | ** routine is called just before cursor pExcept is used to modify the | 
| 743 | ** table, for example in BtreeDelete() or BtreeInsert(). | 
| 744 | ** | 
| 745 | ** If there are two or more cursors on the same btree, then all such  | 
| 746 | ** cursors should have their BTCF_Multiple flag set.  The btreeCursor() | 
| 747 | ** routine enforces that rule.  This routine only needs to be called in | 
| 748 | ** the uncommon case when pExpect has the BTCF_Multiple flag set. | 
| 749 | ** | 
| 750 | ** If pExpect!=NULL and if no other cursors are found on the same root-page, | 
| 751 | ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another | 
| 752 | ** pointless call to this routine. | 
| 753 | ** | 
| 754 | ** Implementation note:  This routine merely checks to see if any cursors | 
| 755 | ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual) | 
| 756 | ** event that cursors are in need to being saved. | 
| 757 | */ | 
| 758 | static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ | 
| 759 |   BtCursor *p; | 
| 760 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 761 |   assert( pExcept==0 || pExcept->pBt==pBt ); | 
| 762 |   for(p=pBt->pCursor; p; p=p->pNext){ | 
| 763 |     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; | 
| 764 |   } | 
| 765 |   if( p ) return saveCursorsOnList(p, iRoot, pExcept); | 
| 766 |   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; | 
| 767 |   return SQLITE_OK; | 
| 768 | } | 
| 769 |  | 
| 770 | /* This helper routine to saveAllCursors does the actual work of saving | 
| 771 | ** the cursors if and when a cursor is found that actually requires saving. | 
| 772 | ** The common case is that no cursors need to be saved, so this routine is | 
| 773 | ** broken out from its caller to avoid unnecessary stack pointer movement. | 
| 774 | */ | 
| 775 | static int SQLITE_NOINLINE saveCursorsOnList( | 
| 776 |   BtCursor *p,         /* The first cursor that needs saving */ | 
| 777 |   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */ | 
| 778 |   BtCursor *pExcept    /* Do not save this cursor */ | 
| 779 | ){ | 
| 780 |   do{ | 
| 781 |     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ | 
| 782 |       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ | 
| 783 |         int rc = saveCursorPosition(p); | 
| 784 |         if( SQLITE_OK!=rc ){ | 
| 785 |           return rc; | 
| 786 |         } | 
| 787 |       }else{ | 
| 788 |         testcase( p->iPage>=0 ); | 
| 789 |         btreeReleaseAllCursorPages(p); | 
| 790 |       } | 
| 791 |     } | 
| 792 |     p = p->pNext; | 
| 793 |   }while( p ); | 
| 794 |   return SQLITE_OK; | 
| 795 | } | 
| 796 |  | 
| 797 | /* | 
| 798 | ** Clear the current cursor position. | 
| 799 | */ | 
| 800 | void sqlite3BtreeClearCursor(BtCursor *pCur){ | 
| 801 |   assert( cursorHoldsMutex(pCur) ); | 
| 802 |   sqlite3_free(pCur->pKey); | 
| 803 |   pCur->pKey = 0; | 
| 804 |   pCur->eState = CURSOR_INVALID; | 
| 805 | } | 
| 806 |  | 
| 807 | /* | 
| 808 | ** In this version of BtreeMoveto, pKey is a packed index record | 
| 809 | ** such as is generated by the OP_MakeRecord opcode.  Unpack the | 
| 810 | ** record and then call sqlite3BtreeIndexMoveto() to do the work. | 
| 811 | */ | 
| 812 | static int btreeMoveto( | 
| 813 |   BtCursor *pCur,     /* Cursor open on the btree to be searched */ | 
| 814 |   const void *pKey,   /* Packed key if the btree is an index */ | 
| 815 |   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */ | 
| 816 |   int bias,           /* Bias search to the high end */ | 
| 817 |   int *pRes           /* Write search results here */ | 
| 818 | ){ | 
| 819 |   int rc;                    /* Status code */ | 
| 820 |   UnpackedRecord *pIdxKey;   /* Unpacked index key */ | 
| 821 |  | 
| 822 |   if( pKey ){ | 
| 823 |     KeyInfo *pKeyInfo = pCur->pKeyInfo; | 
| 824 |     assert( nKey==(i64)(int)nKey ); | 
| 825 |     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); | 
| 826 |     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; | 
| 827 |     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); | 
| 828 |     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ | 
| 829 |       rc = SQLITE_CORRUPT_BKPT; | 
| 830 |     }else{ | 
| 831 |       rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); | 
| 832 |     } | 
| 833 |     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); | 
| 834 |   }else{ | 
| 835 |     pIdxKey = 0; | 
| 836 |     rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); | 
| 837 |   } | 
| 838 |   return rc; | 
| 839 | } | 
| 840 |  | 
| 841 | /* | 
| 842 | ** Restore the cursor to the position it was in (or as close to as possible) | 
| 843 | ** when saveCursorPosition() was called. Note that this call deletes the  | 
| 844 | ** saved position info stored by saveCursorPosition(), so there can be | 
| 845 | ** at most one effective restoreCursorPosition() call after each  | 
| 846 | ** saveCursorPosition(). | 
| 847 | */ | 
| 848 | static int btreeRestoreCursorPosition(BtCursor *pCur){ | 
| 849 |   int rc; | 
| 850 |   int skipNext = 0; | 
| 851 |   assert( cursorOwnsBtShared(pCur) ); | 
| 852 |   assert( pCur->eState>=CURSOR_REQUIRESEEK ); | 
| 853 |   if( pCur->eState==CURSOR_FAULT ){ | 
| 854 |     return pCur->skipNext; | 
| 855 |   } | 
| 856 |   pCur->eState = CURSOR_INVALID; | 
| 857 |   if( sqlite3FaultSim(410) ){ | 
| 858 |     rc = SQLITE_IOERR; | 
| 859 |   }else{ | 
| 860 |     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); | 
| 861 |   } | 
| 862 |   if( rc==SQLITE_OK ){ | 
| 863 |     sqlite3_free(pCur->pKey); | 
| 864 |     pCur->pKey = 0; | 
| 865 |     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); | 
| 866 |     if( skipNext ) pCur->skipNext = skipNext; | 
| 867 |     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ | 
| 868 |       pCur->eState = CURSOR_SKIPNEXT; | 
| 869 |     } | 
| 870 |   } | 
| 871 |   return rc; | 
| 872 | } | 
| 873 |  | 
| 874 | #define restoreCursorPosition(p) \ | 
| 875 |   (p->eState>=CURSOR_REQUIRESEEK ? \ | 
| 876 |          btreeRestoreCursorPosition(p) : \ | 
| 877 |          SQLITE_OK) | 
| 878 |  | 
| 879 | /* | 
| 880 | ** Determine whether or not a cursor has moved from the position where | 
| 881 | ** it was last placed, or has been invalidated for any other reason. | 
| 882 | ** Cursors can move when the row they are pointing at is deleted out | 
| 883 | ** from under them, for example.  Cursor might also move if a btree | 
| 884 | ** is rebalanced. | 
| 885 | ** | 
| 886 | ** Calling this routine with a NULL cursor pointer returns false. | 
| 887 | ** | 
| 888 | ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor | 
| 889 | ** back to where it ought to be if this routine returns true. | 
| 890 | */ | 
| 891 | int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ | 
| 892 |   assert( EIGHT_BYTE_ALIGNMENT(pCur) | 
| 893 |        || pCur==sqlite3BtreeFakeValidCursor() ); | 
| 894 |   assert( offsetof(BtCursor, eState)==0 ); | 
| 895 |   assert( sizeof(pCur->eState)==1 ); | 
| 896 |   return CURSOR_VALID != *(u8*)pCur; | 
| 897 | } | 
| 898 |  | 
| 899 | /* | 
| 900 | ** Return a pointer to a fake BtCursor object that will always answer | 
| 901 | ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake | 
| 902 | ** cursor returned must not be used with any other Btree interface. | 
| 903 | */ | 
| 904 | BtCursor *sqlite3BtreeFakeValidCursor(void){ | 
| 905 |   static u8 fakeCursor = CURSOR_VALID; | 
| 906 |   assert( offsetof(BtCursor, eState)==0 ); | 
| 907 |   return (BtCursor*)&fakeCursor; | 
| 908 | } | 
| 909 |  | 
| 910 | /* | 
| 911 | ** This routine restores a cursor back to its original position after it | 
| 912 | ** has been moved by some outside activity (such as a btree rebalance or | 
| 913 | ** a row having been deleted out from under the cursor).   | 
| 914 | ** | 
| 915 | ** On success, the *pDifferentRow parameter is false if the cursor is left | 
| 916 | ** pointing at exactly the same row.  *pDifferntRow is the row the cursor | 
| 917 | ** was pointing to has been deleted, forcing the cursor to point to some | 
| 918 | ** nearby row. | 
| 919 | ** | 
| 920 | ** This routine should only be called for a cursor that just returned | 
| 921 | ** TRUE from sqlite3BtreeCursorHasMoved(). | 
| 922 | */ | 
| 923 | int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ | 
| 924 |   int rc; | 
| 925 |  | 
| 926 |   assert( pCur!=0 ); | 
| 927 |   assert( pCur->eState!=CURSOR_VALID ); | 
| 928 |   rc = restoreCursorPosition(pCur); | 
| 929 |   if( rc ){ | 
| 930 |     *pDifferentRow = 1; | 
| 931 |     return rc; | 
| 932 |   } | 
| 933 |   if( pCur->eState!=CURSOR_VALID ){ | 
| 934 |     *pDifferentRow = 1; | 
| 935 |   }else{ | 
| 936 |     *pDifferentRow = 0; | 
| 937 |   } | 
| 938 |   return SQLITE_OK; | 
| 939 | } | 
| 940 |  | 
| 941 | #ifdef SQLITE_ENABLE_CURSOR_HINTS | 
| 942 | /* | 
| 943 | ** Provide hints to the cursor.  The particular hint given (and the type | 
| 944 | ** and number of the varargs parameters) is determined by the eHintType | 
| 945 | ** parameter.  See the definitions of the BTREE_HINT_* macros for details. | 
| 946 | */ | 
| 947 | void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ | 
| 948 |   /* Used only by system that substitute their own storage engine */ | 
| 949 | } | 
| 950 | #endif | 
| 951 |  | 
| 952 | /* | 
| 953 | ** Provide flag hints to the cursor. | 
| 954 | */ | 
| 955 | void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ | 
| 956 |   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); | 
| 957 |   pCur->hints = x; | 
| 958 | } | 
| 959 |  | 
| 960 |  | 
| 961 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 962 | /* | 
| 963 | ** Given a page number of a regular database page, return the page | 
| 964 | ** number for the pointer-map page that contains the entry for the | 
| 965 | ** input page number. | 
| 966 | ** | 
| 967 | ** Return 0 (not a valid page) for pgno==1 since there is | 
| 968 | ** no pointer map associated with page 1.  The integrity_check logic | 
| 969 | ** requires that ptrmapPageno(*,1)!=1. | 
| 970 | */ | 
| 971 | static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ | 
| 972 |   int nPagesPerMapPage; | 
| 973 |   Pgno iPtrMap, ret; | 
| 974 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 975 |   if( pgno<2 ) return 0; | 
| 976 |   nPagesPerMapPage = (pBt->usableSize/5)+1; | 
| 977 |   iPtrMap = (pgno-2)/nPagesPerMapPage; | 
| 978 |   ret = (iPtrMap*nPagesPerMapPage) + 2;  | 
| 979 |   if( ret==PENDING_BYTE_PAGE(pBt) ){ | 
| 980 |     ret++; | 
| 981 |   } | 
| 982 |   return ret; | 
| 983 | } | 
| 984 |  | 
| 985 | /* | 
| 986 | ** Write an entry into the pointer map. | 
| 987 | ** | 
| 988 | ** This routine updates the pointer map entry for page number 'key' | 
| 989 | ** so that it maps to type 'eType' and parent page number 'pgno'. | 
| 990 | ** | 
| 991 | ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is | 
| 992 | ** a no-op.  If an error occurs, the appropriate error code is written | 
| 993 | ** into *pRC. | 
| 994 | */ | 
| 995 | static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ | 
| 996 |   DbPage *pDbPage;  /* The pointer map page */ | 
| 997 |   u8 *pPtrmap;      /* The pointer map data */ | 
| 998 |   Pgno iPtrmap;     /* The pointer map page number */ | 
| 999 |   int offset;       /* Offset in pointer map page */ | 
| 1000 |   int rc;           /* Return code from subfunctions */ | 
| 1001 |  | 
| 1002 |   if( *pRC ) return; | 
| 1003 |  | 
| 1004 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 1005 |   /* The super-journal page number must never be used as a pointer map page */ | 
| 1006 |   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); | 
| 1007 |  | 
| 1008 |   assert( pBt->autoVacuum ); | 
| 1009 |   if( key==0 ){ | 
| 1010 |     *pRC = SQLITE_CORRUPT_BKPT; | 
| 1011 |     return; | 
| 1012 |   } | 
| 1013 |   iPtrmap = PTRMAP_PAGENO(pBt, key); | 
| 1014 |   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); | 
| 1015 |   if( rc!=SQLITE_OK ){ | 
| 1016 |     *pRC = rc; | 
| 1017 |     return; | 
| 1018 |   } | 
| 1019 |   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ | 
| 1020 |     /* The first byte of the extra data is the MemPage.isInit byte. | 
| 1021 |     ** If that byte is set, it means this page is also being used | 
| 1022 |     ** as a btree page. */ | 
| 1023 |     *pRC = SQLITE_CORRUPT_BKPT; | 
| 1024 |     goto ptrmap_exit; | 
| 1025 |   } | 
| 1026 |   offset = PTRMAP_PTROFFSET(iPtrmap, key); | 
| 1027 |   if( offset<0 ){ | 
| 1028 |     *pRC = SQLITE_CORRUPT_BKPT; | 
| 1029 |     goto ptrmap_exit; | 
| 1030 |   } | 
| 1031 |   assert( offset <= (int)pBt->usableSize-5 ); | 
| 1032 |   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); | 
| 1033 |  | 
| 1034 |   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ | 
| 1035 |     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n" , key, eType, parent)); | 
| 1036 |     *pRC= rc = sqlite3PagerWrite(pDbPage); | 
| 1037 |     if( rc==SQLITE_OK ){ | 
| 1038 |       pPtrmap[offset] = eType; | 
| 1039 |       put4byte(&pPtrmap[offset+1], parent); | 
| 1040 |     } | 
| 1041 |   } | 
| 1042 |  | 
| 1043 | ptrmap_exit: | 
| 1044 |   sqlite3PagerUnref(pDbPage); | 
| 1045 | } | 
| 1046 |  | 
| 1047 | /* | 
| 1048 | ** Read an entry from the pointer map. | 
| 1049 | ** | 
| 1050 | ** This routine retrieves the pointer map entry for page 'key', writing | 
| 1051 | ** the type and parent page number to *pEType and *pPgno respectively. | 
| 1052 | ** An error code is returned if something goes wrong, otherwise SQLITE_OK. | 
| 1053 | */ | 
| 1054 | static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ | 
| 1055 |   DbPage *pDbPage;   /* The pointer map page */ | 
| 1056 |   int iPtrmap;       /* Pointer map page index */ | 
| 1057 |   u8 *pPtrmap;       /* Pointer map page data */ | 
| 1058 |   int offset;        /* Offset of entry in pointer map */ | 
| 1059 |   int rc; | 
| 1060 |  | 
| 1061 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 1062 |  | 
| 1063 |   iPtrmap = PTRMAP_PAGENO(pBt, key); | 
| 1064 |   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); | 
| 1065 |   if( rc!=0 ){ | 
| 1066 |     return rc; | 
| 1067 |   } | 
| 1068 |   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); | 
| 1069 |  | 
| 1070 |   offset = PTRMAP_PTROFFSET(iPtrmap, key); | 
| 1071 |   if( offset<0 ){ | 
| 1072 |     sqlite3PagerUnref(pDbPage); | 
| 1073 |     return SQLITE_CORRUPT_BKPT; | 
| 1074 |   } | 
| 1075 |   assert( offset <= (int)pBt->usableSize-5 ); | 
| 1076 |   assert( pEType!=0 ); | 
| 1077 |   *pEType = pPtrmap[offset]; | 
| 1078 |   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); | 
| 1079 |  | 
| 1080 |   sqlite3PagerUnref(pDbPage); | 
| 1081 |   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); | 
| 1082 |   return SQLITE_OK; | 
| 1083 | } | 
| 1084 |  | 
| 1085 | #else /* if defined SQLITE_OMIT_AUTOVACUUM */ | 
| 1086 |   #define ptrmapPut(w,x,y,z,rc) | 
| 1087 |   #define ptrmapGet(w,x,y,z) SQLITE_OK | 
| 1088 |   #define ptrmapPutOvflPtr(x, y, z, rc) | 
| 1089 | #endif | 
| 1090 |  | 
| 1091 | /* | 
| 1092 | ** Given a btree page and a cell index (0 means the first cell on | 
| 1093 | ** the page, 1 means the second cell, and so forth) return a pointer | 
| 1094 | ** to the cell content. | 
| 1095 | ** | 
| 1096 | ** findCellPastPtr() does the same except it skips past the initial | 
| 1097 | ** 4-byte child pointer found on interior pages, if there is one. | 
| 1098 | ** | 
| 1099 | ** This routine works only for pages that do not contain overflow cells. | 
| 1100 | */ | 
| 1101 | #define findCell(P,I) \ | 
| 1102 |   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) | 
| 1103 | #define findCellPastPtr(P,I) \ | 
| 1104 |   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) | 
| 1105 |  | 
| 1106 |  | 
| 1107 | /* | 
| 1108 | ** This is common tail processing for btreeParseCellPtr() and | 
| 1109 | ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely | 
| 1110 | ** on a single B-tree page.  Make necessary adjustments to the CellInfo | 
| 1111 | ** structure. | 
| 1112 | */ | 
| 1113 | static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( | 
| 1114 |   MemPage *pPage,         /* Page containing the cell */ | 
| 1115 |   u8 *pCell,              /* Pointer to the cell text. */ | 
| 1116 |   CellInfo *pInfo         /* Fill in this structure */ | 
| 1117 | ){ | 
| 1118 |   /* If the payload will not fit completely on the local page, we have | 
| 1119 |   ** to decide how much to store locally and how much to spill onto | 
| 1120 |   ** overflow pages.  The strategy is to minimize the amount of unused | 
| 1121 |   ** space on overflow pages while keeping the amount of local storage | 
| 1122 |   ** in between minLocal and maxLocal. | 
| 1123 |   ** | 
| 1124 |   ** Warning:  changing the way overflow payload is distributed in any | 
| 1125 |   ** way will result in an incompatible file format. | 
| 1126 |   */ | 
| 1127 |   int minLocal;  /* Minimum amount of payload held locally */ | 
| 1128 |   int maxLocal;  /* Maximum amount of payload held locally */ | 
| 1129 |   int surplus;   /* Overflow payload available for local storage */ | 
| 1130 |  | 
| 1131 |   minLocal = pPage->minLocal; | 
| 1132 |   maxLocal = pPage->maxLocal; | 
| 1133 |   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); | 
| 1134 |   testcase( surplus==maxLocal ); | 
| 1135 |   testcase( surplus==maxLocal+1 ); | 
| 1136 |   if( surplus <= maxLocal ){ | 
| 1137 |     pInfo->nLocal = (u16)surplus; | 
| 1138 |   }else{ | 
| 1139 |     pInfo->nLocal = (u16)minLocal; | 
| 1140 |   } | 
| 1141 |   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; | 
| 1142 | } | 
| 1143 |  | 
| 1144 | /* | 
| 1145 | ** Given a record with nPayload bytes of payload stored within btree | 
| 1146 | ** page pPage, return the number of bytes of payload stored locally. | 
| 1147 | */ | 
| 1148 | static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ | 
| 1149 |   int maxLocal;  /* Maximum amount of payload held locally */ | 
| 1150 |   maxLocal = pPage->maxLocal; | 
| 1151 |   if( nPayload<=maxLocal ){ | 
| 1152 |     return nPayload; | 
| 1153 |   }else{ | 
| 1154 |     int minLocal;  /* Minimum amount of payload held locally */ | 
| 1155 |     int surplus;   /* Overflow payload available for local storage */ | 
| 1156 |     minLocal = pPage->minLocal; | 
| 1157 |     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); | 
| 1158 |     return ( surplus <= maxLocal ) ? surplus : minLocal; | 
| 1159 |   } | 
| 1160 | } | 
| 1161 |  | 
| 1162 | /* | 
| 1163 | ** The following routines are implementations of the MemPage.xParseCell() | 
| 1164 | ** method. | 
| 1165 | ** | 
| 1166 | ** Parse a cell content block and fill in the CellInfo structure. | 
| 1167 | ** | 
| 1168 | ** btreeParseCellPtr()        =>   table btree leaf nodes | 
| 1169 | ** btreeParseCellNoPayload()  =>   table btree internal nodes | 
| 1170 | ** btreeParseCellPtrIndex()   =>   index btree nodes | 
| 1171 | ** | 
| 1172 | ** There is also a wrapper function btreeParseCell() that works for | 
| 1173 | ** all MemPage types and that references the cell by index rather than | 
| 1174 | ** by pointer. | 
| 1175 | */ | 
| 1176 | static void btreeParseCellPtrNoPayload( | 
| 1177 |   MemPage *pPage,         /* Page containing the cell */ | 
| 1178 |   u8 *pCell,              /* Pointer to the cell text. */ | 
| 1179 |   CellInfo *pInfo         /* Fill in this structure */ | 
| 1180 | ){ | 
| 1181 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1182 |   assert( pPage->leaf==0 ); | 
| 1183 |   assert( pPage->childPtrSize==4 ); | 
| 1184 | #ifndef SQLITE_DEBUG | 
| 1185 |   UNUSED_PARAMETER(pPage); | 
| 1186 | #endif | 
| 1187 |   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); | 
| 1188 |   pInfo->nPayload = 0; | 
| 1189 |   pInfo->nLocal = 0; | 
| 1190 |   pInfo->pPayload = 0; | 
| 1191 |   return; | 
| 1192 | } | 
| 1193 | static void btreeParseCellPtr( | 
| 1194 |   MemPage *pPage,         /* Page containing the cell */ | 
| 1195 |   u8 *pCell,              /* Pointer to the cell text. */ | 
| 1196 |   CellInfo *pInfo         /* Fill in this structure */ | 
| 1197 | ){ | 
| 1198 |   u8 *pIter;              /* For scanning through pCell */ | 
| 1199 |   u32 nPayload;           /* Number of bytes of cell payload */ | 
| 1200 |   u64 iKey;               /* Extracted Key value */ | 
| 1201 |  | 
| 1202 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1203 |   assert( pPage->leaf==0 || pPage->leaf==1 ); | 
| 1204 |   assert( pPage->intKeyLeaf ); | 
| 1205 |   assert( pPage->childPtrSize==0 ); | 
| 1206 |   pIter = pCell; | 
| 1207 |  | 
| 1208 |   /* The next block of code is equivalent to: | 
| 1209 |   ** | 
| 1210 |   **     pIter += getVarint32(pIter, nPayload); | 
| 1211 |   ** | 
| 1212 |   ** The code is inlined to avoid a function call. | 
| 1213 |   */ | 
| 1214 |   nPayload = *pIter; | 
| 1215 |   if( nPayload>=0x80 ){ | 
| 1216 |     u8 *pEnd = &pIter[8]; | 
| 1217 |     nPayload &= 0x7f; | 
| 1218 |     do{ | 
| 1219 |       nPayload = (nPayload<<7) | (*++pIter & 0x7f); | 
| 1220 |     }while( (*pIter)>=0x80 && pIter<pEnd ); | 
| 1221 |   } | 
| 1222 |   pIter++; | 
| 1223 |  | 
| 1224 |   /* The next block of code is equivalent to: | 
| 1225 |   ** | 
| 1226 |   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey); | 
| 1227 |   ** | 
| 1228 |   ** The code is inlined and the loop is unrolled for performance. | 
| 1229 |   ** This routine is a high-runner. | 
| 1230 |   */ | 
| 1231 |   iKey = *pIter; | 
| 1232 |   if( iKey>=0x80 ){ | 
| 1233 |     u8 x; | 
| 1234 |     iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); | 
| 1235 |     if( x>=0x80 ){ | 
| 1236 |       iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); | 
| 1237 |       if( x>=0x80 ){ | 
| 1238 |         iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); | 
| 1239 |         if( x>=0x80 ){ | 
| 1240 |           iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); | 
| 1241 |           if( x>=0x80 ){ | 
| 1242 |             iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); | 
| 1243 |             if( x>=0x80 ){ | 
| 1244 |               iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); | 
| 1245 |               if( x>=0x80 ){ | 
| 1246 |                 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); | 
| 1247 |                 if( x>=0x80 ){ | 
| 1248 |                   iKey = (iKey<<8) | (*++pIter); | 
| 1249 |                 } | 
| 1250 |               } | 
| 1251 |             } | 
| 1252 |           } | 
| 1253 |         } | 
| 1254 |       } | 
| 1255 |     } | 
| 1256 |   } | 
| 1257 |   pIter++; | 
| 1258 |  | 
| 1259 |   pInfo->nKey = *(i64*)&iKey; | 
| 1260 |   pInfo->nPayload = nPayload; | 
| 1261 |   pInfo->pPayload = pIter; | 
| 1262 |   testcase( nPayload==pPage->maxLocal ); | 
| 1263 |   testcase( nPayload==(u32)pPage->maxLocal+1 ); | 
| 1264 |   if( nPayload<=pPage->maxLocal ){ | 
| 1265 |     /* This is the (easy) common case where the entire payload fits | 
| 1266 |     ** on the local page.  No overflow is required. | 
| 1267 |     */ | 
| 1268 |     pInfo->nSize = nPayload + (u16)(pIter - pCell); | 
| 1269 |     if( pInfo->nSize<4 ) pInfo->nSize = 4; | 
| 1270 |     pInfo->nLocal = (u16)nPayload; | 
| 1271 |   }else{ | 
| 1272 |     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); | 
| 1273 |   } | 
| 1274 | } | 
| 1275 | static void btreeParseCellPtrIndex( | 
| 1276 |   MemPage *pPage,         /* Page containing the cell */ | 
| 1277 |   u8 *pCell,              /* Pointer to the cell text. */ | 
| 1278 |   CellInfo *pInfo         /* Fill in this structure */ | 
| 1279 | ){ | 
| 1280 |   u8 *pIter;              /* For scanning through pCell */ | 
| 1281 |   u32 nPayload;           /* Number of bytes of cell payload */ | 
| 1282 |  | 
| 1283 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1284 |   assert( pPage->leaf==0 || pPage->leaf==1 ); | 
| 1285 |   assert( pPage->intKeyLeaf==0 ); | 
| 1286 |   pIter = pCell + pPage->childPtrSize; | 
| 1287 |   nPayload = *pIter; | 
| 1288 |   if( nPayload>=0x80 ){ | 
| 1289 |     u8 *pEnd = &pIter[8]; | 
| 1290 |     nPayload &= 0x7f; | 
| 1291 |     do{ | 
| 1292 |       nPayload = (nPayload<<7) | (*++pIter & 0x7f); | 
| 1293 |     }while( *(pIter)>=0x80 && pIter<pEnd ); | 
| 1294 |   } | 
| 1295 |   pIter++; | 
| 1296 |   pInfo->nKey = nPayload; | 
| 1297 |   pInfo->nPayload = nPayload; | 
| 1298 |   pInfo->pPayload = pIter; | 
| 1299 |   testcase( nPayload==pPage->maxLocal ); | 
| 1300 |   testcase( nPayload==(u32)pPage->maxLocal+1 ); | 
| 1301 |   if( nPayload<=pPage->maxLocal ){ | 
| 1302 |     /* This is the (easy) common case where the entire payload fits | 
| 1303 |     ** on the local page.  No overflow is required. | 
| 1304 |     */ | 
| 1305 |     pInfo->nSize = nPayload + (u16)(pIter - pCell); | 
| 1306 |     if( pInfo->nSize<4 ) pInfo->nSize = 4; | 
| 1307 |     pInfo->nLocal = (u16)nPayload; | 
| 1308 |   }else{ | 
| 1309 |     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); | 
| 1310 |   } | 
| 1311 | } | 
| 1312 | static void btreeParseCell( | 
| 1313 |   MemPage *pPage,         /* Page containing the cell */ | 
| 1314 |   int iCell,              /* The cell index.  First cell is 0 */ | 
| 1315 |   CellInfo *pInfo         /* Fill in this structure */ | 
| 1316 | ){ | 
| 1317 |   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); | 
| 1318 | } | 
| 1319 |  | 
| 1320 | /* | 
| 1321 | ** The following routines are implementations of the MemPage.xCellSize | 
| 1322 | ** method. | 
| 1323 | ** | 
| 1324 | ** Compute the total number of bytes that a Cell needs in the cell | 
| 1325 | ** data area of the btree-page.  The return number includes the cell | 
| 1326 | ** data header and the local payload, but not any overflow page or | 
| 1327 | ** the space used by the cell pointer. | 
| 1328 | ** | 
| 1329 | ** cellSizePtrNoPayload()    =>   table internal nodes | 
| 1330 | ** cellSizePtrTableLeaf()    =>   table leaf nodes | 
| 1331 | ** cellSizePtr()             =>   all index nodes & table leaf nodes | 
| 1332 | */ | 
| 1333 | static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ | 
| 1334 |   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ | 
| 1335 |   u8 *pEnd;                                /* End mark for a varint */ | 
| 1336 |   u32 nSize;                               /* Size value to return */ | 
| 1337 |  | 
| 1338 | #ifdef SQLITE_DEBUG | 
| 1339 |   /* The value returned by this function should always be the same as | 
| 1340 |   ** the (CellInfo.nSize) value found by doing a full parse of the | 
| 1341 |   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of | 
| 1342 |   ** this function verifies that this invariant is not violated. */ | 
| 1343 |   CellInfo debuginfo; | 
| 1344 |   pPage->xParseCell(pPage, pCell, &debuginfo); | 
| 1345 | #endif | 
| 1346 |  | 
| 1347 |   nSize = *pIter; | 
| 1348 |   if( nSize>=0x80 ){ | 
| 1349 |     pEnd = &pIter[8]; | 
| 1350 |     nSize &= 0x7f; | 
| 1351 |     do{ | 
| 1352 |       nSize = (nSize<<7) | (*++pIter & 0x7f); | 
| 1353 |     }while( *(pIter)>=0x80 && pIter<pEnd ); | 
| 1354 |   } | 
| 1355 |   pIter++; | 
| 1356 |   testcase( nSize==pPage->maxLocal ); | 
| 1357 |   testcase( nSize==(u32)pPage->maxLocal+1 ); | 
| 1358 |   if( nSize<=pPage->maxLocal ){ | 
| 1359 |     nSize += (u32)(pIter - pCell); | 
| 1360 |     if( nSize<4 ) nSize = 4; | 
| 1361 |   }else{ | 
| 1362 |     int minLocal = pPage->minLocal; | 
| 1363 |     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); | 
| 1364 |     testcase( nSize==pPage->maxLocal ); | 
| 1365 |     testcase( nSize==(u32)pPage->maxLocal+1 ); | 
| 1366 |     if( nSize>pPage->maxLocal ){ | 
| 1367 |       nSize = minLocal; | 
| 1368 |     } | 
| 1369 |     nSize += 4 + (u16)(pIter - pCell); | 
| 1370 |   } | 
| 1371 |   assert( nSize==debuginfo.nSize || CORRUPT_DB ); | 
| 1372 |   return (u16)nSize; | 
| 1373 | } | 
| 1374 | static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ | 
| 1375 |   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ | 
| 1376 |   u8 *pEnd;              /* End mark for a varint */ | 
| 1377 |  | 
| 1378 | #ifdef SQLITE_DEBUG | 
| 1379 |   /* The value returned by this function should always be the same as | 
| 1380 |   ** the (CellInfo.nSize) value found by doing a full parse of the | 
| 1381 |   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of | 
| 1382 |   ** this function verifies that this invariant is not violated. */ | 
| 1383 |   CellInfo debuginfo; | 
| 1384 |   pPage->xParseCell(pPage, pCell, &debuginfo); | 
| 1385 | #else | 
| 1386 |   UNUSED_PARAMETER(pPage); | 
| 1387 | #endif | 
| 1388 |  | 
| 1389 |   assert( pPage->childPtrSize==4 ); | 
| 1390 |   pEnd = pIter + 9; | 
| 1391 |   while( (*pIter++)&0x80 && pIter<pEnd ); | 
| 1392 |   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); | 
| 1393 |   return (u16)(pIter - pCell); | 
| 1394 | } | 
| 1395 | static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ | 
| 1396 |   u8 *pIter = pCell;   /* For looping over bytes of pCell */ | 
| 1397 |   u8 *pEnd;            /* End mark for a varint */ | 
| 1398 |   u32 nSize;           /* Size value to return */ | 
| 1399 |  | 
| 1400 | #ifdef SQLITE_DEBUG | 
| 1401 |   /* The value returned by this function should always be the same as | 
| 1402 |   ** the (CellInfo.nSize) value found by doing a full parse of the | 
| 1403 |   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of | 
| 1404 |   ** this function verifies that this invariant is not violated. */ | 
| 1405 |   CellInfo debuginfo; | 
| 1406 |   pPage->xParseCell(pPage, pCell, &debuginfo); | 
| 1407 | #endif | 
| 1408 |  | 
| 1409 |   nSize = *pIter; | 
| 1410 |   if( nSize>=0x80 ){ | 
| 1411 |     pEnd = &pIter[8]; | 
| 1412 |     nSize &= 0x7f; | 
| 1413 |     do{ | 
| 1414 |       nSize = (nSize<<7) | (*++pIter & 0x7f); | 
| 1415 |     }while( *(pIter)>=0x80 && pIter<pEnd ); | 
| 1416 |   } | 
| 1417 |   pIter++; | 
| 1418 |   /* pIter now points at the 64-bit integer key value, a variable length  | 
| 1419 |   ** integer. The following block moves pIter to point at the first byte | 
| 1420 |   ** past the end of the key value. */ | 
| 1421 |   if( (*pIter++)&0x80 | 
| 1422 |    && (*pIter++)&0x80 | 
| 1423 |    && (*pIter++)&0x80 | 
| 1424 |    && (*pIter++)&0x80 | 
| 1425 |    && (*pIter++)&0x80 | 
| 1426 |    && (*pIter++)&0x80 | 
| 1427 |    && (*pIter++)&0x80 | 
| 1428 |    && (*pIter++)&0x80 ){ pIter++; } | 
| 1429 |   testcase( nSize==pPage->maxLocal ); | 
| 1430 |   testcase( nSize==(u32)pPage->maxLocal+1 ); | 
| 1431 |   if( nSize<=pPage->maxLocal ){ | 
| 1432 |     nSize += (u32)(pIter - pCell); | 
| 1433 |     if( nSize<4 ) nSize = 4; | 
| 1434 |   }else{ | 
| 1435 |     int minLocal = pPage->minLocal; | 
| 1436 |     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); | 
| 1437 |     testcase( nSize==pPage->maxLocal ); | 
| 1438 |     testcase( nSize==(u32)pPage->maxLocal+1 ); | 
| 1439 |     if( nSize>pPage->maxLocal ){ | 
| 1440 |       nSize = minLocal; | 
| 1441 |     } | 
| 1442 |     nSize += 4 + (u16)(pIter - pCell); | 
| 1443 |   } | 
| 1444 |   assert( nSize==debuginfo.nSize || CORRUPT_DB ); | 
| 1445 |   return (u16)nSize; | 
| 1446 | } | 
| 1447 |  | 
| 1448 |  | 
| 1449 | #ifdef SQLITE_DEBUG | 
| 1450 | /* This variation on cellSizePtr() is used inside of assert() statements | 
| 1451 | ** only. */ | 
| 1452 | static u16 cellSize(MemPage *pPage, int iCell){ | 
| 1453 |   return pPage->xCellSize(pPage, findCell(pPage, iCell)); | 
| 1454 | } | 
| 1455 | #endif | 
| 1456 |  | 
| 1457 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 1458 | /* | 
| 1459 | ** The cell pCell is currently part of page pSrc but will ultimately be part | 
| 1460 | ** of pPage.  (pSrc and pPage are often the same.)  If pCell contains a | 
| 1461 | ** pointer to an overflow page, insert an entry into the pointer-map for | 
| 1462 | ** the overflow page that will be valid after pCell has been moved to pPage. | 
| 1463 | */ | 
| 1464 | static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ | 
| 1465 |   CellInfo info; | 
| 1466 |   if( *pRC ) return; | 
| 1467 |   assert( pCell!=0 ); | 
| 1468 |   pPage->xParseCell(pPage, pCell, &info); | 
| 1469 |   if( info.nLocal<info.nPayload ){ | 
| 1470 |     Pgno ovfl; | 
| 1471 |     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ | 
| 1472 |       testcase( pSrc!=pPage ); | 
| 1473 |       *pRC = SQLITE_CORRUPT_BKPT; | 
| 1474 |       return; | 
| 1475 |     } | 
| 1476 |     ovfl = get4byte(&pCell[info.nSize-4]); | 
| 1477 |     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); | 
| 1478 |   } | 
| 1479 | } | 
| 1480 | #endif | 
| 1481 |  | 
| 1482 |  | 
| 1483 | /* | 
| 1484 | ** Defragment the page given. This routine reorganizes cells within the | 
| 1485 | ** page so that there are no free-blocks on the free-block list. | 
| 1486 | ** | 
| 1487 | ** Parameter nMaxFrag is the maximum amount of fragmented space that may be | 
| 1488 | ** present in the page after this routine returns. | 
| 1489 | ** | 
| 1490 | ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a | 
| 1491 | ** b-tree page so that there are no freeblocks or fragment bytes, all | 
| 1492 | ** unused bytes are contained in the unallocated space region, and all | 
| 1493 | ** cells are packed tightly at the end of the page. | 
| 1494 | */ | 
| 1495 | static int defragmentPage(MemPage *pPage, int nMaxFrag){ | 
| 1496 |   int i;                     /* Loop counter */ | 
| 1497 |   int pc;                    /* Address of the i-th cell */ | 
| 1498 |   int hdr;                   /* Offset to the page header */ | 
| 1499 |   int size;                  /* Size of a cell */ | 
| 1500 |   int usableSize;            /* Number of usable bytes on a page */ | 
| 1501 |   int cellOffset;            /* Offset to the cell pointer array */ | 
| 1502 |   int cbrk;                  /* Offset to the cell content area */ | 
| 1503 |   int nCell;                 /* Number of cells on the page */ | 
| 1504 |   unsigned char *data;       /* The page data */ | 
| 1505 |   unsigned char *temp;       /* Temp area for cell content */ | 
| 1506 |   unsigned char *src;        /* Source of content */ | 
| 1507 |   int iCellFirst;            /* First allowable cell index */ | 
| 1508 |   int iCellLast;             /* Last possible cell index */ | 
| 1509 |   int iCellStart;            /* First cell offset in input */ | 
| 1510 |  | 
| 1511 |   assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 1512 |   assert( pPage->pBt!=0 ); | 
| 1513 |   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); | 
| 1514 |   assert( pPage->nOverflow==0 ); | 
| 1515 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1516 |   data = pPage->aData; | 
| 1517 |   hdr = pPage->hdrOffset; | 
| 1518 |   cellOffset = pPage->cellOffset; | 
| 1519 |   nCell = pPage->nCell; | 
| 1520 |   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); | 
| 1521 |   iCellFirst = cellOffset + 2*nCell; | 
| 1522 |   usableSize = pPage->pBt->usableSize; | 
| 1523 |  | 
| 1524 |   /* This block handles pages with two or fewer free blocks and nMaxFrag | 
| 1525 |   ** or fewer fragmented bytes. In this case it is faster to move the | 
| 1526 |   ** two (or one) blocks of cells using memmove() and add the required | 
| 1527 |   ** offsets to each pointer in the cell-pointer array than it is to  | 
| 1528 |   ** reconstruct the entire page.  */ | 
| 1529 |   if( (int)data[hdr+7]<=nMaxFrag ){ | 
| 1530 |     int iFree = get2byte(&data[hdr+1]); | 
| 1531 |     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1532 |     if( iFree ){ | 
| 1533 |       int iFree2 = get2byte(&data[iFree]); | 
| 1534 |       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1535 |       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ | 
| 1536 |         u8 *pEnd = &data[cellOffset + nCell*2]; | 
| 1537 |         u8 *pAddr; | 
| 1538 |         int sz2 = 0; | 
| 1539 |         int sz = get2byte(&data[iFree+2]); | 
| 1540 |         int top = get2byte(&data[hdr+5]); | 
| 1541 |         if( top>=iFree ){ | 
| 1542 |           return SQLITE_CORRUPT_PAGE(pPage); | 
| 1543 |         } | 
| 1544 |         if( iFree2 ){ | 
| 1545 |           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1546 |           sz2 = get2byte(&data[iFree2+2]); | 
| 1547 |           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1548 |           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); | 
| 1549 |           sz += sz2; | 
| 1550 |         }else if( iFree+sz>usableSize ){ | 
| 1551 |           return SQLITE_CORRUPT_PAGE(pPage); | 
| 1552 |         } | 
| 1553 |  | 
| 1554 |         cbrk = top+sz; | 
| 1555 |         assert( cbrk+(iFree-top) <= usableSize ); | 
| 1556 |         memmove(&data[cbrk], &data[top], iFree-top); | 
| 1557 |         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ | 
| 1558 |           pc = get2byte(pAddr); | 
| 1559 |           if( pc<iFree ){ put2byte(pAddr, pc+sz); } | 
| 1560 |           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } | 
| 1561 |         } | 
| 1562 |         goto defragment_out; | 
| 1563 |       } | 
| 1564 |     } | 
| 1565 |   } | 
| 1566 |  | 
| 1567 |   cbrk = usableSize; | 
| 1568 |   iCellLast = usableSize - 4; | 
| 1569 |   iCellStart = get2byte(&data[hdr+5]); | 
| 1570 |   if( nCell>0 ){ | 
| 1571 |     temp = sqlite3PagerTempSpace(pPage->pBt->pPager); | 
| 1572 |     memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); | 
| 1573 |     src = temp; | 
| 1574 |     for(i=0; i<nCell; i++){ | 
| 1575 |       u8 *pAddr;     /* The i-th cell pointer */ | 
| 1576 |       pAddr = &data[cellOffset + i*2]; | 
| 1577 |       pc = get2byte(pAddr); | 
| 1578 |       testcase( pc==iCellFirst ); | 
| 1579 |       testcase( pc==iCellLast ); | 
| 1580 |       /* These conditions have already been verified in btreeInitPage() | 
| 1581 |       ** if PRAGMA cell_size_check=ON. | 
| 1582 |       */ | 
| 1583 |       if( pc<iCellStart || pc>iCellLast ){ | 
| 1584 |         return SQLITE_CORRUPT_PAGE(pPage); | 
| 1585 |       } | 
| 1586 |       assert( pc>=iCellStart && pc<=iCellLast ); | 
| 1587 |       size = pPage->xCellSize(pPage, &src[pc]); | 
| 1588 |       cbrk -= size; | 
| 1589 |       if( cbrk<iCellStart || pc+size>usableSize ){ | 
| 1590 |         return SQLITE_CORRUPT_PAGE(pPage); | 
| 1591 |       } | 
| 1592 |       assert( cbrk+size<=usableSize && cbrk>=iCellStart ); | 
| 1593 |       testcase( cbrk+size==usableSize ); | 
| 1594 |       testcase( pc+size==usableSize ); | 
| 1595 |       put2byte(pAddr, cbrk); | 
| 1596 |       memcpy(&data[cbrk], &src[pc], size); | 
| 1597 |     } | 
| 1598 |   } | 
| 1599 |   data[hdr+7] = 0; | 
| 1600 |  | 
| 1601 | defragment_out: | 
| 1602 |   assert( pPage->nFree>=0 ); | 
| 1603 |   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ | 
| 1604 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 1605 |   } | 
| 1606 |   assert( cbrk>=iCellFirst ); | 
| 1607 |   put2byte(&data[hdr+5], cbrk); | 
| 1608 |   data[hdr+1] = 0; | 
| 1609 |   data[hdr+2] = 0; | 
| 1610 |   memset(&data[iCellFirst], 0, cbrk-iCellFirst); | 
| 1611 |   assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 1612 |   return SQLITE_OK; | 
| 1613 | } | 
| 1614 |  | 
| 1615 | /* | 
| 1616 | ** Search the free-list on page pPg for space to store a cell nByte bytes in | 
| 1617 | ** size. If one can be found, return a pointer to the space and remove it | 
| 1618 | ** from the free-list. | 
| 1619 | ** | 
| 1620 | ** If no suitable space can be found on the free-list, return NULL. | 
| 1621 | ** | 
| 1622 | ** This function may detect corruption within pPg.  If corruption is | 
| 1623 | ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. | 
| 1624 | ** | 
| 1625 | ** Slots on the free list that are between 1 and 3 bytes larger than nByte | 
| 1626 | ** will be ignored if adding the extra space to the fragmentation count | 
| 1627 | ** causes the fragmentation count to exceed 60. | 
| 1628 | */ | 
| 1629 | static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ | 
| 1630 |   const int hdr = pPg->hdrOffset;            /* Offset to page header */ | 
| 1631 |   u8 * const aData = pPg->aData;             /* Page data */ | 
| 1632 |   int iAddr = hdr + 1;                       /* Address of ptr to pc */ | 
| 1633 |   u8 *pTmp = &aData[iAddr];                  /* Temporary ptr into aData[] */ | 
| 1634 |   int pc = get2byte(pTmp);                   /* Address of a free slot */ | 
| 1635 |   int x;                                     /* Excess size of the slot */ | 
| 1636 |   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */ | 
| 1637 |   int size;                                  /* Size of the free slot */ | 
| 1638 |  | 
| 1639 |   assert( pc>0 ); | 
| 1640 |   while( pc<=maxPC ){ | 
| 1641 |     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each | 
| 1642 |     ** freeblock form a big-endian integer which is the size of the freeblock | 
| 1643 |     ** in bytes, including the 4-byte header. */ | 
| 1644 |     pTmp = &aData[pc+2]; | 
| 1645 |     size = get2byte(pTmp); | 
| 1646 |     if( (x = size - nByte)>=0 ){ | 
| 1647 |       testcase( x==4 ); | 
| 1648 |       testcase( x==3 ); | 
| 1649 |       if( x<4 ){ | 
| 1650 |         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total | 
| 1651 |         ** number of bytes in fragments may not exceed 60. */ | 
| 1652 |         if( aData[hdr+7]>57 ) return 0; | 
| 1653 |  | 
| 1654 |         /* Remove the slot from the free-list. Update the number of | 
| 1655 |         ** fragmented bytes within the page. */ | 
| 1656 |         memcpy(&aData[iAddr], &aData[pc], 2); | 
| 1657 |         aData[hdr+7] += (u8)x; | 
| 1658 |         return &aData[pc]; | 
| 1659 |       }else if( x+pc > maxPC ){ | 
| 1660 |         /* This slot extends off the end of the usable part of the page */ | 
| 1661 |         *pRc = SQLITE_CORRUPT_PAGE(pPg); | 
| 1662 |         return 0; | 
| 1663 |       }else{ | 
| 1664 |         /* The slot remains on the free-list. Reduce its size to account | 
| 1665 |         ** for the portion used by the new allocation. */ | 
| 1666 |         put2byte(&aData[pc+2], x); | 
| 1667 |       } | 
| 1668 |       return &aData[pc + x]; | 
| 1669 |     } | 
| 1670 |     iAddr = pc; | 
| 1671 |     pTmp = &aData[pc]; | 
| 1672 |     pc = get2byte(pTmp); | 
| 1673 |     if( pc<=iAddr ){ | 
| 1674 |       if( pc ){ | 
| 1675 |         /* The next slot in the chain comes before the current slot */ | 
| 1676 |         *pRc = SQLITE_CORRUPT_PAGE(pPg); | 
| 1677 |       } | 
| 1678 |       return 0; | 
| 1679 |     } | 
| 1680 |   } | 
| 1681 |   if( pc>maxPC+nByte-4 ){ | 
| 1682 |     /* The free slot chain extends off the end of the page */ | 
| 1683 |     *pRc = SQLITE_CORRUPT_PAGE(pPg); | 
| 1684 |   } | 
| 1685 |   return 0; | 
| 1686 | } | 
| 1687 |  | 
| 1688 | /* | 
| 1689 | ** Allocate nByte bytes of space from within the B-Tree page passed | 
| 1690 | ** as the first argument. Write into *pIdx the index into pPage->aData[] | 
| 1691 | ** of the first byte of allocated space. Return either SQLITE_OK or | 
| 1692 | ** an error code (usually SQLITE_CORRUPT). | 
| 1693 | ** | 
| 1694 | ** The caller guarantees that there is sufficient space to make the | 
| 1695 | ** allocation.  This routine might need to defragment in order to bring | 
| 1696 | ** all the space together, however.  This routine will avoid using | 
| 1697 | ** the first two bytes past the cell pointer area since presumably this | 
| 1698 | ** allocation is being made in order to insert a new cell, so we will | 
| 1699 | ** also end up needing a new cell pointer. | 
| 1700 | */ | 
| 1701 | static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ | 
| 1702 |   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */ | 
| 1703 |   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */ | 
| 1704 |   int top;                             /* First byte of cell content area */ | 
| 1705 |   int rc = SQLITE_OK;                  /* Integer return code */ | 
| 1706 |   u8 *pTmp;                            /* Temp ptr into data[] */ | 
| 1707 |   int gap;        /* First byte of gap between cell pointers and cell content */ | 
| 1708 |    | 
| 1709 |   assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 1710 |   assert( pPage->pBt ); | 
| 1711 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1712 |   assert( nByte>=0 );  /* Minimum cell size is 4 */ | 
| 1713 |   assert( pPage->nFree>=nByte ); | 
| 1714 |   assert( pPage->nOverflow==0 ); | 
| 1715 |   assert( nByte < (int)(pPage->pBt->usableSize-8) ); | 
| 1716 |  | 
| 1717 |   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); | 
| 1718 |   gap = pPage->cellOffset + 2*pPage->nCell; | 
| 1719 |   assert( gap<=65536 ); | 
| 1720 |   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size | 
| 1721 |   ** and the reserved space is zero (the usual value for reserved space) | 
| 1722 |   ** then the cell content offset of an empty page wants to be 65536. | 
| 1723 |   ** However, that integer is too large to be stored in a 2-byte unsigned | 
| 1724 |   ** integer, so a value of 0 is used in its place. */ | 
| 1725 |   pTmp = &data[hdr+5]; | 
| 1726 |   top = get2byte(pTmp); | 
| 1727 |   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ | 
| 1728 |   if( gap>top ){ | 
| 1729 |     if( top==0 && pPage->pBt->usableSize==65536 ){ | 
| 1730 |       top = 65536; | 
| 1731 |     }else{ | 
| 1732 |       return SQLITE_CORRUPT_PAGE(pPage); | 
| 1733 |     } | 
| 1734 |   } | 
| 1735 |  | 
| 1736 |   /* If there is enough space between gap and top for one more cell pointer, | 
| 1737 |   ** and if the freelist is not empty, then search the | 
| 1738 |   ** freelist looking for a slot big enough to satisfy the request. | 
| 1739 |   */ | 
| 1740 |   testcase( gap+2==top ); | 
| 1741 |   testcase( gap+1==top ); | 
| 1742 |   testcase( gap==top ); | 
| 1743 |   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ | 
| 1744 |     u8 *pSpace = pageFindSlot(pPage, nByte, &rc); | 
| 1745 |     if( pSpace ){ | 
| 1746 |       int g2; | 
| 1747 |       assert( pSpace+nByte<=data+pPage->pBt->usableSize ); | 
| 1748 |       *pIdx = g2 = (int)(pSpace-data); | 
| 1749 |       if( g2<=gap ){ | 
| 1750 |         return SQLITE_CORRUPT_PAGE(pPage); | 
| 1751 |       }else{ | 
| 1752 |         return SQLITE_OK; | 
| 1753 |       } | 
| 1754 |     }else if( rc ){ | 
| 1755 |       return rc; | 
| 1756 |     } | 
| 1757 |   } | 
| 1758 |  | 
| 1759 |   /* The request could not be fulfilled using a freelist slot.  Check | 
| 1760 |   ** to see if defragmentation is necessary. | 
| 1761 |   */ | 
| 1762 |   testcase( gap+2+nByte==top ); | 
| 1763 |   if( gap+2+nByte>top ){ | 
| 1764 |     assert( pPage->nCell>0 || CORRUPT_DB ); | 
| 1765 |     assert( pPage->nFree>=0 ); | 
| 1766 |     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); | 
| 1767 |     if( rc ) return rc; | 
| 1768 |     top = get2byteNotZero(&data[hdr+5]); | 
| 1769 |     assert( gap+2+nByte<=top ); | 
| 1770 |   } | 
| 1771 |  | 
| 1772 |  | 
| 1773 |   /* Allocate memory from the gap in between the cell pointer array | 
| 1774 |   ** and the cell content area.  The btreeComputeFreeSpace() call has already | 
| 1775 |   ** validated the freelist.  Given that the freelist is valid, there | 
| 1776 |   ** is no way that the allocation can extend off the end of the page. | 
| 1777 |   ** The assert() below verifies the previous sentence. | 
| 1778 |   */ | 
| 1779 |   top -= nByte; | 
| 1780 |   put2byte(&data[hdr+5], top); | 
| 1781 |   assert( top+nByte <= (int)pPage->pBt->usableSize ); | 
| 1782 |   *pIdx = top; | 
| 1783 |   return SQLITE_OK; | 
| 1784 | } | 
| 1785 |  | 
| 1786 | /* | 
| 1787 | ** Return a section of the pPage->aData to the freelist. | 
| 1788 | ** The first byte of the new free block is pPage->aData[iStart] | 
| 1789 | ** and the size of the block is iSize bytes. | 
| 1790 | ** | 
| 1791 | ** Adjacent freeblocks are coalesced. | 
| 1792 | ** | 
| 1793 | ** Even though the freeblock list was checked by btreeComputeFreeSpace(), | 
| 1794 | ** that routine will not detect overlap between cells or freeblocks.  Nor | 
| 1795 | ** does it detect cells or freeblocks that encrouch into the reserved bytes | 
| 1796 | ** at the end of the page.  So do additional corruption checks inside this | 
| 1797 | ** routine and return SQLITE_CORRUPT if any problems are found. | 
| 1798 | */ | 
| 1799 | static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ | 
| 1800 |   u16 iPtr;                             /* Address of ptr to next freeblock */ | 
| 1801 |   u16 iFreeBlk;                         /* Address of the next freeblock */ | 
| 1802 |   u8 hdr;                               /* Page header size.  0 or 100 */ | 
| 1803 |   u8 nFrag = 0;                         /* Reduction in fragmentation */ | 
| 1804 |   u16 iOrigSize = iSize;                /* Original value of iSize */ | 
| 1805 |   u16 x;                                /* Offset to cell content area */ | 
| 1806 |   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */ | 
| 1807 |   unsigned char *data = pPage->aData;   /* Page content */ | 
| 1808 |   u8 *pTmp;                             /* Temporary ptr into data[] */ | 
| 1809 |  | 
| 1810 |   assert( pPage->pBt!=0 ); | 
| 1811 |   assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 1812 |   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); | 
| 1813 |   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); | 
| 1814 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1815 |   assert( iSize>=4 );   /* Minimum cell size is 4 */ | 
| 1816 |   assert( iStart<=pPage->pBt->usableSize-4 ); | 
| 1817 |  | 
| 1818 |   /* The list of freeblocks must be in ascending order.  Find the  | 
| 1819 |   ** spot on the list where iStart should be inserted. | 
| 1820 |   */ | 
| 1821 |   hdr = pPage->hdrOffset; | 
| 1822 |   iPtr = hdr + 1; | 
| 1823 |   if( data[iPtr+1]==0 && data[iPtr]==0 ){ | 
| 1824 |     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */ | 
| 1825 |   }else{ | 
| 1826 |     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ | 
| 1827 |       if( iFreeBlk<=iPtr ){ | 
| 1828 |         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ | 
| 1829 |         return SQLITE_CORRUPT_PAGE(pPage); | 
| 1830 |       } | 
| 1831 |       iPtr = iFreeBlk; | 
| 1832 |     } | 
| 1833 |     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ | 
| 1834 |       return SQLITE_CORRUPT_PAGE(pPage); | 
| 1835 |     } | 
| 1836 |     assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); | 
| 1837 |    | 
| 1838 |     /* At this point: | 
| 1839 |     **    iFreeBlk:   First freeblock after iStart, or zero if none | 
| 1840 |     **    iPtr:       The address of a pointer to iFreeBlk | 
| 1841 |     ** | 
| 1842 |     ** Check to see if iFreeBlk should be coalesced onto the end of iStart. | 
| 1843 |     */ | 
| 1844 |     if( iFreeBlk && iEnd+3>=iFreeBlk ){ | 
| 1845 |       nFrag = iFreeBlk - iEnd; | 
| 1846 |       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1847 |       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); | 
| 1848 |       if( iEnd > pPage->pBt->usableSize ){ | 
| 1849 |         return SQLITE_CORRUPT_PAGE(pPage); | 
| 1850 |       } | 
| 1851 |       iSize = iEnd - iStart; | 
| 1852 |       iFreeBlk = get2byte(&data[iFreeBlk]); | 
| 1853 |     } | 
| 1854 |    | 
| 1855 |     /* If iPtr is another freeblock (that is, if iPtr is not the freelist | 
| 1856 |     ** pointer in the page header) then check to see if iStart should be | 
| 1857 |     ** coalesced onto the end of iPtr. | 
| 1858 |     */ | 
| 1859 |     if( iPtr>hdr+1 ){ | 
| 1860 |       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); | 
| 1861 |       if( iPtrEnd+3>=iStart ){ | 
| 1862 |         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1863 |         nFrag += iStart - iPtrEnd; | 
| 1864 |         iSize = iEnd - iPtr; | 
| 1865 |         iStart = iPtr; | 
| 1866 |       } | 
| 1867 |     } | 
| 1868 |     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1869 |     data[hdr+7] -= nFrag; | 
| 1870 |   } | 
| 1871 |   pTmp = &data[hdr+5]; | 
| 1872 |   x = get2byte(pTmp); | 
| 1873 |   if( iStart<=x ){ | 
| 1874 |     /* The new freeblock is at the beginning of the cell content area, | 
| 1875 |     ** so just extend the cell content area rather than create another | 
| 1876 |     ** freelist entry */ | 
| 1877 |     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1878 |     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); | 
| 1879 |     put2byte(&data[hdr+1], iFreeBlk); | 
| 1880 |     put2byte(&data[hdr+5], iEnd); | 
| 1881 |   }else{ | 
| 1882 |     /* Insert the new freeblock into the freelist */ | 
| 1883 |     put2byte(&data[iPtr], iStart); | 
| 1884 |   } | 
| 1885 |   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ | 
| 1886 |     /* Overwrite deleted information with zeros when the secure_delete | 
| 1887 |     ** option is enabled */ | 
| 1888 |     memset(&data[iStart], 0, iSize); | 
| 1889 |   } | 
| 1890 |   put2byte(&data[iStart], iFreeBlk); | 
| 1891 |   put2byte(&data[iStart+2], iSize); | 
| 1892 |   pPage->nFree += iOrigSize; | 
| 1893 |   return SQLITE_OK; | 
| 1894 | } | 
| 1895 |  | 
| 1896 | /* | 
| 1897 | ** Decode the flags byte (the first byte of the header) for a page | 
| 1898 | ** and initialize fields of the MemPage structure accordingly. | 
| 1899 | ** | 
| 1900 | ** Only the following combinations are supported.  Anything different | 
| 1901 | ** indicates a corrupt database files: | 
| 1902 | ** | 
| 1903 | **         PTF_ZERODATA | 
| 1904 | **         PTF_ZERODATA | PTF_LEAF | 
| 1905 | **         PTF_LEAFDATA | PTF_INTKEY | 
| 1906 | **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF | 
| 1907 | */ | 
| 1908 | static int decodeFlags(MemPage *pPage, int flagByte){ | 
| 1909 |   BtShared *pBt;     /* A copy of pPage->pBt */ | 
| 1910 |  | 
| 1911 |   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); | 
| 1912 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1913 |   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 ); | 
| 1914 |   flagByte &= ~PTF_LEAF; | 
| 1915 |   pPage->childPtrSize = 4-4*pPage->leaf; | 
| 1916 |   pBt = pPage->pBt; | 
| 1917 |   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ | 
| 1918 |     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an | 
| 1919 |     ** interior table b-tree page. */ | 
| 1920 |     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); | 
| 1921 |     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a | 
| 1922 |     ** leaf table b-tree page. */ | 
| 1923 |     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); | 
| 1924 |     pPage->intKey = 1; | 
| 1925 |     if( pPage->leaf ){ | 
| 1926 |       pPage->intKeyLeaf = 1; | 
| 1927 |       pPage->xCellSize = cellSizePtrTableLeaf; | 
| 1928 |       pPage->xParseCell = btreeParseCellPtr; | 
| 1929 |     }else{ | 
| 1930 |       pPage->intKeyLeaf = 0; | 
| 1931 |       pPage->xCellSize = cellSizePtrNoPayload; | 
| 1932 |       pPage->xParseCell = btreeParseCellPtrNoPayload; | 
| 1933 |     } | 
| 1934 |     pPage->maxLocal = pBt->maxLeaf; | 
| 1935 |     pPage->minLocal = pBt->minLeaf; | 
| 1936 |   }else if( flagByte==PTF_ZERODATA ){ | 
| 1937 |     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an | 
| 1938 |     ** interior index b-tree page. */ | 
| 1939 |     assert( (PTF_ZERODATA)==2 ); | 
| 1940 |     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a | 
| 1941 |     ** leaf index b-tree page. */ | 
| 1942 |     assert( (PTF_ZERODATA|PTF_LEAF)==10 ); | 
| 1943 |     pPage->intKey = 0; | 
| 1944 |     pPage->intKeyLeaf = 0; | 
| 1945 |     pPage->xCellSize = cellSizePtr; | 
| 1946 |     pPage->xParseCell = btreeParseCellPtrIndex; | 
| 1947 |     pPage->maxLocal = pBt->maxLocal; | 
| 1948 |     pPage->minLocal = pBt->minLocal; | 
| 1949 |   }else{ | 
| 1950 |     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is | 
| 1951 |     ** an error. */ | 
| 1952 |     pPage->intKey = 0; | 
| 1953 |     pPage->intKeyLeaf = 0; | 
| 1954 |     pPage->xCellSize = cellSizePtr; | 
| 1955 |     pPage->xParseCell = btreeParseCellPtrIndex; | 
| 1956 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 1957 |   } | 
| 1958 |   pPage->max1bytePayload = pBt->max1bytePayload; | 
| 1959 |   return SQLITE_OK; | 
| 1960 | } | 
| 1961 |  | 
| 1962 | /* | 
| 1963 | ** Compute the amount of freespace on the page.  In other words, fill | 
| 1964 | ** in the pPage->nFree field. | 
| 1965 | */ | 
| 1966 | static int btreeComputeFreeSpace(MemPage *pPage){ | 
| 1967 |   int pc;            /* Address of a freeblock within pPage->aData[] */ | 
| 1968 |   u8 hdr;            /* Offset to beginning of page header */ | 
| 1969 |   u8 *data;          /* Equal to pPage->aData */ | 
| 1970 |   int usableSize;    /* Amount of usable space on each page */ | 
| 1971 |   int nFree;         /* Number of unused bytes on the page */ | 
| 1972 |   int top;           /* First byte of the cell content area */ | 
| 1973 |   int iCellFirst;    /* First allowable cell or freeblock offset */ | 
| 1974 |   int iCellLast;     /* Last possible cell or freeblock offset */ | 
| 1975 |  | 
| 1976 |   assert( pPage->pBt!=0 ); | 
| 1977 |   assert( pPage->pBt->db!=0 ); | 
| 1978 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 1979 |   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); | 
| 1980 |   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); | 
| 1981 |   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); | 
| 1982 |   assert( pPage->isInit==1 ); | 
| 1983 |   assert( pPage->nFree<0 ); | 
| 1984 |  | 
| 1985 |   usableSize = pPage->pBt->usableSize; | 
| 1986 |   hdr = pPage->hdrOffset; | 
| 1987 |   data = pPage->aData; | 
| 1988 |   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates | 
| 1989 |   ** the start of the cell content area. A zero value for this integer is | 
| 1990 |   ** interpreted as 65536. */ | 
| 1991 |   top = get2byteNotZero(&data[hdr+5]); | 
| 1992 |   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; | 
| 1993 |   iCellLast = usableSize - 4; | 
| 1994 |  | 
| 1995 |   /* Compute the total free space on the page | 
| 1996 |   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the | 
| 1997 |   ** start of the first freeblock on the page, or is zero if there are no | 
| 1998 |   ** freeblocks. */ | 
| 1999 |   pc = get2byte(&data[hdr+1]); | 
| 2000 |   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */ | 
| 2001 |   if( pc>0 ){ | 
| 2002 |     u32 next, size; | 
| 2003 |     if( pc<top ){ | 
| 2004 |       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will | 
| 2005 |       ** always be at least one cell before the first freeblock. | 
| 2006 |       */ | 
| 2007 |       return SQLITE_CORRUPT_PAGE(pPage);  | 
| 2008 |     } | 
| 2009 |     while( 1 ){ | 
| 2010 |       if( pc>iCellLast ){ | 
| 2011 |         /* Freeblock off the end of the page */ | 
| 2012 |         return SQLITE_CORRUPT_PAGE(pPage); | 
| 2013 |       } | 
| 2014 |       next = get2byte(&data[pc]); | 
| 2015 |       size = get2byte(&data[pc+2]); | 
| 2016 |       nFree = nFree + size; | 
| 2017 |       if( next<=pc+size+3 ) break; | 
| 2018 |       pc = next; | 
| 2019 |     } | 
| 2020 |     if( next>0 ){ | 
| 2021 |       /* Freeblock not in ascending order */ | 
| 2022 |       return SQLITE_CORRUPT_PAGE(pPage); | 
| 2023 |     } | 
| 2024 |     if( pc+size>(unsigned int)usableSize ){ | 
| 2025 |       /* Last freeblock extends past page end */ | 
| 2026 |       return SQLITE_CORRUPT_PAGE(pPage); | 
| 2027 |     } | 
| 2028 |   } | 
| 2029 |  | 
| 2030 |   /* At this point, nFree contains the sum of the offset to the start | 
| 2031 |   ** of the cell-content area plus the number of free bytes within | 
| 2032 |   ** the cell-content area. If this is greater than the usable-size | 
| 2033 |   ** of the page, then the page must be corrupted. This check also | 
| 2034 |   ** serves to verify that the offset to the start of the cell-content | 
| 2035 |   ** area, according to the page header, lies within the page. | 
| 2036 |   */ | 
| 2037 |   if( nFree>usableSize || nFree<iCellFirst ){ | 
| 2038 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 2039 |   } | 
| 2040 |   pPage->nFree = (u16)(nFree - iCellFirst); | 
| 2041 |   return SQLITE_OK; | 
| 2042 | } | 
| 2043 |  | 
| 2044 | /* | 
| 2045 | ** Do additional sanity check after btreeInitPage() if | 
| 2046 | ** PRAGMA cell_size_check=ON  | 
| 2047 | */ | 
| 2048 | static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ | 
| 2049 |   int iCellFirst;    /* First allowable cell or freeblock offset */ | 
| 2050 |   int iCellLast;     /* Last possible cell or freeblock offset */ | 
| 2051 |   int i;             /* Index into the cell pointer array */ | 
| 2052 |   int sz;            /* Size of a cell */ | 
| 2053 |   int pc;            /* Address of a freeblock within pPage->aData[] */ | 
| 2054 |   u8 *data;          /* Equal to pPage->aData */ | 
| 2055 |   int usableSize;    /* Maximum usable space on the page */ | 
| 2056 |   int cellOffset;    /* Start of cell content area */ | 
| 2057 |  | 
| 2058 |   iCellFirst = pPage->cellOffset + 2*pPage->nCell; | 
| 2059 |   usableSize = pPage->pBt->usableSize; | 
| 2060 |   iCellLast = usableSize - 4; | 
| 2061 |   data = pPage->aData; | 
| 2062 |   cellOffset = pPage->cellOffset; | 
| 2063 |   if( !pPage->leaf ) iCellLast--; | 
| 2064 |   for(i=0; i<pPage->nCell; i++){ | 
| 2065 |     pc = get2byteAligned(&data[cellOffset+i*2]); | 
| 2066 |     testcase( pc==iCellFirst ); | 
| 2067 |     testcase( pc==iCellLast ); | 
| 2068 |     if( pc<iCellFirst || pc>iCellLast ){ | 
| 2069 |       return SQLITE_CORRUPT_PAGE(pPage); | 
| 2070 |     } | 
| 2071 |     sz = pPage->xCellSize(pPage, &data[pc]); | 
| 2072 |     testcase( pc+sz==usableSize ); | 
| 2073 |     if( pc+sz>usableSize ){ | 
| 2074 |       return SQLITE_CORRUPT_PAGE(pPage); | 
| 2075 |     } | 
| 2076 |   } | 
| 2077 |   return SQLITE_OK; | 
| 2078 | } | 
| 2079 |  | 
| 2080 | /* | 
| 2081 | ** Initialize the auxiliary information for a disk block. | 
| 2082 | ** | 
| 2083 | ** Return SQLITE_OK on success.  If we see that the page does | 
| 2084 | ** not contain a well-formed database page, then return  | 
| 2085 | ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not | 
| 2086 | ** guarantee that the page is well-formed.  It only shows that | 
| 2087 | ** we failed to detect any corruption. | 
| 2088 | */ | 
| 2089 | static int btreeInitPage(MemPage *pPage){ | 
| 2090 |   u8 *data;          /* Equal to pPage->aData */ | 
| 2091 |   BtShared *pBt;        /* The main btree structure */ | 
| 2092 |  | 
| 2093 |   assert( pPage->pBt!=0 ); | 
| 2094 |   assert( pPage->pBt->db!=0 ); | 
| 2095 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 2096 |   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); | 
| 2097 |   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); | 
| 2098 |   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); | 
| 2099 |   assert( pPage->isInit==0 ); | 
| 2100 |  | 
| 2101 |   pBt = pPage->pBt; | 
| 2102 |   data = pPage->aData + pPage->hdrOffset; | 
| 2103 |   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating | 
| 2104 |   ** the b-tree page type. */ | 
| 2105 |   if( decodeFlags(pPage, data[0]) ){ | 
| 2106 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 2107 |   } | 
| 2108 |   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); | 
| 2109 |   pPage->maskPage = (u16)(pBt->pageSize - 1); | 
| 2110 |   pPage->nOverflow = 0; | 
| 2111 |   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; | 
| 2112 |   pPage->aCellIdx = data + pPage->childPtrSize + 8; | 
| 2113 |   pPage->aDataEnd = pPage->aData + pBt->pageSize; | 
| 2114 |   pPage->aDataOfst = pPage->aData + pPage->childPtrSize; | 
| 2115 |   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the | 
| 2116 |   ** number of cells on the page. */ | 
| 2117 |   pPage->nCell = get2byte(&data[3]); | 
| 2118 |   if( pPage->nCell>MX_CELL(pBt) ){ | 
| 2119 |     /* To many cells for a single page.  The page must be corrupt */ | 
| 2120 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 2121 |   } | 
| 2122 |   testcase( pPage->nCell==MX_CELL(pBt) ); | 
| 2123 |   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only | 
| 2124 |   ** possible for a root page of a table that contains no rows) then the | 
| 2125 |   ** offset to the cell content area will equal the page size minus the | 
| 2126 |   ** bytes of reserved space. */ | 
| 2127 |   assert( pPage->nCell>0 | 
| 2128 |        || get2byteNotZero(&data[5])==(int)pBt->usableSize | 
| 2129 |        || CORRUPT_DB ); | 
| 2130 |   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */ | 
| 2131 |   pPage->isInit = 1; | 
| 2132 |   if( pBt->db->flags & SQLITE_CellSizeCk ){ | 
| 2133 |     return btreeCellSizeCheck(pPage); | 
| 2134 |   } | 
| 2135 |   return SQLITE_OK; | 
| 2136 | } | 
| 2137 |  | 
| 2138 | /* | 
| 2139 | ** Set up a raw page so that it looks like a database page holding | 
| 2140 | ** no entries. | 
| 2141 | */ | 
| 2142 | static void zeroPage(MemPage *pPage, int flags){ | 
| 2143 |   unsigned char *data = pPage->aData; | 
| 2144 |   BtShared *pBt = pPage->pBt; | 
| 2145 |   u8 hdr = pPage->hdrOffset; | 
| 2146 |   u16 first; | 
| 2147 |  | 
| 2148 |   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); | 
| 2149 |   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); | 
| 2150 |   assert( sqlite3PagerGetData(pPage->pDbPage) == data ); | 
| 2151 |   assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 2152 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 2153 |   if( pBt->btsFlags & BTS_FAST_SECURE ){ | 
| 2154 |     memset(&data[hdr], 0, pBt->usableSize - hdr); | 
| 2155 |   } | 
| 2156 |   data[hdr] = (char)flags; | 
| 2157 |   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); | 
| 2158 |   memset(&data[hdr+1], 0, 4); | 
| 2159 |   data[hdr+7] = 0; | 
| 2160 |   put2byte(&data[hdr+5], pBt->usableSize); | 
| 2161 |   pPage->nFree = (u16)(pBt->usableSize - first); | 
| 2162 |   decodeFlags(pPage, flags); | 
| 2163 |   pPage->cellOffset = first; | 
| 2164 |   pPage->aDataEnd = &data[pBt->pageSize]; | 
| 2165 |   pPage->aCellIdx = &data[first]; | 
| 2166 |   pPage->aDataOfst = &data[pPage->childPtrSize]; | 
| 2167 |   pPage->nOverflow = 0; | 
| 2168 |   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); | 
| 2169 |   pPage->maskPage = (u16)(pBt->pageSize - 1); | 
| 2170 |   pPage->nCell = 0; | 
| 2171 |   pPage->isInit = 1; | 
| 2172 | } | 
| 2173 |  | 
| 2174 |  | 
| 2175 | /* | 
| 2176 | ** Convert a DbPage obtained from the pager into a MemPage used by | 
| 2177 | ** the btree layer. | 
| 2178 | */ | 
| 2179 | static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ | 
| 2180 |   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); | 
| 2181 |   if( pgno!=pPage->pgno ){ | 
| 2182 |     pPage->aData = sqlite3PagerGetData(pDbPage); | 
| 2183 |     pPage->pDbPage = pDbPage; | 
| 2184 |     pPage->pBt = pBt; | 
| 2185 |     pPage->pgno = pgno; | 
| 2186 |     pPage->hdrOffset = pgno==1 ? 100 : 0; | 
| 2187 |   } | 
| 2188 |   assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); | 
| 2189 |   return pPage;  | 
| 2190 | } | 
| 2191 |  | 
| 2192 | /* | 
| 2193 | ** Get a page from the pager.  Initialize the MemPage.pBt and | 
| 2194 | ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage(). | 
| 2195 | ** | 
| 2196 | ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care | 
| 2197 | ** about the content of the page at this time.  So do not go to the disk | 
| 2198 | ** to fetch the content.  Just fill in the content with zeros for now. | 
| 2199 | ** If in the future we call sqlite3PagerWrite() on this page, that | 
| 2200 | ** means we have started to be concerned about content and the disk | 
| 2201 | ** read should occur at that point. | 
| 2202 | */ | 
| 2203 | static int btreeGetPage( | 
| 2204 |   BtShared *pBt,       /* The btree */ | 
| 2205 |   Pgno pgno,           /* Number of the page to fetch */ | 
| 2206 |   MemPage **ppPage,    /* Return the page in this parameter */ | 
| 2207 |   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ | 
| 2208 | ){ | 
| 2209 |   int rc; | 
| 2210 |   DbPage *pDbPage; | 
| 2211 |  | 
| 2212 |   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); | 
| 2213 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 2214 |   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); | 
| 2215 |   if( rc ) return rc; | 
| 2216 |   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); | 
| 2217 |   return SQLITE_OK; | 
| 2218 | } | 
| 2219 |  | 
| 2220 | /* | 
| 2221 | ** Retrieve a page from the pager cache. If the requested page is not | 
| 2222 | ** already in the pager cache return NULL. Initialize the MemPage.pBt and | 
| 2223 | ** MemPage.aData elements if needed. | 
| 2224 | */ | 
| 2225 | static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ | 
| 2226 |   DbPage *pDbPage; | 
| 2227 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 2228 |   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); | 
| 2229 |   if( pDbPage ){ | 
| 2230 |     return btreePageFromDbPage(pDbPage, pgno, pBt); | 
| 2231 |   } | 
| 2232 |   return 0; | 
| 2233 | } | 
| 2234 |  | 
| 2235 | /* | 
| 2236 | ** Return the size of the database file in pages. If there is any kind of | 
| 2237 | ** error, return ((unsigned int)-1). | 
| 2238 | */ | 
| 2239 | static Pgno btreePagecount(BtShared *pBt){ | 
| 2240 |   return pBt->nPage; | 
| 2241 | } | 
| 2242 | Pgno sqlite3BtreeLastPage(Btree *p){ | 
| 2243 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 2244 |   return btreePagecount(p->pBt); | 
| 2245 | } | 
| 2246 |  | 
| 2247 | /* | 
| 2248 | ** Get a page from the pager and initialize it. | 
| 2249 | ** | 
| 2250 | ** If pCur!=0 then the page is being fetched as part of a moveToChild() | 
| 2251 | ** call.  Do additional sanity checking on the page in this case. | 
| 2252 | ** And if the fetch fails, this routine must decrement pCur->iPage. | 
| 2253 | ** | 
| 2254 | ** The page is fetched as read-write unless pCur is not NULL and is | 
| 2255 | ** a read-only cursor. | 
| 2256 | ** | 
| 2257 | ** If an error occurs, then *ppPage is undefined. It | 
| 2258 | ** may remain unchanged, or it may be set to an invalid value. | 
| 2259 | */ | 
| 2260 | static int getAndInitPage( | 
| 2261 |   BtShared *pBt,                  /* The database file */ | 
| 2262 |   Pgno pgno,                      /* Number of the page to get */ | 
| 2263 |   MemPage **ppPage,               /* Write the page pointer here */ | 
| 2264 |   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */ | 
| 2265 |   int bReadOnly                   /* True for a read-only page */ | 
| 2266 | ){ | 
| 2267 |   int rc; | 
| 2268 |   DbPage *pDbPage; | 
| 2269 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 2270 |   assert( pCur==0 || ppPage==&pCur->pPage ); | 
| 2271 |   assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); | 
| 2272 |   assert( pCur==0 || pCur->iPage>0 ); | 
| 2273 |  | 
| 2274 |   if( pgno>btreePagecount(pBt) ){ | 
| 2275 |     rc = SQLITE_CORRUPT_BKPT; | 
| 2276 |     goto getAndInitPage_error1; | 
| 2277 |   } | 
| 2278 |   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); | 
| 2279 |   if( rc ){ | 
| 2280 |     goto getAndInitPage_error1; | 
| 2281 |   } | 
| 2282 |   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); | 
| 2283 |   if( (*ppPage)->isInit==0 ){ | 
| 2284 |     btreePageFromDbPage(pDbPage, pgno, pBt); | 
| 2285 |     rc = btreeInitPage(*ppPage); | 
| 2286 |     if( rc!=SQLITE_OK ){ | 
| 2287 |       goto getAndInitPage_error2; | 
| 2288 |     } | 
| 2289 |   } | 
| 2290 |   assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); | 
| 2291 |   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); | 
| 2292 |  | 
| 2293 |   /* If obtaining a child page for a cursor, we must verify that the page is | 
| 2294 |   ** compatible with the root page. */ | 
| 2295 |   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ | 
| 2296 |     rc = SQLITE_CORRUPT_PGNO(pgno); | 
| 2297 |     goto getAndInitPage_error2; | 
| 2298 |   } | 
| 2299 |   return SQLITE_OK; | 
| 2300 |  | 
| 2301 | getAndInitPage_error2: | 
| 2302 |   releasePage(*ppPage); | 
| 2303 | getAndInitPage_error1: | 
| 2304 |   if( pCur ){ | 
| 2305 |     pCur->iPage--; | 
| 2306 |     pCur->pPage = pCur->apPage[pCur->iPage]; | 
| 2307 |   } | 
| 2308 |   testcase( pgno==0 ); | 
| 2309 |   assert( pgno!=0 || rc!=SQLITE_OK ); | 
| 2310 |   return rc; | 
| 2311 | } | 
| 2312 |  | 
| 2313 | /* | 
| 2314 | ** Release a MemPage.  This should be called once for each prior | 
| 2315 | ** call to btreeGetPage. | 
| 2316 | ** | 
| 2317 | ** Page1 is a special case and must be released using releasePageOne(). | 
| 2318 | */ | 
| 2319 | static void releasePageNotNull(MemPage *pPage){ | 
| 2320 |   assert( pPage->aData ); | 
| 2321 |   assert( pPage->pBt ); | 
| 2322 |   assert( pPage->pDbPage!=0 ); | 
| 2323 |   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); | 
| 2324 |   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); | 
| 2325 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 2326 |   sqlite3PagerUnrefNotNull(pPage->pDbPage); | 
| 2327 | } | 
| 2328 | static void releasePage(MemPage *pPage){ | 
| 2329 |   if( pPage ) releasePageNotNull(pPage); | 
| 2330 | } | 
| 2331 | static void releasePageOne(MemPage *pPage){ | 
| 2332 |   assert( pPage!=0 ); | 
| 2333 |   assert( pPage->aData ); | 
| 2334 |   assert( pPage->pBt ); | 
| 2335 |   assert( pPage->pDbPage!=0 ); | 
| 2336 |   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); | 
| 2337 |   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); | 
| 2338 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 2339 |   sqlite3PagerUnrefPageOne(pPage->pDbPage); | 
| 2340 | } | 
| 2341 |  | 
| 2342 | /* | 
| 2343 | ** Get an unused page. | 
| 2344 | ** | 
| 2345 | ** This works just like btreeGetPage() with the addition: | 
| 2346 | ** | 
| 2347 | **   *  If the page is already in use for some other purpose, immediately | 
| 2348 | **      release it and return an SQLITE_CURRUPT error. | 
| 2349 | **   *  Make sure the isInit flag is clear | 
| 2350 | */ | 
| 2351 | static int btreeGetUnusedPage( | 
| 2352 |   BtShared *pBt,       /* The btree */ | 
| 2353 |   Pgno pgno,           /* Number of the page to fetch */ | 
| 2354 |   MemPage **ppPage,    /* Return the page in this parameter */ | 
| 2355 |   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ | 
| 2356 | ){ | 
| 2357 |   int rc = btreeGetPage(pBt, pgno, ppPage, flags); | 
| 2358 |   if( rc==SQLITE_OK ){ | 
| 2359 |     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ | 
| 2360 |       releasePage(*ppPage); | 
| 2361 |       *ppPage = 0; | 
| 2362 |       return SQLITE_CORRUPT_BKPT; | 
| 2363 |     } | 
| 2364 |     (*ppPage)->isInit = 0; | 
| 2365 |   }else{ | 
| 2366 |     *ppPage = 0; | 
| 2367 |   } | 
| 2368 |   return rc; | 
| 2369 | } | 
| 2370 |  | 
| 2371 |  | 
| 2372 | /* | 
| 2373 | ** During a rollback, when the pager reloads information into the cache | 
| 2374 | ** so that the cache is restored to its original state at the start of | 
| 2375 | ** the transaction, for each page restored this routine is called. | 
| 2376 | ** | 
| 2377 | ** This routine needs to reset the extra data section at the end of the | 
| 2378 | ** page to agree with the restored data. | 
| 2379 | */ | 
| 2380 | static void (DbPage *pData){ | 
| 2381 |   MemPage *pPage; | 
| 2382 |   pPage = (MemPage *)sqlite3PagerGetExtra(pData); | 
| 2383 |   assert( sqlite3PagerPageRefcount(pData)>0 ); | 
| 2384 |   if( pPage->isInit ){ | 
| 2385 |     assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 2386 |     pPage->isInit = 0; | 
| 2387 |     if( sqlite3PagerPageRefcount(pData)>1 ){ | 
| 2388 |       /* pPage might not be a btree page;  it might be an overflow page | 
| 2389 |       ** or ptrmap page or a free page.  In those cases, the following | 
| 2390 |       ** call to btreeInitPage() will likely return SQLITE_CORRUPT. | 
| 2391 |       ** But no harm is done by this.  And it is very important that | 
| 2392 |       ** btreeInitPage() be called on every btree page so we make | 
| 2393 |       ** the call for every page that comes in for re-initing. */ | 
| 2394 |       btreeInitPage(pPage); | 
| 2395 |     } | 
| 2396 |   } | 
| 2397 | } | 
| 2398 |  | 
| 2399 | /* | 
| 2400 | ** Invoke the busy handler for a btree. | 
| 2401 | */ | 
| 2402 | static int btreeInvokeBusyHandler(void *pArg){ | 
| 2403 |   BtShared *pBt = (BtShared*)pArg; | 
| 2404 |   assert( pBt->db ); | 
| 2405 |   assert( sqlite3_mutex_held(pBt->db->mutex) ); | 
| 2406 |   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); | 
| 2407 | } | 
| 2408 |  | 
| 2409 | /* | 
| 2410 | ** Open a database file. | 
| 2411 | **  | 
| 2412 | ** zFilename is the name of the database file.  If zFilename is NULL | 
| 2413 | ** then an ephemeral database is created.  The ephemeral database might | 
| 2414 | ** be exclusively in memory, or it might use a disk-based memory cache. | 
| 2415 | ** Either way, the ephemeral database will be automatically deleted  | 
| 2416 | ** when sqlite3BtreeClose() is called. | 
| 2417 | ** | 
| 2418 | ** If zFilename is ":memory:" then an in-memory database is created | 
| 2419 | ** that is automatically destroyed when it is closed. | 
| 2420 | ** | 
| 2421 | ** The "flags" parameter is a bitmask that might contain bits like | 
| 2422 | ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. | 
| 2423 | ** | 
| 2424 | ** If the database is already opened in the same database connection | 
| 2425 | ** and we are in shared cache mode, then the open will fail with an | 
| 2426 | ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared | 
| 2427 | ** objects in the same database connection since doing so will lead | 
| 2428 | ** to problems with locking. | 
| 2429 | */ | 
| 2430 | int sqlite3BtreeOpen( | 
| 2431 |   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */ | 
| 2432 |   const char *zFilename,  /* Name of the file containing the BTree database */ | 
| 2433 |   sqlite3 *db,            /* Associated database handle */ | 
| 2434 |   Btree **ppBtree,        /* Pointer to new Btree object written here */ | 
| 2435 |   int flags,              /* Options */ | 
| 2436 |   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */ | 
| 2437 | ){ | 
| 2438 |   BtShared *pBt = 0;             /* Shared part of btree structure */ | 
| 2439 |   Btree *p;                      /* Handle to return */ | 
| 2440 |   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */ | 
| 2441 |   int rc = SQLITE_OK;            /* Result code from this function */ | 
| 2442 |   u8 nReserve;                   /* Byte of unused space on each page */ | 
| 2443 |   unsigned char [100];  /* Database header content */ | 
| 2444 |  | 
| 2445 |   /* True if opening an ephemeral, temporary database */ | 
| 2446 |   const int isTempDb = zFilename==0 || zFilename[0]==0; | 
| 2447 |  | 
| 2448 |   /* Set the variable isMemdb to true for an in-memory database, or  | 
| 2449 |   ** false for a file-based database. | 
| 2450 |   */ | 
| 2451 | #ifdef SQLITE_OMIT_MEMORYDB | 
| 2452 |   const int isMemdb = 0; | 
| 2453 | #else | 
| 2454 |   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:" )==0) | 
| 2455 |                        || (isTempDb && sqlite3TempInMemory(db)) | 
| 2456 |                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; | 
| 2457 | #endif | 
| 2458 |  | 
| 2459 |   assert( db!=0 ); | 
| 2460 |   assert( pVfs!=0 ); | 
| 2461 |   assert( sqlite3_mutex_held(db->mutex) ); | 
| 2462 |   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */ | 
| 2463 |  | 
| 2464 |   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ | 
| 2465 |   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); | 
| 2466 |  | 
| 2467 |   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ | 
| 2468 |   assert( (flags & BTREE_SINGLE)==0 || isTempDb ); | 
| 2469 |  | 
| 2470 |   if( isMemdb ){ | 
| 2471 |     flags |= BTREE_MEMORY; | 
| 2472 |   } | 
| 2473 |   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ | 
| 2474 |     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; | 
| 2475 |   } | 
| 2476 |   p = sqlite3MallocZero(sizeof(Btree)); | 
| 2477 |   if( !p ){ | 
| 2478 |     return SQLITE_NOMEM_BKPT; | 
| 2479 |   } | 
| 2480 |   p->inTrans = TRANS_NONE; | 
| 2481 |   p->db = db; | 
| 2482 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 2483 |   p->lock.pBtree = p; | 
| 2484 |   p->lock.iTable = 1; | 
| 2485 | #endif | 
| 2486 |  | 
| 2487 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) | 
| 2488 |   /* | 
| 2489 |   ** If this Btree is a candidate for shared cache, try to find an | 
| 2490 |   ** existing BtShared object that we can share with | 
| 2491 |   */ | 
| 2492 |   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ | 
| 2493 |     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ | 
| 2494 |       int nFilename = sqlite3Strlen30(zFilename)+1; | 
| 2495 |       int nFullPathname = pVfs->mxPathname+1; | 
| 2496 |       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); | 
| 2497 |       MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) | 
| 2498 |  | 
| 2499 |       p->sharable = 1; | 
| 2500 |       if( !zFullPathname ){ | 
| 2501 |         sqlite3_free(p); | 
| 2502 |         return SQLITE_NOMEM_BKPT; | 
| 2503 |       } | 
| 2504 |       if( isMemdb ){ | 
| 2505 |         memcpy(zFullPathname, zFilename, nFilename); | 
| 2506 |       }else{ | 
| 2507 |         rc = sqlite3OsFullPathname(pVfs, zFilename, | 
| 2508 |                                    nFullPathname, zFullPathname); | 
| 2509 |         if( rc ){ | 
| 2510 |           if( rc==SQLITE_OK_SYMLINK ){ | 
| 2511 |             rc = SQLITE_OK; | 
| 2512 |           }else{ | 
| 2513 |             sqlite3_free(zFullPathname); | 
| 2514 |             sqlite3_free(p); | 
| 2515 |             return rc; | 
| 2516 |           } | 
| 2517 |         } | 
| 2518 |       } | 
| 2519 | #if SQLITE_THREADSAFE | 
| 2520 |       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); | 
| 2521 |       sqlite3_mutex_enter(mutexOpen); | 
| 2522 |       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); | 
| 2523 |       sqlite3_mutex_enter(mutexShared); | 
| 2524 | #endif | 
| 2525 |       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ | 
| 2526 |         assert( pBt->nRef>0 ); | 
| 2527 |         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) | 
| 2528 |                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){ | 
| 2529 |           int iDb; | 
| 2530 |           for(iDb=db->nDb-1; iDb>=0; iDb--){ | 
| 2531 |             Btree *pExisting = db->aDb[iDb].pBt; | 
| 2532 |             if( pExisting && pExisting->pBt==pBt ){ | 
| 2533 |               sqlite3_mutex_leave(mutexShared); | 
| 2534 |               sqlite3_mutex_leave(mutexOpen); | 
| 2535 |               sqlite3_free(zFullPathname); | 
| 2536 |               sqlite3_free(p); | 
| 2537 |               return SQLITE_CONSTRAINT; | 
| 2538 |             } | 
| 2539 |           } | 
| 2540 |           p->pBt = pBt; | 
| 2541 |           pBt->nRef++; | 
| 2542 |           break; | 
| 2543 |         } | 
| 2544 |       } | 
| 2545 |       sqlite3_mutex_leave(mutexShared); | 
| 2546 |       sqlite3_free(zFullPathname); | 
| 2547 |     } | 
| 2548 | #ifdef SQLITE_DEBUG | 
| 2549 |     else{ | 
| 2550 |       /* In debug mode, we mark all persistent databases as sharable | 
| 2551 |       ** even when they are not.  This exercises the locking code and | 
| 2552 |       ** gives more opportunity for asserts(sqlite3_mutex_held()) | 
| 2553 |       ** statements to find locking problems. | 
| 2554 |       */ | 
| 2555 |       p->sharable = 1; | 
| 2556 |     } | 
| 2557 | #endif | 
| 2558 |   } | 
| 2559 | #endif | 
| 2560 |   if( pBt==0 ){ | 
| 2561 |     /* | 
| 2562 |     ** The following asserts make sure that structures used by the btree are | 
| 2563 |     ** the right size.  This is to guard against size changes that result | 
| 2564 |     ** when compiling on a different architecture. | 
| 2565 |     */ | 
| 2566 |     assert( sizeof(i64)==8 ); | 
| 2567 |     assert( sizeof(u64)==8 ); | 
| 2568 |     assert( sizeof(u32)==4 ); | 
| 2569 |     assert( sizeof(u16)==2 ); | 
| 2570 |     assert( sizeof(Pgno)==4 ); | 
| 2571 |    | 
| 2572 |     pBt = sqlite3MallocZero( sizeof(*pBt) ); | 
| 2573 |     if( pBt==0 ){ | 
| 2574 |       rc = SQLITE_NOMEM_BKPT; | 
| 2575 |       goto btree_open_out; | 
| 2576 |     } | 
| 2577 |     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, | 
| 2578 |                           sizeof(MemPage), flags, vfsFlags, pageReinit); | 
| 2579 |     if( rc==SQLITE_OK ){ | 
| 2580 |       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); | 
| 2581 |       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); | 
| 2582 |     } | 
| 2583 |     if( rc!=SQLITE_OK ){ | 
| 2584 |       goto btree_open_out; | 
| 2585 |     } | 
| 2586 |     pBt->openFlags = (u8)flags; | 
| 2587 |     pBt->db = db; | 
| 2588 |     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); | 
| 2589 |     p->pBt = pBt; | 
| 2590 |    | 
| 2591 |     pBt->pCursor = 0; | 
| 2592 |     pBt->pPage1 = 0; | 
| 2593 |     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; | 
| 2594 | #if defined(SQLITE_SECURE_DELETE) | 
| 2595 |     pBt->btsFlags |= BTS_SECURE_DELETE; | 
| 2596 | #elif defined(SQLITE_FAST_SECURE_DELETE) | 
| 2597 |     pBt->btsFlags |= BTS_OVERWRITE; | 
| 2598 | #endif | 
| 2599 |     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is | 
| 2600 |     ** determined by the 2-byte integer located at an offset of 16 bytes from | 
| 2601 |     ** the beginning of the database file. */ | 
| 2602 |     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); | 
| 2603 |     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE | 
| 2604 |          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ | 
| 2605 |       pBt->pageSize = 0; | 
| 2606 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 2607 |       /* If the magic name ":memory:" will create an in-memory database, then | 
| 2608 |       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if | 
| 2609 |       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if | 
| 2610 |       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a | 
| 2611 |       ** regular file-name. In this case the auto-vacuum applies as per normal. | 
| 2612 |       */ | 
| 2613 |       if( zFilename && !isMemdb ){ | 
| 2614 |         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); | 
| 2615 |         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); | 
| 2616 |       } | 
| 2617 | #endif | 
| 2618 |       nReserve = 0; | 
| 2619 |     }else{ | 
| 2620 |       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is | 
| 2621 |       ** determined by the one-byte unsigned integer found at an offset of 20 | 
| 2622 |       ** into the database file header. */ | 
| 2623 |       nReserve = zDbHeader[20]; | 
| 2624 |       pBt->btsFlags |= BTS_PAGESIZE_FIXED; | 
| 2625 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 2626 |       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); | 
| 2627 |       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); | 
| 2628 | #endif | 
| 2629 |     } | 
| 2630 |     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); | 
| 2631 |     if( rc ) goto btree_open_out; | 
| 2632 |     pBt->usableSize = pBt->pageSize - nReserve; | 
| 2633 |     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */ | 
| 2634 |     | 
| 2635 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) | 
| 2636 |     /* Add the new BtShared object to the linked list sharable BtShareds. | 
| 2637 |     */ | 
| 2638 |     pBt->nRef = 1; | 
| 2639 |     if( p->sharable ){ | 
| 2640 |       MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) | 
| 2641 |       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) | 
| 2642 |       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ | 
| 2643 |         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); | 
| 2644 |         if( pBt->mutex==0 ){ | 
| 2645 |           rc = SQLITE_NOMEM_BKPT; | 
| 2646 |           goto btree_open_out; | 
| 2647 |         } | 
| 2648 |       } | 
| 2649 |       sqlite3_mutex_enter(mutexShared); | 
| 2650 |       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); | 
| 2651 |       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; | 
| 2652 |       sqlite3_mutex_leave(mutexShared); | 
| 2653 |     } | 
| 2654 | #endif | 
| 2655 |   } | 
| 2656 |  | 
| 2657 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) | 
| 2658 |   /* If the new Btree uses a sharable pBtShared, then link the new | 
| 2659 |   ** Btree into the list of all sharable Btrees for the same connection. | 
| 2660 |   ** The list is kept in ascending order by pBt address. | 
| 2661 |   */ | 
| 2662 |   if( p->sharable ){ | 
| 2663 |     int i; | 
| 2664 |     Btree *pSib; | 
| 2665 |     for(i=0; i<db->nDb; i++){ | 
| 2666 |       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ | 
| 2667 |         while( pSib->pPrev ){ pSib = pSib->pPrev; } | 
| 2668 |         if( (uptr)p->pBt<(uptr)pSib->pBt ){ | 
| 2669 |           p->pNext = pSib; | 
| 2670 |           p->pPrev = 0; | 
| 2671 |           pSib->pPrev = p; | 
| 2672 |         }else{ | 
| 2673 |           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ | 
| 2674 |             pSib = pSib->pNext; | 
| 2675 |           } | 
| 2676 |           p->pNext = pSib->pNext; | 
| 2677 |           p->pPrev = pSib; | 
| 2678 |           if( p->pNext ){ | 
| 2679 |             p->pNext->pPrev = p; | 
| 2680 |           } | 
| 2681 |           pSib->pNext = p; | 
| 2682 |         } | 
| 2683 |         break; | 
| 2684 |       } | 
| 2685 |     } | 
| 2686 |   } | 
| 2687 | #endif | 
| 2688 |   *ppBtree = p; | 
| 2689 |  | 
| 2690 | btree_open_out: | 
| 2691 |   if( rc!=SQLITE_OK ){ | 
| 2692 |     if( pBt && pBt->pPager ){ | 
| 2693 |       sqlite3PagerClose(pBt->pPager, 0); | 
| 2694 |     } | 
| 2695 |     sqlite3_free(pBt); | 
| 2696 |     sqlite3_free(p); | 
| 2697 |     *ppBtree = 0; | 
| 2698 |   }else{ | 
| 2699 |     sqlite3_file *pFile; | 
| 2700 |  | 
| 2701 |     /* If the B-Tree was successfully opened, set the pager-cache size to the | 
| 2702 |     ** default value. Except, when opening on an existing shared pager-cache, | 
| 2703 |     ** do not change the pager-cache size. | 
| 2704 |     */ | 
| 2705 |     if( sqlite3BtreeSchema(p, 0, 0)==0 ){ | 
| 2706 |       sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); | 
| 2707 |     } | 
| 2708 |  | 
| 2709 |     pFile = sqlite3PagerFile(pBt->pPager); | 
| 2710 |     if( pFile->pMethods ){ | 
| 2711 |       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); | 
| 2712 |     } | 
| 2713 |   } | 
| 2714 |   if( mutexOpen ){ | 
| 2715 |     assert( sqlite3_mutex_held(mutexOpen) ); | 
| 2716 |     sqlite3_mutex_leave(mutexOpen); | 
| 2717 |   } | 
| 2718 |   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); | 
| 2719 |   return rc; | 
| 2720 | } | 
| 2721 |  | 
| 2722 | /* | 
| 2723 | ** Decrement the BtShared.nRef counter.  When it reaches zero, | 
| 2724 | ** remove the BtShared structure from the sharing list.  Return | 
| 2725 | ** true if the BtShared.nRef counter reaches zero and return | 
| 2726 | ** false if it is still positive. | 
| 2727 | */ | 
| 2728 | static int removeFromSharingList(BtShared *pBt){ | 
| 2729 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 2730 |   MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) | 
| 2731 |   BtShared *pList; | 
| 2732 |   int removed = 0; | 
| 2733 |  | 
| 2734 |   assert( sqlite3_mutex_notheld(pBt->mutex) ); | 
| 2735 |   MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) | 
| 2736 |   sqlite3_mutex_enter(pMainMtx); | 
| 2737 |   pBt->nRef--; | 
| 2738 |   if( pBt->nRef<=0 ){ | 
| 2739 |     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ | 
| 2740 |       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; | 
| 2741 |     }else{ | 
| 2742 |       pList = GLOBAL(BtShared*,sqlite3SharedCacheList); | 
| 2743 |       while( ALWAYS(pList) && pList->pNext!=pBt ){ | 
| 2744 |         pList=pList->pNext; | 
| 2745 |       } | 
| 2746 |       if( ALWAYS(pList) ){ | 
| 2747 |         pList->pNext = pBt->pNext; | 
| 2748 |       } | 
| 2749 |     } | 
| 2750 |     if( SQLITE_THREADSAFE ){ | 
| 2751 |       sqlite3_mutex_free(pBt->mutex); | 
| 2752 |     } | 
| 2753 |     removed = 1; | 
| 2754 |   } | 
| 2755 |   sqlite3_mutex_leave(pMainMtx); | 
| 2756 |   return removed; | 
| 2757 | #else | 
| 2758 |   return 1; | 
| 2759 | #endif | 
| 2760 | } | 
| 2761 |  | 
| 2762 | /* | 
| 2763 | ** Make sure pBt->pTmpSpace points to an allocation of  | 
| 2764 | ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child | 
| 2765 | ** pointer. | 
| 2766 | */ | 
| 2767 | static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ | 
| 2768 |   assert( pBt!=0 ); | 
| 2769 |   assert( pBt->pTmpSpace==0 ); | 
| 2770 |   /* This routine is called only by btreeCursor() when allocating the | 
| 2771 |   ** first write cursor for the BtShared object */ | 
| 2772 |   assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); | 
| 2773 |   pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); | 
| 2774 |   if( pBt->pTmpSpace==0 ){ | 
| 2775 |     BtCursor *pCur = pBt->pCursor; | 
| 2776 |     pBt->pCursor = pCur->pNext;  /* Unlink the cursor */ | 
| 2777 |     memset(pCur, 0, sizeof(*pCur)); | 
| 2778 |     return SQLITE_NOMEM_BKPT; | 
| 2779 |   } | 
| 2780 |  | 
| 2781 |   /* One of the uses of pBt->pTmpSpace is to format cells before | 
| 2782 |   ** inserting them into a leaf page (function fillInCell()). If | 
| 2783 |   ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes | 
| 2784 |   ** by the various routines that manipulate binary cells. Which | 
| 2785 |   ** can mean that fillInCell() only initializes the first 2 or 3 | 
| 2786 |   ** bytes of pTmpSpace, but that the first 4 bytes are copied from | 
| 2787 |   ** it into a database page. This is not actually a problem, but it | 
| 2788 |   ** does cause a valgrind error when the 1 or 2 bytes of unitialized  | 
| 2789 |   ** data is passed to system call write(). So to avoid this error, | 
| 2790 |   ** zero the first 4 bytes of temp space here. | 
| 2791 |   ** | 
| 2792 |   ** Also:  Provide four bytes of initialized space before the | 
| 2793 |   ** beginning of pTmpSpace as an area available to prepend the | 
| 2794 |   ** left-child pointer to the beginning of a cell. | 
| 2795 |   */ | 
| 2796 |   memset(pBt->pTmpSpace, 0, 8); | 
| 2797 |   pBt->pTmpSpace += 4; | 
| 2798 |   return SQLITE_OK; | 
| 2799 | } | 
| 2800 |  | 
| 2801 | /* | 
| 2802 | ** Free the pBt->pTmpSpace allocation | 
| 2803 | */ | 
| 2804 | static void freeTempSpace(BtShared *pBt){ | 
| 2805 |   if( pBt->pTmpSpace ){ | 
| 2806 |     pBt->pTmpSpace -= 4; | 
| 2807 |     sqlite3PageFree(pBt->pTmpSpace); | 
| 2808 |     pBt->pTmpSpace = 0; | 
| 2809 |   } | 
| 2810 | } | 
| 2811 |  | 
| 2812 | /* | 
| 2813 | ** Close an open database and invalidate all cursors. | 
| 2814 | */ | 
| 2815 | int sqlite3BtreeClose(Btree *p){ | 
| 2816 |   BtShared *pBt = p->pBt; | 
| 2817 |  | 
| 2818 |   /* Close all cursors opened via this handle.  */ | 
| 2819 |   assert( sqlite3_mutex_held(p->db->mutex) ); | 
| 2820 |   sqlite3BtreeEnter(p); | 
| 2821 |  | 
| 2822 |   /* Verify that no other cursors have this Btree open */ | 
| 2823 | #ifdef SQLITE_DEBUG | 
| 2824 |   { | 
| 2825 |     BtCursor *pCur = pBt->pCursor; | 
| 2826 |     while( pCur ){ | 
| 2827 |       BtCursor *pTmp = pCur; | 
| 2828 |       pCur = pCur->pNext; | 
| 2829 |       assert( pTmp->pBtree!=p ); | 
| 2830 |  | 
| 2831 |     } | 
| 2832 |   } | 
| 2833 | #endif | 
| 2834 |  | 
| 2835 |   /* Rollback any active transaction and free the handle structure. | 
| 2836 |   ** The call to sqlite3BtreeRollback() drops any table-locks held by | 
| 2837 |   ** this handle. | 
| 2838 |   */ | 
| 2839 |   sqlite3BtreeRollback(p, SQLITE_OK, 0); | 
| 2840 |   sqlite3BtreeLeave(p); | 
| 2841 |  | 
| 2842 |   /* If there are still other outstanding references to the shared-btree | 
| 2843 |   ** structure, return now. The remainder of this procedure cleans  | 
| 2844 |   ** up the shared-btree. | 
| 2845 |   */ | 
| 2846 |   assert( p->wantToLock==0 && p->locked==0 ); | 
| 2847 |   if( !p->sharable || removeFromSharingList(pBt) ){ | 
| 2848 |     /* The pBt is no longer on the sharing list, so we can access | 
| 2849 |     ** it without having to hold the mutex. | 
| 2850 |     ** | 
| 2851 |     ** Clean out and delete the BtShared object. | 
| 2852 |     */ | 
| 2853 |     assert( !pBt->pCursor ); | 
| 2854 |     sqlite3PagerClose(pBt->pPager, p->db); | 
| 2855 |     if( pBt->xFreeSchema && pBt->pSchema ){ | 
| 2856 |       pBt->xFreeSchema(pBt->pSchema); | 
| 2857 |     } | 
| 2858 |     sqlite3DbFree(0, pBt->pSchema); | 
| 2859 |     freeTempSpace(pBt); | 
| 2860 |     sqlite3_free(pBt); | 
| 2861 |   } | 
| 2862 |  | 
| 2863 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 2864 |   assert( p->wantToLock==0 ); | 
| 2865 |   assert( p->locked==0 ); | 
| 2866 |   if( p->pPrev ) p->pPrev->pNext = p->pNext; | 
| 2867 |   if( p->pNext ) p->pNext->pPrev = p->pPrev; | 
| 2868 | #endif | 
| 2869 |  | 
| 2870 |   sqlite3_free(p); | 
| 2871 |   return SQLITE_OK; | 
| 2872 | } | 
| 2873 |  | 
| 2874 | /* | 
| 2875 | ** Change the "soft" limit on the number of pages in the cache. | 
| 2876 | ** Unused and unmodified pages will be recycled when the number of | 
| 2877 | ** pages in the cache exceeds this soft limit.  But the size of the | 
| 2878 | ** cache is allowed to grow larger than this limit if it contains | 
| 2879 | ** dirty pages or pages still in active use. | 
| 2880 | */ | 
| 2881 | int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ | 
| 2882 |   BtShared *pBt = p->pBt; | 
| 2883 |   assert( sqlite3_mutex_held(p->db->mutex) ); | 
| 2884 |   sqlite3BtreeEnter(p); | 
| 2885 |   sqlite3PagerSetCachesize(pBt->pPager, mxPage); | 
| 2886 |   sqlite3BtreeLeave(p); | 
| 2887 |   return SQLITE_OK; | 
| 2888 | } | 
| 2889 |  | 
| 2890 | /* | 
| 2891 | ** Change the "spill" limit on the number of pages in the cache. | 
| 2892 | ** If the number of pages exceeds this limit during a write transaction, | 
| 2893 | ** the pager might attempt to "spill" pages to the journal early in | 
| 2894 | ** order to free up memory. | 
| 2895 | ** | 
| 2896 | ** The value returned is the current spill size.  If zero is passed | 
| 2897 | ** as an argument, no changes are made to the spill size setting, so | 
| 2898 | ** using mxPage of 0 is a way to query the current spill size. | 
| 2899 | */ | 
| 2900 | int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ | 
| 2901 |   BtShared *pBt = p->pBt; | 
| 2902 |   int res; | 
| 2903 |   assert( sqlite3_mutex_held(p->db->mutex) ); | 
| 2904 |   sqlite3BtreeEnter(p); | 
| 2905 |   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); | 
| 2906 |   sqlite3BtreeLeave(p); | 
| 2907 |   return res; | 
| 2908 | } | 
| 2909 |  | 
| 2910 | #if SQLITE_MAX_MMAP_SIZE>0 | 
| 2911 | /* | 
| 2912 | ** Change the limit on the amount of the database file that may be | 
| 2913 | ** memory mapped. | 
| 2914 | */ | 
| 2915 | int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ | 
| 2916 |   BtShared *pBt = p->pBt; | 
| 2917 |   assert( sqlite3_mutex_held(p->db->mutex) ); | 
| 2918 |   sqlite3BtreeEnter(p); | 
| 2919 |   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); | 
| 2920 |   sqlite3BtreeLeave(p); | 
| 2921 |   return SQLITE_OK; | 
| 2922 | } | 
| 2923 | #endif /* SQLITE_MAX_MMAP_SIZE>0 */ | 
| 2924 |  | 
| 2925 | /* | 
| 2926 | ** Change the way data is synced to disk in order to increase or decrease | 
| 2927 | ** how well the database resists damage due to OS crashes and power | 
| 2928 | ** failures.  Level 1 is the same as asynchronous (no syncs() occur and | 
| 2929 | ** there is a high probability of damage)  Level 2 is the default.  There | 
| 2930 | ** is a very low but non-zero probability of damage.  Level 3 reduces the | 
| 2931 | ** probability of damage to near zero but with a write performance reduction. | 
| 2932 | */ | 
| 2933 | #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 
| 2934 | int ( | 
| 2935 |   Btree *p,              /* The btree to set the safety level on */ | 
| 2936 |   unsigned pgFlags       /* Various PAGER_* flags */ | 
| 2937 | ){ | 
| 2938 |   BtShared *pBt = p->pBt; | 
| 2939 |   assert( sqlite3_mutex_held(p->db->mutex) ); | 
| 2940 |   sqlite3BtreeEnter(p); | 
| 2941 |   sqlite3PagerSetFlags(pBt->pPager, pgFlags); | 
| 2942 |   sqlite3BtreeLeave(p); | 
| 2943 |   return SQLITE_OK; | 
| 2944 | } | 
| 2945 | #endif | 
| 2946 |  | 
| 2947 | /* | 
| 2948 | ** Change the default pages size and the number of reserved bytes per page. | 
| 2949 | ** Or, if the page size has already been fixed, return SQLITE_READONLY  | 
| 2950 | ** without changing anything. | 
| 2951 | ** | 
| 2952 | ** The page size must be a power of 2 between 512 and 65536.  If the page | 
| 2953 | ** size supplied does not meet this constraint then the page size is not | 
| 2954 | ** changed. | 
| 2955 | ** | 
| 2956 | ** Page sizes are constrained to be a power of two so that the region | 
| 2957 | ** of the database file used for locking (beginning at PENDING_BYTE, | 
| 2958 | ** the first byte past the 1GB boundary, 0x40000000) needs to occur | 
| 2959 | ** at the beginning of a page. | 
| 2960 | ** | 
| 2961 | ** If parameter nReserve is less than zero, then the number of reserved | 
| 2962 | ** bytes per page is left unchanged. | 
| 2963 | ** | 
| 2964 | ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size | 
| 2965 | ** and autovacuum mode can no longer be changed. | 
| 2966 | */ | 
| 2967 | int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ | 
| 2968 |   int rc = SQLITE_OK; | 
| 2969 |   int x; | 
| 2970 |   BtShared *pBt = p->pBt; | 
| 2971 |   assert( nReserve>=0 && nReserve<=255 ); | 
| 2972 |   sqlite3BtreeEnter(p); | 
| 2973 |   pBt->nReserveWanted = nReserve; | 
| 2974 |   x = pBt->pageSize - pBt->usableSize; | 
| 2975 |   if( nReserve<x ) nReserve = x; | 
| 2976 |   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ | 
| 2977 |     sqlite3BtreeLeave(p); | 
| 2978 |     return SQLITE_READONLY; | 
| 2979 |   } | 
| 2980 |   assert( nReserve>=0 && nReserve<=255 ); | 
| 2981 |   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && | 
| 2982 |         ((pageSize-1)&pageSize)==0 ){ | 
| 2983 |     assert( (pageSize & 7)==0 ); | 
| 2984 |     assert( !pBt->pCursor ); | 
| 2985 |     if( nReserve>32 && pageSize==512 ) pageSize = 1024; | 
| 2986 |     pBt->pageSize = (u32)pageSize; | 
| 2987 |     freeTempSpace(pBt); | 
| 2988 |   } | 
| 2989 |   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); | 
| 2990 |   pBt->usableSize = pBt->pageSize - (u16)nReserve; | 
| 2991 |   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; | 
| 2992 |   sqlite3BtreeLeave(p); | 
| 2993 |   return rc; | 
| 2994 | } | 
| 2995 |  | 
| 2996 | /* | 
| 2997 | ** Return the currently defined page size | 
| 2998 | */ | 
| 2999 | int sqlite3BtreeGetPageSize(Btree *p){ | 
| 3000 |   return p->pBt->pageSize; | 
| 3001 | } | 
| 3002 |  | 
| 3003 | /* | 
| 3004 | ** This function is similar to sqlite3BtreeGetReserve(), except that it | 
| 3005 | ** may only be called if it is guaranteed that the b-tree mutex is already | 
| 3006 | ** held. | 
| 3007 | ** | 
| 3008 | ** This is useful in one special case in the backup API code where it is | 
| 3009 | ** known that the shared b-tree mutex is held, but the mutex on the  | 
| 3010 | ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() | 
| 3011 | ** were to be called, it might collide with some other operation on the | 
| 3012 | ** database handle that owns *p, causing undefined behavior. | 
| 3013 | */ | 
| 3014 | int sqlite3BtreeGetReserveNoMutex(Btree *p){ | 
| 3015 |   int n; | 
| 3016 |   assert( sqlite3_mutex_held(p->pBt->mutex) ); | 
| 3017 |   n = p->pBt->pageSize - p->pBt->usableSize; | 
| 3018 |   return n; | 
| 3019 | } | 
| 3020 |  | 
| 3021 | /* | 
| 3022 | ** Return the number of bytes of space at the end of every page that | 
| 3023 | ** are intentually left unused.  This is the "reserved" space that is | 
| 3024 | ** sometimes used by extensions. | 
| 3025 | ** | 
| 3026 | ** The value returned is the larger of the current reserve size and | 
| 3027 | ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. | 
| 3028 | ** The amount of reserve can only grow - never shrink. | 
| 3029 | */ | 
| 3030 | int sqlite3BtreeGetRequestedReserve(Btree *p){ | 
| 3031 |   int n1, n2; | 
| 3032 |   sqlite3BtreeEnter(p); | 
| 3033 |   n1 = (int)p->pBt->nReserveWanted; | 
| 3034 |   n2 = sqlite3BtreeGetReserveNoMutex(p); | 
| 3035 |   sqlite3BtreeLeave(p); | 
| 3036 |   return n1>n2 ? n1 : n2; | 
| 3037 | } | 
| 3038 |  | 
| 3039 |  | 
| 3040 | /* | 
| 3041 | ** Set the maximum page count for a database if mxPage is positive. | 
| 3042 | ** No changes are made if mxPage is 0 or negative. | 
| 3043 | ** Regardless of the value of mxPage, return the maximum page count. | 
| 3044 | */ | 
| 3045 | Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ | 
| 3046 |   Pgno n; | 
| 3047 |   sqlite3BtreeEnter(p); | 
| 3048 |   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); | 
| 3049 |   sqlite3BtreeLeave(p); | 
| 3050 |   return n; | 
| 3051 | } | 
| 3052 |  | 
| 3053 | /* | 
| 3054 | ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: | 
| 3055 | ** | 
| 3056 | **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared | 
| 3057 | **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared | 
| 3058 | **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set | 
| 3059 | **    newFlag==(-1)    No changes | 
| 3060 | ** | 
| 3061 | ** This routine acts as a query if newFlag is less than zero | 
| 3062 | ** | 
| 3063 | ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but | 
| 3064 | ** freelist leaf pages are not written back to the database.  Thus in-page | 
| 3065 | ** deleted content is cleared, but freelist deleted content is not. | 
| 3066 | ** | 
| 3067 | ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition | 
| 3068 | ** that freelist leaf pages are written back into the database, increasing | 
| 3069 | ** the amount of disk I/O. | 
| 3070 | */ | 
| 3071 | int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ | 
| 3072 |   int b; | 
| 3073 |   if( p==0 ) return 0; | 
| 3074 |   sqlite3BtreeEnter(p); | 
| 3075 |   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); | 
| 3076 |   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); | 
| 3077 |   if( newFlag>=0 ){ | 
| 3078 |     p->pBt->btsFlags &= ~BTS_FAST_SECURE; | 
| 3079 |     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; | 
| 3080 |   } | 
| 3081 |   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; | 
| 3082 |   sqlite3BtreeLeave(p); | 
| 3083 |   return b; | 
| 3084 | } | 
| 3085 |  | 
| 3086 | /* | 
| 3087 | ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' | 
| 3088 | ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it | 
| 3089 | ** is disabled. The default value for the auto-vacuum property is  | 
| 3090 | ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. | 
| 3091 | */ | 
| 3092 | int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ | 
| 3093 | #ifdef SQLITE_OMIT_AUTOVACUUM | 
| 3094 |   return SQLITE_READONLY; | 
| 3095 | #else | 
| 3096 |   BtShared *pBt = p->pBt; | 
| 3097 |   int rc = SQLITE_OK; | 
| 3098 |   u8 av = (u8)autoVacuum; | 
| 3099 |  | 
| 3100 |   sqlite3BtreeEnter(p); | 
| 3101 |   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ | 
| 3102 |     rc = SQLITE_READONLY; | 
| 3103 |   }else{ | 
| 3104 |     pBt->autoVacuum = av ?1:0; | 
| 3105 |     pBt->incrVacuum = av==2 ?1:0; | 
| 3106 |   } | 
| 3107 |   sqlite3BtreeLeave(p); | 
| 3108 |   return rc; | 
| 3109 | #endif | 
| 3110 | } | 
| 3111 |  | 
| 3112 | /* | 
| 3113 | ** Return the value of the 'auto-vacuum' property. If auto-vacuum is  | 
| 3114 | ** enabled 1 is returned. Otherwise 0. | 
| 3115 | */ | 
| 3116 | int sqlite3BtreeGetAutoVacuum(Btree *p){ | 
| 3117 | #ifdef SQLITE_OMIT_AUTOVACUUM | 
| 3118 |   return BTREE_AUTOVACUUM_NONE; | 
| 3119 | #else | 
| 3120 |   int rc; | 
| 3121 |   sqlite3BtreeEnter(p); | 
| 3122 |   rc = ( | 
| 3123 |     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: | 
| 3124 |     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: | 
| 3125 |     BTREE_AUTOVACUUM_INCR | 
| 3126 |   ); | 
| 3127 |   sqlite3BtreeLeave(p); | 
| 3128 |   return rc; | 
| 3129 | #endif | 
| 3130 | } | 
| 3131 |  | 
| 3132 | /* | 
| 3133 | ** If the user has not set the safety-level for this database connection | 
| 3134 | ** using "PRAGMA synchronous", and if the safety-level is not already | 
| 3135 | ** set to the value passed to this function as the second parameter, | 
| 3136 | ** set it so. | 
| 3137 | */ | 
| 3138 | #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ | 
| 3139 |     && !defined(SQLITE_OMIT_WAL) | 
| 3140 | static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ | 
| 3141 |   sqlite3 *db; | 
| 3142 |   Db *pDb; | 
| 3143 |   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ | 
| 3144 |     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } | 
| 3145 |     if( pDb->bSyncSet==0  | 
| 3146 |      && pDb->safety_level!=safety_level  | 
| 3147 |      && pDb!=&db->aDb[1]  | 
| 3148 |     ){ | 
| 3149 |       pDb->safety_level = safety_level; | 
| 3150 |       sqlite3PagerSetFlags(pBt->pPager, | 
| 3151 |           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); | 
| 3152 |     } | 
| 3153 |   } | 
| 3154 | } | 
| 3155 | #else | 
| 3156 | # define setDefaultSyncFlag(pBt,safety_level) | 
| 3157 | #endif | 
| 3158 |  | 
| 3159 | /* Forward declaration */ | 
| 3160 | static int newDatabase(BtShared*); | 
| 3161 |  | 
| 3162 |  | 
| 3163 | /* | 
| 3164 | ** Get a reference to pPage1 of the database file.  This will | 
| 3165 | ** also acquire a readlock on that file. | 
| 3166 | ** | 
| 3167 | ** SQLITE_OK is returned on success.  If the file is not a | 
| 3168 | ** well-formed database file, then SQLITE_CORRUPT is returned. | 
| 3169 | ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM | 
| 3170 | ** is returned if we run out of memory.  | 
| 3171 | */ | 
| 3172 | static int lockBtree(BtShared *pBt){ | 
| 3173 |   int rc;              /* Result code from subfunctions */ | 
| 3174 |   MemPage *pPage1;     /* Page 1 of the database file */ | 
| 3175 |   u32 nPage;           /* Number of pages in the database */ | 
| 3176 |   u32 nPageFile = 0;   /* Number of pages in the database file */ | 
| 3177 |  | 
| 3178 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 3179 |   assert( pBt->pPage1==0 ); | 
| 3180 |   rc = sqlite3PagerSharedLock(pBt->pPager); | 
| 3181 |   if( rc!=SQLITE_OK ) return rc; | 
| 3182 |   rc = btreeGetPage(pBt, 1, &pPage1, 0); | 
| 3183 |   if( rc!=SQLITE_OK ) return rc; | 
| 3184 |  | 
| 3185 |   /* Do some checking to help insure the file we opened really is | 
| 3186 |   ** a valid database file.  | 
| 3187 |   */ | 
| 3188 |   nPage = get4byte(28+(u8*)pPage1->aData); | 
| 3189 |   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); | 
| 3190 |   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ | 
| 3191 |     nPage = nPageFile; | 
| 3192 |   } | 
| 3193 |   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ | 
| 3194 |     nPage = 0; | 
| 3195 |   } | 
| 3196 |   if( nPage>0 ){ | 
| 3197 |     u32 pageSize; | 
| 3198 |     u32 usableSize; | 
| 3199 |     u8 *page1 = pPage1->aData; | 
| 3200 |     rc = SQLITE_NOTADB; | 
| 3201 |     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins | 
| 3202 |     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d | 
| 3203 |     ** 61 74 20 33 00. */ | 
| 3204 |     if( memcmp(page1, zMagicHeader, 16)!=0 ){ | 
| 3205 |       goto page1_init_failed; | 
| 3206 |     } | 
| 3207 |  | 
| 3208 | #ifdef SQLITE_OMIT_WAL | 
| 3209 |     if( page1[18]>1 ){ | 
| 3210 |       pBt->btsFlags |= BTS_READ_ONLY; | 
| 3211 |     } | 
| 3212 |     if( page1[19]>1 ){ | 
| 3213 |       goto page1_init_failed; | 
| 3214 |     } | 
| 3215 | #else | 
| 3216 |     if( page1[18]>2 ){ | 
| 3217 |       pBt->btsFlags |= BTS_READ_ONLY; | 
| 3218 |     } | 
| 3219 |     if( page1[19]>2 ){ | 
| 3220 |       goto page1_init_failed; | 
| 3221 |     } | 
| 3222 |  | 
| 3223 |     /* If the read version is set to 2, this database should be accessed | 
| 3224 |     ** in WAL mode. If the log is not already open, open it now. Then  | 
| 3225 |     ** return SQLITE_OK and return without populating BtShared.pPage1. | 
| 3226 |     ** The caller detects this and calls this function again. This is | 
| 3227 |     ** required as the version of page 1 currently in the page1 buffer | 
| 3228 |     ** may not be the latest version - there may be a newer one in the log | 
| 3229 |     ** file. | 
| 3230 |     */ | 
| 3231 |     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ | 
| 3232 |       int isOpen = 0; | 
| 3233 |       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); | 
| 3234 |       if( rc!=SQLITE_OK ){ | 
| 3235 |         goto page1_init_failed; | 
| 3236 |       }else{ | 
| 3237 |         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); | 
| 3238 |         if( isOpen==0 ){ | 
| 3239 |           releasePageOne(pPage1); | 
| 3240 |           return SQLITE_OK; | 
| 3241 |         } | 
| 3242 |       } | 
| 3243 |       rc = SQLITE_NOTADB; | 
| 3244 |     }else{ | 
| 3245 |       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); | 
| 3246 |     } | 
| 3247 | #endif | 
| 3248 |  | 
| 3249 |     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload | 
| 3250 |     ** fractions and the leaf payload fraction values must be 64, 32, and 32. | 
| 3251 |     ** | 
| 3252 |     ** The original design allowed these amounts to vary, but as of | 
| 3253 |     ** version 3.6.0, we require them to be fixed. | 
| 3254 |     */ | 
| 3255 |     if( memcmp(&page1[21], "\100\040\040" ,3)!=0 ){ | 
| 3256 |       goto page1_init_failed; | 
| 3257 |     } | 
| 3258 |     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is | 
| 3259 |     ** determined by the 2-byte integer located at an offset of 16 bytes from | 
| 3260 |     ** the beginning of the database file. */ | 
| 3261 |     pageSize = (page1[16]<<8) | (page1[17]<<16); | 
| 3262 |     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two | 
| 3263 |     ** between 512 and 65536 inclusive. */ | 
| 3264 |     if( ((pageSize-1)&pageSize)!=0 | 
| 3265 |      || pageSize>SQLITE_MAX_PAGE_SIZE  | 
| 3266 |      || pageSize<=256  | 
| 3267 |     ){ | 
| 3268 |       goto page1_init_failed; | 
| 3269 |     } | 
| 3270 |     pBt->btsFlags |= BTS_PAGESIZE_FIXED; | 
| 3271 |     assert( (pageSize & 7)==0 ); | 
| 3272 |     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte | 
| 3273 |     ** integer at offset 20 is the number of bytes of space at the end of | 
| 3274 |     ** each page to reserve for extensions.  | 
| 3275 |     ** | 
| 3276 |     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is | 
| 3277 |     ** determined by the one-byte unsigned integer found at an offset of 20 | 
| 3278 |     ** into the database file header. */ | 
| 3279 |     usableSize = pageSize - page1[20]; | 
| 3280 |     if( (u32)pageSize!=pBt->pageSize ){ | 
| 3281 |       /* After reading the first page of the database assuming a page size | 
| 3282 |       ** of BtShared.pageSize, we have discovered that the page-size is | 
| 3283 |       ** actually pageSize. Unlock the database, leave pBt->pPage1 at | 
| 3284 |       ** zero and return SQLITE_OK. The caller will call this function | 
| 3285 |       ** again with the correct page-size. | 
| 3286 |       */ | 
| 3287 |       releasePageOne(pPage1); | 
| 3288 |       pBt->usableSize = usableSize; | 
| 3289 |       pBt->pageSize = pageSize; | 
| 3290 |       freeTempSpace(pBt); | 
| 3291 |       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, | 
| 3292 |                                    pageSize-usableSize); | 
| 3293 |       return rc; | 
| 3294 |     } | 
| 3295 |     if( nPage>nPageFile ){ | 
| 3296 |       if( sqlite3WritableSchema(pBt->db)==0 ){ | 
| 3297 |         rc = SQLITE_CORRUPT_BKPT; | 
| 3298 |         goto page1_init_failed; | 
| 3299 |       }else{ | 
| 3300 |         nPage = nPageFile; | 
| 3301 |       } | 
| 3302 |     } | 
| 3303 |     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to | 
| 3304 |     ** be less than 480. In other words, if the page size is 512, then the | 
| 3305 |     ** reserved space size cannot exceed 32. */ | 
| 3306 |     if( usableSize<480 ){ | 
| 3307 |       goto page1_init_failed; | 
| 3308 |     } | 
| 3309 |     pBt->pageSize = pageSize; | 
| 3310 |     pBt->usableSize = usableSize; | 
| 3311 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 3312 |     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); | 
| 3313 |     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); | 
| 3314 | #endif | 
| 3315 |   } | 
| 3316 |  | 
| 3317 |   /* maxLocal is the maximum amount of payload to store locally for | 
| 3318 |   ** a cell.  Make sure it is small enough so that at least minFanout | 
| 3319 |   ** cells can will fit on one page.  We assume a 10-byte page header. | 
| 3320 |   ** Besides the payload, the cell must store: | 
| 3321 |   **     2-byte pointer to the cell | 
| 3322 |   **     4-byte child pointer | 
| 3323 |   **     9-byte nKey value | 
| 3324 |   **     4-byte nData value | 
| 3325 |   **     4-byte overflow page pointer | 
| 3326 |   ** So a cell consists of a 2-byte pointer, a header which is as much as | 
| 3327 |   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow | 
| 3328 |   ** page pointer. | 
| 3329 |   */ | 
| 3330 |   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); | 
| 3331 |   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); | 
| 3332 |   pBt->maxLeaf = (u16)(pBt->usableSize - 35); | 
| 3333 |   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); | 
| 3334 |   if( pBt->maxLocal>127 ){ | 
| 3335 |     pBt->max1bytePayload = 127; | 
| 3336 |   }else{ | 
| 3337 |     pBt->max1bytePayload = (u8)pBt->maxLocal; | 
| 3338 |   } | 
| 3339 |   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); | 
| 3340 |   pBt->pPage1 = pPage1; | 
| 3341 |   pBt->nPage = nPage; | 
| 3342 |   return SQLITE_OK; | 
| 3343 |  | 
| 3344 | page1_init_failed: | 
| 3345 |   releasePageOne(pPage1); | 
| 3346 |   pBt->pPage1 = 0; | 
| 3347 |   return rc; | 
| 3348 | } | 
| 3349 |  | 
| 3350 | #ifndef NDEBUG | 
| 3351 | /* | 
| 3352 | ** Return the number of cursors open on pBt. This is for use | 
| 3353 | ** in assert() expressions, so it is only compiled if NDEBUG is not | 
| 3354 | ** defined. | 
| 3355 | ** | 
| 3356 | ** Only write cursors are counted if wrOnly is true.  If wrOnly is | 
| 3357 | ** false then all cursors are counted. | 
| 3358 | ** | 
| 3359 | ** For the purposes of this routine, a cursor is any cursor that | 
| 3360 | ** is capable of reading or writing to the database.  Cursors that | 
| 3361 | ** have been tripped into the CURSOR_FAULT state are not counted. | 
| 3362 | */ | 
| 3363 | static int countValidCursors(BtShared *pBt, int wrOnly){ | 
| 3364 |   BtCursor *pCur; | 
| 3365 |   int r = 0; | 
| 3366 |   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ | 
| 3367 |     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) | 
| 3368 |      && pCur->eState!=CURSOR_FAULT ) r++;  | 
| 3369 |   } | 
| 3370 |   return r; | 
| 3371 | } | 
| 3372 | #endif | 
| 3373 |  | 
| 3374 | /* | 
| 3375 | ** If there are no outstanding cursors and we are not in the middle | 
| 3376 | ** of a transaction but there is a read lock on the database, then | 
| 3377 | ** this routine unrefs the first page of the database file which  | 
| 3378 | ** has the effect of releasing the read lock. | 
| 3379 | ** | 
| 3380 | ** If there is a transaction in progress, this routine is a no-op. | 
| 3381 | */ | 
| 3382 | static void unlockBtreeIfUnused(BtShared *pBt){ | 
| 3383 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 3384 |   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); | 
| 3385 |   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ | 
| 3386 |     MemPage *pPage1 = pBt->pPage1; | 
| 3387 |     assert( pPage1->aData ); | 
| 3388 |     assert( sqlite3PagerRefcount(pBt->pPager)==1 ); | 
| 3389 |     pBt->pPage1 = 0; | 
| 3390 |     releasePageOne(pPage1); | 
| 3391 |   } | 
| 3392 | } | 
| 3393 |  | 
| 3394 | /* | 
| 3395 | ** If pBt points to an empty file then convert that empty file | 
| 3396 | ** into a new empty database by initializing the first page of | 
| 3397 | ** the database. | 
| 3398 | */ | 
| 3399 | static int newDatabase(BtShared *pBt){ | 
| 3400 |   MemPage *pP1; | 
| 3401 |   unsigned char *data; | 
| 3402 |   int rc; | 
| 3403 |  | 
| 3404 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 3405 |   if( pBt->nPage>0 ){ | 
| 3406 |     return SQLITE_OK; | 
| 3407 |   } | 
| 3408 |   pP1 = pBt->pPage1; | 
| 3409 |   assert( pP1!=0 ); | 
| 3410 |   data = pP1->aData; | 
| 3411 |   rc = sqlite3PagerWrite(pP1->pDbPage); | 
| 3412 |   if( rc ) return rc; | 
| 3413 |   memcpy(data, zMagicHeader, sizeof(zMagicHeader)); | 
| 3414 |   assert( sizeof(zMagicHeader)==16 ); | 
| 3415 |   data[16] = (u8)((pBt->pageSize>>8)&0xff); | 
| 3416 |   data[17] = (u8)((pBt->pageSize>>16)&0xff); | 
| 3417 |   data[18] = 1; | 
| 3418 |   data[19] = 1; | 
| 3419 |   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); | 
| 3420 |   data[20] = (u8)(pBt->pageSize - pBt->usableSize); | 
| 3421 |   data[21] = 64; | 
| 3422 |   data[22] = 32; | 
| 3423 |   data[23] = 32; | 
| 3424 |   memset(&data[24], 0, 100-24); | 
| 3425 |   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); | 
| 3426 |   pBt->btsFlags |= BTS_PAGESIZE_FIXED; | 
| 3427 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 3428 |   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); | 
| 3429 |   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); | 
| 3430 |   put4byte(&data[36 + 4*4], pBt->autoVacuum); | 
| 3431 |   put4byte(&data[36 + 7*4], pBt->incrVacuum); | 
| 3432 | #endif | 
| 3433 |   pBt->nPage = 1; | 
| 3434 |   data[31] = 1; | 
| 3435 |   return SQLITE_OK; | 
| 3436 | } | 
| 3437 |  | 
| 3438 | /* | 
| 3439 | ** Initialize the first page of the database file (creating a database | 
| 3440 | ** consisting of a single page and no schema objects). Return SQLITE_OK | 
| 3441 | ** if successful, or an SQLite error code otherwise. | 
| 3442 | */ | 
| 3443 | int sqlite3BtreeNewDb(Btree *p){ | 
| 3444 |   int rc; | 
| 3445 |   sqlite3BtreeEnter(p); | 
| 3446 |   p->pBt->nPage = 0; | 
| 3447 |   rc = newDatabase(p->pBt); | 
| 3448 |   sqlite3BtreeLeave(p); | 
| 3449 |   return rc; | 
| 3450 | } | 
| 3451 |  | 
| 3452 | /* | 
| 3453 | ** Attempt to start a new transaction. A write-transaction | 
| 3454 | ** is started if the second argument is nonzero, otherwise a read- | 
| 3455 | ** transaction.  If the second argument is 2 or more and exclusive | 
| 3456 | ** transaction is started, meaning that no other process is allowed | 
| 3457 | ** to access the database.  A preexisting transaction may not be | 
| 3458 | ** upgraded to exclusive by calling this routine a second time - the | 
| 3459 | ** exclusivity flag only works for a new transaction. | 
| 3460 | ** | 
| 3461 | ** A write-transaction must be started before attempting any  | 
| 3462 | ** changes to the database.  None of the following routines  | 
| 3463 | ** will work unless a transaction is started first: | 
| 3464 | ** | 
| 3465 | **      sqlite3BtreeCreateTable() | 
| 3466 | **      sqlite3BtreeCreateIndex() | 
| 3467 | **      sqlite3BtreeClearTable() | 
| 3468 | **      sqlite3BtreeDropTable() | 
| 3469 | **      sqlite3BtreeInsert() | 
| 3470 | **      sqlite3BtreeDelete() | 
| 3471 | **      sqlite3BtreeUpdateMeta() | 
| 3472 | ** | 
| 3473 | ** If an initial attempt to acquire the lock fails because of lock contention | 
| 3474 | ** and the database was previously unlocked, then invoke the busy handler | 
| 3475 | ** if there is one.  But if there was previously a read-lock, do not | 
| 3476 | ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is  | 
| 3477 | ** returned when there is already a read-lock in order to avoid a deadlock. | 
| 3478 | ** | 
| 3479 | ** Suppose there are two processes A and B.  A has a read lock and B has | 
| 3480 | ** a reserved lock.  B tries to promote to exclusive but is blocked because | 
| 3481 | ** of A's read lock.  A tries to promote to reserved but is blocked by B. | 
| 3482 | ** One or the other of the two processes must give way or there can be | 
| 3483 | ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback | 
| 3484 | ** when A already has a read lock, we encourage A to give up and let B | 
| 3485 | ** proceed. | 
| 3486 | */ | 
| 3487 | int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ | 
| 3488 |   BtShared *pBt = p->pBt; | 
| 3489 |   Pager * = pBt->pPager; | 
| 3490 |   int rc = SQLITE_OK; | 
| 3491 |  | 
| 3492 |   sqlite3BtreeEnter(p); | 
| 3493 |   btreeIntegrity(p); | 
| 3494 |  | 
| 3495 |   /* If the btree is already in a write-transaction, or it | 
| 3496 |   ** is already in a read-transaction and a read-transaction | 
| 3497 |   ** is requested, this is a no-op. | 
| 3498 |   */ | 
| 3499 |   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ | 
| 3500 |     goto trans_begun; | 
| 3501 |   } | 
| 3502 |   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); | 
| 3503 |  | 
| 3504 |   if( (p->db->flags & SQLITE_ResetDatabase)  | 
| 3505 |    && sqlite3PagerIsreadonly(pPager)==0  | 
| 3506 |   ){ | 
| 3507 |     pBt->btsFlags &= ~BTS_READ_ONLY; | 
| 3508 |   } | 
| 3509 |  | 
| 3510 |   /* Write transactions are not possible on a read-only database */ | 
| 3511 |   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ | 
| 3512 |     rc = SQLITE_READONLY; | 
| 3513 |     goto trans_begun; | 
| 3514 |   } | 
| 3515 |  | 
| 3516 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 3517 |   { | 
| 3518 |     sqlite3 *pBlock = 0; | 
| 3519 |     /* If another database handle has already opened a write transaction  | 
| 3520 |     ** on this shared-btree structure and a second write transaction is | 
| 3521 |     ** requested, return SQLITE_LOCKED. | 
| 3522 |     */ | 
| 3523 |     if( (wrflag && pBt->inTransaction==TRANS_WRITE) | 
| 3524 |      || (pBt->btsFlags & BTS_PENDING)!=0 | 
| 3525 |     ){ | 
| 3526 |       pBlock = pBt->pWriter->db; | 
| 3527 |     }else if( wrflag>1 ){ | 
| 3528 |       BtLock *pIter; | 
| 3529 |       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ | 
| 3530 |         if( pIter->pBtree!=p ){ | 
| 3531 |           pBlock = pIter->pBtree->db; | 
| 3532 |           break; | 
| 3533 |         } | 
| 3534 |       } | 
| 3535 |     } | 
| 3536 |     if( pBlock ){ | 
| 3537 |       sqlite3ConnectionBlocked(p->db, pBlock); | 
| 3538 |       rc = SQLITE_LOCKED_SHAREDCACHE; | 
| 3539 |       goto trans_begun; | 
| 3540 |     } | 
| 3541 |   } | 
| 3542 | #endif | 
| 3543 |  | 
| 3544 |   /* Any read-only or read-write transaction implies a read-lock on  | 
| 3545 |   ** page 1. So if some other shared-cache client already has a write-lock  | 
| 3546 |   ** on page 1, the transaction cannot be opened. */ | 
| 3547 |   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); | 
| 3548 |   if( SQLITE_OK!=rc ) goto trans_begun; | 
| 3549 |  | 
| 3550 |   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; | 
| 3551 |   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; | 
| 3552 |   do { | 
| 3553 |     sqlite3PagerWalDb(pPager, p->db); | 
| 3554 |  | 
| 3555 | #ifdef SQLITE_ENABLE_SETLK_TIMEOUT | 
| 3556 |     /* If transitioning from no transaction directly to a write transaction, | 
| 3557 |     ** block for the WRITER lock first if possible. */ | 
| 3558 |     if( pBt->pPage1==0 && wrflag ){ | 
| 3559 |       assert( pBt->inTransaction==TRANS_NONE ); | 
| 3560 |       rc = sqlite3PagerWalWriteLock(pPager, 1); | 
| 3561 |       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; | 
| 3562 |     } | 
| 3563 | #endif | 
| 3564 |  | 
| 3565 |     /* Call lockBtree() until either pBt->pPage1 is populated or | 
| 3566 |     ** lockBtree() returns something other than SQLITE_OK. lockBtree() | 
| 3567 |     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after | 
| 3568 |     ** reading page 1 it discovers that the page-size of the database  | 
| 3569 |     ** file is not pBt->pageSize. In this case lockBtree() will update | 
| 3570 |     ** pBt->pageSize to the page-size of the file on disk. | 
| 3571 |     */ | 
| 3572 |     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); | 
| 3573 |  | 
| 3574 |     if( rc==SQLITE_OK && wrflag ){ | 
| 3575 |       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ | 
| 3576 |         rc = SQLITE_READONLY; | 
| 3577 |       }else{ | 
| 3578 |         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); | 
| 3579 |         if( rc==SQLITE_OK ){ | 
| 3580 |           rc = newDatabase(pBt); | 
| 3581 |         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ | 
| 3582 |           /* if there was no transaction opened when this function was | 
| 3583 |           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error | 
| 3584 |           ** code to SQLITE_BUSY. */ | 
| 3585 |           rc = SQLITE_BUSY; | 
| 3586 |         } | 
| 3587 |       } | 
| 3588 |     } | 
| 3589 |    | 
| 3590 |     if( rc!=SQLITE_OK ){ | 
| 3591 |       (void)sqlite3PagerWalWriteLock(pPager, 0); | 
| 3592 |       unlockBtreeIfUnused(pBt); | 
| 3593 |     } | 
| 3594 |   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && | 
| 3595 |           btreeInvokeBusyHandler(pBt) ); | 
| 3596 |   sqlite3PagerWalDb(pPager, 0); | 
| 3597 | #ifdef SQLITE_ENABLE_SETLK_TIMEOUT | 
| 3598 |   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; | 
| 3599 | #endif | 
| 3600 |  | 
| 3601 |   if( rc==SQLITE_OK ){ | 
| 3602 |     if( p->inTrans==TRANS_NONE ){ | 
| 3603 |       pBt->nTransaction++; | 
| 3604 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 3605 |       if( p->sharable ){ | 
| 3606 |         assert( p->lock.pBtree==p && p->lock.iTable==1 ); | 
| 3607 |         p->lock.eLock = READ_LOCK; | 
| 3608 |         p->lock.pNext = pBt->pLock; | 
| 3609 |         pBt->pLock = &p->lock; | 
| 3610 |       } | 
| 3611 | #endif | 
| 3612 |     } | 
| 3613 |     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); | 
| 3614 |     if( p->inTrans>pBt->inTransaction ){ | 
| 3615 |       pBt->inTransaction = p->inTrans; | 
| 3616 |     } | 
| 3617 |     if( wrflag ){ | 
| 3618 |       MemPage *pPage1 = pBt->pPage1; | 
| 3619 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 3620 |       assert( !pBt->pWriter ); | 
| 3621 |       pBt->pWriter = p; | 
| 3622 |       pBt->btsFlags &= ~BTS_EXCLUSIVE; | 
| 3623 |       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; | 
| 3624 | #endif | 
| 3625 |  | 
| 3626 |       /* If the db-size header field is incorrect (as it may be if an old | 
| 3627 |       ** client has been writing the database file), update it now. Doing | 
| 3628 |       ** this sooner rather than later means the database size can safely  | 
| 3629 |       ** re-read the database size from page 1 if a savepoint or transaction | 
| 3630 |       ** rollback occurs within the transaction. | 
| 3631 |       */ | 
| 3632 |       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ | 
| 3633 |         rc = sqlite3PagerWrite(pPage1->pDbPage); | 
| 3634 |         if( rc==SQLITE_OK ){ | 
| 3635 |           put4byte(&pPage1->aData[28], pBt->nPage); | 
| 3636 |         } | 
| 3637 |       } | 
| 3638 |     } | 
| 3639 |   } | 
| 3640 |  | 
| 3641 | trans_begun: | 
| 3642 |   if( rc==SQLITE_OK ){ | 
| 3643 |     if( pSchemaVersion ){ | 
| 3644 |       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); | 
| 3645 |     } | 
| 3646 |     if( wrflag ){ | 
| 3647 |       /* This call makes sure that the pager has the correct number of | 
| 3648 |       ** open savepoints. If the second parameter is greater than 0 and | 
| 3649 |       ** the sub-journal is not already open, then it will be opened here. | 
| 3650 |       */ | 
| 3651 |       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); | 
| 3652 |     } | 
| 3653 |   } | 
| 3654 |  | 
| 3655 |   btreeIntegrity(p); | 
| 3656 |   sqlite3BtreeLeave(p); | 
| 3657 |   return rc; | 
| 3658 | } | 
| 3659 |  | 
| 3660 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 3661 |  | 
| 3662 | /* | 
| 3663 | ** Set the pointer-map entries for all children of page pPage. Also, if | 
| 3664 | ** pPage contains cells that point to overflow pages, set the pointer | 
| 3665 | ** map entries for the overflow pages as well. | 
| 3666 | */ | 
| 3667 | static int setChildPtrmaps(MemPage *pPage){ | 
| 3668 |   int i;                             /* Counter variable */ | 
| 3669 |   int nCell;                         /* Number of cells in page pPage */ | 
| 3670 |   int rc;                            /* Return code */ | 
| 3671 |   BtShared *pBt = pPage->pBt; | 
| 3672 |   Pgno pgno = pPage->pgno; | 
| 3673 |  | 
| 3674 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 3675 |   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); | 
| 3676 |   if( rc!=SQLITE_OK ) return rc; | 
| 3677 |   nCell = pPage->nCell; | 
| 3678 |  | 
| 3679 |   for(i=0; i<nCell; i++){ | 
| 3680 |     u8 *pCell = findCell(pPage, i); | 
| 3681 |  | 
| 3682 |     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); | 
| 3683 |  | 
| 3684 |     if( !pPage->leaf ){ | 
| 3685 |       Pgno childPgno = get4byte(pCell); | 
| 3686 |       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); | 
| 3687 |     } | 
| 3688 |   } | 
| 3689 |  | 
| 3690 |   if( !pPage->leaf ){ | 
| 3691 |     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); | 
| 3692 |     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); | 
| 3693 |   } | 
| 3694 |  | 
| 3695 |   return rc; | 
| 3696 | } | 
| 3697 |  | 
| 3698 | /* | 
| 3699 | ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so | 
| 3700 | ** that it points to iTo. Parameter eType describes the type of pointer to | 
| 3701 | ** be modified, as  follows: | 
| 3702 | ** | 
| 3703 | ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child  | 
| 3704 | **                   page of pPage. | 
| 3705 | ** | 
| 3706 | ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow | 
| 3707 | **                   page pointed to by one of the cells on pPage. | 
| 3708 | ** | 
| 3709 | ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next | 
| 3710 | **                   overflow page in the list. | 
| 3711 | */ | 
| 3712 | static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ | 
| 3713 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 3714 |   assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 3715 |   if( eType==PTRMAP_OVERFLOW2 ){ | 
| 3716 |     /* The pointer is always the first 4 bytes of the page in this case.  */ | 
| 3717 |     if( get4byte(pPage->aData)!=iFrom ){ | 
| 3718 |       return SQLITE_CORRUPT_PAGE(pPage); | 
| 3719 |     } | 
| 3720 |     put4byte(pPage->aData, iTo); | 
| 3721 |   }else{ | 
| 3722 |     int i; | 
| 3723 |     int nCell; | 
| 3724 |     int rc; | 
| 3725 |  | 
| 3726 |     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); | 
| 3727 |     if( rc ) return rc; | 
| 3728 |     nCell = pPage->nCell; | 
| 3729 |  | 
| 3730 |     for(i=0; i<nCell; i++){ | 
| 3731 |       u8 *pCell = findCell(pPage, i); | 
| 3732 |       if( eType==PTRMAP_OVERFLOW1 ){ | 
| 3733 |         CellInfo info; | 
| 3734 |         pPage->xParseCell(pPage, pCell, &info); | 
| 3735 |         if( info.nLocal<info.nPayload ){ | 
| 3736 |           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ | 
| 3737 |             return SQLITE_CORRUPT_PAGE(pPage); | 
| 3738 |           } | 
| 3739 |           if( iFrom==get4byte(pCell+info.nSize-4) ){ | 
| 3740 |             put4byte(pCell+info.nSize-4, iTo); | 
| 3741 |             break; | 
| 3742 |           } | 
| 3743 |         } | 
| 3744 |       }else{ | 
| 3745 |         if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){ | 
| 3746 |           return SQLITE_CORRUPT_PAGE(pPage); | 
| 3747 |         } | 
| 3748 |         if( get4byte(pCell)==iFrom ){ | 
| 3749 |           put4byte(pCell, iTo); | 
| 3750 |           break; | 
| 3751 |         } | 
| 3752 |       } | 
| 3753 |     } | 
| 3754 |    | 
| 3755 |     if( i==nCell ){ | 
| 3756 |       if( eType!=PTRMAP_BTREE ||  | 
| 3757 |           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ | 
| 3758 |         return SQLITE_CORRUPT_PAGE(pPage); | 
| 3759 |       } | 
| 3760 |       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); | 
| 3761 |     } | 
| 3762 |   } | 
| 3763 |   return SQLITE_OK; | 
| 3764 | } | 
| 3765 |  | 
| 3766 |  | 
| 3767 | /* | 
| 3768 | ** Move the open database page pDbPage to location iFreePage in the  | 
| 3769 | ** database. The pDbPage reference remains valid. | 
| 3770 | ** | 
| 3771 | ** The isCommit flag indicates that there is no need to remember that | 
| 3772 | ** the journal needs to be sync()ed before database page pDbPage->pgno  | 
| 3773 | ** can be written to. The caller has already promised not to write to that | 
| 3774 | ** page. | 
| 3775 | */ | 
| 3776 | static int relocatePage( | 
| 3777 |   BtShared *pBt,           /* Btree */ | 
| 3778 |   MemPage *pDbPage,        /* Open page to move */ | 
| 3779 |   u8 eType,                /* Pointer map 'type' entry for pDbPage */ | 
| 3780 |   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */ | 
| 3781 |   Pgno iFreePage,          /* The location to move pDbPage to */ | 
| 3782 |   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */ | 
| 3783 | ){ | 
| 3784 |   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */ | 
| 3785 |   Pgno iDbPage = pDbPage->pgno; | 
| 3786 |   Pager * = pBt->pPager; | 
| 3787 |   int rc; | 
| 3788 |  | 
| 3789 |   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||  | 
| 3790 |       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); | 
| 3791 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 3792 |   assert( pDbPage->pBt==pBt ); | 
| 3793 |   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; | 
| 3794 |  | 
| 3795 |   /* Move page iDbPage from its current location to page number iFreePage */ | 
| 3796 |   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n" ,  | 
| 3797 |       iDbPage, iFreePage, iPtrPage, eType)); | 
| 3798 |   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); | 
| 3799 |   if( rc!=SQLITE_OK ){ | 
| 3800 |     return rc; | 
| 3801 |   } | 
| 3802 |   pDbPage->pgno = iFreePage; | 
| 3803 |  | 
| 3804 |   /* If pDbPage was a btree-page, then it may have child pages and/or cells | 
| 3805 |   ** that point to overflow pages. The pointer map entries for all these | 
| 3806 |   ** pages need to be changed. | 
| 3807 |   ** | 
| 3808 |   ** If pDbPage is an overflow page, then the first 4 bytes may store a | 
| 3809 |   ** pointer to a subsequent overflow page. If this is the case, then | 
| 3810 |   ** the pointer map needs to be updated for the subsequent overflow page. | 
| 3811 |   */ | 
| 3812 |   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ | 
| 3813 |     rc = setChildPtrmaps(pDbPage); | 
| 3814 |     if( rc!=SQLITE_OK ){ | 
| 3815 |       return rc; | 
| 3816 |     } | 
| 3817 |   }else{ | 
| 3818 |     Pgno nextOvfl = get4byte(pDbPage->aData); | 
| 3819 |     if( nextOvfl!=0 ){ | 
| 3820 |       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); | 
| 3821 |       if( rc!=SQLITE_OK ){ | 
| 3822 |         return rc; | 
| 3823 |       } | 
| 3824 |     } | 
| 3825 |   } | 
| 3826 |  | 
| 3827 |   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so | 
| 3828 |   ** that it points at iFreePage. Also fix the pointer map entry for | 
| 3829 |   ** iPtrPage. | 
| 3830 |   */ | 
| 3831 |   if( eType!=PTRMAP_ROOTPAGE ){ | 
| 3832 |     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); | 
| 3833 |     if( rc!=SQLITE_OK ){ | 
| 3834 |       return rc; | 
| 3835 |     } | 
| 3836 |     rc = sqlite3PagerWrite(pPtrPage->pDbPage); | 
| 3837 |     if( rc!=SQLITE_OK ){ | 
| 3838 |       releasePage(pPtrPage); | 
| 3839 |       return rc; | 
| 3840 |     } | 
| 3841 |     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); | 
| 3842 |     releasePage(pPtrPage); | 
| 3843 |     if( rc==SQLITE_OK ){ | 
| 3844 |       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); | 
| 3845 |     } | 
| 3846 |   } | 
| 3847 |   return rc; | 
| 3848 | } | 
| 3849 |  | 
| 3850 | /* Forward declaration required by incrVacuumStep(). */ | 
| 3851 | static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); | 
| 3852 |  | 
| 3853 | /* | 
| 3854 | ** Perform a single step of an incremental-vacuum. If successful, return | 
| 3855 | ** SQLITE_OK. If there is no work to do (and therefore no point in  | 
| 3856 | ** calling this function again), return SQLITE_DONE. Or, if an error  | 
| 3857 | ** occurs, return some other error code. | 
| 3858 | ** | 
| 3859 | ** More specifically, this function attempts to re-organize the database so  | 
| 3860 | ** that the last page of the file currently in use is no longer in use. | 
| 3861 | ** | 
| 3862 | ** Parameter nFin is the number of pages that this database would contain | 
| 3863 | ** were this function called until it returns SQLITE_DONE. | 
| 3864 | ** | 
| 3865 | ** If the bCommit parameter is non-zero, this function assumes that the  | 
| 3866 | ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE  | 
| 3867 | ** or an error. bCommit is passed true for an auto-vacuum-on-commit  | 
| 3868 | ** operation, or false for an incremental vacuum. | 
| 3869 | */ | 
| 3870 | static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ | 
| 3871 |   Pgno nFreeList;           /* Number of pages still on the free-list */ | 
| 3872 |   int rc; | 
| 3873 |  | 
| 3874 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 3875 |   assert( iLastPg>nFin ); | 
| 3876 |  | 
| 3877 |   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ | 
| 3878 |     u8 eType; | 
| 3879 |     Pgno iPtrPage; | 
| 3880 |  | 
| 3881 |     nFreeList = get4byte(&pBt->pPage1->aData[36]); | 
| 3882 |     if( nFreeList==0 ){ | 
| 3883 |       return SQLITE_DONE; | 
| 3884 |     } | 
| 3885 |  | 
| 3886 |     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); | 
| 3887 |     if( rc!=SQLITE_OK ){ | 
| 3888 |       return rc; | 
| 3889 |     } | 
| 3890 |     if( eType==PTRMAP_ROOTPAGE ){ | 
| 3891 |       return SQLITE_CORRUPT_BKPT; | 
| 3892 |     } | 
| 3893 |  | 
| 3894 |     if( eType==PTRMAP_FREEPAGE ){ | 
| 3895 |       if( bCommit==0 ){ | 
| 3896 |         /* Remove the page from the files free-list. This is not required | 
| 3897 |         ** if bCommit is non-zero. In that case, the free-list will be | 
| 3898 |         ** truncated to zero after this function returns, so it doesn't  | 
| 3899 |         ** matter if it still contains some garbage entries. | 
| 3900 |         */ | 
| 3901 |         Pgno iFreePg; | 
| 3902 |         MemPage *pFreePg; | 
| 3903 |         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); | 
| 3904 |         if( rc!=SQLITE_OK ){ | 
| 3905 |           return rc; | 
| 3906 |         } | 
| 3907 |         assert( iFreePg==iLastPg ); | 
| 3908 |         releasePage(pFreePg); | 
| 3909 |       } | 
| 3910 |     } else { | 
| 3911 |       Pgno iFreePg;             /* Index of free page to move pLastPg to */ | 
| 3912 |       MemPage *pLastPg; | 
| 3913 |       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */ | 
| 3914 |       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */ | 
| 3915 |  | 
| 3916 |       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); | 
| 3917 |       if( rc!=SQLITE_OK ){ | 
| 3918 |         return rc; | 
| 3919 |       } | 
| 3920 |  | 
| 3921 |       /* If bCommit is zero, this loop runs exactly once and page pLastPg | 
| 3922 |       ** is swapped with the first free page pulled off the free list. | 
| 3923 |       ** | 
| 3924 |       ** On the other hand, if bCommit is greater than zero, then keep | 
| 3925 |       ** looping until a free-page located within the first nFin pages | 
| 3926 |       ** of the file is found. | 
| 3927 |       */ | 
| 3928 |       if( bCommit==0 ){ | 
| 3929 |         eMode = BTALLOC_LE; | 
| 3930 |         iNear = nFin; | 
| 3931 |       } | 
| 3932 |       do { | 
| 3933 |         MemPage *pFreePg; | 
| 3934 |         Pgno dbSize = btreePagecount(pBt); | 
| 3935 |         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); | 
| 3936 |         if( rc!=SQLITE_OK ){ | 
| 3937 |           releasePage(pLastPg); | 
| 3938 |           return rc; | 
| 3939 |         } | 
| 3940 |         releasePage(pFreePg); | 
| 3941 |         if( iFreePg>dbSize ){ | 
| 3942 |           releasePage(pLastPg); | 
| 3943 |           return SQLITE_CORRUPT_BKPT; | 
| 3944 |         } | 
| 3945 |       }while( bCommit && iFreePg>nFin ); | 
| 3946 |       assert( iFreePg<iLastPg ); | 
| 3947 |        | 
| 3948 |       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); | 
| 3949 |       releasePage(pLastPg); | 
| 3950 |       if( rc!=SQLITE_OK ){ | 
| 3951 |         return rc; | 
| 3952 |       } | 
| 3953 |     } | 
| 3954 |   } | 
| 3955 |  | 
| 3956 |   if( bCommit==0 ){ | 
| 3957 |     do { | 
| 3958 |       iLastPg--; | 
| 3959 |     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); | 
| 3960 |     pBt->bDoTruncate = 1; | 
| 3961 |     pBt->nPage = iLastPg; | 
| 3962 |   } | 
| 3963 |   return SQLITE_OK; | 
| 3964 | } | 
| 3965 |  | 
| 3966 | /* | 
| 3967 | ** The database opened by the first argument is an auto-vacuum database | 
| 3968 | ** nOrig pages in size containing nFree free pages. Return the expected  | 
| 3969 | ** size of the database in pages following an auto-vacuum operation. | 
| 3970 | */ | 
| 3971 | static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ | 
| 3972 |   int nEntry;                     /* Number of entries on one ptrmap page */ | 
| 3973 |   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */ | 
| 3974 |   Pgno nFin;                      /* Return value */ | 
| 3975 |  | 
| 3976 |   nEntry = pBt->usableSize/5; | 
| 3977 |   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; | 
| 3978 |   nFin = nOrig - nFree - nPtrmap; | 
| 3979 |   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ | 
| 3980 |     nFin--; | 
| 3981 |   } | 
| 3982 |   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ | 
| 3983 |     nFin--; | 
| 3984 |   } | 
| 3985 |  | 
| 3986 |   return nFin; | 
| 3987 | } | 
| 3988 |  | 
| 3989 | /* | 
| 3990 | ** A write-transaction must be opened before calling this function. | 
| 3991 | ** It performs a single unit of work towards an incremental vacuum. | 
| 3992 | ** | 
| 3993 | ** If the incremental vacuum is finished after this function has run, | 
| 3994 | ** SQLITE_DONE is returned. If it is not finished, but no error occurred, | 
| 3995 | ** SQLITE_OK is returned. Otherwise an SQLite error code.  | 
| 3996 | */ | 
| 3997 | int sqlite3BtreeIncrVacuum(Btree *p){ | 
| 3998 |   int rc; | 
| 3999 |   BtShared *pBt = p->pBt; | 
| 4000 |  | 
| 4001 |   sqlite3BtreeEnter(p); | 
| 4002 |   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); | 
| 4003 |   if( !pBt->autoVacuum ){ | 
| 4004 |     rc = SQLITE_DONE; | 
| 4005 |   }else{ | 
| 4006 |     Pgno nOrig = btreePagecount(pBt); | 
| 4007 |     Pgno nFree = get4byte(&pBt->pPage1->aData[36]); | 
| 4008 |     Pgno nFin = finalDbSize(pBt, nOrig, nFree); | 
| 4009 |  | 
| 4010 |     if( nOrig<nFin || nFree>=nOrig ){ | 
| 4011 |       rc = SQLITE_CORRUPT_BKPT; | 
| 4012 |     }else if( nFree>0 ){ | 
| 4013 |       rc = saveAllCursors(pBt, 0, 0); | 
| 4014 |       if( rc==SQLITE_OK ){ | 
| 4015 |         invalidateAllOverflowCache(pBt); | 
| 4016 |         rc = incrVacuumStep(pBt, nFin, nOrig, 0); | 
| 4017 |       } | 
| 4018 |       if( rc==SQLITE_OK ){ | 
| 4019 |         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); | 
| 4020 |         put4byte(&pBt->pPage1->aData[28], pBt->nPage); | 
| 4021 |       } | 
| 4022 |     }else{ | 
| 4023 |       rc = SQLITE_DONE; | 
| 4024 |     } | 
| 4025 |   } | 
| 4026 |   sqlite3BtreeLeave(p); | 
| 4027 |   return rc; | 
| 4028 | } | 
| 4029 |  | 
| 4030 | /* | 
| 4031 | ** This routine is called prior to sqlite3PagerCommit when a transaction | 
| 4032 | ** is committed for an auto-vacuum database. | 
| 4033 | */ | 
| 4034 | static int autoVacuumCommit(Btree *p){ | 
| 4035 |   int rc = SQLITE_OK; | 
| 4036 |   Pager *; | 
| 4037 |   BtShared *pBt; | 
| 4038 |   sqlite3 *db; | 
| 4039 |   VVA_ONLY( int nRef ); | 
| 4040 |  | 
| 4041 |   assert( p!=0 ); | 
| 4042 |   pBt = p->pBt;   | 
| 4043 |   pPager = pBt->pPager; | 
| 4044 |   VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) | 
| 4045 |  | 
| 4046 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 4047 |   invalidateAllOverflowCache(pBt); | 
| 4048 |   assert(pBt->autoVacuum); | 
| 4049 |   if( !pBt->incrVacuum ){ | 
| 4050 |     Pgno nFin;         /* Number of pages in database after autovacuuming */ | 
| 4051 |     Pgno nFree;        /* Number of pages on the freelist initially */ | 
| 4052 |     Pgno nVac;         /* Number of pages to vacuum */ | 
| 4053 |     Pgno iFree;        /* The next page to be freed */ | 
| 4054 |     Pgno nOrig;        /* Database size before freeing */ | 
| 4055 |  | 
| 4056 |     nOrig = btreePagecount(pBt); | 
| 4057 |     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ | 
| 4058 |       /* It is not possible to create a database for which the final page | 
| 4059 |       ** is either a pointer-map page or the pending-byte page. If one | 
| 4060 |       ** is encountered, this indicates corruption. | 
| 4061 |       */ | 
| 4062 |       return SQLITE_CORRUPT_BKPT; | 
| 4063 |     } | 
| 4064 |  | 
| 4065 |     nFree = get4byte(&pBt->pPage1->aData[36]); | 
| 4066 |     db = p->db; | 
| 4067 |     if( db->xAutovacPages ){ | 
| 4068 |       int iDb; | 
| 4069 |       for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ | 
| 4070 |         if( db->aDb[iDb].pBt==p ) break; | 
| 4071 |       } | 
| 4072 |       nVac = db->xAutovacPages( | 
| 4073 |         db->pAutovacPagesArg, | 
| 4074 |         db->aDb[iDb].zDbSName, | 
| 4075 |         nOrig, | 
| 4076 |         nFree, | 
| 4077 |         pBt->pageSize | 
| 4078 |       ); | 
| 4079 |       if( nVac>nFree ){ | 
| 4080 |         nVac = nFree; | 
| 4081 |       } | 
| 4082 |       if( nVac==0 ){ | 
| 4083 |         return SQLITE_OK; | 
| 4084 |       } | 
| 4085 |     }else{ | 
| 4086 |       nVac = nFree; | 
| 4087 |     } | 
| 4088 |     nFin = finalDbSize(pBt, nOrig, nVac); | 
| 4089 |     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; | 
| 4090 |     if( nFin<nOrig ){ | 
| 4091 |       rc = saveAllCursors(pBt, 0, 0); | 
| 4092 |     } | 
| 4093 |     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ | 
| 4094 |       rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); | 
| 4095 |     } | 
| 4096 |     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ | 
| 4097 |       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); | 
| 4098 |       if( nVac==nFree ){ | 
| 4099 |         put4byte(&pBt->pPage1->aData[32], 0); | 
| 4100 |         put4byte(&pBt->pPage1->aData[36], 0); | 
| 4101 |       } | 
| 4102 |       put4byte(&pBt->pPage1->aData[28], nFin); | 
| 4103 |       pBt->bDoTruncate = 1; | 
| 4104 |       pBt->nPage = nFin; | 
| 4105 |     } | 
| 4106 |     if( rc!=SQLITE_OK ){ | 
| 4107 |       sqlite3PagerRollback(pPager); | 
| 4108 |     } | 
| 4109 |   } | 
| 4110 |  | 
| 4111 |   assert( nRef>=sqlite3PagerRefcount(pPager) ); | 
| 4112 |   return rc; | 
| 4113 | } | 
| 4114 |  | 
| 4115 | #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ | 
| 4116 | # define setChildPtrmaps(x) SQLITE_OK | 
| 4117 | #endif | 
| 4118 |  | 
| 4119 | /* | 
| 4120 | ** This routine does the first phase of a two-phase commit.  This routine | 
| 4121 | ** causes a rollback journal to be created (if it does not already exist) | 
| 4122 | ** and populated with enough information so that if a power loss occurs | 
| 4123 | ** the database can be restored to its original state by playing back | 
| 4124 | ** the journal.  Then the contents of the journal are flushed out to | 
| 4125 | ** the disk.  After the journal is safely on oxide, the changes to the | 
| 4126 | ** database are written into the database file and flushed to oxide. | 
| 4127 | ** At the end of this call, the rollback journal still exists on the | 
| 4128 | ** disk and we are still holding all locks, so the transaction has not | 
| 4129 | ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the | 
| 4130 | ** commit process. | 
| 4131 | ** | 
| 4132 | ** This call is a no-op if no write-transaction is currently active on pBt. | 
| 4133 | ** | 
| 4134 | ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to | 
| 4135 | ** the name of a super-journal file that should be written into the | 
| 4136 | ** individual journal file, or is NULL, indicating no super-journal file  | 
| 4137 | ** (single database transaction). | 
| 4138 | ** | 
| 4139 | ** When this is called, the super-journal should already have been | 
| 4140 | ** created, populated with this journal pointer and synced to disk. | 
| 4141 | ** | 
| 4142 | ** Once this is routine has returned, the only thing required to commit | 
| 4143 | ** the write-transaction for this database file is to delete the journal. | 
| 4144 | */ | 
| 4145 | int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ | 
| 4146 |   int rc = SQLITE_OK; | 
| 4147 |   if( p->inTrans==TRANS_WRITE ){ | 
| 4148 |     BtShared *pBt = p->pBt; | 
| 4149 |     sqlite3BtreeEnter(p); | 
| 4150 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 4151 |     if( pBt->autoVacuum ){ | 
| 4152 |       rc = autoVacuumCommit(p); | 
| 4153 |       if( rc!=SQLITE_OK ){ | 
| 4154 |         sqlite3BtreeLeave(p); | 
| 4155 |         return rc; | 
| 4156 |       } | 
| 4157 |     } | 
| 4158 |     if( pBt->bDoTruncate ){ | 
| 4159 |       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); | 
| 4160 |     } | 
| 4161 | #endif | 
| 4162 |     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); | 
| 4163 |     sqlite3BtreeLeave(p); | 
| 4164 |   } | 
| 4165 |   return rc; | 
| 4166 | } | 
| 4167 |  | 
| 4168 | /* | 
| 4169 | ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() | 
| 4170 | ** at the conclusion of a transaction. | 
| 4171 | */ | 
| 4172 | static void btreeEndTransaction(Btree *p){ | 
| 4173 |   BtShared *pBt = p->pBt; | 
| 4174 |   sqlite3 *db = p->db; | 
| 4175 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 4176 |  | 
| 4177 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 4178 |   pBt->bDoTruncate = 0; | 
| 4179 | #endif | 
| 4180 |   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ | 
| 4181 |     /* If there are other active statements that belong to this database | 
| 4182 |     ** handle, downgrade to a read-only transaction. The other statements | 
| 4183 |     ** may still be reading from the database.  */ | 
| 4184 |     downgradeAllSharedCacheTableLocks(p); | 
| 4185 |     p->inTrans = TRANS_READ; | 
| 4186 |   }else{ | 
| 4187 |     /* If the handle had any kind of transaction open, decrement the  | 
| 4188 |     ** transaction count of the shared btree. If the transaction count  | 
| 4189 |     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() | 
| 4190 |     ** call below will unlock the pager.  */ | 
| 4191 |     if( p->inTrans!=TRANS_NONE ){ | 
| 4192 |       clearAllSharedCacheTableLocks(p); | 
| 4193 |       pBt->nTransaction--; | 
| 4194 |       if( 0==pBt->nTransaction ){ | 
| 4195 |         pBt->inTransaction = TRANS_NONE; | 
| 4196 |       } | 
| 4197 |     } | 
| 4198 |  | 
| 4199 |     /* Set the current transaction state to TRANS_NONE and unlock the  | 
| 4200 |     ** pager if this call closed the only read or write transaction.  */ | 
| 4201 |     p->inTrans = TRANS_NONE; | 
| 4202 |     unlockBtreeIfUnused(pBt); | 
| 4203 |   } | 
| 4204 |  | 
| 4205 |   btreeIntegrity(p); | 
| 4206 | } | 
| 4207 |  | 
| 4208 | /* | 
| 4209 | ** Commit the transaction currently in progress. | 
| 4210 | ** | 
| 4211 | ** This routine implements the second phase of a 2-phase commit.  The | 
| 4212 | ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should | 
| 4213 | ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne() | 
| 4214 | ** routine did all the work of writing information out to disk and flushing the | 
| 4215 | ** contents so that they are written onto the disk platter.  All this | 
| 4216 | ** routine has to do is delete or truncate or zero the header in the | 
| 4217 | ** the rollback journal (which causes the transaction to commit) and | 
| 4218 | ** drop locks. | 
| 4219 | ** | 
| 4220 | ** Normally, if an error occurs while the pager layer is attempting to  | 
| 4221 | ** finalize the underlying journal file, this function returns an error and | 
| 4222 | ** the upper layer will attempt a rollback. However, if the second argument | 
| 4223 | ** is non-zero then this b-tree transaction is part of a multi-file  | 
| 4224 | ** transaction. In this case, the transaction has already been committed  | 
| 4225 | ** (by deleting a super-journal file) and the caller will ignore this  | 
| 4226 | ** functions return code. So, even if an error occurs in the pager layer, | 
| 4227 | ** reset the b-tree objects internal state to indicate that the write | 
| 4228 | ** transaction has been closed. This is quite safe, as the pager will have | 
| 4229 | ** transitioned to the error state. | 
| 4230 | ** | 
| 4231 | ** This will release the write lock on the database file.  If there | 
| 4232 | ** are no active cursors, it also releases the read lock. | 
| 4233 | */ | 
| 4234 | int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ | 
| 4235 |  | 
| 4236 |   if( p->inTrans==TRANS_NONE ) return SQLITE_OK; | 
| 4237 |   sqlite3BtreeEnter(p); | 
| 4238 |   btreeIntegrity(p); | 
| 4239 |  | 
| 4240 |   /* If the handle has a write-transaction open, commit the shared-btrees  | 
| 4241 |   ** transaction and set the shared state to TRANS_READ. | 
| 4242 |   */ | 
| 4243 |   if( p->inTrans==TRANS_WRITE ){ | 
| 4244 |     int rc; | 
| 4245 |     BtShared *pBt = p->pBt; | 
| 4246 |     assert( pBt->inTransaction==TRANS_WRITE ); | 
| 4247 |     assert( pBt->nTransaction>0 ); | 
| 4248 |     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); | 
| 4249 |     if( rc!=SQLITE_OK && bCleanup==0 ){ | 
| 4250 |       sqlite3BtreeLeave(p); | 
| 4251 |       return rc; | 
| 4252 |     } | 
| 4253 |     p->iBDataVersion--;  /* Compensate for pPager->iDataVersion++; */ | 
| 4254 |     pBt->inTransaction = TRANS_READ; | 
| 4255 |     btreeClearHasContent(pBt); | 
| 4256 |   } | 
| 4257 |  | 
| 4258 |   btreeEndTransaction(p); | 
| 4259 |   sqlite3BtreeLeave(p); | 
| 4260 |   return SQLITE_OK; | 
| 4261 | } | 
| 4262 |  | 
| 4263 | /* | 
| 4264 | ** Do both phases of a commit. | 
| 4265 | */ | 
| 4266 | int sqlite3BtreeCommit(Btree *p){ | 
| 4267 |   int rc; | 
| 4268 |   sqlite3BtreeEnter(p); | 
| 4269 |   rc = sqlite3BtreeCommitPhaseOne(p, 0); | 
| 4270 |   if( rc==SQLITE_OK ){ | 
| 4271 |     rc = sqlite3BtreeCommitPhaseTwo(p, 0); | 
| 4272 |   } | 
| 4273 |   sqlite3BtreeLeave(p); | 
| 4274 |   return rc; | 
| 4275 | } | 
| 4276 |  | 
| 4277 | /* | 
| 4278 | ** This routine sets the state to CURSOR_FAULT and the error | 
| 4279 | ** code to errCode for every cursor on any BtShared that pBtree | 
| 4280 | ** references.  Or if the writeOnly flag is set to 1, then only | 
| 4281 | ** trip write cursors and leave read cursors unchanged. | 
| 4282 | ** | 
| 4283 | ** Every cursor is a candidate to be tripped, including cursors | 
| 4284 | ** that belong to other database connections that happen to be | 
| 4285 | ** sharing the cache with pBtree. | 
| 4286 | ** | 
| 4287 | ** This routine gets called when a rollback occurs. If the writeOnly | 
| 4288 | ** flag is true, then only write-cursors need be tripped - read-only | 
| 4289 | ** cursors save their current positions so that they may continue  | 
| 4290 | ** following the rollback. Or, if writeOnly is false, all cursors are  | 
| 4291 | ** tripped. In general, writeOnly is false if the transaction being | 
| 4292 | ** rolled back modified the database schema. In this case b-tree root | 
| 4293 | ** pages may be moved or deleted from the database altogether, making | 
| 4294 | ** it unsafe for read cursors to continue. | 
| 4295 | ** | 
| 4296 | ** If the writeOnly flag is true and an error is encountered while  | 
| 4297 | ** saving the current position of a read-only cursor, all cursors,  | 
| 4298 | ** including all read-cursors are tripped. | 
| 4299 | ** | 
| 4300 | ** SQLITE_OK is returned if successful, or if an error occurs while | 
| 4301 | ** saving a cursor position, an SQLite error code. | 
| 4302 | */ | 
| 4303 | int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ | 
| 4304 |   BtCursor *p; | 
| 4305 |   int rc = SQLITE_OK; | 
| 4306 |  | 
| 4307 |   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); | 
| 4308 |   if( pBtree ){ | 
| 4309 |     sqlite3BtreeEnter(pBtree); | 
| 4310 |     for(p=pBtree->pBt->pCursor; p; p=p->pNext){ | 
| 4311 |       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ | 
| 4312 |         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ | 
| 4313 |           rc = saveCursorPosition(p); | 
| 4314 |           if( rc!=SQLITE_OK ){ | 
| 4315 |             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); | 
| 4316 |             break; | 
| 4317 |           } | 
| 4318 |         } | 
| 4319 |       }else{ | 
| 4320 |         sqlite3BtreeClearCursor(p); | 
| 4321 |         p->eState = CURSOR_FAULT; | 
| 4322 |         p->skipNext = errCode; | 
| 4323 |       } | 
| 4324 |       btreeReleaseAllCursorPages(p); | 
| 4325 |     } | 
| 4326 |     sqlite3BtreeLeave(pBtree); | 
| 4327 |   } | 
| 4328 |   return rc; | 
| 4329 | } | 
| 4330 |  | 
| 4331 | /* | 
| 4332 | ** Set the pBt->nPage field correctly, according to the current | 
| 4333 | ** state of the database.  Assume pBt->pPage1 is valid. | 
| 4334 | */ | 
| 4335 | static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ | 
| 4336 |   int nPage = get4byte(&pPage1->aData[28]); | 
| 4337 |   testcase( nPage==0 ); | 
| 4338 |   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); | 
| 4339 |   testcase( pBt->nPage!=(u32)nPage ); | 
| 4340 |   pBt->nPage = nPage; | 
| 4341 | } | 
| 4342 |  | 
| 4343 | /* | 
| 4344 | ** Rollback the transaction in progress. | 
| 4345 | ** | 
| 4346 | ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). | 
| 4347 | ** Only write cursors are tripped if writeOnly is true but all cursors are | 
| 4348 | ** tripped if writeOnly is false.  Any attempt to use | 
| 4349 | ** a tripped cursor will result in an error. | 
| 4350 | ** | 
| 4351 | ** This will release the write lock on the database file.  If there | 
| 4352 | ** are no active cursors, it also releases the read lock. | 
| 4353 | */ | 
| 4354 | int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ | 
| 4355 |   int rc; | 
| 4356 |   BtShared *pBt = p->pBt; | 
| 4357 |   MemPage *pPage1; | 
| 4358 |  | 
| 4359 |   assert( writeOnly==1 || writeOnly==0 ); | 
| 4360 |   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); | 
| 4361 |   sqlite3BtreeEnter(p); | 
| 4362 |   if( tripCode==SQLITE_OK ){ | 
| 4363 |     rc = tripCode = saveAllCursors(pBt, 0, 0); | 
| 4364 |     if( rc ) writeOnly = 0; | 
| 4365 |   }else{ | 
| 4366 |     rc = SQLITE_OK; | 
| 4367 |   } | 
| 4368 |   if( tripCode ){ | 
| 4369 |     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); | 
| 4370 |     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); | 
| 4371 |     if( rc2!=SQLITE_OK ) rc = rc2; | 
| 4372 |   } | 
| 4373 |   btreeIntegrity(p); | 
| 4374 |  | 
| 4375 |   if( p->inTrans==TRANS_WRITE ){ | 
| 4376 |     int rc2; | 
| 4377 |  | 
| 4378 |     assert( TRANS_WRITE==pBt->inTransaction ); | 
| 4379 |     rc2 = sqlite3PagerRollback(pBt->pPager); | 
| 4380 |     if( rc2!=SQLITE_OK ){ | 
| 4381 |       rc = rc2; | 
| 4382 |     } | 
| 4383 |  | 
| 4384 |     /* The rollback may have destroyed the pPage1->aData value.  So | 
| 4385 |     ** call btreeGetPage() on page 1 again to make | 
| 4386 |     ** sure pPage1->aData is set correctly. */ | 
| 4387 |     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ | 
| 4388 |       btreeSetNPage(pBt, pPage1); | 
| 4389 |       releasePageOne(pPage1); | 
| 4390 |     } | 
| 4391 |     assert( countValidCursors(pBt, 1)==0 ); | 
| 4392 |     pBt->inTransaction = TRANS_READ; | 
| 4393 |     btreeClearHasContent(pBt); | 
| 4394 |   } | 
| 4395 |  | 
| 4396 |   btreeEndTransaction(p); | 
| 4397 |   sqlite3BtreeLeave(p); | 
| 4398 |   return rc; | 
| 4399 | } | 
| 4400 |  | 
| 4401 | /* | 
| 4402 | ** Start a statement subtransaction. The subtransaction can be rolled | 
| 4403 | ** back independently of the main transaction. You must start a transaction  | 
| 4404 | ** before starting a subtransaction. The subtransaction is ended automatically  | 
| 4405 | ** if the main transaction commits or rolls back. | 
| 4406 | ** | 
| 4407 | ** Statement subtransactions are used around individual SQL statements | 
| 4408 | ** that are contained within a BEGIN...COMMIT block.  If a constraint | 
| 4409 | ** error occurs within the statement, the effect of that one statement | 
| 4410 | ** can be rolled back without having to rollback the entire transaction. | 
| 4411 | ** | 
| 4412 | ** A statement sub-transaction is implemented as an anonymous savepoint. The | 
| 4413 | ** value passed as the second parameter is the total number of savepoints, | 
| 4414 | ** including the new anonymous savepoint, open on the B-Tree. i.e. if there | 
| 4415 | ** are no active savepoints and no other statement-transactions open, | 
| 4416 | ** iStatement is 1. This anonymous savepoint can be released or rolled back | 
| 4417 | ** using the sqlite3BtreeSavepoint() function. | 
| 4418 | */ | 
| 4419 | int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ | 
| 4420 |   int rc; | 
| 4421 |   BtShared *pBt = p->pBt; | 
| 4422 |   sqlite3BtreeEnter(p); | 
| 4423 |   assert( p->inTrans==TRANS_WRITE ); | 
| 4424 |   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); | 
| 4425 |   assert( iStatement>0 ); | 
| 4426 |   assert( iStatement>p->db->nSavepoint ); | 
| 4427 |   assert( pBt->inTransaction==TRANS_WRITE ); | 
| 4428 |   /* At the pager level, a statement transaction is a savepoint with | 
| 4429 |   ** an index greater than all savepoints created explicitly using | 
| 4430 |   ** SQL statements. It is illegal to open, release or rollback any | 
| 4431 |   ** such savepoints while the statement transaction savepoint is active. | 
| 4432 |   */ | 
| 4433 |   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); | 
| 4434 |   sqlite3BtreeLeave(p); | 
| 4435 |   return rc; | 
| 4436 | } | 
| 4437 |  | 
| 4438 | /* | 
| 4439 | ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK | 
| 4440 | ** or SAVEPOINT_RELEASE. This function either releases or rolls back the | 
| 4441 | ** savepoint identified by parameter iSavepoint, depending on the value  | 
| 4442 | ** of op. | 
| 4443 | ** | 
| 4444 | ** Normally, iSavepoint is greater than or equal to zero. However, if op is | 
| 4445 | ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the  | 
| 4446 | ** contents of the entire transaction are rolled back. This is different | 
| 4447 | ** from a normal transaction rollback, as no locks are released and the | 
| 4448 | ** transaction remains open. | 
| 4449 | */ | 
| 4450 | int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ | 
| 4451 |   int rc = SQLITE_OK; | 
| 4452 |   if( p && p->inTrans==TRANS_WRITE ){ | 
| 4453 |     BtShared *pBt = p->pBt; | 
| 4454 |     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); | 
| 4455 |     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); | 
| 4456 |     sqlite3BtreeEnter(p); | 
| 4457 |     if( op==SAVEPOINT_ROLLBACK ){ | 
| 4458 |       rc = saveAllCursors(pBt, 0, 0); | 
| 4459 |     } | 
| 4460 |     if( rc==SQLITE_OK ){ | 
| 4461 |       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); | 
| 4462 |     } | 
| 4463 |     if( rc==SQLITE_OK ){ | 
| 4464 |       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ | 
| 4465 |         pBt->nPage = 0; | 
| 4466 |       } | 
| 4467 |       rc = newDatabase(pBt); | 
| 4468 |       btreeSetNPage(pBt, pBt->pPage1); | 
| 4469 |  | 
| 4470 |       /* pBt->nPage might be zero if the database was corrupt when  | 
| 4471 |       ** the transaction was started. Otherwise, it must be at least 1.  */ | 
| 4472 |       assert( CORRUPT_DB || pBt->nPage>0 ); | 
| 4473 |     } | 
| 4474 |     sqlite3BtreeLeave(p); | 
| 4475 |   } | 
| 4476 |   return rc; | 
| 4477 | } | 
| 4478 |  | 
| 4479 | /* | 
| 4480 | ** Create a new cursor for the BTree whose root is on the page | 
| 4481 | ** iTable. If a read-only cursor is requested, it is assumed that | 
| 4482 | ** the caller already has at least a read-only transaction open | 
| 4483 | ** on the database already. If a write-cursor is requested, then | 
| 4484 | ** the caller is assumed to have an open write transaction. | 
| 4485 | ** | 
| 4486 | ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only | 
| 4487 | ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor | 
| 4488 | ** can be used for reading or for writing if other conditions for writing | 
| 4489 | ** are also met.  These are the conditions that must be met in order | 
| 4490 | ** for writing to be allowed: | 
| 4491 | ** | 
| 4492 | ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR | 
| 4493 | ** | 
| 4494 | ** 2:  Other database connections that share the same pager cache | 
| 4495 | **     but which are not in the READ_UNCOMMITTED state may not have | 
| 4496 | **     cursors open with wrFlag==0 on the same table.  Otherwise | 
| 4497 | **     the changes made by this write cursor would be visible to | 
| 4498 | **     the read cursors in the other database connection. | 
| 4499 | ** | 
| 4500 | ** 3:  The database must be writable (not on read-only media) | 
| 4501 | ** | 
| 4502 | ** 4:  There must be an active transaction. | 
| 4503 | ** | 
| 4504 | ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR | 
| 4505 | ** is set.  If FORDELETE is set, that is a hint to the implementation that | 
| 4506 | ** this cursor will only be used to seek to and delete entries of an index | 
| 4507 | ** as part of a larger DELETE statement.  The FORDELETE hint is not used by | 
| 4508 | ** this implementation.  But in a hypothetical alternative storage engine  | 
| 4509 | ** in which index entries are automatically deleted when corresponding table | 
| 4510 | ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE | 
| 4511 | ** operations on this cursor can be no-ops and all READ operations can  | 
| 4512 | ** return a null row (2-bytes: 0x01 0x00). | 
| 4513 | ** | 
| 4514 | ** No checking is done to make sure that page iTable really is the | 
| 4515 | ** root page of a b-tree.  If it is not, then the cursor acquired | 
| 4516 | ** will not work correctly. | 
| 4517 | ** | 
| 4518 | ** It is assumed that the sqlite3BtreeCursorZero() has been called | 
| 4519 | ** on pCur to initialize the memory space prior to invoking this routine. | 
| 4520 | */ | 
| 4521 | static int btreeCursor( | 
| 4522 |   Btree *p,                              /* The btree */ | 
| 4523 |   Pgno iTable,                           /* Root page of table to open */ | 
| 4524 |   int wrFlag,                            /* 1 to write. 0 read-only */ | 
| 4525 |   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */ | 
| 4526 |   BtCursor *pCur                         /* Space for new cursor */ | 
| 4527 | ){ | 
| 4528 |   BtShared *pBt = p->pBt;                /* Shared b-tree handle */ | 
| 4529 |   BtCursor *pX;                          /* Looping over other all cursors */ | 
| 4530 |  | 
| 4531 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 4532 |   assert( wrFlag==0  | 
| 4533 |        || wrFlag==BTREE_WRCSR  | 
| 4534 |        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)  | 
| 4535 |   ); | 
| 4536 |  | 
| 4537 |   /* The following assert statements verify that if this is a sharable  | 
| 4538 |   ** b-tree database, the connection is holding the required table locks,  | 
| 4539 |   ** and that no other connection has any open cursor that conflicts with  | 
| 4540 |   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */ | 
| 4541 |   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) | 
| 4542 |           || iTable<1 ); | 
| 4543 |   assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); | 
| 4544 |  | 
| 4545 |   /* Assert that the caller has opened the required transaction. */ | 
| 4546 |   assert( p->inTrans>TRANS_NONE ); | 
| 4547 |   assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); | 
| 4548 |   assert( pBt->pPage1 && pBt->pPage1->aData ); | 
| 4549 |   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); | 
| 4550 |  | 
| 4551 |   if( iTable<=1 ){ | 
| 4552 |     if( iTable<1 ){ | 
| 4553 |       return SQLITE_CORRUPT_BKPT; | 
| 4554 |     }else if( btreePagecount(pBt)==0 ){ | 
| 4555 |       assert( wrFlag==0 ); | 
| 4556 |       iTable = 0; | 
| 4557 |     } | 
| 4558 |   } | 
| 4559 |  | 
| 4560 |   /* Now that no other errors can occur, finish filling in the BtCursor | 
| 4561 |   ** variables and link the cursor into the BtShared list.  */ | 
| 4562 |   pCur->pgnoRoot = iTable; | 
| 4563 |   pCur->iPage = -1; | 
| 4564 |   pCur->pKeyInfo = pKeyInfo; | 
| 4565 |   pCur->pBtree = p; | 
| 4566 |   pCur->pBt = pBt; | 
| 4567 |   pCur->curFlags = 0; | 
| 4568 |   /* If there are two or more cursors on the same btree, then all such | 
| 4569 |   ** cursors *must* have the BTCF_Multiple flag set. */ | 
| 4570 |   for(pX=pBt->pCursor; pX; pX=pX->pNext){ | 
| 4571 |     if( pX->pgnoRoot==iTable ){ | 
| 4572 |       pX->curFlags |= BTCF_Multiple; | 
| 4573 |       pCur->curFlags = BTCF_Multiple; | 
| 4574 |     } | 
| 4575 |   } | 
| 4576 |   pCur->eState = CURSOR_INVALID; | 
| 4577 |   pCur->pNext = pBt->pCursor; | 
| 4578 |   pBt->pCursor = pCur; | 
| 4579 |   if( wrFlag ){ | 
| 4580 |     pCur->curFlags |= BTCF_WriteFlag; | 
| 4581 |     pCur->curPagerFlags = 0; | 
| 4582 |     if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); | 
| 4583 |   }else{ | 
| 4584 |     pCur->curPagerFlags = PAGER_GET_READONLY; | 
| 4585 |   } | 
| 4586 |   return SQLITE_OK; | 
| 4587 | } | 
| 4588 | static int btreeCursorWithLock( | 
| 4589 |   Btree *p,                              /* The btree */ | 
| 4590 |   Pgno iTable,                           /* Root page of table to open */ | 
| 4591 |   int wrFlag,                            /* 1 to write. 0 read-only */ | 
| 4592 |   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */ | 
| 4593 |   BtCursor *pCur                         /* Space for new cursor */ | 
| 4594 | ){ | 
| 4595 |   int rc; | 
| 4596 |   sqlite3BtreeEnter(p); | 
| 4597 |   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); | 
| 4598 |   sqlite3BtreeLeave(p); | 
| 4599 |   return rc; | 
| 4600 | } | 
| 4601 | int sqlite3BtreeCursor( | 
| 4602 |   Btree *p,                                   /* The btree */ | 
| 4603 |   Pgno iTable,                                /* Root page of table to open */ | 
| 4604 |   int wrFlag,                                 /* 1 to write. 0 read-only */ | 
| 4605 |   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */ | 
| 4606 |   BtCursor *pCur                              /* Write new cursor here */ | 
| 4607 | ){ | 
| 4608 |   if( p->sharable ){ | 
| 4609 |     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); | 
| 4610 |   }else{ | 
| 4611 |     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); | 
| 4612 |   } | 
| 4613 | } | 
| 4614 |  | 
| 4615 | /* | 
| 4616 | ** Return the size of a BtCursor object in bytes. | 
| 4617 | ** | 
| 4618 | ** This interfaces is needed so that users of cursors can preallocate | 
| 4619 | ** sufficient storage to hold a cursor.  The BtCursor object is opaque | 
| 4620 | ** to users so they cannot do the sizeof() themselves - they must call | 
| 4621 | ** this routine. | 
| 4622 | */ | 
| 4623 | int sqlite3BtreeCursorSize(void){ | 
| 4624 |   return ROUND8(sizeof(BtCursor)); | 
| 4625 | } | 
| 4626 |  | 
| 4627 | /* | 
| 4628 | ** Initialize memory that will be converted into a BtCursor object. | 
| 4629 | ** | 
| 4630 | ** The simple approach here would be to memset() the entire object | 
| 4631 | ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays | 
| 4632 | ** do not need to be zeroed and they are large, so we can save a lot | 
| 4633 | ** of run-time by skipping the initialization of those elements. | 
| 4634 | */ | 
| 4635 | void sqlite3BtreeCursorZero(BtCursor *p){ | 
| 4636 |   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); | 
| 4637 | } | 
| 4638 |  | 
| 4639 | /* | 
| 4640 | ** Close a cursor.  The read lock on the database file is released | 
| 4641 | ** when the last cursor is closed. | 
| 4642 | */ | 
| 4643 | int sqlite3BtreeCloseCursor(BtCursor *pCur){ | 
| 4644 |   Btree *pBtree = pCur->pBtree; | 
| 4645 |   if( pBtree ){ | 
| 4646 |     BtShared *pBt = pCur->pBt; | 
| 4647 |     sqlite3BtreeEnter(pBtree); | 
| 4648 |     assert( pBt->pCursor!=0 ); | 
| 4649 |     if( pBt->pCursor==pCur ){ | 
| 4650 |       pBt->pCursor = pCur->pNext; | 
| 4651 |     }else{ | 
| 4652 |       BtCursor *pPrev = pBt->pCursor; | 
| 4653 |       do{ | 
| 4654 |         if( pPrev->pNext==pCur ){ | 
| 4655 |           pPrev->pNext = pCur->pNext; | 
| 4656 |           break; | 
| 4657 |         } | 
| 4658 |         pPrev = pPrev->pNext; | 
| 4659 |       }while( ALWAYS(pPrev) ); | 
| 4660 |     } | 
| 4661 |     btreeReleaseAllCursorPages(pCur); | 
| 4662 |     unlockBtreeIfUnused(pBt); | 
| 4663 |     sqlite3_free(pCur->aOverflow); | 
| 4664 |     sqlite3_free(pCur->pKey); | 
| 4665 |     if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ | 
| 4666 |       /* Since the BtShared is not sharable, there is no need to | 
| 4667 |       ** worry about the missing sqlite3BtreeLeave() call here.  */ | 
| 4668 |       assert( pBtree->sharable==0 ); | 
| 4669 |       sqlite3BtreeClose(pBtree); | 
| 4670 |     }else{ | 
| 4671 |       sqlite3BtreeLeave(pBtree); | 
| 4672 |     } | 
| 4673 |     pCur->pBtree = 0; | 
| 4674 |   } | 
| 4675 |   return SQLITE_OK; | 
| 4676 | } | 
| 4677 |  | 
| 4678 | /* | 
| 4679 | ** Make sure the BtCursor* given in the argument has a valid | 
| 4680 | ** BtCursor.info structure.  If it is not already valid, call | 
| 4681 | ** btreeParseCell() to fill it in. | 
| 4682 | ** | 
| 4683 | ** BtCursor.info is a cache of the information in the current cell. | 
| 4684 | ** Using this cache reduces the number of calls to btreeParseCell(). | 
| 4685 | */ | 
| 4686 | #ifndef NDEBUG | 
| 4687 |   static int cellInfoEqual(CellInfo *a, CellInfo *b){ | 
| 4688 |     if( a->nKey!=b->nKey ) return 0; | 
| 4689 |     if( a->pPayload!=b->pPayload ) return 0; | 
| 4690 |     if( a->nPayload!=b->nPayload ) return 0; | 
| 4691 |     if( a->nLocal!=b->nLocal ) return 0; | 
| 4692 |     if( a->nSize!=b->nSize ) return 0; | 
| 4693 |     return 1; | 
| 4694 |   } | 
| 4695 |   static void assertCellInfo(BtCursor *pCur){ | 
| 4696 |     CellInfo info; | 
| 4697 |     memset(&info, 0, sizeof(info)); | 
| 4698 |     btreeParseCell(pCur->pPage, pCur->ix, &info); | 
| 4699 |     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); | 
| 4700 |   } | 
| 4701 | #else | 
| 4702 |   #define assertCellInfo(x) | 
| 4703 | #endif | 
| 4704 | static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ | 
| 4705 |   if( pCur->info.nSize==0 ){ | 
| 4706 |     pCur->curFlags |= BTCF_ValidNKey; | 
| 4707 |     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); | 
| 4708 |   }else{ | 
| 4709 |     assertCellInfo(pCur); | 
| 4710 |   } | 
| 4711 | } | 
| 4712 |  | 
| 4713 | #ifndef NDEBUG  /* The next routine used only within assert() statements */ | 
| 4714 | /* | 
| 4715 | ** Return true if the given BtCursor is valid.  A valid cursor is one | 
| 4716 | ** that is currently pointing to a row in a (non-empty) table. | 
| 4717 | ** This is a verification routine is used only within assert() statements. | 
| 4718 | */ | 
| 4719 | int sqlite3BtreeCursorIsValid(BtCursor *pCur){ | 
| 4720 |   return pCur && pCur->eState==CURSOR_VALID; | 
| 4721 | } | 
| 4722 | #endif /* NDEBUG */ | 
| 4723 | int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ | 
| 4724 |   assert( pCur!=0 ); | 
| 4725 |   return pCur->eState==CURSOR_VALID; | 
| 4726 | } | 
| 4727 |  | 
| 4728 | /* | 
| 4729 | ** Return the value of the integer key or "rowid" for a table btree. | 
| 4730 | ** This routine is only valid for a cursor that is pointing into a | 
| 4731 | ** ordinary table btree.  If the cursor points to an index btree or | 
| 4732 | ** is invalid, the result of this routine is undefined. | 
| 4733 | */ | 
| 4734 | i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ | 
| 4735 |   assert( cursorHoldsMutex(pCur) ); | 
| 4736 |   assert( pCur->eState==CURSOR_VALID ); | 
| 4737 |   assert( pCur->curIntKey ); | 
| 4738 |   getCellInfo(pCur); | 
| 4739 |   return pCur->info.nKey; | 
| 4740 | } | 
| 4741 |  | 
| 4742 | /* | 
| 4743 | ** Pin or unpin a cursor. | 
| 4744 | */ | 
| 4745 | void sqlite3BtreeCursorPin(BtCursor *pCur){ | 
| 4746 |   assert( (pCur->curFlags & BTCF_Pinned)==0 ); | 
| 4747 |   pCur->curFlags |= BTCF_Pinned; | 
| 4748 | } | 
| 4749 | void sqlite3BtreeCursorUnpin(BtCursor *pCur){ | 
| 4750 |   assert( (pCur->curFlags & BTCF_Pinned)!=0 ); | 
| 4751 |   pCur->curFlags &= ~BTCF_Pinned; | 
| 4752 | } | 
| 4753 |  | 
| 4754 | #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC | 
| 4755 | /* | 
| 4756 | ** Return the offset into the database file for the start of the | 
| 4757 | ** payload to which the cursor is pointing. | 
| 4758 | */ | 
| 4759 | i64 sqlite3BtreeOffset(BtCursor *pCur){ | 
| 4760 |   assert( cursorHoldsMutex(pCur) ); | 
| 4761 |   assert( pCur->eState==CURSOR_VALID ); | 
| 4762 |   getCellInfo(pCur); | 
| 4763 |   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + | 
| 4764 |          (i64)(pCur->info.pPayload - pCur->pPage->aData); | 
| 4765 | } | 
| 4766 | #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ | 
| 4767 |  | 
| 4768 | /* | 
| 4769 | ** Return the number of bytes of payload for the entry that pCur is | 
| 4770 | ** currently pointing to.  For table btrees, this will be the amount | 
| 4771 | ** of data.  For index btrees, this will be the size of the key. | 
| 4772 | ** | 
| 4773 | ** The caller must guarantee that the cursor is pointing to a non-NULL | 
| 4774 | ** valid entry.  In other words, the calling procedure must guarantee | 
| 4775 | ** that the cursor has Cursor.eState==CURSOR_VALID. | 
| 4776 | */ | 
| 4777 | u32 sqlite3BtreePayloadSize(BtCursor *pCur){ | 
| 4778 |   assert( cursorHoldsMutex(pCur) ); | 
| 4779 |   assert( pCur->eState==CURSOR_VALID ); | 
| 4780 |   getCellInfo(pCur); | 
| 4781 |   return pCur->info.nPayload; | 
| 4782 | } | 
| 4783 |  | 
| 4784 | /* | 
| 4785 | ** Return an upper bound on the size of any record for the table | 
| 4786 | ** that the cursor is pointing into. | 
| 4787 | ** | 
| 4788 | ** This is an optimization.  Everything will still work if this | 
| 4789 | ** routine always returns 2147483647 (which is the largest record | 
| 4790 | ** that SQLite can handle) or more.  But returning a smaller value might | 
| 4791 | ** prevent large memory allocations when trying to interpret a | 
| 4792 | ** corrupt datrabase. | 
| 4793 | ** | 
| 4794 | ** The current implementation merely returns the size of the underlying | 
| 4795 | ** database file. | 
| 4796 | */ | 
| 4797 | sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ | 
| 4798 |   assert( cursorHoldsMutex(pCur) ); | 
| 4799 |   assert( pCur->eState==CURSOR_VALID ); | 
| 4800 |   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; | 
| 4801 | } | 
| 4802 |  | 
| 4803 | /* | 
| 4804 | ** Given the page number of an overflow page in the database (parameter | 
| 4805 | ** ovfl), this function finds the page number of the next page in the  | 
| 4806 | ** linked list of overflow pages. If possible, it uses the auto-vacuum | 
| 4807 | ** pointer-map data instead of reading the content of page ovfl to do so.  | 
| 4808 | ** | 
| 4809 | ** If an error occurs an SQLite error code is returned. Otherwise: | 
| 4810 | ** | 
| 4811 | ** The page number of the next overflow page in the linked list is  | 
| 4812 | ** written to *pPgnoNext. If page ovfl is the last page in its linked  | 
| 4813 | ** list, *pPgnoNext is set to zero.  | 
| 4814 | ** | 
| 4815 | ** If ppPage is not NULL, and a reference to the MemPage object corresponding | 
| 4816 | ** to page number pOvfl was obtained, then *ppPage is set to point to that | 
| 4817 | ** reference. It is the responsibility of the caller to call releasePage() | 
| 4818 | ** on *ppPage to free the reference. In no reference was obtained (because | 
| 4819 | ** the pointer-map was used to obtain the value for *pPgnoNext), then | 
| 4820 | ** *ppPage is set to zero. | 
| 4821 | */ | 
| 4822 | static int getOverflowPage( | 
| 4823 |   BtShared *pBt,               /* The database file */ | 
| 4824 |   Pgno ovfl,                   /* Current overflow page number */ | 
| 4825 |   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */ | 
| 4826 |   Pgno *pPgnoNext              /* OUT: Next overflow page number */ | 
| 4827 | ){ | 
| 4828 |   Pgno next = 0; | 
| 4829 |   MemPage *pPage = 0; | 
| 4830 |   int rc = SQLITE_OK; | 
| 4831 |  | 
| 4832 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 4833 |   assert(pPgnoNext); | 
| 4834 |  | 
| 4835 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 4836 |   /* Try to find the next page in the overflow list using the | 
| 4837 |   ** autovacuum pointer-map pages. Guess that the next page in  | 
| 4838 |   ** the overflow list is page number (ovfl+1). If that guess turns  | 
| 4839 |   ** out to be wrong, fall back to loading the data of page  | 
| 4840 |   ** number ovfl to determine the next page number. | 
| 4841 |   */ | 
| 4842 |   if( pBt->autoVacuum ){ | 
| 4843 |     Pgno pgno; | 
| 4844 |     Pgno iGuess = ovfl+1; | 
| 4845 |     u8 eType; | 
| 4846 |  | 
| 4847 |     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ | 
| 4848 |       iGuess++; | 
| 4849 |     } | 
| 4850 |  | 
| 4851 |     if( iGuess<=btreePagecount(pBt) ){ | 
| 4852 |       rc = ptrmapGet(pBt, iGuess, &eType, &pgno); | 
| 4853 |       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ | 
| 4854 |         next = iGuess; | 
| 4855 |         rc = SQLITE_DONE; | 
| 4856 |       } | 
| 4857 |     } | 
| 4858 |   } | 
| 4859 | #endif | 
| 4860 |  | 
| 4861 |   assert( next==0 || rc==SQLITE_DONE ); | 
| 4862 |   if( rc==SQLITE_OK ){ | 
| 4863 |     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); | 
| 4864 |     assert( rc==SQLITE_OK || pPage==0 ); | 
| 4865 |     if( rc==SQLITE_OK ){ | 
| 4866 |       next = get4byte(pPage->aData); | 
| 4867 |     } | 
| 4868 |   } | 
| 4869 |  | 
| 4870 |   *pPgnoNext = next; | 
| 4871 |   if( ppPage ){ | 
| 4872 |     *ppPage = pPage; | 
| 4873 |   }else{ | 
| 4874 |     releasePage(pPage); | 
| 4875 |   } | 
| 4876 |   return (rc==SQLITE_DONE ? SQLITE_OK : rc); | 
| 4877 | } | 
| 4878 |  | 
| 4879 | /* | 
| 4880 | ** Copy data from a buffer to a page, or from a page to a buffer. | 
| 4881 | ** | 
| 4882 | ** pPayload is a pointer to data stored on database page pDbPage. | 
| 4883 | ** If argument eOp is false, then nByte bytes of data are copied | 
| 4884 | ** from pPayload to the buffer pointed at by pBuf. If eOp is true, | 
| 4885 | ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes | 
| 4886 | ** of data are copied from the buffer pBuf to pPayload. | 
| 4887 | ** | 
| 4888 | ** SQLITE_OK is returned on success, otherwise an error code. | 
| 4889 | */ | 
| 4890 | static int copyPayload( | 
| 4891 |   void *pPayload,           /* Pointer to page data */ | 
| 4892 |   void *pBuf,               /* Pointer to buffer */ | 
| 4893 |   int nByte,                /* Number of bytes to copy */ | 
| 4894 |   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */ | 
| 4895 |   DbPage *pDbPage           /* Page containing pPayload */ | 
| 4896 | ){ | 
| 4897 |   if( eOp ){ | 
| 4898 |     /* Copy data from buffer to page (a write operation) */ | 
| 4899 |     int rc = sqlite3PagerWrite(pDbPage); | 
| 4900 |     if( rc!=SQLITE_OK ){ | 
| 4901 |       return rc; | 
| 4902 |     } | 
| 4903 |     memcpy(pPayload, pBuf, nByte); | 
| 4904 |   }else{ | 
| 4905 |     /* Copy data from page to buffer (a read operation) */ | 
| 4906 |     memcpy(pBuf, pPayload, nByte); | 
| 4907 |   } | 
| 4908 |   return SQLITE_OK; | 
| 4909 | } | 
| 4910 |  | 
| 4911 | /* | 
| 4912 | ** This function is used to read or overwrite payload information | 
| 4913 | ** for the entry that the pCur cursor is pointing to. The eOp | 
| 4914 | ** argument is interpreted as follows: | 
| 4915 | ** | 
| 4916 | **   0: The operation is a read. Populate the overflow cache. | 
| 4917 | **   1: The operation is a write. Populate the overflow cache. | 
| 4918 | ** | 
| 4919 | ** A total of "amt" bytes are read or written beginning at "offset". | 
| 4920 | ** Data is read to or from the buffer pBuf. | 
| 4921 | ** | 
| 4922 | ** The content being read or written might appear on the main page | 
| 4923 | ** or be scattered out on multiple overflow pages. | 
| 4924 | ** | 
| 4925 | ** If the current cursor entry uses one or more overflow pages | 
| 4926 | ** this function may allocate space for and lazily populate | 
| 4927 | ** the overflow page-list cache array (BtCursor.aOverflow).  | 
| 4928 | ** Subsequent calls use this cache to make seeking to the supplied offset  | 
| 4929 | ** more efficient. | 
| 4930 | ** | 
| 4931 | ** Once an overflow page-list cache has been allocated, it must be | 
| 4932 | ** invalidated if some other cursor writes to the same table, or if | 
| 4933 | ** the cursor is moved to a different row. Additionally, in auto-vacuum | 
| 4934 | ** mode, the following events may invalidate an overflow page-list cache. | 
| 4935 | ** | 
| 4936 | **   * An incremental vacuum, | 
| 4937 | **   * A commit in auto_vacuum="full" mode, | 
| 4938 | **   * Creating a table (may require moving an overflow page). | 
| 4939 | */ | 
| 4940 | static int accessPayload( | 
| 4941 |   BtCursor *pCur,      /* Cursor pointing to entry to read from */ | 
| 4942 |   u32 offset,          /* Begin reading this far into payload */ | 
| 4943 |   u32 amt,             /* Read this many bytes */ | 
| 4944 |   unsigned char *pBuf, /* Write the bytes into this buffer */  | 
| 4945 |   int eOp              /* zero to read. non-zero to write. */ | 
| 4946 | ){ | 
| 4947 |   unsigned char *aPayload; | 
| 4948 |   int rc = SQLITE_OK; | 
| 4949 |   int iIdx = 0; | 
| 4950 |   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */ | 
| 4951 |   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */ | 
| 4952 | #ifdef SQLITE_DIRECT_OVERFLOW_READ | 
| 4953 |   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */ | 
| 4954 | #endif | 
| 4955 |  | 
| 4956 |   assert( pPage ); | 
| 4957 |   assert( eOp==0 || eOp==1 ); | 
| 4958 |   assert( pCur->eState==CURSOR_VALID ); | 
| 4959 |   if( pCur->ix>=pPage->nCell ){ | 
| 4960 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 4961 |   } | 
| 4962 |   assert( cursorHoldsMutex(pCur) ); | 
| 4963 |  | 
| 4964 |   getCellInfo(pCur); | 
| 4965 |   aPayload = pCur->info.pPayload; | 
| 4966 |   assert( offset+amt <= pCur->info.nPayload ); | 
| 4967 |  | 
| 4968 |   assert( aPayload > pPage->aData ); | 
| 4969 |   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ | 
| 4970 |     /* Trying to read or write past the end of the data is an error.  The | 
| 4971 |     ** conditional above is really: | 
| 4972 |     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] | 
| 4973 |     ** but is recast into its current form to avoid integer overflow problems | 
| 4974 |     */ | 
| 4975 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 4976 |   } | 
| 4977 |  | 
| 4978 |   /* Check if data must be read/written to/from the btree page itself. */ | 
| 4979 |   if( offset<pCur->info.nLocal ){ | 
| 4980 |     int a = amt; | 
| 4981 |     if( a+offset>pCur->info.nLocal ){ | 
| 4982 |       a = pCur->info.nLocal - offset; | 
| 4983 |     } | 
| 4984 |     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); | 
| 4985 |     offset = 0; | 
| 4986 |     pBuf += a; | 
| 4987 |     amt -= a; | 
| 4988 |   }else{ | 
| 4989 |     offset -= pCur->info.nLocal; | 
| 4990 |   } | 
| 4991 |  | 
| 4992 |  | 
| 4993 |   if( rc==SQLITE_OK && amt>0 ){ | 
| 4994 |     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */ | 
| 4995 |     Pgno nextPage; | 
| 4996 |  | 
| 4997 |     nextPage = get4byte(&aPayload[pCur->info.nLocal]); | 
| 4998 |   | 
| 4999 |     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. | 
| 5000 |     ** | 
| 5001 |     ** The aOverflow[] array is sized at one entry for each overflow page | 
| 5002 |     ** in the overflow chain. The page number of the first overflow page is | 
| 5003 |     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array | 
| 5004 |     ** means "not yet known" (the cache is lazily populated). | 
| 5005 |     */ | 
| 5006 |     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ | 
| 5007 |       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; | 
| 5008 |       if( pCur->aOverflow==0 | 
| 5009 |        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) | 
| 5010 |       ){ | 
| 5011 |         Pgno *aNew = (Pgno*)sqlite3Realloc( | 
| 5012 |             pCur->aOverflow, nOvfl*2*sizeof(Pgno) | 
| 5013 |         ); | 
| 5014 |         if( aNew==0 ){ | 
| 5015 |           return SQLITE_NOMEM_BKPT; | 
| 5016 |         }else{ | 
| 5017 |           pCur->aOverflow = aNew; | 
| 5018 |         } | 
| 5019 |       } | 
| 5020 |       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); | 
| 5021 |       pCur->curFlags |= BTCF_ValidOvfl; | 
| 5022 |     }else{ | 
| 5023 |       /* If the overflow page-list cache has been allocated and the | 
| 5024 |       ** entry for the first required overflow page is valid, skip | 
| 5025 |       ** directly to it. | 
| 5026 |       */ | 
| 5027 |       if( pCur->aOverflow[offset/ovflSize] ){ | 
| 5028 |         iIdx = (offset/ovflSize); | 
| 5029 |         nextPage = pCur->aOverflow[iIdx]; | 
| 5030 |         offset = (offset%ovflSize); | 
| 5031 |       } | 
| 5032 |     } | 
| 5033 |  | 
| 5034 |     assert( rc==SQLITE_OK && amt>0 ); | 
| 5035 |     while( nextPage ){ | 
| 5036 |       /* If required, populate the overflow page-list cache. */ | 
| 5037 |       if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; | 
| 5038 |       assert( pCur->aOverflow[iIdx]==0 | 
| 5039 |               || pCur->aOverflow[iIdx]==nextPage | 
| 5040 |               || CORRUPT_DB ); | 
| 5041 |       pCur->aOverflow[iIdx] = nextPage; | 
| 5042 |  | 
| 5043 |       if( offset>=ovflSize ){ | 
| 5044 |         /* The only reason to read this page is to obtain the page | 
| 5045 |         ** number for the next page in the overflow chain. The page | 
| 5046 |         ** data is not required. So first try to lookup the overflow | 
| 5047 |         ** page-list cache, if any, then fall back to the getOverflowPage() | 
| 5048 |         ** function. | 
| 5049 |         */ | 
| 5050 |         assert( pCur->curFlags & BTCF_ValidOvfl ); | 
| 5051 |         assert( pCur->pBtree->db==pBt->db ); | 
| 5052 |         if( pCur->aOverflow[iIdx+1] ){ | 
| 5053 |           nextPage = pCur->aOverflow[iIdx+1]; | 
| 5054 |         }else{ | 
| 5055 |           rc = getOverflowPage(pBt, nextPage, 0, &nextPage); | 
| 5056 |         } | 
| 5057 |         offset -= ovflSize; | 
| 5058 |       }else{ | 
| 5059 |         /* Need to read this page properly. It contains some of the | 
| 5060 |         ** range of data that is being read (eOp==0) or written (eOp!=0). | 
| 5061 |         */ | 
| 5062 |         int a = amt; | 
| 5063 |         if( a + offset > ovflSize ){ | 
| 5064 |           a = ovflSize - offset; | 
| 5065 |         } | 
| 5066 |  | 
| 5067 | #ifdef SQLITE_DIRECT_OVERFLOW_READ | 
| 5068 |         /* If all the following are true: | 
| 5069 |         ** | 
| 5070 |         **   1) this is a read operation, and  | 
| 5071 |         **   2) data is required from the start of this overflow page, and | 
| 5072 |         **   3) there are no dirty pages in the page-cache | 
| 5073 |         **   4) the database is file-backed, and | 
| 5074 |         **   5) the page is not in the WAL file | 
| 5075 |         **   6) at least 4 bytes have already been read into the output buffer  | 
| 5076 |         ** | 
| 5077 |         ** then data can be read directly from the database file into the | 
| 5078 |         ** output buffer, bypassing the page-cache altogether. This speeds | 
| 5079 |         ** up loading large records that span many overflow pages. | 
| 5080 |         */ | 
| 5081 |         if( eOp==0                                             /* (1) */ | 
| 5082 |          && offset==0                                          /* (2) */ | 
| 5083 |          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */ | 
| 5084 |          && &pBuf[-4]>=pBufStart                               /* (6) */ | 
| 5085 |         ){ | 
| 5086 |           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); | 
| 5087 |           u8 aSave[4]; | 
| 5088 |           u8 *aWrite = &pBuf[-4]; | 
| 5089 |           assert( aWrite>=pBufStart );                         /* due to (6) */ | 
| 5090 |           memcpy(aSave, aWrite, 4); | 
| 5091 |           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); | 
| 5092 |           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; | 
| 5093 |           nextPage = get4byte(aWrite); | 
| 5094 |           memcpy(aWrite, aSave, 4); | 
| 5095 |         }else | 
| 5096 | #endif | 
| 5097 |  | 
| 5098 |         { | 
| 5099 |           DbPage *pDbPage; | 
| 5100 |           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, | 
| 5101 |               (eOp==0 ? PAGER_GET_READONLY : 0) | 
| 5102 |           ); | 
| 5103 |           if( rc==SQLITE_OK ){ | 
| 5104 |             aPayload = sqlite3PagerGetData(pDbPage); | 
| 5105 |             nextPage = get4byte(aPayload); | 
| 5106 |             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); | 
| 5107 |             sqlite3PagerUnref(pDbPage); | 
| 5108 |             offset = 0; | 
| 5109 |           } | 
| 5110 |         } | 
| 5111 |         amt -= a; | 
| 5112 |         if( amt==0 ) return rc; | 
| 5113 |         pBuf += a; | 
| 5114 |       } | 
| 5115 |       if( rc ) break; | 
| 5116 |       iIdx++; | 
| 5117 |     } | 
| 5118 |   } | 
| 5119 |  | 
| 5120 |   if( rc==SQLITE_OK && amt>0 ){ | 
| 5121 |     /* Overflow chain ends prematurely */ | 
| 5122 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 5123 |   } | 
| 5124 |   return rc; | 
| 5125 | } | 
| 5126 |  | 
| 5127 | /* | 
| 5128 | ** Read part of the payload for the row at which that cursor pCur is currently | 
| 5129 | ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer | 
| 5130 | ** begins at "offset". | 
| 5131 | ** | 
| 5132 | ** pCur can be pointing to either a table or an index b-tree. | 
| 5133 | ** If pointing to a table btree, then the content section is read.  If | 
| 5134 | ** pCur is pointing to an index b-tree then the key section is read. | 
| 5135 | ** | 
| 5136 | ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing | 
| 5137 | ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the | 
| 5138 | ** cursor might be invalid or might need to be restored before being read. | 
| 5139 | ** | 
| 5140 | ** Return SQLITE_OK on success or an error code if anything goes | 
| 5141 | ** wrong.  An error is returned if "offset+amt" is larger than | 
| 5142 | ** the available payload. | 
| 5143 | */ | 
| 5144 | int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ | 
| 5145 |   assert( cursorHoldsMutex(pCur) ); | 
| 5146 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5147 |   assert( pCur->iPage>=0 && pCur->pPage ); | 
| 5148 |   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); | 
| 5149 | } | 
| 5150 |  | 
| 5151 | /* | 
| 5152 | ** This variant of sqlite3BtreePayload() works even if the cursor has not | 
| 5153 | ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read() | 
| 5154 | ** interface. | 
| 5155 | */ | 
| 5156 | #ifndef SQLITE_OMIT_INCRBLOB | 
| 5157 | static SQLITE_NOINLINE int accessPayloadChecked( | 
| 5158 |   BtCursor *pCur, | 
| 5159 |   u32 offset, | 
| 5160 |   u32 amt, | 
| 5161 |   void *pBuf | 
| 5162 | ){ | 
| 5163 |   int rc; | 
| 5164 |   if ( pCur->eState==CURSOR_INVALID ){ | 
| 5165 |     return SQLITE_ABORT; | 
| 5166 |   } | 
| 5167 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5168 |   rc = btreeRestoreCursorPosition(pCur); | 
| 5169 |   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); | 
| 5170 | } | 
| 5171 | int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ | 
| 5172 |   if( pCur->eState==CURSOR_VALID ){ | 
| 5173 |     assert( cursorOwnsBtShared(pCur) ); | 
| 5174 |     return accessPayload(pCur, offset, amt, pBuf, 0); | 
| 5175 |   }else{ | 
| 5176 |     return accessPayloadChecked(pCur, offset, amt, pBuf); | 
| 5177 |   } | 
| 5178 | } | 
| 5179 | #endif /* SQLITE_OMIT_INCRBLOB */ | 
| 5180 |  | 
| 5181 | /* | 
| 5182 | ** Return a pointer to payload information from the entry that the  | 
| 5183 | ** pCur cursor is pointing to.  The pointer is to the beginning of | 
| 5184 | ** the key if index btrees (pPage->intKey==0) and is the data for | 
| 5185 | ** table btrees (pPage->intKey==1). The number of bytes of available | 
| 5186 | ** key/data is written into *pAmt.  If *pAmt==0, then the value | 
| 5187 | ** returned will not be a valid pointer. | 
| 5188 | ** | 
| 5189 | ** This routine is an optimization.  It is common for the entire key | 
| 5190 | ** and data to fit on the local page and for there to be no overflow | 
| 5191 | ** pages.  When that is so, this routine can be used to access the | 
| 5192 | ** key and data without making a copy.  If the key and/or data spills | 
| 5193 | ** onto overflow pages, then accessPayload() must be used to reassemble | 
| 5194 | ** the key/data and copy it into a preallocated buffer. | 
| 5195 | ** | 
| 5196 | ** The pointer returned by this routine looks directly into the cached | 
| 5197 | ** page of the database.  The data might change or move the next time | 
| 5198 | ** any btree routine is called. | 
| 5199 | */ | 
| 5200 | static const void *fetchPayload( | 
| 5201 |   BtCursor *pCur,      /* Cursor pointing to entry to read from */ | 
| 5202 |   u32 *pAmt            /* Write the number of available bytes here */ | 
| 5203 | ){ | 
| 5204 |   int amt; | 
| 5205 |   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); | 
| 5206 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5207 |   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); | 
| 5208 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5209 |   assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); | 
| 5210 |   assert( pCur->info.nSize>0 ); | 
| 5211 |   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); | 
| 5212 |   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); | 
| 5213 |   amt = pCur->info.nLocal; | 
| 5214 |   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ | 
| 5215 |     /* There is too little space on the page for the expected amount | 
| 5216 |     ** of local content. Database must be corrupt. */ | 
| 5217 |     assert( CORRUPT_DB ); | 
| 5218 |     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); | 
| 5219 |   } | 
| 5220 |   *pAmt = (u32)amt; | 
| 5221 |   return (void*)pCur->info.pPayload; | 
| 5222 | } | 
| 5223 |  | 
| 5224 |  | 
| 5225 | /* | 
| 5226 | ** For the entry that cursor pCur is point to, return as | 
| 5227 | ** many bytes of the key or data as are available on the local | 
| 5228 | ** b-tree page.  Write the number of available bytes into *pAmt. | 
| 5229 | ** | 
| 5230 | ** The pointer returned is ephemeral.  The key/data may move | 
| 5231 | ** or be destroyed on the next call to any Btree routine, | 
| 5232 | ** including calls from other threads against the same cache. | 
| 5233 | ** Hence, a mutex on the BtShared should be held prior to calling | 
| 5234 | ** this routine. | 
| 5235 | ** | 
| 5236 | ** These routines is used to get quick access to key and data | 
| 5237 | ** in the common case where no overflow pages are used. | 
| 5238 | */ | 
| 5239 | const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ | 
| 5240 |   return fetchPayload(pCur, pAmt); | 
| 5241 | } | 
| 5242 |  | 
| 5243 |  | 
| 5244 | /* | 
| 5245 | ** Move the cursor down to a new child page.  The newPgno argument is the | 
| 5246 | ** page number of the child page to move to. | 
| 5247 | ** | 
| 5248 | ** This function returns SQLITE_CORRUPT if the page-header flags field of | 
| 5249 | ** the new child page does not match the flags field of the parent (i.e. | 
| 5250 | ** if an intkey page appears to be the parent of a non-intkey page, or | 
| 5251 | ** vice-versa). | 
| 5252 | */ | 
| 5253 | static int moveToChild(BtCursor *pCur, u32 newPgno){ | 
| 5254 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5255 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5256 |   assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); | 
| 5257 |   assert( pCur->iPage>=0 ); | 
| 5258 |   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ | 
| 5259 |     return SQLITE_CORRUPT_BKPT; | 
| 5260 |   } | 
| 5261 |   pCur->info.nSize = 0; | 
| 5262 |   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); | 
| 5263 |   pCur->aiIdx[pCur->iPage] = pCur->ix; | 
| 5264 |   pCur->apPage[pCur->iPage] = pCur->pPage; | 
| 5265 |   pCur->ix = 0; | 
| 5266 |   pCur->iPage++; | 
| 5267 |   return getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur, | 
| 5268 |                         pCur->curPagerFlags); | 
| 5269 | } | 
| 5270 |  | 
| 5271 | #ifdef SQLITE_DEBUG | 
| 5272 | /* | 
| 5273 | ** Page pParent is an internal (non-leaf) tree page. This function  | 
| 5274 | ** asserts that page number iChild is the left-child if the iIdx'th | 
| 5275 | ** cell in page pParent. Or, if iIdx is equal to the total number of | 
| 5276 | ** cells in pParent, that page number iChild is the right-child of | 
| 5277 | ** the page. | 
| 5278 | */ | 
| 5279 | static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ | 
| 5280 |   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true | 
| 5281 |                             ** in a corrupt database */ | 
| 5282 |   assert( iIdx<=pParent->nCell ); | 
| 5283 |   if( iIdx==pParent->nCell ){ | 
| 5284 |     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); | 
| 5285 |   }else{ | 
| 5286 |     assert( get4byte(findCell(pParent, iIdx))==iChild ); | 
| 5287 |   } | 
| 5288 | } | 
| 5289 | #else | 
| 5290 | #  define assertParentIndex(x,y,z)  | 
| 5291 | #endif | 
| 5292 |  | 
| 5293 | /* | 
| 5294 | ** Move the cursor up to the parent page. | 
| 5295 | ** | 
| 5296 | ** pCur->idx is set to the cell index that contains the pointer | 
| 5297 | ** to the page we are coming from.  If we are coming from the | 
| 5298 | ** right-most child page then pCur->idx is set to one more than | 
| 5299 | ** the largest cell index. | 
| 5300 | */ | 
| 5301 | static void moveToParent(BtCursor *pCur){ | 
| 5302 |   MemPage *pLeaf; | 
| 5303 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5304 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5305 |   assert( pCur->iPage>0 ); | 
| 5306 |   assert( pCur->pPage ); | 
| 5307 |   assertParentIndex( | 
| 5308 |     pCur->apPage[pCur->iPage-1],  | 
| 5309 |     pCur->aiIdx[pCur->iPage-1],  | 
| 5310 |     pCur->pPage->pgno | 
| 5311 |   ); | 
| 5312 |   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); | 
| 5313 |   pCur->info.nSize = 0; | 
| 5314 |   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); | 
| 5315 |   pCur->ix = pCur->aiIdx[pCur->iPage-1]; | 
| 5316 |   pLeaf = pCur->pPage; | 
| 5317 |   pCur->pPage = pCur->apPage[--pCur->iPage]; | 
| 5318 |   releasePageNotNull(pLeaf); | 
| 5319 | } | 
| 5320 |  | 
| 5321 | /* | 
| 5322 | ** Move the cursor to point to the root page of its b-tree structure. | 
| 5323 | ** | 
| 5324 | ** If the table has a virtual root page, then the cursor is moved to point | 
| 5325 | ** to the virtual root page instead of the actual root page. A table has a | 
| 5326 | ** virtual root page when the actual root page contains no cells and a  | 
| 5327 | ** single child page. This can only happen with the table rooted at page 1. | 
| 5328 | ** | 
| 5329 | ** If the b-tree structure is empty, the cursor state is set to  | 
| 5330 | ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, | 
| 5331 | ** the cursor is set to point to the first cell located on the root | 
| 5332 | ** (or virtual root) page and the cursor state is set to CURSOR_VALID. | 
| 5333 | ** | 
| 5334 | ** If this function returns successfully, it may be assumed that the | 
| 5335 | ** page-header flags indicate that the [virtual] root-page is the expected  | 
| 5336 | ** kind of b-tree page (i.e. if when opening the cursor the caller did not | 
| 5337 | ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, | 
| 5338 | ** indicating a table b-tree, or if the caller did specify a KeyInfo  | 
| 5339 | ** structure the flags byte is set to 0x02 or 0x0A, indicating an index | 
| 5340 | ** b-tree). | 
| 5341 | */ | 
| 5342 | static int moveToRoot(BtCursor *pCur){ | 
| 5343 |   MemPage *pRoot; | 
| 5344 |   int rc = SQLITE_OK; | 
| 5345 |  | 
| 5346 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5347 |   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); | 
| 5348 |   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK ); | 
| 5349 |   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK ); | 
| 5350 |   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); | 
| 5351 |   assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); | 
| 5352 |  | 
| 5353 |   if( pCur->iPage>=0 ){ | 
| 5354 |     if( pCur->iPage ){ | 
| 5355 |       releasePageNotNull(pCur->pPage); | 
| 5356 |       while( --pCur->iPage ){ | 
| 5357 |         releasePageNotNull(pCur->apPage[pCur->iPage]); | 
| 5358 |       } | 
| 5359 |       pRoot = pCur->pPage = pCur->apPage[0]; | 
| 5360 |       goto skip_init; | 
| 5361 |     } | 
| 5362 |   }else if( pCur->pgnoRoot==0 ){ | 
| 5363 |     pCur->eState = CURSOR_INVALID; | 
| 5364 |     return SQLITE_EMPTY; | 
| 5365 |   }else{ | 
| 5366 |     assert( pCur->iPage==(-1) ); | 
| 5367 |     if( pCur->eState>=CURSOR_REQUIRESEEK ){ | 
| 5368 |       if( pCur->eState==CURSOR_FAULT ){ | 
| 5369 |         assert( pCur->skipNext!=SQLITE_OK ); | 
| 5370 |         return pCur->skipNext; | 
| 5371 |       } | 
| 5372 |       sqlite3BtreeClearCursor(pCur); | 
| 5373 |     } | 
| 5374 |     rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, | 
| 5375 |                         0, pCur->curPagerFlags); | 
| 5376 |     if( rc!=SQLITE_OK ){ | 
| 5377 |       pCur->eState = CURSOR_INVALID; | 
| 5378 |       return rc; | 
| 5379 |     } | 
| 5380 |     pCur->iPage = 0; | 
| 5381 |     pCur->curIntKey = pCur->pPage->intKey; | 
| 5382 |   } | 
| 5383 |   pRoot = pCur->pPage; | 
| 5384 |   assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); | 
| 5385 |  | 
| 5386 |   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor | 
| 5387 |   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is | 
| 5388 |   ** NULL, the caller expects a table b-tree. If this is not the case, | 
| 5389 |   ** return an SQLITE_CORRUPT error.  | 
| 5390 |   ** | 
| 5391 |   ** Earlier versions of SQLite assumed that this test could not fail | 
| 5392 |   ** if the root page was already loaded when this function was called (i.e. | 
| 5393 |   ** if pCur->iPage>=0). But this is not so if the database is corrupted  | 
| 5394 |   ** in such a way that page pRoot is linked into a second b-tree table  | 
| 5395 |   ** (or the freelist).  */ | 
| 5396 |   assert( pRoot->intKey==1 || pRoot->intKey==0 ); | 
| 5397 |   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ | 
| 5398 |     return SQLITE_CORRUPT_PAGE(pCur->pPage); | 
| 5399 |   } | 
| 5400 |  | 
| 5401 | skip_init:   | 
| 5402 |   pCur->ix = 0; | 
| 5403 |   pCur->info.nSize = 0; | 
| 5404 |   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); | 
| 5405 |  | 
| 5406 |   if( pRoot->nCell>0 ){ | 
| 5407 |     pCur->eState = CURSOR_VALID; | 
| 5408 |   }else if( !pRoot->leaf ){ | 
| 5409 |     Pgno subpage; | 
| 5410 |     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; | 
| 5411 |     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); | 
| 5412 |     pCur->eState = CURSOR_VALID; | 
| 5413 |     rc = moveToChild(pCur, subpage); | 
| 5414 |   }else{ | 
| 5415 |     pCur->eState = CURSOR_INVALID; | 
| 5416 |     rc = SQLITE_EMPTY; | 
| 5417 |   } | 
| 5418 |   return rc; | 
| 5419 | } | 
| 5420 |  | 
| 5421 | /* | 
| 5422 | ** Move the cursor down to the left-most leaf entry beneath the | 
| 5423 | ** entry to which it is currently pointing. | 
| 5424 | ** | 
| 5425 | ** The left-most leaf is the one with the smallest key - the first | 
| 5426 | ** in ascending order. | 
| 5427 | */ | 
| 5428 | static int moveToLeftmost(BtCursor *pCur){ | 
| 5429 |   Pgno pgno; | 
| 5430 |   int rc = SQLITE_OK; | 
| 5431 |   MemPage *pPage; | 
| 5432 |  | 
| 5433 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5434 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5435 |   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ | 
| 5436 |     assert( pCur->ix<pPage->nCell ); | 
| 5437 |     pgno = get4byte(findCell(pPage, pCur->ix)); | 
| 5438 |     rc = moveToChild(pCur, pgno); | 
| 5439 |   } | 
| 5440 |   return rc; | 
| 5441 | } | 
| 5442 |  | 
| 5443 | /* | 
| 5444 | ** Move the cursor down to the right-most leaf entry beneath the | 
| 5445 | ** page to which it is currently pointing.  Notice the difference | 
| 5446 | ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost() | 
| 5447 | ** finds the left-most entry beneath the *entry* whereas moveToRightmost() | 
| 5448 | ** finds the right-most entry beneath the *page*. | 
| 5449 | ** | 
| 5450 | ** The right-most entry is the one with the largest key - the last | 
| 5451 | ** key in ascending order. | 
| 5452 | */ | 
| 5453 | static int moveToRightmost(BtCursor *pCur){ | 
| 5454 |   Pgno pgno; | 
| 5455 |   int rc = SQLITE_OK; | 
| 5456 |   MemPage *pPage = 0; | 
| 5457 |  | 
| 5458 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5459 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5460 |   while( !(pPage = pCur->pPage)->leaf ){ | 
| 5461 |     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); | 
| 5462 |     pCur->ix = pPage->nCell; | 
| 5463 |     rc = moveToChild(pCur, pgno); | 
| 5464 |     if( rc ) return rc; | 
| 5465 |   } | 
| 5466 |   pCur->ix = pPage->nCell-1; | 
| 5467 |   assert( pCur->info.nSize==0 ); | 
| 5468 |   assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); | 
| 5469 |   return SQLITE_OK; | 
| 5470 | } | 
| 5471 |  | 
| 5472 | /* Move the cursor to the first entry in the table.  Return SQLITE_OK | 
| 5473 | ** on success.  Set *pRes to 0 if the cursor actually points to something | 
| 5474 | ** or set *pRes to 1 if the table is empty. | 
| 5475 | */ | 
| 5476 | int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ | 
| 5477 |   int rc; | 
| 5478 |  | 
| 5479 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5480 |   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); | 
| 5481 |   rc = moveToRoot(pCur); | 
| 5482 |   if( rc==SQLITE_OK ){ | 
| 5483 |     assert( pCur->pPage->nCell>0 ); | 
| 5484 |     *pRes = 0; | 
| 5485 |     rc = moveToLeftmost(pCur); | 
| 5486 |   }else if( rc==SQLITE_EMPTY ){ | 
| 5487 |     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); | 
| 5488 |     *pRes = 1; | 
| 5489 |     rc = SQLITE_OK; | 
| 5490 |   } | 
| 5491 |   return rc; | 
| 5492 | } | 
| 5493 |  | 
| 5494 | /* Move the cursor to the last entry in the table.  Return SQLITE_OK | 
| 5495 | ** on success.  Set *pRes to 0 if the cursor actually points to something | 
| 5496 | ** or set *pRes to 1 if the table is empty. | 
| 5497 | */ | 
| 5498 | int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ | 
| 5499 |   int rc; | 
| 5500 |   | 
| 5501 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5502 |   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); | 
| 5503 |  | 
| 5504 |   /* If the cursor already points to the last entry, this is a no-op. */ | 
| 5505 |   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ | 
| 5506 | #ifdef SQLITE_DEBUG | 
| 5507 |     /* This block serves to assert() that the cursor really does point  | 
| 5508 |     ** to the last entry in the b-tree. */ | 
| 5509 |     int ii; | 
| 5510 |     for(ii=0; ii<pCur->iPage; ii++){ | 
| 5511 |       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); | 
| 5512 |     } | 
| 5513 |     assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); | 
| 5514 |     testcase( pCur->ix!=pCur->pPage->nCell-1 ); | 
| 5515 |     /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ | 
| 5516 |     assert( pCur->pPage->leaf ); | 
| 5517 | #endif | 
| 5518 |     *pRes = 0; | 
| 5519 |     return SQLITE_OK; | 
| 5520 |   } | 
| 5521 |  | 
| 5522 |   rc = moveToRoot(pCur); | 
| 5523 |   if( rc==SQLITE_OK ){ | 
| 5524 |     assert( pCur->eState==CURSOR_VALID ); | 
| 5525 |     *pRes = 0; | 
| 5526 |     rc = moveToRightmost(pCur); | 
| 5527 |     if( rc==SQLITE_OK ){ | 
| 5528 |       pCur->curFlags |= BTCF_AtLast; | 
| 5529 |     }else{ | 
| 5530 |       pCur->curFlags &= ~BTCF_AtLast; | 
| 5531 |     } | 
| 5532 |   }else if( rc==SQLITE_EMPTY ){ | 
| 5533 |     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); | 
| 5534 |     *pRes = 1; | 
| 5535 |     rc = SQLITE_OK; | 
| 5536 |   } | 
| 5537 |   return rc; | 
| 5538 | } | 
| 5539 |  | 
| 5540 | /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) | 
| 5541 | ** table near the key intKey.   Return a success code. | 
| 5542 | ** | 
| 5543 | ** If an exact match is not found, then the cursor is always | 
| 5544 | ** left pointing at a leaf page which would hold the entry if it | 
| 5545 | ** were present.  The cursor might point to an entry that comes | 
| 5546 | ** before or after the key. | 
| 5547 | ** | 
| 5548 | ** An integer is written into *pRes which is the result of | 
| 5549 | ** comparing the key with the entry to which the cursor is  | 
| 5550 | ** pointing.  The meaning of the integer written into | 
| 5551 | ** *pRes is as follows: | 
| 5552 | ** | 
| 5553 | **     *pRes<0      The cursor is left pointing at an entry that | 
| 5554 | **                  is smaller than intKey or if the table is empty | 
| 5555 | **                  and the cursor is therefore left point to nothing. | 
| 5556 | ** | 
| 5557 | **     *pRes==0     The cursor is left pointing at an entry that | 
| 5558 | **                  exactly matches intKey. | 
| 5559 | ** | 
| 5560 | **     *pRes>0      The cursor is left pointing at an entry that | 
| 5561 | **                  is larger than intKey. | 
| 5562 | */ | 
| 5563 | int sqlite3BtreeTableMoveto( | 
| 5564 |   BtCursor *pCur,          /* The cursor to be moved */ | 
| 5565 |   i64 intKey,              /* The table key */ | 
| 5566 |   int biasRight,           /* If true, bias the search to the high end */ | 
| 5567 |   int *pRes                /* Write search results here */ | 
| 5568 | ){ | 
| 5569 |   int rc; | 
| 5570 |  | 
| 5571 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5572 |   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); | 
| 5573 |   assert( pRes ); | 
| 5574 |   assert( pCur->pKeyInfo==0 ); | 
| 5575 |   assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); | 
| 5576 |  | 
| 5577 |   /* If the cursor is already positioned at the point we are trying | 
| 5578 |   ** to move to, then just return without doing any work */ | 
| 5579 |   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ | 
| 5580 |     if( pCur->info.nKey==intKey ){ | 
| 5581 |       *pRes = 0; | 
| 5582 |       return SQLITE_OK; | 
| 5583 |     } | 
| 5584 |     if( pCur->info.nKey<intKey ){ | 
| 5585 |       if( (pCur->curFlags & BTCF_AtLast)!=0 ){ | 
| 5586 |         *pRes = -1; | 
| 5587 |         return SQLITE_OK; | 
| 5588 |       } | 
| 5589 |       /* If the requested key is one more than the previous key, then | 
| 5590 |       ** try to get there using sqlite3BtreeNext() rather than a full | 
| 5591 |       ** binary search.  This is an optimization only.  The correct answer | 
| 5592 |       ** is still obtained without this case, only a little more slowely */ | 
| 5593 |       if( pCur->info.nKey+1==intKey ){ | 
| 5594 |         *pRes = 0; | 
| 5595 |         rc = sqlite3BtreeNext(pCur, 0); | 
| 5596 |         if( rc==SQLITE_OK ){ | 
| 5597 |           getCellInfo(pCur); | 
| 5598 |           if( pCur->info.nKey==intKey ){ | 
| 5599 |             return SQLITE_OK; | 
| 5600 |           } | 
| 5601 |         }else if( rc!=SQLITE_DONE ){ | 
| 5602 |           return rc; | 
| 5603 |         } | 
| 5604 |       } | 
| 5605 |     } | 
| 5606 |   } | 
| 5607 |  | 
| 5608 | #ifdef SQLITE_DEBUG | 
| 5609 |   pCur->pBtree->nSeek++;   /* Performance measurement during testing */ | 
| 5610 | #endif | 
| 5611 |  | 
| 5612 |   rc = moveToRoot(pCur); | 
| 5613 |   if( rc ){ | 
| 5614 |     if( rc==SQLITE_EMPTY ){ | 
| 5615 |       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); | 
| 5616 |       *pRes = -1; | 
| 5617 |       return SQLITE_OK; | 
| 5618 |     } | 
| 5619 |     return rc; | 
| 5620 |   } | 
| 5621 |   assert( pCur->pPage ); | 
| 5622 |   assert( pCur->pPage->isInit ); | 
| 5623 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5624 |   assert( pCur->pPage->nCell > 0 ); | 
| 5625 |   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); | 
| 5626 |   assert( pCur->curIntKey ); | 
| 5627 |  | 
| 5628 |   for(;;){ | 
| 5629 |     int lwr, upr, idx, c; | 
| 5630 |     Pgno chldPg; | 
| 5631 |     MemPage *pPage = pCur->pPage; | 
| 5632 |     u8 *pCell;                          /* Pointer to current cell in pPage */ | 
| 5633 |  | 
| 5634 |     /* pPage->nCell must be greater than zero. If this is the root-page | 
| 5635 |     ** the cursor would have been INVALID above and this for(;;) loop | 
| 5636 |     ** not run. If this is not the root-page, then the moveToChild() routine | 
| 5637 |     ** would have already detected db corruption. Similarly, pPage must | 
| 5638 |     ** be the right kind (index or table) of b-tree page. Otherwise | 
| 5639 |     ** a moveToChild() or moveToRoot() call would have detected corruption.  */ | 
| 5640 |     assert( pPage->nCell>0 ); | 
| 5641 |     assert( pPage->intKey ); | 
| 5642 |     lwr = 0; | 
| 5643 |     upr = pPage->nCell-1; | 
| 5644 |     assert( biasRight==0 || biasRight==1 ); | 
| 5645 |     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ | 
| 5646 |     for(;;){ | 
| 5647 |       i64 nCellKey; | 
| 5648 |       pCell = findCellPastPtr(pPage, idx); | 
| 5649 |       if( pPage->intKeyLeaf ){ | 
| 5650 |         while( 0x80 <= *(pCell++) ){ | 
| 5651 |           if( pCell>=pPage->aDataEnd ){ | 
| 5652 |             return SQLITE_CORRUPT_PAGE(pPage); | 
| 5653 |           } | 
| 5654 |         } | 
| 5655 |       } | 
| 5656 |       getVarint(pCell, (u64*)&nCellKey); | 
| 5657 |       if( nCellKey<intKey ){ | 
| 5658 |         lwr = idx+1; | 
| 5659 |         if( lwr>upr ){ c = -1; break; } | 
| 5660 |       }else if( nCellKey>intKey ){ | 
| 5661 |         upr = idx-1; | 
| 5662 |         if( lwr>upr ){ c = +1; break; } | 
| 5663 |       }else{ | 
| 5664 |         assert( nCellKey==intKey ); | 
| 5665 |         pCur->ix = (u16)idx; | 
| 5666 |         if( !pPage->leaf ){ | 
| 5667 |           lwr = idx; | 
| 5668 |           goto moveto_table_next_layer; | 
| 5669 |         }else{ | 
| 5670 |           pCur->curFlags |= BTCF_ValidNKey; | 
| 5671 |           pCur->info.nKey = nCellKey; | 
| 5672 |           pCur->info.nSize = 0; | 
| 5673 |           *pRes = 0; | 
| 5674 |           return SQLITE_OK; | 
| 5675 |         } | 
| 5676 |       } | 
| 5677 |       assert( lwr+upr>=0 ); | 
| 5678 |       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */ | 
| 5679 |     } | 
| 5680 |     assert( lwr==upr+1 || !pPage->leaf ); | 
| 5681 |     assert( pPage->isInit ); | 
| 5682 |     if( pPage->leaf ){ | 
| 5683 |       assert( pCur->ix<pCur->pPage->nCell ); | 
| 5684 |       pCur->ix = (u16)idx; | 
| 5685 |       *pRes = c; | 
| 5686 |       rc = SQLITE_OK; | 
| 5687 |       goto moveto_table_finish; | 
| 5688 |     } | 
| 5689 | moveto_table_next_layer: | 
| 5690 |     if( lwr>=pPage->nCell ){ | 
| 5691 |       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); | 
| 5692 |     }else{ | 
| 5693 |       chldPg = get4byte(findCell(pPage, lwr)); | 
| 5694 |     } | 
| 5695 |     pCur->ix = (u16)lwr; | 
| 5696 |     rc = moveToChild(pCur, chldPg); | 
| 5697 |     if( rc ) break; | 
| 5698 |   } | 
| 5699 | moveto_table_finish: | 
| 5700 |   pCur->info.nSize = 0; | 
| 5701 |   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); | 
| 5702 |   return rc; | 
| 5703 | } | 
| 5704 |  | 
| 5705 | /* | 
| 5706 | ** Compare the "idx"-th cell on the page the cursor pCur is currently | 
| 5707 | ** pointing to to pIdxKey using xRecordCompare.  Return negative or | 
| 5708 | ** zero if the cell is less than or equal pIdxKey.  Return positive | 
| 5709 | ** if unknown. | 
| 5710 | ** | 
| 5711 | **    Return value negative:     Cell at pCur[idx] less than pIdxKey | 
| 5712 | ** | 
| 5713 | **    Return value is zero:      Cell at pCur[idx] equals pIdxKey | 
| 5714 | ** | 
| 5715 | **    Return value positive:     Nothing is known about the relationship | 
| 5716 | **                               of the cell at pCur[idx] and pIdxKey. | 
| 5717 | ** | 
| 5718 | ** This routine is part of an optimization.  It is always safe to return | 
| 5719 | ** a positive value as that will cause the optimization to be skipped. | 
| 5720 | */ | 
| 5721 | static int indexCellCompare( | 
| 5722 |   BtCursor *pCur, | 
| 5723 |   int idx, | 
| 5724 |   UnpackedRecord *pIdxKey, | 
| 5725 |   RecordCompare xRecordCompare | 
| 5726 | ){ | 
| 5727 |   MemPage *pPage = pCur->pPage; | 
| 5728 |   int c; | 
| 5729 |   int nCell;  /* Size of the pCell cell in bytes */ | 
| 5730 |   u8 *pCell = findCellPastPtr(pPage, idx); | 
| 5731 |  | 
| 5732 |   nCell = pCell[0]; | 
| 5733 |   if( nCell<=pPage->max1bytePayload ){ | 
| 5734 |     /* This branch runs if the record-size field of the cell is a | 
| 5735 |     ** single byte varint and the record fits entirely on the main | 
| 5736 |     ** b-tree page.  */ | 
| 5737 |     testcase( pCell+nCell+1==pPage->aDataEnd ); | 
| 5738 |     c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); | 
| 5739 |   }else if( !(pCell[1] & 0x80)  | 
| 5740 |     && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal | 
| 5741 |   ){ | 
| 5742 |     /* The record-size field is a 2 byte varint and the record  | 
| 5743 |     ** fits entirely on the main b-tree page.  */ | 
| 5744 |     testcase( pCell+nCell+2==pPage->aDataEnd ); | 
| 5745 |     c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); | 
| 5746 |   }else{ | 
| 5747 |     /* If the record extends into overflow pages, do not attempt | 
| 5748 |     ** the optimization. */ | 
| 5749 |     c = 99; | 
| 5750 |   } | 
| 5751 |   return c; | 
| 5752 | } | 
| 5753 |  | 
| 5754 | /* | 
| 5755 | ** Return true (non-zero) if pCur is current pointing to the last | 
| 5756 | ** page of a table. | 
| 5757 | */ | 
| 5758 | static int cursorOnLastPage(BtCursor *pCur){ | 
| 5759 |   int i; | 
| 5760 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5761 |   for(i=0; i<pCur->iPage; i++){ | 
| 5762 |     MemPage *pPage = pCur->apPage[i]; | 
| 5763 |     if( pCur->aiIdx[i]<pPage->nCell ) return 0; | 
| 5764 |   } | 
| 5765 |   return 1; | 
| 5766 | } | 
| 5767 |  | 
| 5768 | /* Move the cursor so that it points to an entry in an index table | 
| 5769 | ** near the key pIdxKey.   Return a success code. | 
| 5770 | ** | 
| 5771 | ** If an exact match is not found, then the cursor is always | 
| 5772 | ** left pointing at a leaf page which would hold the entry if it | 
| 5773 | ** were present.  The cursor might point to an entry that comes | 
| 5774 | ** before or after the key. | 
| 5775 | ** | 
| 5776 | ** An integer is written into *pRes which is the result of | 
| 5777 | ** comparing the key with the entry to which the cursor is  | 
| 5778 | ** pointing.  The meaning of the integer written into | 
| 5779 | ** *pRes is as follows: | 
| 5780 | ** | 
| 5781 | **     *pRes<0      The cursor is left pointing at an entry that | 
| 5782 | **                  is smaller than pIdxKey or if the table is empty | 
| 5783 | **                  and the cursor is therefore left point to nothing. | 
| 5784 | ** | 
| 5785 | **     *pRes==0     The cursor is left pointing at an entry that | 
| 5786 | **                  exactly matches pIdxKey. | 
| 5787 | ** | 
| 5788 | **     *pRes>0      The cursor is left pointing at an entry that | 
| 5789 | **                  is larger than pIdxKey. | 
| 5790 | ** | 
| 5791 | ** The pIdxKey->eqSeen field is set to 1 if there | 
| 5792 | ** exists an entry in the table that exactly matches pIdxKey.   | 
| 5793 | */ | 
| 5794 | int sqlite3BtreeIndexMoveto( | 
| 5795 |   BtCursor *pCur,          /* The cursor to be moved */ | 
| 5796 |   UnpackedRecord *pIdxKey, /* Unpacked index key */ | 
| 5797 |   int *pRes                /* Write search results here */ | 
| 5798 | ){ | 
| 5799 |   int rc; | 
| 5800 |   RecordCompare xRecordCompare; | 
| 5801 |  | 
| 5802 |   assert( cursorOwnsBtShared(pCur) ); | 
| 5803 |   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); | 
| 5804 |   assert( pRes ); | 
| 5805 |   assert( pCur->pKeyInfo!=0 ); | 
| 5806 |  | 
| 5807 | #ifdef SQLITE_DEBUG | 
| 5808 |   pCur->pBtree->nSeek++;   /* Performance measurement during testing */ | 
| 5809 | #endif | 
| 5810 |  | 
| 5811 |   xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); | 
| 5812 |   pIdxKey->errCode = 0; | 
| 5813 |   assert( pIdxKey->default_rc==1  | 
| 5814 |        || pIdxKey->default_rc==0  | 
| 5815 |        || pIdxKey->default_rc==-1 | 
| 5816 |   ); | 
| 5817 |  | 
| 5818 |  | 
| 5819 |   /* Check to see if we can skip a lot of work.  Two cases: | 
| 5820 |   ** | 
| 5821 |   **    (1) If the cursor is already pointing to the very last cell | 
| 5822 |   **        in the table and the pIdxKey search key is greater than or | 
| 5823 |   **        equal to that last cell, then no movement is required. | 
| 5824 |   ** | 
| 5825 |   **    (2) If the cursor is on the last page of the table and the first | 
| 5826 |   **        cell on that last page is less than or equal to the pIdxKey | 
| 5827 |   **        search key, then we can start the search on the current page | 
| 5828 |   **        without needing to go back to root. | 
| 5829 |   */ | 
| 5830 |   if( pCur->eState==CURSOR_VALID | 
| 5831 |    && pCur->pPage->leaf | 
| 5832 |    && cursorOnLastPage(pCur) | 
| 5833 |   ){ | 
| 5834 |     int c; | 
| 5835 |     if( pCur->ix==pCur->pPage->nCell-1 | 
| 5836 |      && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 | 
| 5837 |      && pIdxKey->errCode==SQLITE_OK | 
| 5838 |     ){ | 
| 5839 |       *pRes = c; | 
| 5840 |       return SQLITE_OK;  /* Cursor already pointing at the correct spot */ | 
| 5841 |     } | 
| 5842 |     if( pCur->iPage>0  | 
| 5843 |      && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 | 
| 5844 |      && pIdxKey->errCode==SQLITE_OK | 
| 5845 |     ){ | 
| 5846 |       pCur->curFlags &= ~BTCF_ValidOvfl; | 
| 5847 |       if( !pCur->pPage->isInit ){ | 
| 5848 |         return SQLITE_CORRUPT_BKPT; | 
| 5849 |       } | 
| 5850 |       goto bypass_moveto_root;  /* Start search on the current page */ | 
| 5851 |     } | 
| 5852 |     pIdxKey->errCode = SQLITE_OK; | 
| 5853 |   } | 
| 5854 |  | 
| 5855 |   rc = moveToRoot(pCur); | 
| 5856 |   if( rc ){ | 
| 5857 |     if( rc==SQLITE_EMPTY ){ | 
| 5858 |       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); | 
| 5859 |       *pRes = -1; | 
| 5860 |       return SQLITE_OK; | 
| 5861 |     } | 
| 5862 |     return rc; | 
| 5863 |   } | 
| 5864 |  | 
| 5865 | bypass_moveto_root: | 
| 5866 |   assert( pCur->pPage ); | 
| 5867 |   assert( pCur->pPage->isInit ); | 
| 5868 |   assert( pCur->eState==CURSOR_VALID ); | 
| 5869 |   assert( pCur->pPage->nCell > 0 ); | 
| 5870 |   assert( pCur->curIntKey==0 ); | 
| 5871 |   assert( pIdxKey!=0 ); | 
| 5872 |   for(;;){ | 
| 5873 |     int lwr, upr, idx, c; | 
| 5874 |     Pgno chldPg; | 
| 5875 |     MemPage *pPage = pCur->pPage; | 
| 5876 |     u8 *pCell;                          /* Pointer to current cell in pPage */ | 
| 5877 |  | 
| 5878 |     /* pPage->nCell must be greater than zero. If this is the root-page | 
| 5879 |     ** the cursor would have been INVALID above and this for(;;) loop | 
| 5880 |     ** not run. If this is not the root-page, then the moveToChild() routine | 
| 5881 |     ** would have already detected db corruption. Similarly, pPage must | 
| 5882 |     ** be the right kind (index or table) of b-tree page. Otherwise | 
| 5883 |     ** a moveToChild() or moveToRoot() call would have detected corruption.  */ | 
| 5884 |     assert( pPage->nCell>0 ); | 
| 5885 |     assert( pPage->intKey==0 ); | 
| 5886 |     lwr = 0; | 
| 5887 |     upr = pPage->nCell-1; | 
| 5888 |     idx = upr>>1; /* idx = (lwr+upr)/2; */ | 
| 5889 |     for(;;){ | 
| 5890 |       int nCell;  /* Size of the pCell cell in bytes */ | 
| 5891 |       pCell = findCellPastPtr(pPage, idx); | 
| 5892 |  | 
| 5893 |       /* The maximum supported page-size is 65536 bytes. This means that | 
| 5894 |       ** the maximum number of record bytes stored on an index B-Tree | 
| 5895 |       ** page is less than 16384 bytes and may be stored as a 2-byte | 
| 5896 |       ** varint. This information is used to attempt to avoid parsing  | 
| 5897 |       ** the entire cell by checking for the cases where the record is  | 
| 5898 |       ** stored entirely within the b-tree page by inspecting the first  | 
| 5899 |       ** 2 bytes of the cell. | 
| 5900 |       */ | 
| 5901 |       nCell = pCell[0]; | 
| 5902 |       if( nCell<=pPage->max1bytePayload ){ | 
| 5903 |         /* This branch runs if the record-size field of the cell is a | 
| 5904 |         ** single byte varint and the record fits entirely on the main | 
| 5905 |         ** b-tree page.  */ | 
| 5906 |         testcase( pCell+nCell+1==pPage->aDataEnd ); | 
| 5907 |         c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); | 
| 5908 |       }else if( !(pCell[1] & 0x80)  | 
| 5909 |         && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal | 
| 5910 |       ){ | 
| 5911 |         /* The record-size field is a 2 byte varint and the record  | 
| 5912 |         ** fits entirely on the main b-tree page.  */ | 
| 5913 |         testcase( pCell+nCell+2==pPage->aDataEnd ); | 
| 5914 |         c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); | 
| 5915 |       }else{ | 
| 5916 |         /* The record flows over onto one or more overflow pages. In | 
| 5917 |         ** this case the whole cell needs to be parsed, a buffer allocated | 
| 5918 |         ** and accessPayload() used to retrieve the record into the | 
| 5919 |         ** buffer before VdbeRecordCompare() can be called.  | 
| 5920 |         ** | 
| 5921 |         ** If the record is corrupt, the xRecordCompare routine may read | 
| 5922 |         ** up to two varints past the end of the buffer. An extra 18  | 
| 5923 |         ** bytes of padding is allocated at the end of the buffer in | 
| 5924 |         ** case this happens.  */ | 
| 5925 |         void *pCellKey; | 
| 5926 |         u8 * const pCellBody = pCell - pPage->childPtrSize; | 
| 5927 |         const int nOverrun = 18;  /* Size of the overrun padding */ | 
| 5928 |         pPage->xParseCell(pPage, pCellBody, &pCur->info); | 
| 5929 |         nCell = (int)pCur->info.nKey; | 
| 5930 |         testcase( nCell<0 );   /* True if key size is 2^32 or more */ | 
| 5931 |         testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */ | 
| 5932 |         testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */ | 
| 5933 |         testcase( nCell==2 );  /* Minimum legal index key size */ | 
| 5934 |         if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ | 
| 5935 |           rc = SQLITE_CORRUPT_PAGE(pPage); | 
| 5936 |           goto moveto_index_finish; | 
| 5937 |         } | 
| 5938 |         pCellKey = sqlite3Malloc( nCell+nOverrun ); | 
| 5939 |         if( pCellKey==0 ){ | 
| 5940 |           rc = SQLITE_NOMEM_BKPT; | 
| 5941 |           goto moveto_index_finish; | 
| 5942 |         } | 
| 5943 |         pCur->ix = (u16)idx; | 
| 5944 |         rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); | 
| 5945 |         memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ | 
| 5946 |         pCur->curFlags &= ~BTCF_ValidOvfl; | 
| 5947 |         if( rc ){ | 
| 5948 |           sqlite3_free(pCellKey); | 
| 5949 |           goto moveto_index_finish; | 
| 5950 |         } | 
| 5951 |         c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); | 
| 5952 |         sqlite3_free(pCellKey); | 
| 5953 |       } | 
| 5954 |       assert(  | 
| 5955 |           (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) | 
| 5956 |        && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) | 
| 5957 |       ); | 
| 5958 |       if( c<0 ){ | 
| 5959 |         lwr = idx+1; | 
| 5960 |       }else if( c>0 ){ | 
| 5961 |         upr = idx-1; | 
| 5962 |       }else{ | 
| 5963 |         assert( c==0 ); | 
| 5964 |         *pRes = 0; | 
| 5965 |         rc = SQLITE_OK; | 
| 5966 |         pCur->ix = (u16)idx; | 
| 5967 |         if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; | 
| 5968 |         goto moveto_index_finish; | 
| 5969 |       } | 
| 5970 |       if( lwr>upr ) break; | 
| 5971 |       assert( lwr+upr>=0 ); | 
| 5972 |       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */ | 
| 5973 |     } | 
| 5974 |     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); | 
| 5975 |     assert( pPage->isInit ); | 
| 5976 |     if( pPage->leaf ){ | 
| 5977 |       assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); | 
| 5978 |       pCur->ix = (u16)idx; | 
| 5979 |       *pRes = c; | 
| 5980 |       rc = SQLITE_OK; | 
| 5981 |       goto moveto_index_finish; | 
| 5982 |     } | 
| 5983 |     if( lwr>=pPage->nCell ){ | 
| 5984 |       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); | 
| 5985 |     }else{ | 
| 5986 |       chldPg = get4byte(findCell(pPage, lwr)); | 
| 5987 |     } | 
| 5988 |     pCur->ix = (u16)lwr; | 
| 5989 |     rc = moveToChild(pCur, chldPg); | 
| 5990 |     if( rc ) break; | 
| 5991 |   } | 
| 5992 | moveto_index_finish: | 
| 5993 |   pCur->info.nSize = 0; | 
| 5994 |   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); | 
| 5995 |   return rc; | 
| 5996 | } | 
| 5997 |  | 
| 5998 |  | 
| 5999 | /* | 
| 6000 | ** Return TRUE if the cursor is not pointing at an entry of the table. | 
| 6001 | ** | 
| 6002 | ** TRUE will be returned after a call to sqlite3BtreeNext() moves | 
| 6003 | ** past the last entry in the table or sqlite3BtreePrev() moves past | 
| 6004 | ** the first entry.  TRUE is also returned if the table is empty. | 
| 6005 | */ | 
| 6006 | int sqlite3BtreeEof(BtCursor *pCur){ | 
| 6007 |   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries | 
| 6008 |   ** have been deleted? This API will need to change to return an error code | 
| 6009 |   ** as well as the boolean result value. | 
| 6010 |   */ | 
| 6011 |   return (CURSOR_VALID!=pCur->eState); | 
| 6012 | } | 
| 6013 |  | 
| 6014 | /* | 
| 6015 | ** Return an estimate for the number of rows in the table that pCur is | 
| 6016 | ** pointing to.  Return a negative number if no estimate is currently  | 
| 6017 | ** available. | 
| 6018 | */ | 
| 6019 | i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ | 
| 6020 |   i64 n; | 
| 6021 |   u8 i; | 
| 6022 |  | 
| 6023 |   assert( cursorOwnsBtShared(pCur) ); | 
| 6024 |   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); | 
| 6025 |  | 
| 6026 |   /* Currently this interface is only called by the OP_IfSmaller | 
| 6027 |   ** opcode, and it that case the cursor will always be valid and | 
| 6028 |   ** will always point to a leaf node. */ | 
| 6029 |   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; | 
| 6030 |   if( NEVER(pCur->pPage->leaf==0) ) return -1; | 
| 6031 |  | 
| 6032 |   n = pCur->pPage->nCell; | 
| 6033 |   for(i=0; i<pCur->iPage; i++){ | 
| 6034 |     n *= pCur->apPage[i]->nCell; | 
| 6035 |   } | 
| 6036 |   return n; | 
| 6037 | } | 
| 6038 |  | 
| 6039 | /* | 
| 6040 | ** Advance the cursor to the next entry in the database.  | 
| 6041 | ** Return value: | 
| 6042 | ** | 
| 6043 | **    SQLITE_OK        success | 
| 6044 | **    SQLITE_DONE      cursor is already pointing at the last element | 
| 6045 | **    otherwise        some kind of error occurred | 
| 6046 | ** | 
| 6047 | ** The main entry point is sqlite3BtreeNext().  That routine is optimized | 
| 6048 | ** for the common case of merely incrementing the cell counter BtCursor.aiIdx | 
| 6049 | ** to the next cell on the current page.  The (slower) btreeNext() helper | 
| 6050 | ** routine is called when it is necessary to move to a different page or | 
| 6051 | ** to restore the cursor. | 
| 6052 | ** | 
| 6053 | ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the | 
| 6054 | ** cursor corresponds to an SQL index and this routine could have been | 
| 6055 | ** skipped if the SQL index had been a unique index.  The F argument | 
| 6056 | ** is a hint to the implement.  SQLite btree implementation does not use | 
| 6057 | ** this hint, but COMDB2 does. | 
| 6058 | */ | 
| 6059 | static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ | 
| 6060 |   int rc; | 
| 6061 |   int idx; | 
| 6062 |   MemPage *pPage; | 
| 6063 |  | 
| 6064 |   assert( cursorOwnsBtShared(pCur) ); | 
| 6065 |   if( pCur->eState!=CURSOR_VALID ){ | 
| 6066 |     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); | 
| 6067 |     rc = restoreCursorPosition(pCur); | 
| 6068 |     if( rc!=SQLITE_OK ){ | 
| 6069 |       return rc; | 
| 6070 |     } | 
| 6071 |     if( CURSOR_INVALID==pCur->eState ){ | 
| 6072 |       return SQLITE_DONE; | 
| 6073 |     } | 
| 6074 |     if( pCur->eState==CURSOR_SKIPNEXT ){ | 
| 6075 |       pCur->eState = CURSOR_VALID; | 
| 6076 |       if( pCur->skipNext>0 ) return SQLITE_OK; | 
| 6077 |     } | 
| 6078 |   } | 
| 6079 |  | 
| 6080 |   pPage = pCur->pPage; | 
| 6081 |   idx = ++pCur->ix; | 
| 6082 |   if( NEVER(!pPage->isInit) || sqlite3FaultSim(412) ){ | 
| 6083 |     return SQLITE_CORRUPT_BKPT; | 
| 6084 |   } | 
| 6085 |  | 
| 6086 |   if( idx>=pPage->nCell ){ | 
| 6087 |     if( !pPage->leaf ){ | 
| 6088 |       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); | 
| 6089 |       if( rc ) return rc; | 
| 6090 |       return moveToLeftmost(pCur); | 
| 6091 |     } | 
| 6092 |     do{ | 
| 6093 |       if( pCur->iPage==0 ){ | 
| 6094 |         pCur->eState = CURSOR_INVALID; | 
| 6095 |         return SQLITE_DONE; | 
| 6096 |       } | 
| 6097 |       moveToParent(pCur); | 
| 6098 |       pPage = pCur->pPage; | 
| 6099 |     }while( pCur->ix>=pPage->nCell ); | 
| 6100 |     if( pPage->intKey ){ | 
| 6101 |       return sqlite3BtreeNext(pCur, 0); | 
| 6102 |     }else{ | 
| 6103 |       return SQLITE_OK; | 
| 6104 |     } | 
| 6105 |   } | 
| 6106 |   if( pPage->leaf ){ | 
| 6107 |     return SQLITE_OK; | 
| 6108 |   }else{ | 
| 6109 |     return moveToLeftmost(pCur); | 
| 6110 |   } | 
| 6111 | } | 
| 6112 | int sqlite3BtreeNext(BtCursor *pCur, int flags){ | 
| 6113 |   MemPage *pPage; | 
| 6114 |   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */ | 
| 6115 |   assert( cursorOwnsBtShared(pCur) ); | 
| 6116 |   assert( flags==0 || flags==1 ); | 
| 6117 |   pCur->info.nSize = 0; | 
| 6118 |   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); | 
| 6119 |   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); | 
| 6120 |   pPage = pCur->pPage; | 
| 6121 |   if( (++pCur->ix)>=pPage->nCell ){ | 
| 6122 |     pCur->ix--; | 
| 6123 |     return btreeNext(pCur); | 
| 6124 |   } | 
| 6125 |   if( pPage->leaf ){ | 
| 6126 |     return SQLITE_OK; | 
| 6127 |   }else{ | 
| 6128 |     return moveToLeftmost(pCur); | 
| 6129 |   } | 
| 6130 | } | 
| 6131 |  | 
| 6132 | /* | 
| 6133 | ** Step the cursor to the back to the previous entry in the database. | 
| 6134 | ** Return values: | 
| 6135 | ** | 
| 6136 | **     SQLITE_OK     success | 
| 6137 | **     SQLITE_DONE   the cursor is already on the first element of the table | 
| 6138 | **     otherwise     some kind of error occurred | 
| 6139 | ** | 
| 6140 | ** The main entry point is sqlite3BtreePrevious().  That routine is optimized | 
| 6141 | ** for the common case of merely decrementing the cell counter BtCursor.aiIdx | 
| 6142 | ** to the previous cell on the current page.  The (slower) btreePrevious() | 
| 6143 | ** helper routine is called when it is necessary to move to a different page | 
| 6144 | ** or to restore the cursor. | 
| 6145 | ** | 
| 6146 | ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then | 
| 6147 | ** the cursor corresponds to an SQL index and this routine could have been | 
| 6148 | ** skipped if the SQL index had been a unique index.  The F argument is a | 
| 6149 | ** hint to the implement.  The native SQLite btree implementation does not | 
| 6150 | ** use this hint, but COMDB2 does. | 
| 6151 | */ | 
| 6152 | static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ | 
| 6153 |   int rc; | 
| 6154 |   MemPage *pPage; | 
| 6155 |  | 
| 6156 |   assert( cursorOwnsBtShared(pCur) ); | 
| 6157 |   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); | 
| 6158 |   assert( pCur->info.nSize==0 ); | 
| 6159 |   if( pCur->eState!=CURSOR_VALID ){ | 
| 6160 |     rc = restoreCursorPosition(pCur); | 
| 6161 |     if( rc!=SQLITE_OK ){ | 
| 6162 |       return rc; | 
| 6163 |     } | 
| 6164 |     if( CURSOR_INVALID==pCur->eState ){ | 
| 6165 |       return SQLITE_DONE; | 
| 6166 |     } | 
| 6167 |     if( CURSOR_SKIPNEXT==pCur->eState ){ | 
| 6168 |       pCur->eState = CURSOR_VALID; | 
| 6169 |       if( pCur->skipNext<0 ) return SQLITE_OK; | 
| 6170 |     } | 
| 6171 |   } | 
| 6172 |  | 
| 6173 |   pPage = pCur->pPage; | 
| 6174 |   assert( pPage->isInit ); | 
| 6175 |   if( !pPage->leaf ){ | 
| 6176 |     int idx = pCur->ix; | 
| 6177 |     rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); | 
| 6178 |     if( rc ) return rc; | 
| 6179 |     rc = moveToRightmost(pCur); | 
| 6180 |   }else{ | 
| 6181 |     while( pCur->ix==0 ){ | 
| 6182 |       if( pCur->iPage==0 ){ | 
| 6183 |         pCur->eState = CURSOR_INVALID; | 
| 6184 |         return SQLITE_DONE; | 
| 6185 |       } | 
| 6186 |       moveToParent(pCur); | 
| 6187 |     } | 
| 6188 |     assert( pCur->info.nSize==0 ); | 
| 6189 |     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); | 
| 6190 |  | 
| 6191 |     pCur->ix--; | 
| 6192 |     pPage = pCur->pPage; | 
| 6193 |     if( pPage->intKey && !pPage->leaf ){ | 
| 6194 |       rc = sqlite3BtreePrevious(pCur, 0); | 
| 6195 |     }else{ | 
| 6196 |       rc = SQLITE_OK; | 
| 6197 |     } | 
| 6198 |   } | 
| 6199 |   return rc; | 
| 6200 | } | 
| 6201 | int sqlite3BtreePrevious(BtCursor *pCur, int flags){ | 
| 6202 |   assert( cursorOwnsBtShared(pCur) ); | 
| 6203 |   assert( flags==0 || flags==1 ); | 
| 6204 |   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */ | 
| 6205 |   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); | 
| 6206 |   pCur->info.nSize = 0; | 
| 6207 |   if( pCur->eState!=CURSOR_VALID | 
| 6208 |    || pCur->ix==0 | 
| 6209 |    || pCur->pPage->leaf==0 | 
| 6210 |   ){ | 
| 6211 |     return btreePrevious(pCur); | 
| 6212 |   } | 
| 6213 |   pCur->ix--; | 
| 6214 |   return SQLITE_OK; | 
| 6215 | } | 
| 6216 |  | 
| 6217 | /* | 
| 6218 | ** Allocate a new page from the database file. | 
| 6219 | ** | 
| 6220 | ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite() | 
| 6221 | ** has already been called on the new page.)  The new page has also | 
| 6222 | ** been referenced and the calling routine is responsible for calling | 
| 6223 | ** sqlite3PagerUnref() on the new page when it is done. | 
| 6224 | ** | 
| 6225 | ** SQLITE_OK is returned on success.  Any other return value indicates | 
| 6226 | ** an error.  *ppPage is set to NULL in the event of an error. | 
| 6227 | ** | 
| 6228 | ** If the "nearby" parameter is not 0, then an effort is made to  | 
| 6229 | ** locate a page close to the page number "nearby".  This can be used in an | 
| 6230 | ** attempt to keep related pages close to each other in the database file, | 
| 6231 | ** which in turn can make database access faster. | 
| 6232 | ** | 
| 6233 | ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists | 
| 6234 | ** anywhere on the free-list, then it is guaranteed to be returned.  If | 
| 6235 | ** eMode is BTALLOC_LT then the page returned will be less than or equal | 
| 6236 | ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there | 
| 6237 | ** are no restrictions on which page is returned. | 
| 6238 | */ | 
| 6239 | static int allocateBtreePage( | 
| 6240 |   BtShared *pBt,         /* The btree */ | 
| 6241 |   MemPage **ppPage,      /* Store pointer to the allocated page here */ | 
| 6242 |   Pgno *pPgno,           /* Store the page number here */ | 
| 6243 |   Pgno nearby,           /* Search for a page near this one */ | 
| 6244 |   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ | 
| 6245 | ){ | 
| 6246 |   MemPage *pPage1; | 
| 6247 |   int rc; | 
| 6248 |   u32 n;     /* Number of pages on the freelist */ | 
| 6249 |   u32 k;     /* Number of leaves on the trunk of the freelist */ | 
| 6250 |   MemPage *pTrunk = 0; | 
| 6251 |   MemPage *pPrevTrunk = 0; | 
| 6252 |   Pgno mxPage;     /* Total size of the database file */ | 
| 6253 |  | 
| 6254 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 6255 |   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); | 
| 6256 |   pPage1 = pBt->pPage1; | 
| 6257 |   mxPage = btreePagecount(pBt); | 
| 6258 |   /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36 | 
| 6259 |   ** stores the total number of pages on the freelist. */ | 
| 6260 |   n = get4byte(&pPage1->aData[36]); | 
| 6261 |   testcase( n==mxPage-1 ); | 
| 6262 |   if( n>=mxPage ){ | 
| 6263 |     return SQLITE_CORRUPT_BKPT; | 
| 6264 |   } | 
| 6265 |   if( n>0 ){ | 
| 6266 |     /* There are pages on the freelist.  Reuse one of those pages. */ | 
| 6267 |     Pgno iTrunk; | 
| 6268 |     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ | 
| 6269 |     u32 nSearch = 0;   /* Count of the number of search attempts */ | 
| 6270 |      | 
| 6271 |     /* If eMode==BTALLOC_EXACT and a query of the pointer-map | 
| 6272 |     ** shows that the page 'nearby' is somewhere on the free-list, then | 
| 6273 |     ** the entire-list will be searched for that page. | 
| 6274 |     */ | 
| 6275 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 6276 |     if( eMode==BTALLOC_EXACT ){ | 
| 6277 |       if( nearby<=mxPage ){ | 
| 6278 |         u8 eType; | 
| 6279 |         assert( nearby>0 ); | 
| 6280 |         assert( pBt->autoVacuum ); | 
| 6281 |         rc = ptrmapGet(pBt, nearby, &eType, 0); | 
| 6282 |         if( rc ) return rc; | 
| 6283 |         if( eType==PTRMAP_FREEPAGE ){ | 
| 6284 |           searchList = 1; | 
| 6285 |         } | 
| 6286 |       } | 
| 6287 |     }else if( eMode==BTALLOC_LE ){ | 
| 6288 |       searchList = 1; | 
| 6289 |     } | 
| 6290 | #endif | 
| 6291 |  | 
| 6292 |     /* Decrement the free-list count by 1. Set iTrunk to the index of the | 
| 6293 |     ** first free-list trunk page. iPrevTrunk is initially 1. | 
| 6294 |     */ | 
| 6295 |     rc = sqlite3PagerWrite(pPage1->pDbPage); | 
| 6296 |     if( rc ) return rc; | 
| 6297 |     put4byte(&pPage1->aData[36], n-1); | 
| 6298 |  | 
| 6299 |     /* The code within this loop is run only once if the 'searchList' variable | 
| 6300 |     ** is not true. Otherwise, it runs once for each trunk-page on the | 
| 6301 |     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) | 
| 6302 |     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) | 
| 6303 |     */ | 
| 6304 |     do { | 
| 6305 |       pPrevTrunk = pTrunk; | 
| 6306 |       if( pPrevTrunk ){ | 
| 6307 |         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page | 
| 6308 |         ** is the page number of the next freelist trunk page in the list or | 
| 6309 |         ** zero if this is the last freelist trunk page. */ | 
| 6310 |         iTrunk = get4byte(&pPrevTrunk->aData[0]); | 
| 6311 |       }else{ | 
| 6312 |         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 | 
| 6313 |         ** stores the page number of the first page of the freelist, or zero if | 
| 6314 |         ** the freelist is empty. */ | 
| 6315 |         iTrunk = get4byte(&pPage1->aData[32]); | 
| 6316 |       } | 
| 6317 |       testcase( iTrunk==mxPage ); | 
| 6318 |       if( iTrunk>mxPage || nSearch++ > n ){ | 
| 6319 |         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); | 
| 6320 |       }else{ | 
| 6321 |         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); | 
| 6322 |       } | 
| 6323 |       if( rc ){ | 
| 6324 |         pTrunk = 0; | 
| 6325 |         goto end_allocate_page; | 
| 6326 |       } | 
| 6327 |       assert( pTrunk!=0 ); | 
| 6328 |       assert( pTrunk->aData!=0 ); | 
| 6329 |       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page | 
| 6330 |       ** is the number of leaf page pointers to follow. */ | 
| 6331 |       k = get4byte(&pTrunk->aData[4]); | 
| 6332 |       if( k==0 && !searchList ){ | 
| 6333 |         /* The trunk has no leaves and the list is not being searched.  | 
| 6334 |         ** So extract the trunk page itself and use it as the newly  | 
| 6335 |         ** allocated page */ | 
| 6336 |         assert( pPrevTrunk==0 ); | 
| 6337 |         rc = sqlite3PagerWrite(pTrunk->pDbPage); | 
| 6338 |         if( rc ){ | 
| 6339 |           goto end_allocate_page; | 
| 6340 |         } | 
| 6341 |         *pPgno = iTrunk; | 
| 6342 |         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); | 
| 6343 |         *ppPage = pTrunk; | 
| 6344 |         pTrunk = 0; | 
| 6345 |         TRACE(("ALLOCATE: %d trunk - %d free pages left\n" , *pPgno, n-1)); | 
| 6346 |       }else if( k>(u32)(pBt->usableSize/4 - 2) ){ | 
| 6347 |         /* Value of k is out of range.  Database corruption */ | 
| 6348 |         rc = SQLITE_CORRUPT_PGNO(iTrunk); | 
| 6349 |         goto end_allocate_page; | 
| 6350 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 6351 |       }else if( searchList  | 
| 6352 |             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))  | 
| 6353 |       ){ | 
| 6354 |         /* The list is being searched and this trunk page is the page | 
| 6355 |         ** to allocate, regardless of whether it has leaves. | 
| 6356 |         */ | 
| 6357 |         *pPgno = iTrunk; | 
| 6358 |         *ppPage = pTrunk; | 
| 6359 |         searchList = 0; | 
| 6360 |         rc = sqlite3PagerWrite(pTrunk->pDbPage); | 
| 6361 |         if( rc ){ | 
| 6362 |           goto end_allocate_page; | 
| 6363 |         } | 
| 6364 |         if( k==0 ){ | 
| 6365 |           if( !pPrevTrunk ){ | 
| 6366 |             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); | 
| 6367 |           }else{ | 
| 6368 |             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); | 
| 6369 |             if( rc!=SQLITE_OK ){ | 
| 6370 |               goto end_allocate_page; | 
| 6371 |             } | 
| 6372 |             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); | 
| 6373 |           } | 
| 6374 |         }else{ | 
| 6375 |           /* The trunk page is required by the caller but it contains  | 
| 6376 |           ** pointers to free-list leaves. The first leaf becomes a trunk | 
| 6377 |           ** page in this case. | 
| 6378 |           */ | 
| 6379 |           MemPage *pNewTrunk; | 
| 6380 |           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); | 
| 6381 |           if( iNewTrunk>mxPage ){  | 
| 6382 |             rc = SQLITE_CORRUPT_PGNO(iTrunk); | 
| 6383 |             goto end_allocate_page; | 
| 6384 |           } | 
| 6385 |           testcase( iNewTrunk==mxPage ); | 
| 6386 |           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); | 
| 6387 |           if( rc!=SQLITE_OK ){ | 
| 6388 |             goto end_allocate_page; | 
| 6389 |           } | 
| 6390 |           rc = sqlite3PagerWrite(pNewTrunk->pDbPage); | 
| 6391 |           if( rc!=SQLITE_OK ){ | 
| 6392 |             releasePage(pNewTrunk); | 
| 6393 |             goto end_allocate_page; | 
| 6394 |           } | 
| 6395 |           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); | 
| 6396 |           put4byte(&pNewTrunk->aData[4], k-1); | 
| 6397 |           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); | 
| 6398 |           releasePage(pNewTrunk); | 
| 6399 |           if( !pPrevTrunk ){ | 
| 6400 |             assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); | 
| 6401 |             put4byte(&pPage1->aData[32], iNewTrunk); | 
| 6402 |           }else{ | 
| 6403 |             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); | 
| 6404 |             if( rc ){ | 
| 6405 |               goto end_allocate_page; | 
| 6406 |             } | 
| 6407 |             put4byte(&pPrevTrunk->aData[0], iNewTrunk); | 
| 6408 |           } | 
| 6409 |         } | 
| 6410 |         pTrunk = 0; | 
| 6411 |         TRACE(("ALLOCATE: %d trunk - %d free pages left\n" , *pPgno, n-1)); | 
| 6412 | #endif | 
| 6413 |       }else if( k>0 ){ | 
| 6414 |         /* Extract a leaf from the trunk */ | 
| 6415 |         u32 closest; | 
| 6416 |         Pgno iPage; | 
| 6417 |         unsigned char *aData = pTrunk->aData; | 
| 6418 |         if( nearby>0 ){ | 
| 6419 |           u32 i; | 
| 6420 |           closest = 0; | 
| 6421 |           if( eMode==BTALLOC_LE ){ | 
| 6422 |             for(i=0; i<k; i++){ | 
| 6423 |               iPage = get4byte(&aData[8+i*4]); | 
| 6424 |               if( iPage<=nearby ){ | 
| 6425 |                 closest = i; | 
| 6426 |                 break; | 
| 6427 |               } | 
| 6428 |             } | 
| 6429 |           }else{ | 
| 6430 |             int dist; | 
| 6431 |             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); | 
| 6432 |             for(i=1; i<k; i++){ | 
| 6433 |               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); | 
| 6434 |               if( d2<dist ){ | 
| 6435 |                 closest = i; | 
| 6436 |                 dist = d2; | 
| 6437 |               } | 
| 6438 |             } | 
| 6439 |           } | 
| 6440 |         }else{ | 
| 6441 |           closest = 0; | 
| 6442 |         } | 
| 6443 |  | 
| 6444 |         iPage = get4byte(&aData[8+closest*4]); | 
| 6445 |         testcase( iPage==mxPage ); | 
| 6446 |         if( iPage>mxPage || iPage<2 ){ | 
| 6447 |           rc = SQLITE_CORRUPT_PGNO(iTrunk); | 
| 6448 |           goto end_allocate_page; | 
| 6449 |         } | 
| 6450 |         testcase( iPage==mxPage ); | 
| 6451 |         if( !searchList  | 
| 6452 |          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))  | 
| 6453 |         ){ | 
| 6454 |           int noContent; | 
| 6455 |           *pPgno = iPage; | 
| 6456 |           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"  | 
| 6457 |                  ": %d more free pages\n" , | 
| 6458 |                  *pPgno, closest+1, k, pTrunk->pgno, n-1)); | 
| 6459 |           rc = sqlite3PagerWrite(pTrunk->pDbPage); | 
| 6460 |           if( rc ) goto end_allocate_page; | 
| 6461 |           if( closest<k-1 ){ | 
| 6462 |             memcpy(&aData[8+closest*4], &aData[4+k*4], 4); | 
| 6463 |           } | 
| 6464 |           put4byte(&aData[4], k-1); | 
| 6465 |           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; | 
| 6466 |           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); | 
| 6467 |           if( rc==SQLITE_OK ){ | 
| 6468 |             rc = sqlite3PagerWrite((*ppPage)->pDbPage); | 
| 6469 |             if( rc!=SQLITE_OK ){ | 
| 6470 |               releasePage(*ppPage); | 
| 6471 |               *ppPage = 0; | 
| 6472 |             } | 
| 6473 |           } | 
| 6474 |           searchList = 0; | 
| 6475 |         } | 
| 6476 |       } | 
| 6477 |       releasePage(pPrevTrunk); | 
| 6478 |       pPrevTrunk = 0; | 
| 6479 |     }while( searchList ); | 
| 6480 |   }else{ | 
| 6481 |     /* There are no pages on the freelist, so append a new page to the | 
| 6482 |     ** database image. | 
| 6483 |     ** | 
| 6484 |     ** Normally, new pages allocated by this block can be requested from the | 
| 6485 |     ** pager layer with the 'no-content' flag set. This prevents the pager | 
| 6486 |     ** from trying to read the pages content from disk. However, if the | 
| 6487 |     ** current transaction has already run one or more incremental-vacuum | 
| 6488 |     ** steps, then the page we are about to allocate may contain content | 
| 6489 |     ** that is required in the event of a rollback. In this case, do | 
| 6490 |     ** not set the no-content flag. This causes the pager to load and journal | 
| 6491 |     ** the current page content before overwriting it. | 
| 6492 |     ** | 
| 6493 |     ** Note that the pager will not actually attempt to load or journal  | 
| 6494 |     ** content for any page that really does lie past the end of the database | 
| 6495 |     ** file on disk. So the effects of disabling the no-content optimization | 
| 6496 |     ** here are confined to those pages that lie between the end of the | 
| 6497 |     ** database image and the end of the database file. | 
| 6498 |     */ | 
| 6499 |     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; | 
| 6500 |  | 
| 6501 |     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); | 
| 6502 |     if( rc ) return rc; | 
| 6503 |     pBt->nPage++; | 
| 6504 |     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; | 
| 6505 |  | 
| 6506 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 6507 |     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ | 
| 6508 |       /* If *pPgno refers to a pointer-map page, allocate two new pages | 
| 6509 |       ** at the end of the file instead of one. The first allocated page | 
| 6510 |       ** becomes a new pointer-map page, the second is used by the caller. | 
| 6511 |       */ | 
| 6512 |       MemPage *pPg = 0; | 
| 6513 |       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n" , pBt->nPage)); | 
| 6514 |       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); | 
| 6515 |       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); | 
| 6516 |       if( rc==SQLITE_OK ){ | 
| 6517 |         rc = sqlite3PagerWrite(pPg->pDbPage); | 
| 6518 |         releasePage(pPg); | 
| 6519 |       } | 
| 6520 |       if( rc ) return rc; | 
| 6521 |       pBt->nPage++; | 
| 6522 |       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } | 
| 6523 |     } | 
| 6524 | #endif | 
| 6525 |     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); | 
| 6526 |     *pPgno = pBt->nPage; | 
| 6527 |  | 
| 6528 |     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); | 
| 6529 |     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); | 
| 6530 |     if( rc ) return rc; | 
| 6531 |     rc = sqlite3PagerWrite((*ppPage)->pDbPage); | 
| 6532 |     if( rc!=SQLITE_OK ){ | 
| 6533 |       releasePage(*ppPage); | 
| 6534 |       *ppPage = 0; | 
| 6535 |     } | 
| 6536 |     TRACE(("ALLOCATE: %d from end of file\n" , *pPgno)); | 
| 6537 |   } | 
| 6538 |  | 
| 6539 |   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); | 
| 6540 |  | 
| 6541 | end_allocate_page: | 
| 6542 |   releasePage(pTrunk); | 
| 6543 |   releasePage(pPrevTrunk); | 
| 6544 |   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); | 
| 6545 |   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); | 
| 6546 |   return rc; | 
| 6547 | } | 
| 6548 |  | 
| 6549 | /* | 
| 6550 | ** This function is used to add page iPage to the database file free-list.  | 
| 6551 | ** It is assumed that the page is not already a part of the free-list. | 
| 6552 | ** | 
| 6553 | ** The value passed as the second argument to this function is optional. | 
| 6554 | ** If the caller happens to have a pointer to the MemPage object  | 
| 6555 | ** corresponding to page iPage handy, it may pass it as the second value.  | 
| 6556 | ** Otherwise, it may pass NULL. | 
| 6557 | ** | 
| 6558 | ** If a pointer to a MemPage object is passed as the second argument, | 
| 6559 | ** its reference count is not altered by this function. | 
| 6560 | */ | 
| 6561 | static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ | 
| 6562 |   MemPage *pTrunk = 0;                /* Free-list trunk page */ | 
| 6563 |   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */  | 
| 6564 |   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */ | 
| 6565 |   MemPage *pPage;                     /* Page being freed. May be NULL. */ | 
| 6566 |   int rc;                             /* Return Code */ | 
| 6567 |   u32 nFree;                          /* Initial number of pages on free-list */ | 
| 6568 |  | 
| 6569 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 6570 |   assert( CORRUPT_DB || iPage>1 ); | 
| 6571 |   assert( !pMemPage || pMemPage->pgno==iPage ); | 
| 6572 |  | 
| 6573 |   if( iPage<2 || iPage>pBt->nPage ){ | 
| 6574 |     return SQLITE_CORRUPT_BKPT; | 
| 6575 |   } | 
| 6576 |   if( pMemPage ){ | 
| 6577 |     pPage = pMemPage; | 
| 6578 |     sqlite3PagerRef(pPage->pDbPage); | 
| 6579 |   }else{ | 
| 6580 |     pPage = btreePageLookup(pBt, iPage); | 
| 6581 |   } | 
| 6582 |  | 
| 6583 |   /* Increment the free page count on pPage1 */ | 
| 6584 |   rc = sqlite3PagerWrite(pPage1->pDbPage); | 
| 6585 |   if( rc ) goto freepage_out; | 
| 6586 |   nFree = get4byte(&pPage1->aData[36]); | 
| 6587 |   put4byte(&pPage1->aData[36], nFree+1); | 
| 6588 |  | 
| 6589 |   if( pBt->btsFlags & BTS_SECURE_DELETE ){ | 
| 6590 |     /* If the secure_delete option is enabled, then | 
| 6591 |     ** always fully overwrite deleted information with zeros. | 
| 6592 |     */ | 
| 6593 |     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) | 
| 6594 |      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) | 
| 6595 |     ){ | 
| 6596 |       goto freepage_out; | 
| 6597 |     } | 
| 6598 |     memset(pPage->aData, 0, pPage->pBt->pageSize); | 
| 6599 |   } | 
| 6600 |  | 
| 6601 |   /* If the database supports auto-vacuum, write an entry in the pointer-map | 
| 6602 |   ** to indicate that the page is free. | 
| 6603 |   */ | 
| 6604 |   if( ISAUTOVACUUM ){ | 
| 6605 |     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); | 
| 6606 |     if( rc ) goto freepage_out; | 
| 6607 |   } | 
| 6608 |  | 
| 6609 |   /* Now manipulate the actual database free-list structure. There are two | 
| 6610 |   ** possibilities. If the free-list is currently empty, or if the first | 
| 6611 |   ** trunk page in the free-list is full, then this page will become a | 
| 6612 |   ** new free-list trunk page. Otherwise, it will become a leaf of the | 
| 6613 |   ** first trunk page in the current free-list. This block tests if it | 
| 6614 |   ** is possible to add the page as a new free-list leaf. | 
| 6615 |   */ | 
| 6616 |   if( nFree!=0 ){ | 
| 6617 |     u32 nLeaf;                /* Initial number of leaf cells on trunk page */ | 
| 6618 |  | 
| 6619 |     iTrunk = get4byte(&pPage1->aData[32]); | 
| 6620 |     if( iTrunk>btreePagecount(pBt) ){ | 
| 6621 |       rc = SQLITE_CORRUPT_BKPT; | 
| 6622 |       goto freepage_out; | 
| 6623 |     } | 
| 6624 |     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); | 
| 6625 |     if( rc!=SQLITE_OK ){ | 
| 6626 |       goto freepage_out; | 
| 6627 |     } | 
| 6628 |  | 
| 6629 |     nLeaf = get4byte(&pTrunk->aData[4]); | 
| 6630 |     assert( pBt->usableSize>32 ); | 
| 6631 |     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ | 
| 6632 |       rc = SQLITE_CORRUPT_BKPT; | 
| 6633 |       goto freepage_out; | 
| 6634 |     } | 
| 6635 |     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ | 
| 6636 |       /* In this case there is room on the trunk page to insert the page | 
| 6637 |       ** being freed as a new leaf. | 
| 6638 |       ** | 
| 6639 |       ** Note that the trunk page is not really full until it contains | 
| 6640 |       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have | 
| 6641 |       ** coded.  But due to a coding error in versions of SQLite prior to | 
| 6642 |       ** 3.6.0, databases with freelist trunk pages holding more than | 
| 6643 |       ** usableSize/4 - 8 entries will be reported as corrupt.  In order | 
| 6644 |       ** to maintain backwards compatibility with older versions of SQLite, | 
| 6645 |       ** we will continue to restrict the number of entries to usableSize/4 - 8 | 
| 6646 |       ** for now.  At some point in the future (once everyone has upgraded | 
| 6647 |       ** to 3.6.0 or later) we should consider fixing the conditional above | 
| 6648 |       ** to read "usableSize/4-2" instead of "usableSize/4-8". | 
| 6649 |       ** | 
| 6650 |       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still | 
| 6651 |       ** avoid using the last six entries in the freelist trunk page array in | 
| 6652 |       ** order that database files created by newer versions of SQLite can be | 
| 6653 |       ** read by older versions of SQLite. | 
| 6654 |       */ | 
| 6655 |       rc = sqlite3PagerWrite(pTrunk->pDbPage); | 
| 6656 |       if( rc==SQLITE_OK ){ | 
| 6657 |         put4byte(&pTrunk->aData[4], nLeaf+1); | 
| 6658 |         put4byte(&pTrunk->aData[8+nLeaf*4], iPage); | 
| 6659 |         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ | 
| 6660 |           sqlite3PagerDontWrite(pPage->pDbPage); | 
| 6661 |         } | 
| 6662 |         rc = btreeSetHasContent(pBt, iPage); | 
| 6663 |       } | 
| 6664 |       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n" ,pPage->pgno,pTrunk->pgno)); | 
| 6665 |       goto freepage_out; | 
| 6666 |     } | 
| 6667 |   } | 
| 6668 |  | 
| 6669 |   /* If control flows to this point, then it was not possible to add the | 
| 6670 |   ** the page being freed as a leaf page of the first trunk in the free-list. | 
| 6671 |   ** Possibly because the free-list is empty, or possibly because the  | 
| 6672 |   ** first trunk in the free-list is full. Either way, the page being freed | 
| 6673 |   ** will become the new first trunk page in the free-list. | 
| 6674 |   */ | 
| 6675 |   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ | 
| 6676 |     goto freepage_out; | 
| 6677 |   } | 
| 6678 |   rc = sqlite3PagerWrite(pPage->pDbPage); | 
| 6679 |   if( rc!=SQLITE_OK ){ | 
| 6680 |     goto freepage_out; | 
| 6681 |   } | 
| 6682 |   put4byte(pPage->aData, iTrunk); | 
| 6683 |   put4byte(&pPage->aData[4], 0); | 
| 6684 |   put4byte(&pPage1->aData[32], iPage); | 
| 6685 |   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n" , pPage->pgno, iTrunk)); | 
| 6686 |  | 
| 6687 | freepage_out: | 
| 6688 |   if( pPage ){ | 
| 6689 |     pPage->isInit = 0; | 
| 6690 |   } | 
| 6691 |   releasePage(pPage); | 
| 6692 |   releasePage(pTrunk); | 
| 6693 |   return rc; | 
| 6694 | } | 
| 6695 | static void freePage(MemPage *pPage, int *pRC){ | 
| 6696 |   if( (*pRC)==SQLITE_OK ){ | 
| 6697 |     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); | 
| 6698 |   } | 
| 6699 | } | 
| 6700 |  | 
| 6701 | /* | 
| 6702 | ** Free the overflow pages associated with the given Cell. | 
| 6703 | */ | 
| 6704 | static SQLITE_NOINLINE int clearCellOverflow( | 
| 6705 |   MemPage *pPage,          /* The page that contains the Cell */ | 
| 6706 |   unsigned char *pCell,    /* First byte of the Cell */ | 
| 6707 |   CellInfo *pInfo          /* Size information about the cell */ | 
| 6708 | ){ | 
| 6709 |   BtShared *pBt; | 
| 6710 |   Pgno ovflPgno; | 
| 6711 |   int rc; | 
| 6712 |   int nOvfl; | 
| 6713 |   u32 ovflPageSize; | 
| 6714 |  | 
| 6715 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 6716 |   assert( pInfo->nLocal!=pInfo->nPayload ); | 
| 6717 |   testcase( pCell + pInfo->nSize == pPage->aDataEnd ); | 
| 6718 |   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); | 
| 6719 |   if( pCell + pInfo->nSize > pPage->aDataEnd ){ | 
| 6720 |     /* Cell extends past end of page */ | 
| 6721 |     return SQLITE_CORRUPT_PAGE(pPage); | 
| 6722 |   } | 
| 6723 |   ovflPgno = get4byte(pCell + pInfo->nSize - 4); | 
| 6724 |   pBt = pPage->pBt; | 
| 6725 |   assert( pBt->usableSize > 4 ); | 
| 6726 |   ovflPageSize = pBt->usableSize - 4; | 
| 6727 |   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; | 
| 6728 |   assert( nOvfl>0 ||  | 
| 6729 |     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) | 
| 6730 |   ); | 
| 6731 |   while( nOvfl-- ){ | 
| 6732 |     Pgno iNext = 0; | 
| 6733 |     MemPage *pOvfl = 0; | 
| 6734 |     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ | 
| 6735 |       /* 0 is not a legal page number and page 1 cannot be an  | 
| 6736 |       ** overflow page. Therefore if ovflPgno<2 or past the end of the  | 
| 6737 |       ** file the database must be corrupt. */ | 
| 6738 |       return SQLITE_CORRUPT_BKPT; | 
| 6739 |     } | 
| 6740 |     if( nOvfl ){ | 
| 6741 |       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); | 
| 6742 |       if( rc ) return rc; | 
| 6743 |     } | 
| 6744 |  | 
| 6745 |     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) | 
| 6746 |      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 | 
| 6747 |     ){ | 
| 6748 |       /* There is no reason any cursor should have an outstanding reference  | 
| 6749 |       ** to an overflow page belonging to a cell that is being deleted/updated. | 
| 6750 |       ** So if there exists more than one reference to this page, then it  | 
| 6751 |       ** must not really be an overflow page and the database must be corrupt.  | 
| 6752 |       ** It is helpful to detect this before calling freePage2(), as  | 
| 6753 |       ** freePage2() may zero the page contents if secure-delete mode is | 
| 6754 |       ** enabled. If this 'overflow' page happens to be a page that the | 
| 6755 |       ** caller is iterating through or using in some other way, this | 
| 6756 |       ** can be problematic. | 
| 6757 |       */ | 
| 6758 |       rc = SQLITE_CORRUPT_BKPT; | 
| 6759 |     }else{ | 
| 6760 |       rc = freePage2(pBt, pOvfl, ovflPgno); | 
| 6761 |     } | 
| 6762 |  | 
| 6763 |     if( pOvfl ){ | 
| 6764 |       sqlite3PagerUnref(pOvfl->pDbPage); | 
| 6765 |     } | 
| 6766 |     if( rc ) return rc; | 
| 6767 |     ovflPgno = iNext; | 
| 6768 |   } | 
| 6769 |   return SQLITE_OK; | 
| 6770 | } | 
| 6771 |  | 
| 6772 | /* Call xParseCell to compute the size of a cell.  If the cell contains | 
| 6773 | ** overflow, then invoke cellClearOverflow to clear out that overflow. | 
| 6774 | ** STore the result code (SQLITE_OK or some error code) in rc. | 
| 6775 | ** | 
| 6776 | ** Implemented as macro to force inlining for performance. | 
| 6777 | */ | 
| 6778 | #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo)   \ | 
| 6779 |   pPage->xParseCell(pPage, pCell, &sInfo);          \ | 
| 6780 |   if( sInfo.nLocal!=sInfo.nPayload ){               \ | 
| 6781 |     rc = clearCellOverflow(pPage, pCell, &sInfo);   \ | 
| 6782 |   }else{                                            \ | 
| 6783 |     rc = SQLITE_OK;                                 \ | 
| 6784 |   } | 
| 6785 |  | 
| 6786 |  | 
| 6787 | /* | 
| 6788 | ** Create the byte sequence used to represent a cell on page pPage | 
| 6789 | ** and write that byte sequence into pCell[].  Overflow pages are | 
| 6790 | ** allocated and filled in as necessary.  The calling procedure | 
| 6791 | ** is responsible for making sure sufficient space has been allocated | 
| 6792 | ** for pCell[]. | 
| 6793 | ** | 
| 6794 | ** Note that pCell does not necessary need to point to the pPage->aData | 
| 6795 | ** area.  pCell might point to some temporary storage.  The cell will | 
| 6796 | ** be constructed in this temporary area then copied into pPage->aData | 
| 6797 | ** later. | 
| 6798 | */ | 
| 6799 | static int fillInCell( | 
| 6800 |   MemPage *pPage,                /* The page that contains the cell */ | 
| 6801 |   unsigned char *pCell,          /* Complete text of the cell */ | 
| 6802 |   const BtreePayload *pX,        /* Payload with which to construct the cell */ | 
| 6803 |   int *pnSize                    /* Write cell size here */ | 
| 6804 | ){ | 
| 6805 |   int nPayload; | 
| 6806 |   const u8 *pSrc; | 
| 6807 |   int nSrc, n, rc, mn; | 
| 6808 |   int spaceLeft; | 
| 6809 |   MemPage *pToRelease; | 
| 6810 |   unsigned char *pPrior; | 
| 6811 |   unsigned char *pPayload; | 
| 6812 |   BtShared *pBt; | 
| 6813 |   Pgno pgnoOvfl; | 
| 6814 |   int ; | 
| 6815 |  | 
| 6816 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 6817 |  | 
| 6818 |   /* pPage is not necessarily writeable since pCell might be auxiliary | 
| 6819 |   ** buffer space that is separate from the pPage buffer area */ | 
| 6820 |   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] | 
| 6821 |             || sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 6822 |  | 
| 6823 |   /* Fill in the header. */ | 
| 6824 |   nHeader = pPage->childPtrSize; | 
| 6825 |   if( pPage->intKey ){ | 
| 6826 |     nPayload = pX->nData + pX->nZero; | 
| 6827 |     pSrc = pX->pData; | 
| 6828 |     nSrc = pX->nData; | 
| 6829 |     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ | 
| 6830 |     nHeader += putVarint32(&pCell[nHeader], nPayload); | 
| 6831 |     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); | 
| 6832 |   }else{ | 
| 6833 |     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); | 
| 6834 |     nSrc = nPayload = (int)pX->nKey; | 
| 6835 |     pSrc = pX->pKey; | 
| 6836 |     nHeader += putVarint32(&pCell[nHeader], nPayload); | 
| 6837 |   } | 
| 6838 |    | 
| 6839 |   /* Fill in the payload */ | 
| 6840 |   pPayload = &pCell[nHeader]; | 
| 6841 |   if( nPayload<=pPage->maxLocal ){ | 
| 6842 |     /* This is the common case where everything fits on the btree page | 
| 6843 |     ** and no overflow pages are required. */ | 
| 6844 |     n = nHeader + nPayload; | 
| 6845 |     testcase( n==3 ); | 
| 6846 |     testcase( n==4 ); | 
| 6847 |     if( n<4 ) n = 4; | 
| 6848 |     *pnSize = n; | 
| 6849 |     assert( nSrc<=nPayload ); | 
| 6850 |     testcase( nSrc<nPayload ); | 
| 6851 |     memcpy(pPayload, pSrc, nSrc); | 
| 6852 |     memset(pPayload+nSrc, 0, nPayload-nSrc); | 
| 6853 |     return SQLITE_OK; | 
| 6854 |   } | 
| 6855 |  | 
| 6856 |   /* If we reach this point, it means that some of the content will need | 
| 6857 |   ** to spill onto overflow pages. | 
| 6858 |   */ | 
| 6859 |   mn = pPage->minLocal; | 
| 6860 |   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); | 
| 6861 |   testcase( n==pPage->maxLocal ); | 
| 6862 |   testcase( n==pPage->maxLocal+1 ); | 
| 6863 |   if( n > pPage->maxLocal ) n = mn; | 
| 6864 |   spaceLeft = n; | 
| 6865 |   *pnSize = n + nHeader + 4; | 
| 6866 |   pPrior = &pCell[nHeader+n]; | 
| 6867 |   pToRelease = 0; | 
| 6868 |   pgnoOvfl = 0; | 
| 6869 |   pBt = pPage->pBt; | 
| 6870 |  | 
| 6871 |   /* At this point variables should be set as follows: | 
| 6872 |   ** | 
| 6873 |   **   nPayload           Total payload size in bytes | 
| 6874 |   **   pPayload           Begin writing payload here | 
| 6875 |   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft, | 
| 6876 |   **                      that means content must spill into overflow pages. | 
| 6877 |   **   *pnSize            Size of the local cell (not counting overflow pages) | 
| 6878 |   **   pPrior             Where to write the pgno of the first overflow page | 
| 6879 |   ** | 
| 6880 |   ** Use a call to btreeParseCellPtr() to verify that the values above | 
| 6881 |   ** were computed correctly. | 
| 6882 |   */ | 
| 6883 | #ifdef SQLITE_DEBUG | 
| 6884 |   { | 
| 6885 |     CellInfo info; | 
| 6886 |     pPage->xParseCell(pPage, pCell, &info); | 
| 6887 |     assert( nHeader==(int)(info.pPayload - pCell) ); | 
| 6888 |     assert( info.nKey==pX->nKey ); | 
| 6889 |     assert( *pnSize == info.nSize ); | 
| 6890 |     assert( spaceLeft == info.nLocal ); | 
| 6891 |   } | 
| 6892 | #endif | 
| 6893 |  | 
| 6894 |   /* Write the payload into the local Cell and any extra into overflow pages */ | 
| 6895 |   while( 1 ){ | 
| 6896 |     n = nPayload; | 
| 6897 |     if( n>spaceLeft ) n = spaceLeft; | 
| 6898 |  | 
| 6899 |     /* If pToRelease is not zero than pPayload points into the data area | 
| 6900 |     ** of pToRelease.  Make sure pToRelease is still writeable. */ | 
| 6901 |     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); | 
| 6902 |  | 
| 6903 |     /* If pPayload is part of the data area of pPage, then make sure pPage | 
| 6904 |     ** is still writeable */ | 
| 6905 |     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] | 
| 6906 |             || sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 6907 |  | 
| 6908 |     if( nSrc>=n ){ | 
| 6909 |       memcpy(pPayload, pSrc, n); | 
| 6910 |     }else if( nSrc>0 ){ | 
| 6911 |       n = nSrc; | 
| 6912 |       memcpy(pPayload, pSrc, n); | 
| 6913 |     }else{ | 
| 6914 |       memset(pPayload, 0, n); | 
| 6915 |     } | 
| 6916 |     nPayload -= n; | 
| 6917 |     if( nPayload<=0 ) break; | 
| 6918 |     pPayload += n; | 
| 6919 |     pSrc += n; | 
| 6920 |     nSrc -= n; | 
| 6921 |     spaceLeft -= n; | 
| 6922 |     if( spaceLeft==0 ){ | 
| 6923 |       MemPage *pOvfl = 0; | 
| 6924 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 6925 |       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ | 
| 6926 |       if( pBt->autoVacuum ){ | 
| 6927 |         do{ | 
| 6928 |           pgnoOvfl++; | 
| 6929 |         } while(  | 
| 6930 |           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)  | 
| 6931 |         ); | 
| 6932 |       } | 
| 6933 | #endif | 
| 6934 |       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); | 
| 6935 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 6936 |       /* If the database supports auto-vacuum, and the second or subsequent | 
| 6937 |       ** overflow page is being allocated, add an entry to the pointer-map | 
| 6938 |       ** for that page now.  | 
| 6939 |       ** | 
| 6940 |       ** If this is the first overflow page, then write a partial entry  | 
| 6941 |       ** to the pointer-map. If we write nothing to this pointer-map slot, | 
| 6942 |       ** then the optimistic overflow chain processing in clearCell() | 
| 6943 |       ** may misinterpret the uninitialized values and delete the | 
| 6944 |       ** wrong pages from the database. | 
| 6945 |       */ | 
| 6946 |       if( pBt->autoVacuum && rc==SQLITE_OK ){ | 
| 6947 |         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); | 
| 6948 |         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); | 
| 6949 |         if( rc ){ | 
| 6950 |           releasePage(pOvfl); | 
| 6951 |         } | 
| 6952 |       } | 
| 6953 | #endif | 
| 6954 |       if( rc ){ | 
| 6955 |         releasePage(pToRelease); | 
| 6956 |         return rc; | 
| 6957 |       } | 
| 6958 |  | 
| 6959 |       /* If pToRelease is not zero than pPrior points into the data area | 
| 6960 |       ** of pToRelease.  Make sure pToRelease is still writeable. */ | 
| 6961 |       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); | 
| 6962 |  | 
| 6963 |       /* If pPrior is part of the data area of pPage, then make sure pPage | 
| 6964 |       ** is still writeable */ | 
| 6965 |       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] | 
| 6966 |             || sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 6967 |  | 
| 6968 |       put4byte(pPrior, pgnoOvfl); | 
| 6969 |       releasePage(pToRelease); | 
| 6970 |       pToRelease = pOvfl; | 
| 6971 |       pPrior = pOvfl->aData; | 
| 6972 |       put4byte(pPrior, 0); | 
| 6973 |       pPayload = &pOvfl->aData[4]; | 
| 6974 |       spaceLeft = pBt->usableSize - 4; | 
| 6975 |     } | 
| 6976 |   } | 
| 6977 |   releasePage(pToRelease); | 
| 6978 |   return SQLITE_OK; | 
| 6979 | } | 
| 6980 |  | 
| 6981 | /* | 
| 6982 | ** Remove the i-th cell from pPage.  This routine effects pPage only. | 
| 6983 | ** The cell content is not freed or deallocated.  It is assumed that | 
| 6984 | ** the cell content has been copied someplace else.  This routine just | 
| 6985 | ** removes the reference to the cell from pPage. | 
| 6986 | ** | 
| 6987 | ** "sz" must be the number of bytes in the cell. | 
| 6988 | */ | 
| 6989 | static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ | 
| 6990 |   u32 pc;         /* Offset to cell content of cell being deleted */ | 
| 6991 |   u8 *data;       /* pPage->aData */ | 
| 6992 |   u8 *ptr;        /* Used to move bytes around within data[] */ | 
| 6993 |   int rc;         /* The return code */ | 
| 6994 |   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */ | 
| 6995 |  | 
| 6996 |   if( *pRC ) return; | 
| 6997 |   assert( idx>=0 ); | 
| 6998 |   assert( idx<pPage->nCell ); | 
| 6999 |   assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); | 
| 7000 |   assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 7001 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 7002 |   assert( pPage->nFree>=0 ); | 
| 7003 |   data = pPage->aData; | 
| 7004 |   ptr = &pPage->aCellIdx[2*idx]; | 
| 7005 |   assert( pPage->pBt->usableSize > (u32)(ptr-data) ); | 
| 7006 |   pc = get2byte(ptr); | 
| 7007 |   hdr = pPage->hdrOffset; | 
| 7008 |   testcase( pc==(u32)get2byte(&data[hdr+5]) ); | 
| 7009 |   testcase( pc+sz==pPage->pBt->usableSize ); | 
| 7010 |   if( pc+sz > pPage->pBt->usableSize ){ | 
| 7011 |     *pRC = SQLITE_CORRUPT_BKPT; | 
| 7012 |     return; | 
| 7013 |   } | 
| 7014 |   rc = freeSpace(pPage, pc, sz); | 
| 7015 |   if( rc ){ | 
| 7016 |     *pRC = rc; | 
| 7017 |     return; | 
| 7018 |   } | 
| 7019 |   pPage->nCell--; | 
| 7020 |   if( pPage->nCell==0 ){ | 
| 7021 |     memset(&data[hdr+1], 0, 4); | 
| 7022 |     data[hdr+7] = 0; | 
| 7023 |     put2byte(&data[hdr+5], pPage->pBt->usableSize); | 
| 7024 |     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset | 
| 7025 |                        - pPage->childPtrSize - 8; | 
| 7026 |   }else{ | 
| 7027 |     memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); | 
| 7028 |     put2byte(&data[hdr+3], pPage->nCell); | 
| 7029 |     pPage->nFree += 2; | 
| 7030 |   } | 
| 7031 | } | 
| 7032 |  | 
| 7033 | /* | 
| 7034 | ** Insert a new cell on pPage at cell index "i".  pCell points to the | 
| 7035 | ** content of the cell. | 
| 7036 | ** | 
| 7037 | ** If the cell content will fit on the page, then put it there.  If it | 
| 7038 | ** will not fit, then make a copy of the cell content into pTemp if | 
| 7039 | ** pTemp is not null.  Regardless of pTemp, allocate a new entry | 
| 7040 | ** in pPage->apOvfl[] and make it point to the cell content (either | 
| 7041 | ** in pTemp or the original pCell) and also record its index.  | 
| 7042 | ** Allocating a new entry in pPage->aCell[] implies that  | 
| 7043 | ** pPage->nOverflow is incremented. | 
| 7044 | ** | 
| 7045 | ** *pRC must be SQLITE_OK when this routine is called. | 
| 7046 | */ | 
| 7047 | static void insertCell( | 
| 7048 |   MemPage *pPage,   /* Page into which we are copying */ | 
| 7049 |   int i,            /* New cell becomes the i-th cell of the page */ | 
| 7050 |   u8 *pCell,        /* Content of the new cell */ | 
| 7051 |   int sz,           /* Bytes of content in pCell */ | 
| 7052 |   u8 *pTemp,        /* Temp storage space for pCell, if needed */ | 
| 7053 |   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */ | 
| 7054 |   int *pRC          /* Read and write return code from here */ | 
| 7055 | ){ | 
| 7056 |   int idx = 0;      /* Where to write new cell content in data[] */ | 
| 7057 |   int j;            /* Loop counter */ | 
| 7058 |   u8 *data;         /* The content of the whole page */ | 
| 7059 |   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */ | 
| 7060 |  | 
| 7061 |   assert( *pRC==SQLITE_OK ); | 
| 7062 |   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); | 
| 7063 |   assert( MX_CELL(pPage->pBt)<=10921 ); | 
| 7064 |   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); | 
| 7065 |   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); | 
| 7066 |   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); | 
| 7067 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 7068 |   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); | 
| 7069 |   assert( pPage->nFree>=0 ); | 
| 7070 |   if( pPage->nOverflow || sz+2>pPage->nFree ){ | 
| 7071 |     if( pTemp ){ | 
| 7072 |       memcpy(pTemp, pCell, sz); | 
| 7073 |       pCell = pTemp; | 
| 7074 |     } | 
| 7075 |     if( iChild ){ | 
| 7076 |       put4byte(pCell, iChild); | 
| 7077 |     } | 
| 7078 |     j = pPage->nOverflow++; | 
| 7079 |     /* Comparison against ArraySize-1 since we hold back one extra slot | 
| 7080 |     ** as a contingency.  In other words, never need more than 3 overflow | 
| 7081 |     ** slots but 4 are allocated, just to be safe. */ | 
| 7082 |     assert( j < ArraySize(pPage->apOvfl)-1 ); | 
| 7083 |     pPage->apOvfl[j] = pCell; | 
| 7084 |     pPage->aiOvfl[j] = (u16)i; | 
| 7085 |  | 
| 7086 |     /* When multiple overflows occur, they are always sequential and in | 
| 7087 |     ** sorted order.  This invariants arise because multiple overflows can | 
| 7088 |     ** only occur when inserting divider cells into the parent page during | 
| 7089 |     ** balancing, and the dividers are adjacent and sorted. | 
| 7090 |     */ | 
| 7091 |     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ | 
| 7092 |     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */ | 
| 7093 |   }else{ | 
| 7094 |     int rc = sqlite3PagerWrite(pPage->pDbPage); | 
| 7095 |     if( rc!=SQLITE_OK ){ | 
| 7096 |       *pRC = rc; | 
| 7097 |       return; | 
| 7098 |     } | 
| 7099 |     assert( sqlite3PagerIswriteable(pPage->pDbPage) ); | 
| 7100 |     data = pPage->aData; | 
| 7101 |     assert( &data[pPage->cellOffset]==pPage->aCellIdx ); | 
| 7102 |     rc = allocateSpace(pPage, sz, &idx); | 
| 7103 |     if( rc ){ *pRC = rc; return; } | 
| 7104 |     /* The allocateSpace() routine guarantees the following properties | 
| 7105 |     ** if it returns successfully */ | 
| 7106 |     assert( idx >= 0 ); | 
| 7107 |     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); | 
| 7108 |     assert( idx+sz <= (int)pPage->pBt->usableSize ); | 
| 7109 |     pPage->nFree -= (u16)(2 + sz); | 
| 7110 |     if( iChild ){ | 
| 7111 |       /* In a corrupt database where an entry in the cell index section of | 
| 7112 |       ** a btree page has a value of 3 or less, the pCell value might point | 
| 7113 |       ** as many as 4 bytes in front of the start of the aData buffer for | 
| 7114 |       ** the source page.  Make sure this does not cause problems by not | 
| 7115 |       ** reading the first 4 bytes */ | 
| 7116 |       memcpy(&data[idx+4], pCell+4, sz-4); | 
| 7117 |       put4byte(&data[idx], iChild); | 
| 7118 |     }else{ | 
| 7119 |       memcpy(&data[idx], pCell, sz); | 
| 7120 |     } | 
| 7121 |     pIns = pPage->aCellIdx + i*2; | 
| 7122 |     memmove(pIns+2, pIns, 2*(pPage->nCell - i)); | 
| 7123 |     put2byte(pIns, idx); | 
| 7124 |     pPage->nCell++; | 
| 7125 |     /* increment the cell count */ | 
| 7126 |     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; | 
| 7127 |     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); | 
| 7128 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 7129 |     if( pPage->pBt->autoVacuum ){ | 
| 7130 |       /* The cell may contain a pointer to an overflow page. If so, write | 
| 7131 |       ** the entry for the overflow page into the pointer map. | 
| 7132 |       */ | 
| 7133 |       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); | 
| 7134 |     } | 
| 7135 | #endif | 
| 7136 |   } | 
| 7137 | } | 
| 7138 |  | 
| 7139 | /* | 
| 7140 | ** The following parameters determine how many adjacent pages get involved | 
| 7141 | ** in a balancing operation.  NN is the number of neighbors on either side | 
| 7142 | ** of the page that participate in the balancing operation.  NB is the | 
| 7143 | ** total number of pages that participate, including the target page and | 
| 7144 | ** NN neighbors on either side. | 
| 7145 | ** | 
| 7146 | ** The minimum value of NN is 1 (of course).  Increasing NN above 1 | 
| 7147 | ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance | 
| 7148 | ** in exchange for a larger degradation in INSERT and UPDATE performance. | 
| 7149 | ** The value of NN appears to give the best results overall. | 
| 7150 | ** | 
| 7151 | ** (Later:) The description above makes it seem as if these values are | 
| 7152 | ** tunable - as if you could change them and recompile and it would all work. | 
| 7153 | ** But that is unlikely.  NB has been 3 since the inception of SQLite and | 
| 7154 | ** we have never tested any other value. | 
| 7155 | */ | 
| 7156 | #define NN 1             /* Number of neighbors on either side of pPage */ | 
| 7157 | #define NB 3             /* (NN*2+1): Total pages involved in the balance */ | 
| 7158 |  | 
| 7159 | /* | 
| 7160 | ** A CellArray object contains a cache of pointers and sizes for a | 
| 7161 | ** consecutive sequence of cells that might be held on multiple pages. | 
| 7162 | ** | 
| 7163 | ** The cells in this array are the divider cell or cells from the pParent | 
| 7164 | ** page plus up to three child pages.  There are a total of nCell cells. | 
| 7165 | ** | 
| 7166 | ** pRef is a pointer to one of the pages that contributes cells.  This is | 
| 7167 | ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize | 
| 7168 | ** which should be common to all pages that contribute cells to this array. | 
| 7169 | ** | 
| 7170 | ** apCell[] and szCell[] hold, respectively, pointers to the start of each | 
| 7171 | ** cell and the size of each cell.  Some of the apCell[] pointers might refer | 
| 7172 | ** to overflow cells.  In other words, some apCel[] pointers might not point | 
| 7173 | ** to content area of the pages. | 
| 7174 | ** | 
| 7175 | ** A szCell[] of zero means the size of that cell has not yet been computed. | 
| 7176 | ** | 
| 7177 | ** The cells come from as many as four different pages: | 
| 7178 | ** | 
| 7179 | **             ----------- | 
| 7180 | **             | Parent  | | 
| 7181 | **             ----------- | 
| 7182 | **            /     |     \ | 
| 7183 | **           /      |      \ | 
| 7184 | **  ---------   ---------   --------- | 
| 7185 | **  |Child-1|   |Child-2|   |Child-3| | 
| 7186 | **  ---------   ---------   --------- | 
| 7187 | ** | 
| 7188 | ** The order of cells is in the array is for an index btree is: | 
| 7189 | ** | 
| 7190 | **       1.  All cells from Child-1 in order | 
| 7191 | **       2.  The first divider cell from Parent | 
| 7192 | **       3.  All cells from Child-2 in order | 
| 7193 | **       4.  The second divider cell from Parent | 
| 7194 | **       5.  All cells from Child-3 in order | 
| 7195 | ** | 
| 7196 | ** For a table-btree (with rowids) the items 2 and 4 are empty because | 
| 7197 | ** content exists only in leaves and there are no divider cells. | 
| 7198 | ** | 
| 7199 | ** For an index btree, the apEnd[] array holds pointer to the end of page | 
| 7200 | ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, | 
| 7201 | ** respectively. The ixNx[] array holds the number of cells contained in | 
| 7202 | ** each of these 5 stages, and all stages to the left.  Hence: | 
| 7203 | ** | 
| 7204 | **    ixNx[0] = Number of cells in Child-1. | 
| 7205 | **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider. | 
| 7206 | **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. | 
| 7207 | **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells | 
| 7208 | **    ixNx[4] = Total number of cells. | 
| 7209 | ** | 
| 7210 | ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] | 
| 7211 | ** are used and they point to the leaf pages only, and the ixNx value are: | 
| 7212 | ** | 
| 7213 | **    ixNx[0] = Number of cells in Child-1. | 
| 7214 | **    ixNx[1] = Number of cells in Child-1 and Child-2. | 
| 7215 | **    ixNx[2] = Total number of cells. | 
| 7216 | ** | 
| 7217 | ** Sometimes when deleting, a child page can have zero cells.  In those | 
| 7218 | ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] | 
| 7219 | ** entries, shift down.  The end result is that each ixNx[] entry should | 
| 7220 | ** be larger than the previous | 
| 7221 | */ | 
| 7222 | typedef struct CellArray CellArray; | 
| 7223 | struct CellArray { | 
| 7224 |   int nCell;              /* Number of cells in apCell[] */ | 
| 7225 |   MemPage *pRef;          /* Reference page */ | 
| 7226 |   u8 **apCell;            /* All cells begin balanced */ | 
| 7227 |   u16 *szCell;            /* Local size of all cells in apCell[] */ | 
| 7228 |   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */ | 
| 7229 |   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */ | 
| 7230 | }; | 
| 7231 |  | 
| 7232 | /* | 
| 7233 | ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been | 
| 7234 | ** computed. | 
| 7235 | */ | 
| 7236 | static void populateCellCache(CellArray *p, int idx, int N){ | 
| 7237 |   assert( idx>=0 && idx+N<=p->nCell ); | 
| 7238 |   while( N>0 ){ | 
| 7239 |     assert( p->apCell[idx]!=0 ); | 
| 7240 |     if( p->szCell[idx]==0 ){ | 
| 7241 |       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); | 
| 7242 |     }else{ | 
| 7243 |       assert( CORRUPT_DB || | 
| 7244 |               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); | 
| 7245 |     } | 
| 7246 |     idx++; | 
| 7247 |     N--; | 
| 7248 |   } | 
| 7249 | } | 
| 7250 |  | 
| 7251 | /* | 
| 7252 | ** Return the size of the Nth element of the cell array | 
| 7253 | */ | 
| 7254 | static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ | 
| 7255 |   assert( N>=0 && N<p->nCell ); | 
| 7256 |   assert( p->szCell[N]==0 ); | 
| 7257 |   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); | 
| 7258 |   return p->szCell[N]; | 
| 7259 | } | 
| 7260 | static u16 cachedCellSize(CellArray *p, int N){ | 
| 7261 |   assert( N>=0 && N<p->nCell ); | 
| 7262 |   if( p->szCell[N] ) return p->szCell[N]; | 
| 7263 |   return computeCellSize(p, N); | 
| 7264 | } | 
| 7265 |  | 
| 7266 | /* | 
| 7267 | ** Array apCell[] contains pointers to nCell b-tree page cells. The  | 
| 7268 | ** szCell[] array contains the size in bytes of each cell. This function | 
| 7269 | ** replaces the current contents of page pPg with the contents of the cell | 
| 7270 | ** array. | 
| 7271 | ** | 
| 7272 | ** Some of the cells in apCell[] may currently be stored in pPg. This | 
| 7273 | ** function works around problems caused by this by making a copy of any  | 
| 7274 | ** such cells before overwriting the page data. | 
| 7275 | ** | 
| 7276 | ** The MemPage.nFree field is invalidated by this function. It is the  | 
| 7277 | ** responsibility of the caller to set it correctly. | 
| 7278 | */ | 
| 7279 | static int rebuildPage( | 
| 7280 |   CellArray *pCArray,             /* Content to be added to page pPg */ | 
| 7281 |   int iFirst,                     /* First cell in pCArray to use */ | 
| 7282 |   int nCell,                      /* Final number of cells on page */ | 
| 7283 |   MemPage *pPg                    /* The page to be reconstructed */ | 
| 7284 | ){ | 
| 7285 |   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */ | 
| 7286 |   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */ | 
| 7287 |   const int usableSize = pPg->pBt->usableSize; | 
| 7288 |   u8 * const pEnd = &aData[usableSize]; | 
| 7289 |   int i = iFirst;                 /* Which cell to copy from pCArray*/ | 
| 7290 |   u32 j;                          /* Start of cell content area */ | 
| 7291 |   int iEnd = i+nCell;             /* Loop terminator */ | 
| 7292 |   u8 *pCellptr = pPg->aCellIdx; | 
| 7293 |   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); | 
| 7294 |   u8 *pData; | 
| 7295 |   int k;                          /* Current slot in pCArray->apEnd[] */ | 
| 7296 |   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */ | 
| 7297 |  | 
| 7298 |   assert( i<iEnd ); | 
| 7299 |   j = get2byte(&aData[hdr+5]); | 
| 7300 |   if( j>(u32)usableSize ){ j = 0; } | 
| 7301 |   memcpy(&pTmp[j], &aData[j], usableSize - j); | 
| 7302 |  | 
| 7303 |   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} | 
| 7304 |   pSrcEnd = pCArray->apEnd[k]; | 
| 7305 |  | 
| 7306 |   pData = pEnd; | 
| 7307 |   while( 1/*exit by break*/ ){ | 
| 7308 |     u8 *pCell = pCArray->apCell[i]; | 
| 7309 |     u16 sz = pCArray->szCell[i]; | 
| 7310 |     assert( sz>0 ); | 
| 7311 |     if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ | 
| 7312 |       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; | 
| 7313 |       pCell = &pTmp[pCell - aData]; | 
| 7314 |     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd | 
| 7315 |            && (uptr)(pCell)<(uptr)pSrcEnd | 
| 7316 |     ){ | 
| 7317 |       return SQLITE_CORRUPT_BKPT; | 
| 7318 |     } | 
| 7319 |  | 
| 7320 |     pData -= sz; | 
| 7321 |     put2byte(pCellptr, (pData - aData)); | 
| 7322 |     pCellptr += 2; | 
| 7323 |     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; | 
| 7324 |     memmove(pData, pCell, sz); | 
| 7325 |     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); | 
| 7326 |     i++; | 
| 7327 |     if( i>=iEnd ) break; | 
| 7328 |     if( pCArray->ixNx[k]<=i ){ | 
| 7329 |       k++; | 
| 7330 |       pSrcEnd = pCArray->apEnd[k]; | 
| 7331 |     } | 
| 7332 |   } | 
| 7333 |  | 
| 7334 |   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ | 
| 7335 |   pPg->nCell = nCell; | 
| 7336 |   pPg->nOverflow = 0; | 
| 7337 |  | 
| 7338 |   put2byte(&aData[hdr+1], 0); | 
| 7339 |   put2byte(&aData[hdr+3], pPg->nCell); | 
| 7340 |   put2byte(&aData[hdr+5], pData - aData); | 
| 7341 |   aData[hdr+7] = 0x00; | 
| 7342 |   return SQLITE_OK; | 
| 7343 | } | 
| 7344 |  | 
| 7345 | /* | 
| 7346 | ** The pCArray objects contains pointers to b-tree cells and the cell sizes. | 
| 7347 | ** This function attempts to add the cells stored in the array to page pPg. | 
| 7348 | ** If it cannot (because the page needs to be defragmented before the cells | 
| 7349 | ** will fit), non-zero is returned. Otherwise, if the cells are added | 
| 7350 | ** successfully, zero is returned. | 
| 7351 | ** | 
| 7352 | ** Argument pCellptr points to the first entry in the cell-pointer array | 
| 7353 | ** (part of page pPg) to populate. After cell apCell[0] is written to the | 
| 7354 | ** page body, a 16-bit offset is written to pCellptr. And so on, for each | 
| 7355 | ** cell in the array. It is the responsibility of the caller to ensure | 
| 7356 | ** that it is safe to overwrite this part of the cell-pointer array. | 
| 7357 | ** | 
| 7358 | ** When this function is called, *ppData points to the start of the  | 
| 7359 | ** content area on page pPg. If the size of the content area is extended, | 
| 7360 | ** *ppData is updated to point to the new start of the content area | 
| 7361 | ** before returning. | 
| 7362 | ** | 
| 7363 | ** Finally, argument pBegin points to the byte immediately following the | 
| 7364 | ** end of the space required by this page for the cell-pointer area (for | 
| 7365 | ** all cells - not just those inserted by the current call). If the content | 
| 7366 | ** area must be extended to before this point in order to accomodate all | 
| 7367 | ** cells in apCell[], then the cells do not fit and non-zero is returned. | 
| 7368 | */ | 
| 7369 | static int pageInsertArray( | 
| 7370 |   MemPage *pPg,                   /* Page to add cells to */ | 
| 7371 |   u8 *pBegin,                     /* End of cell-pointer array */ | 
| 7372 |   u8 **ppData,                    /* IN/OUT: Page content-area pointer */ | 
| 7373 |   u8 *pCellptr,                   /* Pointer to cell-pointer area */ | 
| 7374 |   int iFirst,                     /* Index of first cell to add */ | 
| 7375 |   int nCell,                      /* Number of cells to add to pPg */ | 
| 7376 |   CellArray *pCArray              /* Array of cells */ | 
| 7377 | ){ | 
| 7378 |   int i = iFirst;                 /* Loop counter - cell index to insert */ | 
| 7379 |   u8 *aData = pPg->aData;         /* Complete page */ | 
| 7380 |   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */ | 
| 7381 |   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */ | 
| 7382 |   int k;                          /* Current slot in pCArray->apEnd[] */ | 
| 7383 |   u8 *pEnd;                       /* Maximum extent of cell data */ | 
| 7384 |   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */ | 
| 7385 |   if( iEnd<=iFirst ) return 0; | 
| 7386 |   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} | 
| 7387 |   pEnd = pCArray->apEnd[k]; | 
| 7388 |   while( 1 /*Exit by break*/ ){ | 
| 7389 |     int sz, rc; | 
| 7390 |     u8 *pSlot; | 
| 7391 |     assert( pCArray->szCell[i]!=0 ); | 
| 7392 |     sz = pCArray->szCell[i]; | 
| 7393 |     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ | 
| 7394 |       if( (pData - pBegin)<sz ) return 1; | 
| 7395 |       pData -= sz; | 
| 7396 |       pSlot = pData; | 
| 7397 |     } | 
| 7398 |     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed | 
| 7399 |     ** database.  But they might for a corrupt database.  Hence use memmove() | 
| 7400 |     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ | 
| 7401 |     assert( (pSlot+sz)<=pCArray->apCell[i] | 
| 7402 |          || pSlot>=(pCArray->apCell[i]+sz) | 
| 7403 |          || CORRUPT_DB ); | 
| 7404 |     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd | 
| 7405 |      && (uptr)(pCArray->apCell[i])<(uptr)pEnd | 
| 7406 |     ){ | 
| 7407 |       assert( CORRUPT_DB ); | 
| 7408 |       (void)SQLITE_CORRUPT_BKPT; | 
| 7409 |       return 1; | 
| 7410 |     } | 
| 7411 |     memmove(pSlot, pCArray->apCell[i], sz); | 
| 7412 |     put2byte(pCellptr, (pSlot - aData)); | 
| 7413 |     pCellptr += 2; | 
| 7414 |     i++; | 
| 7415 |     if( i>=iEnd ) break; | 
| 7416 |     if( pCArray->ixNx[k]<=i ){ | 
| 7417 |       k++; | 
| 7418 |       pEnd = pCArray->apEnd[k]; | 
| 7419 |     } | 
| 7420 |   } | 
| 7421 |   *ppData = pData; | 
| 7422 |   return 0; | 
| 7423 | } | 
| 7424 |  | 
| 7425 | /* | 
| 7426 | ** The pCArray object contains pointers to b-tree cells and their sizes. | 
| 7427 | ** | 
| 7428 | ** This function adds the space associated with each cell in the array | 
| 7429 | ** that is currently stored within the body of pPg to the pPg free-list. | 
| 7430 | ** The cell-pointers and other fields of the page are not updated. | 
| 7431 | ** | 
| 7432 | ** This function returns the total number of cells added to the free-list. | 
| 7433 | */ | 
| 7434 | static int pageFreeArray( | 
| 7435 |   MemPage *pPg,                   /* Page to edit */ | 
| 7436 |   int iFirst,                     /* First cell to delete */ | 
| 7437 |   int nCell,                      /* Cells to delete */ | 
| 7438 |   CellArray *pCArray              /* Array of cells */ | 
| 7439 | ){ | 
| 7440 |   u8 * const aData = pPg->aData; | 
| 7441 |   u8 * const pEnd = &aData[pPg->pBt->usableSize]; | 
| 7442 |   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; | 
| 7443 |   int nRet = 0; | 
| 7444 |   int i; | 
| 7445 |   int iEnd = iFirst + nCell; | 
| 7446 |   u8 *pFree = 0; | 
| 7447 |   int szFree = 0; | 
| 7448 |  | 
| 7449 |   for(i=iFirst; i<iEnd; i++){ | 
| 7450 |     u8 *pCell = pCArray->apCell[i]; | 
| 7451 |     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ | 
| 7452 |       int sz; | 
| 7453 |       /* No need to use cachedCellSize() here.  The sizes of all cells that | 
| 7454 |       ** are to be freed have already been computing while deciding which | 
| 7455 |       ** cells need freeing */ | 
| 7456 |       sz = pCArray->szCell[i];  assert( sz>0 ); | 
| 7457 |       if( pFree!=(pCell + sz) ){ | 
| 7458 |         if( pFree ){ | 
| 7459 |           assert( pFree>aData && (pFree - aData)<65536 ); | 
| 7460 |           freeSpace(pPg, (u16)(pFree - aData), szFree); | 
| 7461 |         } | 
| 7462 |         pFree = pCell; | 
| 7463 |         szFree = sz; | 
| 7464 |         if( pFree+sz>pEnd ){ | 
| 7465 |           return 0; | 
| 7466 |         } | 
| 7467 |       }else{ | 
| 7468 |         pFree = pCell; | 
| 7469 |         szFree += sz; | 
| 7470 |       } | 
| 7471 |       nRet++; | 
| 7472 |     } | 
| 7473 |   } | 
| 7474 |   if( pFree ){ | 
| 7475 |     assert( pFree>aData && (pFree - aData)<65536 ); | 
| 7476 |     freeSpace(pPg, (u16)(pFree - aData), szFree); | 
| 7477 |   } | 
| 7478 |   return nRet; | 
| 7479 | } | 
| 7480 |  | 
| 7481 | /* | 
| 7482 | ** pCArray contains pointers to and sizes of all cells in the page being | 
| 7483 | ** balanced.  The current page, pPg, has pPg->nCell cells starting with | 
| 7484 | ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells | 
| 7485 | ** starting at apCell[iNew]. | 
| 7486 | ** | 
| 7487 | ** This routine makes the necessary adjustments to pPg so that it contains | 
| 7488 | ** the correct cells after being balanced. | 
| 7489 | ** | 
| 7490 | ** The pPg->nFree field is invalid when this function returns. It is the | 
| 7491 | ** responsibility of the caller to set it correctly. | 
| 7492 | */ | 
| 7493 | static int editPage( | 
| 7494 |   MemPage *pPg,                   /* Edit this page */ | 
| 7495 |   int iOld,                       /* Index of first cell currently on page */ | 
| 7496 |   int iNew,                       /* Index of new first cell on page */ | 
| 7497 |   int nNew,                       /* Final number of cells on page */ | 
| 7498 |   CellArray *pCArray              /* Array of cells and sizes */ | 
| 7499 | ){ | 
| 7500 |   u8 * const aData = pPg->aData; | 
| 7501 |   const int hdr = pPg->hdrOffset; | 
| 7502 |   u8 *pBegin = &pPg->aCellIdx[nNew * 2]; | 
| 7503 |   int nCell = pPg->nCell;       /* Cells stored on pPg */ | 
| 7504 |   u8 *pData; | 
| 7505 |   u8 *pCellptr; | 
| 7506 |   int i; | 
| 7507 |   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; | 
| 7508 |   int iNewEnd = iNew + nNew; | 
| 7509 |  | 
| 7510 | #ifdef SQLITE_DEBUG | 
| 7511 |   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); | 
| 7512 |   memcpy(pTmp, aData, pPg->pBt->usableSize); | 
| 7513 | #endif | 
| 7514 |  | 
| 7515 |   /* Remove cells from the start and end of the page */ | 
| 7516 |   assert( nCell>=0 ); | 
| 7517 |   if( iOld<iNew ){ | 
| 7518 |     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); | 
| 7519 |     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; | 
| 7520 |     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); | 
| 7521 |     nCell -= nShift; | 
| 7522 |   } | 
| 7523 |   if( iNewEnd < iOldEnd ){ | 
| 7524 |     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); | 
| 7525 |     assert( nCell>=nTail ); | 
| 7526 |     nCell -= nTail; | 
| 7527 |   } | 
| 7528 |  | 
| 7529 |   pData = &aData[get2byteNotZero(&aData[hdr+5])]; | 
| 7530 |   if( pData<pBegin ) goto editpage_fail; | 
| 7531 |   if( pData>pPg->aDataEnd ) goto editpage_fail; | 
| 7532 |  | 
| 7533 |   /* Add cells to the start of the page */ | 
| 7534 |   if( iNew<iOld ){ | 
| 7535 |     int nAdd = MIN(nNew,iOld-iNew); | 
| 7536 |     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); | 
| 7537 |     assert( nAdd>=0 ); | 
| 7538 |     pCellptr = pPg->aCellIdx; | 
| 7539 |     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); | 
| 7540 |     if( pageInsertArray( | 
| 7541 |           pPg, pBegin, &pData, pCellptr, | 
| 7542 |           iNew, nAdd, pCArray | 
| 7543 |     ) ) goto editpage_fail; | 
| 7544 |     nCell += nAdd; | 
| 7545 |   } | 
| 7546 |  | 
| 7547 |   /* Add any overflow cells */ | 
| 7548 |   for(i=0; i<pPg->nOverflow; i++){ | 
| 7549 |     int iCell = (iOld + pPg->aiOvfl[i]) - iNew; | 
| 7550 |     if( iCell>=0 && iCell<nNew ){ | 
| 7551 |       pCellptr = &pPg->aCellIdx[iCell * 2]; | 
| 7552 |       if( nCell>iCell ){ | 
| 7553 |         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); | 
| 7554 |       } | 
| 7555 |       nCell++; | 
| 7556 |       cachedCellSize(pCArray, iCell+iNew); | 
| 7557 |       if( pageInsertArray( | 
| 7558 |             pPg, pBegin, &pData, pCellptr, | 
| 7559 |             iCell+iNew, 1, pCArray | 
| 7560 |       ) ) goto editpage_fail; | 
| 7561 |     } | 
| 7562 |   } | 
| 7563 |  | 
| 7564 |   /* Append cells to the end of the page */ | 
| 7565 |   assert( nCell>=0 ); | 
| 7566 |   pCellptr = &pPg->aCellIdx[nCell*2]; | 
| 7567 |   if( pageInsertArray( | 
| 7568 |         pPg, pBegin, &pData, pCellptr, | 
| 7569 |         iNew+nCell, nNew-nCell, pCArray | 
| 7570 |   ) ) goto editpage_fail; | 
| 7571 |  | 
| 7572 |   pPg->nCell = nNew; | 
| 7573 |   pPg->nOverflow = 0; | 
| 7574 |  | 
| 7575 |   put2byte(&aData[hdr+3], pPg->nCell); | 
| 7576 |   put2byte(&aData[hdr+5], pData - aData); | 
| 7577 |  | 
| 7578 | #ifdef SQLITE_DEBUG | 
| 7579 |   for(i=0; i<nNew && !CORRUPT_DB; i++){ | 
| 7580 |     u8 *pCell = pCArray->apCell[i+iNew]; | 
| 7581 |     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); | 
| 7582 |     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ | 
| 7583 |       pCell = &pTmp[pCell - aData]; | 
| 7584 |     } | 
| 7585 |     assert( 0==memcmp(pCell, &aData[iOff], | 
| 7586 |             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); | 
| 7587 |   } | 
| 7588 | #endif | 
| 7589 |  | 
| 7590 |   return SQLITE_OK; | 
| 7591 |  editpage_fail: | 
| 7592 |   /* Unable to edit this page. Rebuild it from scratch instead. */ | 
| 7593 |   populateCellCache(pCArray, iNew, nNew); | 
| 7594 |   return rebuildPage(pCArray, iNew, nNew, pPg); | 
| 7595 | } | 
| 7596 |  | 
| 7597 |  | 
| 7598 | #ifndef SQLITE_OMIT_QUICKBALANCE | 
| 7599 | /* | 
| 7600 | ** This version of balance() handles the common special case where | 
| 7601 | ** a new entry is being inserted on the extreme right-end of the | 
| 7602 | ** tree, in other words, when the new entry will become the largest | 
| 7603 | ** entry in the tree. | 
| 7604 | ** | 
| 7605 | ** Instead of trying to balance the 3 right-most leaf pages, just add | 
| 7606 | ** a new page to the right-hand side and put the one new entry in | 
| 7607 | ** that page.  This leaves the right side of the tree somewhat | 
| 7608 | ** unbalanced.  But odds are that we will be inserting new entries | 
| 7609 | ** at the end soon afterwards so the nearly empty page will quickly | 
| 7610 | ** fill up.  On average. | 
| 7611 | ** | 
| 7612 | ** pPage is the leaf page which is the right-most page in the tree. | 
| 7613 | ** pParent is its parent.  pPage must have a single overflow entry | 
| 7614 | ** which is also the right-most entry on the page. | 
| 7615 | ** | 
| 7616 | ** The pSpace buffer is used to store a temporary copy of the divider | 
| 7617 | ** cell that will be inserted into pParent. Such a cell consists of a 4 | 
| 7618 | ** byte page number followed by a variable length integer. In other | 
| 7619 | ** words, at most 13 bytes. Hence the pSpace buffer must be at | 
| 7620 | ** least 13 bytes in size. | 
| 7621 | */ | 
| 7622 | static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ | 
| 7623 |   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */ | 
| 7624 |   MemPage *pNew;                       /* Newly allocated page */ | 
| 7625 |   int rc;                              /* Return Code */ | 
| 7626 |   Pgno pgnoNew;                        /* Page number of pNew */ | 
| 7627 |  | 
| 7628 |   assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | 
| 7629 |   assert( sqlite3PagerIswriteable(pParent->pDbPage) ); | 
| 7630 |   assert( pPage->nOverflow==1 ); | 
| 7631 |    | 
| 7632 |   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */ | 
| 7633 |   assert( pPage->nFree>=0 ); | 
| 7634 |   assert( pParent->nFree>=0 ); | 
| 7635 |  | 
| 7636 |   /* Allocate a new page. This page will become the right-sibling of  | 
| 7637 |   ** pPage. Make the parent page writable, so that the new divider cell | 
| 7638 |   ** may be inserted. If both these operations are successful, proceed. | 
| 7639 |   */ | 
| 7640 |   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); | 
| 7641 |  | 
| 7642 |   if( rc==SQLITE_OK ){ | 
| 7643 |  | 
| 7644 |     u8 *pOut = &pSpace[4]; | 
| 7645 |     u8 *pCell = pPage->apOvfl[0]; | 
| 7646 |     u16 szCell = pPage->xCellSize(pPage, pCell); | 
| 7647 |     u8 *pStop; | 
| 7648 |     CellArray b; | 
| 7649 |  | 
| 7650 |     assert( sqlite3PagerIswriteable(pNew->pDbPage) ); | 
| 7651 |     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); | 
| 7652 |     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); | 
| 7653 |     b.nCell = 1; | 
| 7654 |     b.pRef = pPage; | 
| 7655 |     b.apCell = &pCell; | 
| 7656 |     b.szCell = &szCell; | 
| 7657 |     b.apEnd[0] = pPage->aDataEnd; | 
| 7658 |     b.ixNx[0] = 2; | 
| 7659 |     rc = rebuildPage(&b, 0, 1, pNew); | 
| 7660 |     if( NEVER(rc) ){ | 
| 7661 |       releasePage(pNew); | 
| 7662 |       return rc; | 
| 7663 |     } | 
| 7664 |     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; | 
| 7665 |  | 
| 7666 |     /* If this is an auto-vacuum database, update the pointer map | 
| 7667 |     ** with entries for the new page, and any pointer from the  | 
| 7668 |     ** cell on the page to an overflow page. If either of these | 
| 7669 |     ** operations fails, the return code is set, but the contents | 
| 7670 |     ** of the parent page are still manipulated by thh code below. | 
| 7671 |     ** That is Ok, at this point the parent page is guaranteed to | 
| 7672 |     ** be marked as dirty. Returning an error code will cause a | 
| 7673 |     ** rollback, undoing any changes made to the parent page. | 
| 7674 |     */ | 
| 7675 |     if( ISAUTOVACUUM ){ | 
| 7676 |       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); | 
| 7677 |       if( szCell>pNew->minLocal ){ | 
| 7678 |         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); | 
| 7679 |       } | 
| 7680 |     } | 
| 7681 |    | 
| 7682 |     /* Create a divider cell to insert into pParent. The divider cell | 
| 7683 |     ** consists of a 4-byte page number (the page number of pPage) and | 
| 7684 |     ** a variable length key value (which must be the same value as the | 
| 7685 |     ** largest key on pPage). | 
| 7686 |     ** | 
| 7687 |     ** To find the largest key value on pPage, first find the right-most  | 
| 7688 |     ** cell on pPage. The first two fields of this cell are the  | 
| 7689 |     ** record-length (a variable length integer at most 32-bits in size) | 
| 7690 |     ** and the key value (a variable length integer, may have any value). | 
| 7691 |     ** The first of the while(...) loops below skips over the record-length | 
| 7692 |     ** field. The second while(...) loop copies the key value from the | 
| 7693 |     ** cell on pPage into the pSpace buffer. | 
| 7694 |     */ | 
| 7695 |     pCell = findCell(pPage, pPage->nCell-1); | 
| 7696 |     pStop = &pCell[9]; | 
| 7697 |     while( (*(pCell++)&0x80) && pCell<pStop ); | 
| 7698 |     pStop = &pCell[9]; | 
| 7699 |     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); | 
| 7700 |  | 
| 7701 |     /* Insert the new divider cell into pParent. */ | 
| 7702 |     if( rc==SQLITE_OK ){ | 
| 7703 |       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), | 
| 7704 |                    0, pPage->pgno, &rc); | 
| 7705 |     } | 
| 7706 |  | 
| 7707 |     /* Set the right-child pointer of pParent to point to the new page. */ | 
| 7708 |     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); | 
| 7709 |    | 
| 7710 |     /* Release the reference to the new page. */ | 
| 7711 |     releasePage(pNew); | 
| 7712 |   } | 
| 7713 |  | 
| 7714 |   return rc; | 
| 7715 | } | 
| 7716 | #endif /* SQLITE_OMIT_QUICKBALANCE */ | 
| 7717 |  | 
| 7718 | #if 0 | 
| 7719 | /* | 
| 7720 | ** This function does not contribute anything to the operation of SQLite. | 
| 7721 | ** it is sometimes activated temporarily while debugging code responsible  | 
| 7722 | ** for setting pointer-map entries. | 
| 7723 | */ | 
| 7724 | static int ptrmapCheckPages(MemPage **apPage, int nPage){ | 
| 7725 |   int i, j; | 
| 7726 |   for(i=0; i<nPage; i++){ | 
| 7727 |     Pgno n; | 
| 7728 |     u8 e; | 
| 7729 |     MemPage *pPage = apPage[i]; | 
| 7730 |     BtShared *pBt = pPage->pBt; | 
| 7731 |     assert( pPage->isInit ); | 
| 7732 |  | 
| 7733 |     for(j=0; j<pPage->nCell; j++){ | 
| 7734 |       CellInfo info; | 
| 7735 |       u8 *z; | 
| 7736 |       | 
| 7737 |       z = findCell(pPage, j); | 
| 7738 |       pPage->xParseCell(pPage, z, &info); | 
| 7739 |       if( info.nLocal<info.nPayload ){ | 
| 7740 |         Pgno ovfl = get4byte(&z[info.nSize-4]); | 
| 7741 |         ptrmapGet(pBt, ovfl, &e, &n); | 
| 7742 |         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); | 
| 7743 |       } | 
| 7744 |       if( !pPage->leaf ){ | 
| 7745 |         Pgno child = get4byte(z); | 
| 7746 |         ptrmapGet(pBt, child, &e, &n); | 
| 7747 |         assert( n==pPage->pgno && e==PTRMAP_BTREE ); | 
| 7748 |       } | 
| 7749 |     } | 
| 7750 |     if( !pPage->leaf ){ | 
| 7751 |       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); | 
| 7752 |       ptrmapGet(pBt, child, &e, &n); | 
| 7753 |       assert( n==pPage->pgno && e==PTRMAP_BTREE ); | 
| 7754 |     } | 
| 7755 |   } | 
| 7756 |   return 1; | 
| 7757 | } | 
| 7758 | #endif | 
| 7759 |  | 
| 7760 | /* | 
| 7761 | ** This function is used to copy the contents of the b-tree node stored  | 
| 7762 | ** on page pFrom to page pTo. If page pFrom was not a leaf page, then | 
| 7763 | ** the pointer-map entries for each child page are updated so that the | 
| 7764 | ** parent page stored in the pointer map is page pTo. If pFrom contained | 
| 7765 | ** any cells with overflow page pointers, then the corresponding pointer | 
| 7766 | ** map entries are also updated so that the parent page is page pTo. | 
| 7767 | ** | 
| 7768 | ** If pFrom is currently carrying any overflow cells (entries in the | 
| 7769 | ** MemPage.apOvfl[] array), they are not copied to pTo.  | 
| 7770 | ** | 
| 7771 | ** Before returning, page pTo is reinitialized using btreeInitPage(). | 
| 7772 | ** | 
| 7773 | ** The performance of this function is not critical. It is only used by  | 
| 7774 | ** the balance_shallower() and balance_deeper() procedures, neither of | 
| 7775 | ** which are called often under normal circumstances. | 
| 7776 | */ | 
| 7777 | static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ | 
| 7778 |   if( (*pRC)==SQLITE_OK ){ | 
| 7779 |     BtShared * const pBt = pFrom->pBt; | 
| 7780 |     u8 * const aFrom = pFrom->aData; | 
| 7781 |     u8 * const aTo = pTo->aData; | 
| 7782 |     int const iFromHdr = pFrom->hdrOffset; | 
| 7783 |     int const iToHdr = ((pTo->pgno==1) ? 100 : 0); | 
| 7784 |     int rc; | 
| 7785 |     int iData; | 
| 7786 |    | 
| 7787 |    | 
| 7788 |     assert( pFrom->isInit ); | 
| 7789 |     assert( pFrom->nFree>=iToHdr ); | 
| 7790 |     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); | 
| 7791 |    | 
| 7792 |     /* Copy the b-tree node content from page pFrom to page pTo. */ | 
| 7793 |     iData = get2byte(&aFrom[iFromHdr+5]); | 
| 7794 |     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); | 
| 7795 |     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); | 
| 7796 |    | 
| 7797 |     /* Reinitialize page pTo so that the contents of the MemPage structure | 
| 7798 |     ** match the new data. The initialization of pTo can actually fail under | 
| 7799 |     ** fairly obscure circumstances, even though it is a copy of initialized  | 
| 7800 |     ** page pFrom. | 
| 7801 |     */ | 
| 7802 |     pTo->isInit = 0; | 
| 7803 |     rc = btreeInitPage(pTo); | 
| 7804 |     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); | 
| 7805 |     if( rc!=SQLITE_OK ){ | 
| 7806 |       *pRC = rc; | 
| 7807 |       return; | 
| 7808 |     } | 
| 7809 |    | 
| 7810 |     /* If this is an auto-vacuum database, update the pointer-map entries | 
| 7811 |     ** for any b-tree or overflow pages that pTo now contains the pointers to. | 
| 7812 |     */ | 
| 7813 |     if( ISAUTOVACUUM ){ | 
| 7814 |       *pRC = setChildPtrmaps(pTo); | 
| 7815 |     } | 
| 7816 |   } | 
| 7817 | } | 
| 7818 |  | 
| 7819 | /* | 
| 7820 | ** This routine redistributes cells on the iParentIdx'th child of pParent | 
| 7821 | ** (hereafter "the page") and up to 2 siblings so that all pages have about the | 
| 7822 | ** same amount of free space. Usually a single sibling on either side of the | 
| 7823 | ** page are used in the balancing, though both siblings might come from one | 
| 7824 | ** side if the page is the first or last child of its parent. If the page  | 
| 7825 | ** has fewer than 2 siblings (something which can only happen if the page | 
| 7826 | ** is a root page or a child of a root page) then all available siblings | 
| 7827 | ** participate in the balancing. | 
| 7828 | ** | 
| 7829 | ** The number of siblings of the page might be increased or decreased by  | 
| 7830 | ** one or two in an effort to keep pages nearly full but not over full.  | 
| 7831 | ** | 
| 7832 | ** Note that when this routine is called, some of the cells on the page | 
| 7833 | ** might not actually be stored in MemPage.aData[]. This can happen | 
| 7834 | ** if the page is overfull. This routine ensures that all cells allocated | 
| 7835 | ** to the page and its siblings fit into MemPage.aData[] before returning. | 
| 7836 | ** | 
| 7837 | ** In the course of balancing the page and its siblings, cells may be | 
| 7838 | ** inserted into or removed from the parent page (pParent). Doing so | 
| 7839 | ** may cause the parent page to become overfull or underfull. If this | 
| 7840 | ** happens, it is the responsibility of the caller to invoke the correct | 
| 7841 | ** balancing routine to fix this problem (see the balance() routine).  | 
| 7842 | ** | 
| 7843 | ** If this routine fails for any reason, it might leave the database | 
| 7844 | ** in a corrupted state. So if this routine fails, the database should | 
| 7845 | ** be rolled back. | 
| 7846 | ** | 
| 7847 | ** The third argument to this function, aOvflSpace, is a pointer to a | 
| 7848 | ** buffer big enough to hold one page. If while inserting cells into the parent | 
| 7849 | ** page (pParent) the parent page becomes overfull, this buffer is | 
| 7850 | ** used to store the parent's overflow cells. Because this function inserts | 
| 7851 | ** a maximum of four divider cells into the parent page, and the maximum | 
| 7852 | ** size of a cell stored within an internal node is always less than 1/4 | 
| 7853 | ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large | 
| 7854 | ** enough for all overflow cells. | 
| 7855 | ** | 
| 7856 | ** If aOvflSpace is set to a null pointer, this function returns  | 
| 7857 | ** SQLITE_NOMEM. | 
| 7858 | */ | 
| 7859 | static int balance_nonroot( | 
| 7860 |   MemPage *pParent,               /* Parent page of siblings being balanced */ | 
| 7861 |   int iParentIdx,                 /* Index of "the page" in pParent */ | 
| 7862 |   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */ | 
| 7863 |   int isRoot,                     /* True if pParent is a root-page */ | 
| 7864 |   int bBulk                       /* True if this call is part of a bulk load */ | 
| 7865 | ){ | 
| 7866 |   BtShared *pBt;               /* The whole database */ | 
| 7867 |   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */ | 
| 7868 |   int nNew = 0;                /* Number of pages in apNew[] */ | 
| 7869 |   int nOld;                    /* Number of pages in apOld[] */ | 
| 7870 |   int i, j, k;                 /* Loop counters */ | 
| 7871 |   int nxDiv;                   /* Next divider slot in pParent->aCell[] */ | 
| 7872 |   int rc = SQLITE_OK;          /* The return code */ | 
| 7873 |   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */ | 
| 7874 |   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */ | 
| 7875 |   int usableSpace;             /* Bytes in pPage beyond the header */ | 
| 7876 |   int pageFlags;               /* Value of pPage->aData[0] */ | 
| 7877 |   int iSpace1 = 0;             /* First unused byte of aSpace1[] */ | 
| 7878 |   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */ | 
| 7879 |   int szScratch;               /* Size of scratch memory requested */ | 
| 7880 |   MemPage *apOld[NB];          /* pPage and up to two siblings */ | 
| 7881 |   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */ | 
| 7882 |   u8 *pRight;                  /* Location in parent of right-sibling pointer */ | 
| 7883 |   u8 *apDiv[NB-1];             /* Divider cells in pParent */ | 
| 7884 |   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */ | 
| 7885 |   int cntOld[NB+2];            /* Old index in b.apCell[] */ | 
| 7886 |   int szNew[NB+2];             /* Combined size of cells placed on i-th page */ | 
| 7887 |   u8 *aSpace1;                 /* Space for copies of dividers cells */ | 
| 7888 |   Pgno pgno;                   /* Temp var to store a page number in */ | 
| 7889 |   u8 abDone[NB+2];             /* True after i'th new page is populated */ | 
| 7890 |   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */ | 
| 7891 |   CellArray b;                 /* Parsed information on cells being balanced */ | 
| 7892 |  | 
| 7893 |   memset(abDone, 0, sizeof(abDone)); | 
| 7894 |   memset(&b, 0, sizeof(b)); | 
| 7895 |   pBt = pParent->pBt; | 
| 7896 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 7897 |   assert( sqlite3PagerIswriteable(pParent->pDbPage) ); | 
| 7898 |  | 
| 7899 |   /* At this point pParent may have at most one overflow cell. And if | 
| 7900 |   ** this overflow cell is present, it must be the cell with  | 
| 7901 |   ** index iParentIdx. This scenario comes about when this function | 
| 7902 |   ** is called (indirectly) from sqlite3BtreeDelete(). | 
| 7903 |   */ | 
| 7904 |   assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); | 
| 7905 |   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); | 
| 7906 |  | 
| 7907 |   if( !aOvflSpace ){ | 
| 7908 |     return SQLITE_NOMEM_BKPT; | 
| 7909 |   } | 
| 7910 |   assert( pParent->nFree>=0 ); | 
| 7911 |  | 
| 7912 |   /* Find the sibling pages to balance. Also locate the cells in pParent  | 
| 7913 |   ** that divide the siblings. An attempt is made to find NN siblings on  | 
| 7914 |   ** either side of pPage. More siblings are taken from one side, however,  | 
| 7915 |   ** if there are fewer than NN siblings on the other side. If pParent | 
| 7916 |   ** has NB or fewer children then all children of pParent are taken.   | 
| 7917 |   ** | 
| 7918 |   ** This loop also drops the divider cells from the parent page. This | 
| 7919 |   ** way, the remainder of the function does not have to deal with any | 
| 7920 |   ** overflow cells in the parent page, since if any existed they will | 
| 7921 |   ** have already been removed. | 
| 7922 |   */ | 
| 7923 |   i = pParent->nOverflow + pParent->nCell; | 
| 7924 |   if( i<2 ){ | 
| 7925 |     nxDiv = 0; | 
| 7926 |   }else{ | 
| 7927 |     assert( bBulk==0 || bBulk==1 ); | 
| 7928 |     if( iParentIdx==0 ){                  | 
| 7929 |       nxDiv = 0; | 
| 7930 |     }else if( iParentIdx==i ){ | 
| 7931 |       nxDiv = i-2+bBulk; | 
| 7932 |     }else{ | 
| 7933 |       nxDiv = iParentIdx-1; | 
| 7934 |     } | 
| 7935 |     i = 2-bBulk; | 
| 7936 |   } | 
| 7937 |   nOld = i+1; | 
| 7938 |   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ | 
| 7939 |     pRight = &pParent->aData[pParent->hdrOffset+8]; | 
| 7940 |   }else{ | 
| 7941 |     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); | 
| 7942 |   } | 
| 7943 |   pgno = get4byte(pRight); | 
| 7944 |   while( 1 ){ | 
| 7945 |     if( rc==SQLITE_OK ){ | 
| 7946 |       rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); | 
| 7947 |     } | 
| 7948 |     if( rc ){ | 
| 7949 |       memset(apOld, 0, (i+1)*sizeof(MemPage*)); | 
| 7950 |       goto balance_cleanup; | 
| 7951 |     } | 
| 7952 |     if( apOld[i]->nFree<0 ){ | 
| 7953 |       rc = btreeComputeFreeSpace(apOld[i]); | 
| 7954 |       if( rc ){ | 
| 7955 |         memset(apOld, 0, (i)*sizeof(MemPage*)); | 
| 7956 |         goto balance_cleanup; | 
| 7957 |       } | 
| 7958 |     } | 
| 7959 |     nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); | 
| 7960 |     if( (i--)==0 ) break; | 
| 7961 |  | 
| 7962 |     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ | 
| 7963 |       apDiv[i] = pParent->apOvfl[0]; | 
| 7964 |       pgno = get4byte(apDiv[i]); | 
| 7965 |       szNew[i] = pParent->xCellSize(pParent, apDiv[i]); | 
| 7966 |       pParent->nOverflow = 0; | 
| 7967 |     }else{ | 
| 7968 |       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); | 
| 7969 |       pgno = get4byte(apDiv[i]); | 
| 7970 |       szNew[i] = pParent->xCellSize(pParent, apDiv[i]); | 
| 7971 |  | 
| 7972 |       /* Drop the cell from the parent page. apDiv[i] still points to | 
| 7973 |       ** the cell within the parent, even though it has been dropped. | 
| 7974 |       ** This is safe because dropping a cell only overwrites the first | 
| 7975 |       ** four bytes of it, and this function does not need the first | 
| 7976 |       ** four bytes of the divider cell. So the pointer is safe to use | 
| 7977 |       ** later on.   | 
| 7978 |       ** | 
| 7979 |       ** But not if we are in secure-delete mode. In secure-delete mode, | 
| 7980 |       ** the dropCell() routine will overwrite the entire cell with zeroes. | 
| 7981 |       ** In this case, temporarily copy the cell into the aOvflSpace[] | 
| 7982 |       ** buffer. It will be copied out again as soon as the aSpace[] buffer | 
| 7983 |       ** is allocated.  */ | 
| 7984 |       if( pBt->btsFlags & BTS_FAST_SECURE ){ | 
| 7985 |         int iOff; | 
| 7986 |  | 
| 7987 |         /* If the following if() condition is not true, the db is corrupted. | 
| 7988 |         ** The call to dropCell() below will detect this.  */ | 
| 7989 |         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); | 
| 7990 |         if( (iOff+szNew[i])<=(int)pBt->usableSize ){ | 
| 7991 |           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); | 
| 7992 |           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; | 
| 7993 |         } | 
| 7994 |       } | 
| 7995 |       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); | 
| 7996 |     } | 
| 7997 |   } | 
| 7998 |  | 
| 7999 |   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte | 
| 8000 |   ** alignment */ | 
| 8001 |   nMaxCells = (nMaxCells + 3)&~3; | 
| 8002 |  | 
| 8003 |   /* | 
| 8004 |   ** Allocate space for memory structures | 
| 8005 |   */ | 
| 8006 |   szScratch = | 
| 8007 |        nMaxCells*sizeof(u8*)                       /* b.apCell */ | 
| 8008 |      + nMaxCells*sizeof(u16)                       /* b.szCell */ | 
| 8009 |      + pBt->pageSize;                              /* aSpace1 */ | 
| 8010 |  | 
| 8011 |   assert( szScratch<=7*(int)pBt->pageSize ); | 
| 8012 |   b.apCell = sqlite3StackAllocRaw(0, szScratch ); | 
| 8013 |   if( b.apCell==0 ){ | 
| 8014 |     rc = SQLITE_NOMEM_BKPT; | 
| 8015 |     goto balance_cleanup; | 
| 8016 |   } | 
| 8017 |   b.szCell = (u16*)&b.apCell[nMaxCells]; | 
| 8018 |   aSpace1 = (u8*)&b.szCell[nMaxCells]; | 
| 8019 |   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); | 
| 8020 |  | 
| 8021 |   /* | 
| 8022 |   ** Load pointers to all cells on sibling pages and the divider cells | 
| 8023 |   ** into the local b.apCell[] array.  Make copies of the divider cells | 
| 8024 |   ** into space obtained from aSpace1[]. The divider cells have already | 
| 8025 |   ** been removed from pParent. | 
| 8026 |   ** | 
| 8027 |   ** If the siblings are on leaf pages, then the child pointers of the | 
| 8028 |   ** divider cells are stripped from the cells before they are copied | 
| 8029 |   ** into aSpace1[].  In this way, all cells in b.apCell[] are without | 
| 8030 |   ** child pointers.  If siblings are not leaves, then all cell in | 
| 8031 |   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[] | 
| 8032 |   ** are alike. | 
| 8033 |   ** | 
| 8034 |   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf. | 
| 8035 |   **       leafData:  1 if pPage holds key+data and pParent holds only keys. | 
| 8036 |   */ | 
| 8037 |   b.pRef = apOld[0]; | 
| 8038 |   leafCorrection = b.pRef->leaf*4; | 
| 8039 |   leafData = b.pRef->intKeyLeaf; | 
| 8040 |   for(i=0; i<nOld; i++){ | 
| 8041 |     MemPage *pOld = apOld[i]; | 
| 8042 |     int limit = pOld->nCell; | 
| 8043 |     u8 *aData = pOld->aData; | 
| 8044 |     u16 maskPage = pOld->maskPage; | 
| 8045 |     u8 *piCell = aData + pOld->cellOffset; | 
| 8046 |     u8 *piEnd; | 
| 8047 |     VVA_ONLY( int nCellAtStart = b.nCell; ) | 
| 8048 |  | 
| 8049 |     /* Verify that all sibling pages are of the same "type" (table-leaf, | 
| 8050 |     ** table-interior, index-leaf, or index-interior). | 
| 8051 |     */ | 
| 8052 |     if( pOld->aData[0]!=apOld[0]->aData[0] ){ | 
| 8053 |       rc = SQLITE_CORRUPT_BKPT; | 
| 8054 |       goto balance_cleanup; | 
| 8055 |     } | 
| 8056 |  | 
| 8057 |     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld | 
| 8058 |     ** contains overflow cells, include them in the b.apCell[] array | 
| 8059 |     ** in the correct spot. | 
| 8060 |     ** | 
| 8061 |     ** Note that when there are multiple overflow cells, it is always the | 
| 8062 |     ** case that they are sequential and adjacent.  This invariant arises | 
| 8063 |     ** because multiple overflows can only occurs when inserting divider | 
| 8064 |     ** cells into a parent on a prior balance, and divider cells are always | 
| 8065 |     ** adjacent and are inserted in order.  There is an assert() tagged | 
| 8066 |     ** with "NOTE 1" in the overflow cell insertion loop to prove this | 
| 8067 |     ** invariant. | 
| 8068 |     ** | 
| 8069 |     ** This must be done in advance.  Once the balance starts, the cell | 
| 8070 |     ** offset section of the btree page will be overwritten and we will no | 
| 8071 |     ** long be able to find the cells if a pointer to each cell is not saved | 
| 8072 |     ** first. | 
| 8073 |     */ | 
| 8074 |     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); | 
| 8075 |     if( pOld->nOverflow>0 ){ | 
| 8076 |       if( NEVER(limit<pOld->aiOvfl[0]) ){ | 
| 8077 |         rc = SQLITE_CORRUPT_BKPT; | 
| 8078 |         goto balance_cleanup; | 
| 8079 |       } | 
| 8080 |       limit = pOld->aiOvfl[0]; | 
| 8081 |       for(j=0; j<limit; j++){ | 
| 8082 |         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); | 
| 8083 |         piCell += 2; | 
| 8084 |         b.nCell++; | 
| 8085 |       } | 
| 8086 |       for(k=0; k<pOld->nOverflow; k++){ | 
| 8087 |         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ | 
| 8088 |         b.apCell[b.nCell] = pOld->apOvfl[k]; | 
| 8089 |         b.nCell++; | 
| 8090 |       } | 
| 8091 |     } | 
| 8092 |     piEnd = aData + pOld->cellOffset + 2*pOld->nCell; | 
| 8093 |     while( piCell<piEnd ){ | 
| 8094 |       assert( b.nCell<nMaxCells ); | 
| 8095 |       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); | 
| 8096 |       piCell += 2; | 
| 8097 |       b.nCell++; | 
| 8098 |     } | 
| 8099 |     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); | 
| 8100 |  | 
| 8101 |     cntOld[i] = b.nCell; | 
| 8102 |     if( i<nOld-1 && !leafData){ | 
| 8103 |       u16 sz = (u16)szNew[i]; | 
| 8104 |       u8 *pTemp; | 
| 8105 |       assert( b.nCell<nMaxCells ); | 
| 8106 |       b.szCell[b.nCell] = sz; | 
| 8107 |       pTemp = &aSpace1[iSpace1]; | 
| 8108 |       iSpace1 += sz; | 
| 8109 |       assert( sz<=pBt->maxLocal+23 ); | 
| 8110 |       assert( iSpace1 <= (int)pBt->pageSize ); | 
| 8111 |       memcpy(pTemp, apDiv[i], sz); | 
| 8112 |       b.apCell[b.nCell] = pTemp+leafCorrection; | 
| 8113 |       assert( leafCorrection==0 || leafCorrection==4 ); | 
| 8114 |       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; | 
| 8115 |       if( !pOld->leaf ){ | 
| 8116 |         assert( leafCorrection==0 ); | 
| 8117 |         assert( pOld->hdrOffset==0 || CORRUPT_DB ); | 
| 8118 |         /* The right pointer of the child page pOld becomes the left | 
| 8119 |         ** pointer of the divider cell */ | 
| 8120 |         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); | 
| 8121 |       }else{ | 
| 8122 |         assert( leafCorrection==4 ); | 
| 8123 |         while( b.szCell[b.nCell]<4 ){ | 
| 8124 |           /* Do not allow any cells smaller than 4 bytes. If a smaller cell | 
| 8125 |           ** does exist, pad it with 0x00 bytes. */ | 
| 8126 |           assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); | 
| 8127 |           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); | 
| 8128 |           aSpace1[iSpace1++] = 0x00; | 
| 8129 |           b.szCell[b.nCell]++; | 
| 8130 |         } | 
| 8131 |       } | 
| 8132 |       b.nCell++; | 
| 8133 |     } | 
| 8134 |   } | 
| 8135 |  | 
| 8136 |   /* | 
| 8137 |   ** Figure out the number of pages needed to hold all b.nCell cells. | 
| 8138 |   ** Store this number in "k".  Also compute szNew[] which is the total | 
| 8139 |   ** size of all cells on the i-th page and cntNew[] which is the index | 
| 8140 |   ** in b.apCell[] of the cell that divides page i from page i+1.   | 
| 8141 |   ** cntNew[k] should equal b.nCell. | 
| 8142 |   ** | 
| 8143 |   ** Values computed by this block: | 
| 8144 |   ** | 
| 8145 |   **           k: The total number of sibling pages | 
| 8146 |   **    szNew[i]: Spaced used on the i-th sibling page. | 
| 8147 |   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to | 
| 8148 |   **              the right of the i-th sibling page. | 
| 8149 |   ** usableSpace: Number of bytes of space available on each sibling. | 
| 8150 |   **  | 
| 8151 |   */ | 
| 8152 |   usableSpace = pBt->usableSize - 12 + leafCorrection; | 
| 8153 |   for(i=k=0; i<nOld; i++, k++){ | 
| 8154 |     MemPage *p = apOld[i]; | 
| 8155 |     b.apEnd[k] = p->aDataEnd; | 
| 8156 |     b.ixNx[k] = cntOld[i]; | 
| 8157 |     if( k && b.ixNx[k]==b.ixNx[k-1] ){ | 
| 8158 |       k--;  /* Omit b.ixNx[] entry for child pages with no cells */ | 
| 8159 |     } | 
| 8160 |     if( !leafData ){ | 
| 8161 |       k++; | 
| 8162 |       b.apEnd[k] = pParent->aDataEnd; | 
| 8163 |       b.ixNx[k] = cntOld[i]+1; | 
| 8164 |     } | 
| 8165 |     assert( p->nFree>=0 ); | 
| 8166 |     szNew[i] = usableSpace - p->nFree; | 
| 8167 |     for(j=0; j<p->nOverflow; j++){ | 
| 8168 |       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); | 
| 8169 |     } | 
| 8170 |     cntNew[i] = cntOld[i]; | 
| 8171 |   } | 
| 8172 |   k = nOld; | 
| 8173 |   for(i=0; i<k; i++){ | 
| 8174 |     int sz; | 
| 8175 |     while( szNew[i]>usableSpace ){ | 
| 8176 |       if( i+1>=k ){ | 
| 8177 |         k = i+2; | 
| 8178 |         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } | 
| 8179 |         szNew[k-1] = 0; | 
| 8180 |         cntNew[k-1] = b.nCell; | 
| 8181 |       } | 
| 8182 |       sz = 2 + cachedCellSize(&b, cntNew[i]-1); | 
| 8183 |       szNew[i] -= sz; | 
| 8184 |       if( !leafData ){ | 
| 8185 |         if( cntNew[i]<b.nCell ){ | 
| 8186 |           sz = 2 + cachedCellSize(&b, cntNew[i]); | 
| 8187 |         }else{ | 
| 8188 |           sz = 0; | 
| 8189 |         } | 
| 8190 |       } | 
| 8191 |       szNew[i+1] += sz; | 
| 8192 |       cntNew[i]--; | 
| 8193 |     } | 
| 8194 |     while( cntNew[i]<b.nCell ){ | 
| 8195 |       sz = 2 + cachedCellSize(&b, cntNew[i]); | 
| 8196 |       if( szNew[i]+sz>usableSpace ) break; | 
| 8197 |       szNew[i] += sz; | 
| 8198 |       cntNew[i]++; | 
| 8199 |       if( !leafData ){ | 
| 8200 |         if( cntNew[i]<b.nCell ){ | 
| 8201 |           sz = 2 + cachedCellSize(&b, cntNew[i]); | 
| 8202 |         }else{ | 
| 8203 |           sz = 0; | 
| 8204 |         } | 
| 8205 |       } | 
| 8206 |       szNew[i+1] -= sz; | 
| 8207 |     } | 
| 8208 |     if( cntNew[i]>=b.nCell ){ | 
| 8209 |       k = i+1; | 
| 8210 |     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ | 
| 8211 |       rc = SQLITE_CORRUPT_BKPT; | 
| 8212 |       goto balance_cleanup; | 
| 8213 |     } | 
| 8214 |   } | 
| 8215 |  | 
| 8216 |   /* | 
| 8217 |   ** The packing computed by the previous block is biased toward the siblings | 
| 8218 |   ** on the left side (siblings with smaller keys). The left siblings are | 
| 8219 |   ** always nearly full, while the right-most sibling might be nearly empty. | 
| 8220 |   ** The next block of code attempts to adjust the packing of siblings to | 
| 8221 |   ** get a better balance. | 
| 8222 |   ** | 
| 8223 |   ** This adjustment is more than an optimization.  The packing above might | 
| 8224 |   ** be so out of balance as to be illegal.  For example, the right-most | 
| 8225 |   ** sibling might be completely empty.  This adjustment is not optional. | 
| 8226 |   */ | 
| 8227 |   for(i=k-1; i>0; i--){ | 
| 8228 |     int szRight = szNew[i];  /* Size of sibling on the right */ | 
| 8229 |     int szLeft = szNew[i-1]; /* Size of sibling on the left */ | 
| 8230 |     int r;              /* Index of right-most cell in left sibling */ | 
| 8231 |     int d;              /* Index of first cell to the left of right sibling */ | 
| 8232 |  | 
| 8233 |     r = cntNew[i-1] - 1; | 
| 8234 |     d = r + 1 - leafData; | 
| 8235 |     (void)cachedCellSize(&b, d); | 
| 8236 |     do{ | 
| 8237 |       assert( d<nMaxCells ); | 
| 8238 |       assert( r<nMaxCells ); | 
| 8239 |       (void)cachedCellSize(&b, r); | 
| 8240 |       if( szRight!=0 | 
| 8241 |        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ | 
| 8242 |         break; | 
| 8243 |       } | 
| 8244 |       szRight += b.szCell[d] + 2; | 
| 8245 |       szLeft -= b.szCell[r] + 2; | 
| 8246 |       cntNew[i-1] = r; | 
| 8247 |       r--; | 
| 8248 |       d--; | 
| 8249 |     }while( r>=0 ); | 
| 8250 |     szNew[i] = szRight; | 
| 8251 |     szNew[i-1] = szLeft; | 
| 8252 |     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ | 
| 8253 |       rc = SQLITE_CORRUPT_BKPT; | 
| 8254 |       goto balance_cleanup; | 
| 8255 |     } | 
| 8256 |   } | 
| 8257 |  | 
| 8258 |   /* Sanity check:  For a non-corrupt database file one of the follwing | 
| 8259 |   ** must be true: | 
| 8260 |   **    (1) We found one or more cells (cntNew[0])>0), or | 
| 8261 |   **    (2) pPage is a virtual root page.  A virtual root page is when | 
| 8262 |   **        the real root page is page 1 and we are the only child of | 
| 8263 |   **        that page. | 
| 8264 |   */ | 
| 8265 |   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); | 
| 8266 |   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n" , | 
| 8267 |     apOld[0]->pgno, apOld[0]->nCell, | 
| 8268 |     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, | 
| 8269 |     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 | 
| 8270 |   )); | 
| 8271 |  | 
| 8272 |   /* | 
| 8273 |   ** Allocate k new pages.  Reuse old pages where possible. | 
| 8274 |   */ | 
| 8275 |   pageFlags = apOld[0]->aData[0]; | 
| 8276 |   for(i=0; i<k; i++){ | 
| 8277 |     MemPage *pNew; | 
| 8278 |     if( i<nOld ){ | 
| 8279 |       pNew = apNew[i] = apOld[i]; | 
| 8280 |       apOld[i] = 0; | 
| 8281 |       rc = sqlite3PagerWrite(pNew->pDbPage); | 
| 8282 |       nNew++; | 
| 8283 |       if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) | 
| 8284 |        && rc==SQLITE_OK | 
| 8285 |       ){ | 
| 8286 |         rc = SQLITE_CORRUPT_BKPT; | 
| 8287 |       } | 
| 8288 |       if( rc ) goto balance_cleanup; | 
| 8289 |     }else{ | 
| 8290 |       assert( i>0 ); | 
| 8291 |       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); | 
| 8292 |       if( rc ) goto balance_cleanup; | 
| 8293 |       zeroPage(pNew, pageFlags); | 
| 8294 |       apNew[i] = pNew; | 
| 8295 |       nNew++; | 
| 8296 |       cntOld[i] = b.nCell; | 
| 8297 |  | 
| 8298 |       /* Set the pointer-map entry for the new sibling page. */ | 
| 8299 |       if( ISAUTOVACUUM ){ | 
| 8300 |         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); | 
| 8301 |         if( rc!=SQLITE_OK ){ | 
| 8302 |           goto balance_cleanup; | 
| 8303 |         } | 
| 8304 |       } | 
| 8305 |     } | 
| 8306 |   } | 
| 8307 |  | 
| 8308 |   /* | 
| 8309 |   ** Reassign page numbers so that the new pages are in ascending order.  | 
| 8310 |   ** This helps to keep entries in the disk file in order so that a scan | 
| 8311 |   ** of the table is closer to a linear scan through the file. That in turn  | 
| 8312 |   ** helps the operating system to deliver pages from the disk more rapidly. | 
| 8313 |   ** | 
| 8314 |   ** An O(N*N) sort algorithm is used, but since N is never more than NB+2 | 
| 8315 |   ** (5), that is not a performance concern. | 
| 8316 |   ** | 
| 8317 |   ** When NB==3, this one optimization makes the database about 25% faster  | 
| 8318 |   ** for large insertions and deletions. | 
| 8319 |   */ | 
| 8320 |   for(i=0; i<nNew; i++){ | 
| 8321 |     aPgno[i] = apNew[i]->pgno; | 
| 8322 |     assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE ); | 
| 8323 |     assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY ); | 
| 8324 |   } | 
| 8325 |   for(i=0; i<nNew-1; i++){ | 
| 8326 |     int iB = i; | 
| 8327 |     for(j=i+1; j<nNew; j++){ | 
| 8328 |       if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j; | 
| 8329 |     } | 
| 8330 |  | 
| 8331 |     /* If apNew[i] has a page number that is bigger than any of the | 
| 8332 |     ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent | 
| 8333 |     ** entry that has the smallest page number (which we know to be | 
| 8334 |     ** entry apNew[iB]). | 
| 8335 |     */ | 
| 8336 |     if( iB!=i ){ | 
| 8337 |       Pgno pgnoA = apNew[i]->pgno; | 
| 8338 |       Pgno pgnoB = apNew[iB]->pgno; | 
| 8339 |       Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1; | 
| 8340 |       u16 fgA = apNew[i]->pDbPage->flags; | 
| 8341 |       u16 fgB = apNew[iB]->pDbPage->flags; | 
| 8342 |       sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB); | 
| 8343 |       sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA); | 
| 8344 |       sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB); | 
| 8345 |       apNew[i]->pgno = pgnoB; | 
| 8346 |       apNew[iB]->pgno = pgnoA; | 
| 8347 |     } | 
| 8348 |   } | 
| 8349 |  | 
| 8350 |   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "  | 
| 8351 |          "%d(%d nc=%d) %d(%d nc=%d)\n" , | 
| 8352 |     apNew[0]->pgno, szNew[0], cntNew[0], | 
| 8353 |     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, | 
| 8354 |     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, | 
| 8355 |     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, | 
| 8356 |     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, | 
| 8357 |     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, | 
| 8358 |     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, | 
| 8359 |     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, | 
| 8360 |     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 | 
| 8361 |   )); | 
| 8362 |  | 
| 8363 |   assert( sqlite3PagerIswriteable(pParent->pDbPage) ); | 
| 8364 |   assert( nNew>=1 && nNew<=ArraySize(apNew) ); | 
| 8365 |   assert( apNew[nNew-1]!=0 ); | 
| 8366 |   put4byte(pRight, apNew[nNew-1]->pgno); | 
| 8367 |  | 
| 8368 |   /* If the sibling pages are not leaves, ensure that the right-child pointer | 
| 8369 |   ** of the right-most new sibling page is set to the value that was  | 
| 8370 |   ** originally in the same field of the right-most old sibling page. */ | 
| 8371 |   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ | 
| 8372 |     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; | 
| 8373 |     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); | 
| 8374 |   } | 
| 8375 |  | 
| 8376 |   /* Make any required updates to pointer map entries associated with  | 
| 8377 |   ** cells stored on sibling pages following the balance operation. Pointer | 
| 8378 |   ** map entries associated with divider cells are set by the insertCell() | 
| 8379 |   ** routine. The associated pointer map entries are: | 
| 8380 |   ** | 
| 8381 |   **   a) if the cell contains a reference to an overflow chain, the | 
| 8382 |   **      entry associated with the first page in the overflow chain, and | 
| 8383 |   ** | 
| 8384 |   **   b) if the sibling pages are not leaves, the child page associated | 
| 8385 |   **      with the cell. | 
| 8386 |   ** | 
| 8387 |   ** If the sibling pages are not leaves, then the pointer map entry  | 
| 8388 |   ** associated with the right-child of each sibling may also need to be  | 
| 8389 |   ** updated. This happens below, after the sibling pages have been  | 
| 8390 |   ** populated, not here. | 
| 8391 |   */ | 
| 8392 |   if( ISAUTOVACUUM ){ | 
| 8393 |     MemPage *pOld; | 
| 8394 |     MemPage *pNew = pOld = apNew[0]; | 
| 8395 |     int cntOldNext = pNew->nCell + pNew->nOverflow; | 
| 8396 |     int iNew = 0; | 
| 8397 |     int iOld = 0; | 
| 8398 |  | 
| 8399 |     for(i=0; i<b.nCell; i++){ | 
| 8400 |       u8 *pCell = b.apCell[i]; | 
| 8401 |       while( i==cntOldNext ){ | 
| 8402 |         iOld++; | 
| 8403 |         assert( iOld<nNew || iOld<nOld ); | 
| 8404 |         assert( iOld>=0 && iOld<NB ); | 
| 8405 |         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; | 
| 8406 |         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; | 
| 8407 |       } | 
| 8408 |       if( i==cntNew[iNew] ){ | 
| 8409 |         pNew = apNew[++iNew]; | 
| 8410 |         if( !leafData ) continue; | 
| 8411 |       } | 
| 8412 |  | 
| 8413 |       /* Cell pCell is destined for new sibling page pNew. Originally, it | 
| 8414 |       ** was either part of sibling page iOld (possibly an overflow cell),  | 
| 8415 |       ** or else the divider cell to the left of sibling page iOld. So, | 
| 8416 |       ** if sibling page iOld had the same page number as pNew, and if | 
| 8417 |       ** pCell really was a part of sibling page iOld (not a divider or | 
| 8418 |       ** overflow cell), we can skip updating the pointer map entries.  */ | 
| 8419 |       if( iOld>=nNew | 
| 8420 |        || pNew->pgno!=aPgno[iOld] | 
| 8421 |        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) | 
| 8422 |       ){ | 
| 8423 |         if( !leafCorrection ){ | 
| 8424 |           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); | 
| 8425 |         } | 
| 8426 |         if( cachedCellSize(&b,i)>pNew->minLocal ){ | 
| 8427 |           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); | 
| 8428 |         } | 
| 8429 |         if( rc ) goto balance_cleanup; | 
| 8430 |       } | 
| 8431 |     } | 
| 8432 |   } | 
| 8433 |  | 
| 8434 |   /* Insert new divider cells into pParent. */ | 
| 8435 |   for(i=0; i<nNew-1; i++){ | 
| 8436 |     u8 *pCell; | 
| 8437 |     u8 *pTemp; | 
| 8438 |     int sz; | 
| 8439 |     u8 *pSrcEnd; | 
| 8440 |     MemPage *pNew = apNew[i]; | 
| 8441 |     j = cntNew[i]; | 
| 8442 |  | 
| 8443 |     assert( j<nMaxCells ); | 
| 8444 |     assert( b.apCell[j]!=0 ); | 
| 8445 |     pCell = b.apCell[j]; | 
| 8446 |     sz = b.szCell[j] + leafCorrection; | 
| 8447 |     pTemp = &aOvflSpace[iOvflSpace]; | 
| 8448 |     if( !pNew->leaf ){ | 
| 8449 |       memcpy(&pNew->aData[8], pCell, 4); | 
| 8450 |     }else if( leafData ){ | 
| 8451 |       /* If the tree is a leaf-data tree, and the siblings are leaves,  | 
| 8452 |       ** then there is no divider cell in b.apCell[]. Instead, the divider  | 
| 8453 |       ** cell consists of the integer key for the right-most cell of  | 
| 8454 |       ** the sibling-page assembled above only. | 
| 8455 |       */ | 
| 8456 |       CellInfo info; | 
| 8457 |       j--; | 
| 8458 |       pNew->xParseCell(pNew, b.apCell[j], &info); | 
| 8459 |       pCell = pTemp; | 
| 8460 |       sz = 4 + putVarint(&pCell[4], info.nKey); | 
| 8461 |       pTemp = 0; | 
| 8462 |     }else{ | 
| 8463 |       pCell -= 4; | 
| 8464 |       /* Obscure case for non-leaf-data trees: If the cell at pCell was | 
| 8465 |       ** previously stored on a leaf node, and its reported size was 4 | 
| 8466 |       ** bytes, then it may actually be smaller than this  | 
| 8467 |       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of | 
| 8468 |       ** any cell). But it is important to pass the correct size to  | 
| 8469 |       ** insertCell(), so reparse the cell now. | 
| 8470 |       ** | 
| 8471 |       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" | 
| 8472 |       ** and WITHOUT ROWID tables with exactly one column which is the | 
| 8473 |       ** primary key. | 
| 8474 |       */ | 
| 8475 |       if( b.szCell[j]==4 ){ | 
| 8476 |         assert(leafCorrection==4); | 
| 8477 |         sz = pParent->xCellSize(pParent, pCell); | 
| 8478 |       } | 
| 8479 |     } | 
| 8480 |     iOvflSpace += sz; | 
| 8481 |     assert( sz<=pBt->maxLocal+23 ); | 
| 8482 |     assert( iOvflSpace <= (int)pBt->pageSize ); | 
| 8483 |     for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){} | 
| 8484 |     pSrcEnd = b.apEnd[k]; | 
| 8485 |     if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ | 
| 8486 |       rc = SQLITE_CORRUPT_BKPT; | 
| 8487 |       goto balance_cleanup; | 
| 8488 |     } | 
| 8489 |     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); | 
| 8490 |     if( rc!=SQLITE_OK ) goto balance_cleanup; | 
| 8491 |     assert( sqlite3PagerIswriteable(pParent->pDbPage) ); | 
| 8492 |   } | 
| 8493 |  | 
| 8494 |   /* Now update the actual sibling pages. The order in which they are updated | 
| 8495 |   ** is important, as this code needs to avoid disrupting any page from which | 
| 8496 |   ** cells may still to be read. In practice, this means: | 
| 8497 |   ** | 
| 8498 |   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) | 
| 8499 |   **      then it is not safe to update page apNew[iPg] until after | 
| 8500 |   **      the left-hand sibling apNew[iPg-1] has been updated. | 
| 8501 |   ** | 
| 8502 |   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) | 
| 8503 |   **      then it is not safe to update page apNew[iPg] until after | 
| 8504 |   **      the right-hand sibling apNew[iPg+1] has been updated. | 
| 8505 |   ** | 
| 8506 |   ** If neither of the above apply, the page is safe to update. | 
| 8507 |   ** | 
| 8508 |   ** The iPg value in the following loop starts at nNew-1 goes down | 
| 8509 |   ** to 0, then back up to nNew-1 again, thus making two passes over | 
| 8510 |   ** the pages.  On the initial downward pass, only condition (1) above | 
| 8511 |   ** needs to be tested because (2) will always be true from the previous | 
| 8512 |   ** step.  On the upward pass, both conditions are always true, so the | 
| 8513 |   ** upwards pass simply processes pages that were missed on the downward | 
| 8514 |   ** pass. | 
| 8515 |   */ | 
| 8516 |   for(i=1-nNew; i<nNew; i++){ | 
| 8517 |     int iPg = i<0 ? -i : i; | 
| 8518 |     assert( iPg>=0 && iPg<nNew ); | 
| 8519 |     if( abDone[iPg] ) continue;         /* Skip pages already processed */ | 
| 8520 |     if( i>=0                            /* On the upwards pass, or... */ | 
| 8521 |      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */ | 
| 8522 |     ){ | 
| 8523 |       int iNew; | 
| 8524 |       int iOld; | 
| 8525 |       int nNewCell; | 
| 8526 |  | 
| 8527 |       /* Verify condition (1):  If cells are moving left, update iPg | 
| 8528 |       ** only after iPg-1 has already been updated. */ | 
| 8529 |       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); | 
| 8530 |  | 
| 8531 |       /* Verify condition (2):  If cells are moving right, update iPg | 
| 8532 |       ** only after iPg+1 has already been updated. */ | 
| 8533 |       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); | 
| 8534 |  | 
| 8535 |       if( iPg==0 ){ | 
| 8536 |         iNew = iOld = 0; | 
| 8537 |         nNewCell = cntNew[0]; | 
| 8538 |       }else{ | 
| 8539 |         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; | 
| 8540 |         iNew = cntNew[iPg-1] + !leafData; | 
| 8541 |         nNewCell = cntNew[iPg] - iNew; | 
| 8542 |       } | 
| 8543 |  | 
| 8544 |       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); | 
| 8545 |       if( rc ) goto balance_cleanup; | 
| 8546 |       abDone[iPg]++; | 
| 8547 |       apNew[iPg]->nFree = usableSpace-szNew[iPg]; | 
| 8548 |       assert( apNew[iPg]->nOverflow==0 ); | 
| 8549 |       assert( apNew[iPg]->nCell==nNewCell ); | 
| 8550 |     } | 
| 8551 |   } | 
| 8552 |  | 
| 8553 |   /* All pages have been processed exactly once */ | 
| 8554 |   assert( memcmp(abDone, "\01\01\01\01\01" , nNew)==0 ); | 
| 8555 |  | 
| 8556 |   assert( nOld>0 ); | 
| 8557 |   assert( nNew>0 ); | 
| 8558 |  | 
| 8559 |   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ | 
| 8560 |     /* The root page of the b-tree now contains no cells. The only sibling | 
| 8561 |     ** page is the right-child of the parent. Copy the contents of the | 
| 8562 |     ** child page into the parent, decreasing the overall height of the | 
| 8563 |     ** b-tree structure by one. This is described as the "balance-shallower" | 
| 8564 |     ** sub-algorithm in some documentation. | 
| 8565 |     ** | 
| 8566 |     ** If this is an auto-vacuum database, the call to copyNodeContent()  | 
| 8567 |     ** sets all pointer-map entries corresponding to database image pages  | 
| 8568 |     ** for which the pointer is stored within the content being copied. | 
| 8569 |     ** | 
| 8570 |     ** It is critical that the child page be defragmented before being | 
| 8571 |     ** copied into the parent, because if the parent is page 1 then it will | 
| 8572 |     ** by smaller than the child due to the database header, and so all the | 
| 8573 |     ** free space needs to be up front. | 
| 8574 |     */ | 
| 8575 |     assert( nNew==1 || CORRUPT_DB ); | 
| 8576 |     rc = defragmentPage(apNew[0], -1); | 
| 8577 |     testcase( rc!=SQLITE_OK ); | 
| 8578 |     assert( apNew[0]->nFree ==  | 
| 8579 |         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset | 
| 8580 |           - apNew[0]->nCell*2) | 
| 8581 |       || rc!=SQLITE_OK | 
| 8582 |     ); | 
| 8583 |     copyNodeContent(apNew[0], pParent, &rc); | 
| 8584 |     freePage(apNew[0], &rc); | 
| 8585 |   }else if( ISAUTOVACUUM && !leafCorrection ){ | 
| 8586 |     /* Fix the pointer map entries associated with the right-child of each | 
| 8587 |     ** sibling page. All other pointer map entries have already been taken | 
| 8588 |     ** care of.  */ | 
| 8589 |     for(i=0; i<nNew; i++){ | 
| 8590 |       u32 key = get4byte(&apNew[i]->aData[8]); | 
| 8591 |       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); | 
| 8592 |     } | 
| 8593 |   } | 
| 8594 |  | 
| 8595 |   assert( pParent->isInit ); | 
| 8596 |   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n" , | 
| 8597 |           nOld, nNew, b.nCell)); | 
| 8598 |  | 
| 8599 |   /* Free any old pages that were not reused as new pages. | 
| 8600 |   */ | 
| 8601 |   for(i=nNew; i<nOld; i++){ | 
| 8602 |     freePage(apOld[i], &rc); | 
| 8603 |   } | 
| 8604 |  | 
| 8605 | #if 0 | 
| 8606 |   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ | 
| 8607 |     /* The ptrmapCheckPages() contains assert() statements that verify that | 
| 8608 |     ** all pointer map pages are set correctly. This is helpful while  | 
| 8609 |     ** debugging. This is usually disabled because a corrupt database may | 
| 8610 |     ** cause an assert() statement to fail.  */ | 
| 8611 |     ptrmapCheckPages(apNew, nNew); | 
| 8612 |     ptrmapCheckPages(&pParent, 1); | 
| 8613 |   } | 
| 8614 | #endif | 
| 8615 |  | 
| 8616 |   /* | 
| 8617 |   ** Cleanup before returning. | 
| 8618 |   */ | 
| 8619 | balance_cleanup: | 
| 8620 |   sqlite3StackFree(0, b.apCell); | 
| 8621 |   for(i=0; i<nOld; i++){ | 
| 8622 |     releasePage(apOld[i]); | 
| 8623 |   } | 
| 8624 |   for(i=0; i<nNew; i++){ | 
| 8625 |     releasePage(apNew[i]); | 
| 8626 |   } | 
| 8627 |  | 
| 8628 |   return rc; | 
| 8629 | } | 
| 8630 |  | 
| 8631 |  | 
| 8632 | /* | 
| 8633 | ** This function is called when the root page of a b-tree structure is | 
| 8634 | ** overfull (has one or more overflow pages). | 
| 8635 | ** | 
| 8636 | ** A new child page is allocated and the contents of the current root | 
| 8637 | ** page, including overflow cells, are copied into the child. The root | 
| 8638 | ** page is then overwritten to make it an empty page with the right-child  | 
| 8639 | ** pointer pointing to the new page. | 
| 8640 | ** | 
| 8641 | ** Before returning, all pointer-map entries corresponding to pages  | 
| 8642 | ** that the new child-page now contains pointers to are updated. The | 
| 8643 | ** entry corresponding to the new right-child pointer of the root | 
| 8644 | ** page is also updated. | 
| 8645 | ** | 
| 8646 | ** If successful, *ppChild is set to contain a reference to the child  | 
| 8647 | ** page and SQLITE_OK is returned. In this case the caller is required | 
| 8648 | ** to call releasePage() on *ppChild exactly once. If an error occurs, | 
| 8649 | ** an error code is returned and *ppChild is set to 0. | 
| 8650 | */ | 
| 8651 | static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ | 
| 8652 |   int rc;                        /* Return value from subprocedures */ | 
| 8653 |   MemPage *pChild = 0;           /* Pointer to a new child page */ | 
| 8654 |   Pgno pgnoChild = 0;            /* Page number of the new child page */ | 
| 8655 |   BtShared *pBt = pRoot->pBt;    /* The BTree */ | 
| 8656 |  | 
| 8657 |   assert( pRoot->nOverflow>0 ); | 
| 8658 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 8659 |  | 
| 8660 |   /* Make pRoot, the root page of the b-tree, writable. Allocate a new  | 
| 8661 |   ** page that will become the new right-child of pPage. Copy the contents | 
| 8662 |   ** of the node stored on pRoot into the new child page. | 
| 8663 |   */ | 
| 8664 |   rc = sqlite3PagerWrite(pRoot->pDbPage); | 
| 8665 |   if( rc==SQLITE_OK ){ | 
| 8666 |     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); | 
| 8667 |     copyNodeContent(pRoot, pChild, &rc); | 
| 8668 |     if( ISAUTOVACUUM ){ | 
| 8669 |       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); | 
| 8670 |     } | 
| 8671 |   } | 
| 8672 |   if( rc ){ | 
| 8673 |     *ppChild = 0; | 
| 8674 |     releasePage(pChild); | 
| 8675 |     return rc; | 
| 8676 |   } | 
| 8677 |   assert( sqlite3PagerIswriteable(pChild->pDbPage) ); | 
| 8678 |   assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); | 
| 8679 |   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); | 
| 8680 |  | 
| 8681 |   TRACE(("BALANCE: copy root %d into %d\n" , pRoot->pgno, pChild->pgno)); | 
| 8682 |  | 
| 8683 |   /* Copy the overflow cells from pRoot to pChild */ | 
| 8684 |   memcpy(pChild->aiOvfl, pRoot->aiOvfl, | 
| 8685 |          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); | 
| 8686 |   memcpy(pChild->apOvfl, pRoot->apOvfl, | 
| 8687 |          pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); | 
| 8688 |   pChild->nOverflow = pRoot->nOverflow; | 
| 8689 |  | 
| 8690 |   /* Zero the contents of pRoot. Then install pChild as the right-child. */ | 
| 8691 |   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); | 
| 8692 |   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); | 
| 8693 |  | 
| 8694 |   *ppChild = pChild; | 
| 8695 |   return SQLITE_OK; | 
| 8696 | } | 
| 8697 |  | 
| 8698 | /* | 
| 8699 | ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid | 
| 8700 | ** on the same B-tree as pCur. | 
| 8701 | ** | 
| 8702 | ** This can occur if a database is corrupt with two or more SQL tables | 
| 8703 | ** pointing to the same b-tree.  If an insert occurs on one SQL table | 
| 8704 | ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL | 
| 8705 | ** table linked to the same b-tree.  If the secondary insert causes a | 
| 8706 | ** rebalance, that can change content out from under the cursor on the | 
| 8707 | ** first SQL table, violating invariants on the first insert. | 
| 8708 | */ | 
| 8709 | static int anotherValidCursor(BtCursor *pCur){ | 
| 8710 |   BtCursor *pOther; | 
| 8711 |   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ | 
| 8712 |     if( pOther!=pCur | 
| 8713 |      && pOther->eState==CURSOR_VALID | 
| 8714 |      && pOther->pPage==pCur->pPage | 
| 8715 |     ){ | 
| 8716 |       return SQLITE_CORRUPT_BKPT; | 
| 8717 |     } | 
| 8718 |   } | 
| 8719 |   return SQLITE_OK; | 
| 8720 | } | 
| 8721 |  | 
| 8722 | /* | 
| 8723 | ** The page that pCur currently points to has just been modified in | 
| 8724 | ** some way. This function figures out if this modification means the | 
| 8725 | ** tree needs to be balanced, and if so calls the appropriate balancing  | 
| 8726 | ** routine. Balancing routines are: | 
| 8727 | ** | 
| 8728 | **   balance_quick() | 
| 8729 | **   balance_deeper() | 
| 8730 | **   balance_nonroot() | 
| 8731 | */ | 
| 8732 | static int balance(BtCursor *pCur){ | 
| 8733 |   int rc = SQLITE_OK; | 
| 8734 |   u8 aBalanceQuickSpace[13]; | 
| 8735 |   u8 *pFree = 0; | 
| 8736 |  | 
| 8737 |   VVA_ONLY( int balance_quick_called = 0 ); | 
| 8738 |   VVA_ONLY( int balance_deeper_called = 0 ); | 
| 8739 |  | 
| 8740 |   do { | 
| 8741 |     int iPage; | 
| 8742 |     MemPage *pPage = pCur->pPage; | 
| 8743 |  | 
| 8744 |     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; | 
| 8745 |     if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ | 
| 8746 |       /* No rebalance required as long as: | 
| 8747 |       **   (1) There are no overflow cells | 
| 8748 |       **   (2) The amount of free space on the page is less than 2/3rds of | 
| 8749 |       **       the total usable space on the page. */ | 
| 8750 |       break; | 
| 8751 |     }else if( (iPage = pCur->iPage)==0 ){ | 
| 8752 |       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ | 
| 8753 |         /* The root page of the b-tree is overfull. In this case call the | 
| 8754 |         ** balance_deeper() function to create a new child for the root-page | 
| 8755 |         ** and copy the current contents of the root-page to it. The | 
| 8756 |         ** next iteration of the do-loop will balance the child page. | 
| 8757 |         */  | 
| 8758 |         assert( balance_deeper_called==0 ); | 
| 8759 |         VVA_ONLY( balance_deeper_called++ ); | 
| 8760 |         rc = balance_deeper(pPage, &pCur->apPage[1]); | 
| 8761 |         if( rc==SQLITE_OK ){ | 
| 8762 |           pCur->iPage = 1; | 
| 8763 |           pCur->ix = 0; | 
| 8764 |           pCur->aiIdx[0] = 0; | 
| 8765 |           pCur->apPage[0] = pPage; | 
| 8766 |           pCur->pPage = pCur->apPage[1]; | 
| 8767 |           assert( pCur->pPage->nOverflow ); | 
| 8768 |         } | 
| 8769 |       }else{ | 
| 8770 |         break; | 
| 8771 |       } | 
| 8772 |     }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){ | 
| 8773 |       /* The page being written is not a root page, and there is currently | 
| 8774 |       ** more than one reference to it. This only happens if the page is one  | 
| 8775 |       ** of its own ancestor pages. Corruption. */ | 
| 8776 |       rc = SQLITE_CORRUPT_BKPT; | 
| 8777 |     }else{ | 
| 8778 |       MemPage * const pParent = pCur->apPage[iPage-1]; | 
| 8779 |       int const iIdx = pCur->aiIdx[iPage-1]; | 
| 8780 |  | 
| 8781 |       rc = sqlite3PagerWrite(pParent->pDbPage); | 
| 8782 |       if( rc==SQLITE_OK && pParent->nFree<0 ){ | 
| 8783 |         rc = btreeComputeFreeSpace(pParent); | 
| 8784 |       } | 
| 8785 |       if( rc==SQLITE_OK ){ | 
| 8786 | #ifndef SQLITE_OMIT_QUICKBALANCE | 
| 8787 |         if( pPage->intKeyLeaf | 
| 8788 |          && pPage->nOverflow==1 | 
| 8789 |          && pPage->aiOvfl[0]==pPage->nCell | 
| 8790 |          && pParent->pgno!=1 | 
| 8791 |          && pParent->nCell==iIdx | 
| 8792 |         ){ | 
| 8793 |           /* Call balance_quick() to create a new sibling of pPage on which | 
| 8794 |           ** to store the overflow cell. balance_quick() inserts a new cell | 
| 8795 |           ** into pParent, which may cause pParent overflow. If this | 
| 8796 |           ** happens, the next iteration of the do-loop will balance pParent  | 
| 8797 |           ** use either balance_nonroot() or balance_deeper(). Until this | 
| 8798 |           ** happens, the overflow cell is stored in the aBalanceQuickSpace[] | 
| 8799 |           ** buffer.  | 
| 8800 |           ** | 
| 8801 |           ** The purpose of the following assert() is to check that only a | 
| 8802 |           ** single call to balance_quick() is made for each call to this | 
| 8803 |           ** function. If this were not verified, a subtle bug involving reuse | 
| 8804 |           ** of the aBalanceQuickSpace[] might sneak in. | 
| 8805 |           */ | 
| 8806 |           assert( balance_quick_called==0 );  | 
| 8807 |           VVA_ONLY( balance_quick_called++ ); | 
| 8808 |           rc = balance_quick(pParent, pPage, aBalanceQuickSpace); | 
| 8809 |         }else | 
| 8810 | #endif | 
| 8811 |         { | 
| 8812 |           /* In this case, call balance_nonroot() to redistribute cells | 
| 8813 |           ** between pPage and up to 2 of its sibling pages. This involves | 
| 8814 |           ** modifying the contents of pParent, which may cause pParent to | 
| 8815 |           ** become overfull or underfull. The next iteration of the do-loop | 
| 8816 |           ** will balance the parent page to correct this. | 
| 8817 |           **  | 
| 8818 |           ** If the parent page becomes overfull, the overflow cell or cells | 
| 8819 |           ** are stored in the pSpace buffer allocated immediately below.  | 
| 8820 |           ** A subsequent iteration of the do-loop will deal with this by | 
| 8821 |           ** calling balance_nonroot() (balance_deeper() may be called first, | 
| 8822 |           ** but it doesn't deal with overflow cells - just moves them to a | 
| 8823 |           ** different page). Once this subsequent call to balance_nonroot()  | 
| 8824 |           ** has completed, it is safe to release the pSpace buffer used by | 
| 8825 |           ** the previous call, as the overflow cell data will have been  | 
| 8826 |           ** copied either into the body of a database page or into the new | 
| 8827 |           ** pSpace buffer passed to the latter call to balance_nonroot(). | 
| 8828 |           */ | 
| 8829 |           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); | 
| 8830 |           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, | 
| 8831 |                                pCur->hints&BTREE_BULKLOAD); | 
| 8832 |           if( pFree ){ | 
| 8833 |             /* If pFree is not NULL, it points to the pSpace buffer used  | 
| 8834 |             ** by a previous call to balance_nonroot(). Its contents are | 
| 8835 |             ** now stored either on real database pages or within the  | 
| 8836 |             ** new pSpace buffer, so it may be safely freed here. */ | 
| 8837 |             sqlite3PageFree(pFree); | 
| 8838 |           } | 
| 8839 |  | 
| 8840 |           /* The pSpace buffer will be freed after the next call to | 
| 8841 |           ** balance_nonroot(), or just before this function returns, whichever | 
| 8842 |           ** comes first. */ | 
| 8843 |           pFree = pSpace; | 
| 8844 |         } | 
| 8845 |       } | 
| 8846 |  | 
| 8847 |       pPage->nOverflow = 0; | 
| 8848 |  | 
| 8849 |       /* The next iteration of the do-loop balances the parent page. */ | 
| 8850 |       releasePage(pPage); | 
| 8851 |       pCur->iPage--; | 
| 8852 |       assert( pCur->iPage>=0 ); | 
| 8853 |       pCur->pPage = pCur->apPage[pCur->iPage]; | 
| 8854 |     } | 
| 8855 |   }while( rc==SQLITE_OK ); | 
| 8856 |  | 
| 8857 |   if( pFree ){ | 
| 8858 |     sqlite3PageFree(pFree); | 
| 8859 |   } | 
| 8860 |   return rc; | 
| 8861 | } | 
| 8862 |  | 
| 8863 | /* Overwrite content from pX into pDest.  Only do the write if the | 
| 8864 | ** content is different from what is already there. | 
| 8865 | */ | 
| 8866 | static int btreeOverwriteContent( | 
| 8867 |   MemPage *pPage,           /* MemPage on which writing will occur */ | 
| 8868 |   u8 *pDest,                /* Pointer to the place to start writing */ | 
| 8869 |   const BtreePayload *pX,   /* Source of data to write */ | 
| 8870 |   int iOffset,              /* Offset of first byte to write */ | 
| 8871 |   int iAmt                  /* Number of bytes to be written */ | 
| 8872 | ){ | 
| 8873 |   int nData = pX->nData - iOffset; | 
| 8874 |   if( nData<=0 ){ | 
| 8875 |     /* Overwritting with zeros */ | 
| 8876 |     int i; | 
| 8877 |     for(i=0; i<iAmt && pDest[i]==0; i++){} | 
| 8878 |     if( i<iAmt ){ | 
| 8879 |       int rc = sqlite3PagerWrite(pPage->pDbPage); | 
| 8880 |       if( rc ) return rc; | 
| 8881 |       memset(pDest + i, 0, iAmt - i); | 
| 8882 |     } | 
| 8883 |   }else{ | 
| 8884 |     if( nData<iAmt ){ | 
| 8885 |       /* Mixed read data and zeros at the end.  Make a recursive call | 
| 8886 |       ** to write the zeros then fall through to write the real data */ | 
| 8887 |       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, | 
| 8888 |                                  iAmt-nData); | 
| 8889 |       if( rc ) return rc; | 
| 8890 |       iAmt = nData; | 
| 8891 |     } | 
| 8892 |     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ | 
| 8893 |       int rc = sqlite3PagerWrite(pPage->pDbPage); | 
| 8894 |       if( rc ) return rc; | 
| 8895 |       /* In a corrupt database, it is possible for the source and destination | 
| 8896 |       ** buffers to overlap.  This is harmless since the database is already | 
| 8897 |       ** corrupt but it does cause valgrind and ASAN warnings.  So use | 
| 8898 |       ** memmove(). */ | 
| 8899 |       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); | 
| 8900 |     } | 
| 8901 |   } | 
| 8902 |   return SQLITE_OK; | 
| 8903 | } | 
| 8904 |  | 
| 8905 | /* | 
| 8906 | ** Overwrite the cell that cursor pCur is pointing to with fresh content | 
| 8907 | ** contained in pX. | 
| 8908 | */ | 
| 8909 | static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ | 
| 8910 |   int iOffset;                        /* Next byte of pX->pData to write */ | 
| 8911 |   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ | 
| 8912 |   int rc;                             /* Return code */ | 
| 8913 |   MemPage *pPage = pCur->pPage;       /* Page being written */ | 
| 8914 |   BtShared *pBt;                      /* Btree */ | 
| 8915 |   Pgno ovflPgno;                      /* Next overflow page to write */ | 
| 8916 |   u32 ovflPageSize;                   /* Size to write on overflow page */ | 
| 8917 |  | 
| 8918 |   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd | 
| 8919 |    || pCur->info.pPayload < pPage->aData + pPage->cellOffset | 
| 8920 |   ){ | 
| 8921 |     return SQLITE_CORRUPT_BKPT; | 
| 8922 |   } | 
| 8923 |   /* Overwrite the local portion first */ | 
| 8924 |   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, | 
| 8925 |                              0, pCur->info.nLocal); | 
| 8926 |   if( rc ) return rc; | 
| 8927 |   if( pCur->info.nLocal==nTotal ) return SQLITE_OK; | 
| 8928 |  | 
| 8929 |   /* Now overwrite the overflow pages */ | 
| 8930 |   iOffset = pCur->info.nLocal; | 
| 8931 |   assert( nTotal>=0 ); | 
| 8932 |   assert( iOffset>=0 ); | 
| 8933 |   ovflPgno = get4byte(pCur->info.pPayload + iOffset); | 
| 8934 |   pBt = pPage->pBt; | 
| 8935 |   ovflPageSize = pBt->usableSize - 4; | 
| 8936 |   do{ | 
| 8937 |     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); | 
| 8938 |     if( rc ) return rc; | 
| 8939 |     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ | 
| 8940 |       rc = SQLITE_CORRUPT_BKPT; | 
| 8941 |     }else{ | 
| 8942 |       if( iOffset+ovflPageSize<(u32)nTotal ){ | 
| 8943 |         ovflPgno = get4byte(pPage->aData); | 
| 8944 |       }else{ | 
| 8945 |         ovflPageSize = nTotal - iOffset; | 
| 8946 |       } | 
| 8947 |       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, | 
| 8948 |                                  iOffset, ovflPageSize); | 
| 8949 |     } | 
| 8950 |     sqlite3PagerUnref(pPage->pDbPage); | 
| 8951 |     if( rc ) return rc; | 
| 8952 |     iOffset += ovflPageSize; | 
| 8953 |   }while( iOffset<nTotal ); | 
| 8954 |   return SQLITE_OK;     | 
| 8955 | } | 
| 8956 |  | 
| 8957 |  | 
| 8958 | /* | 
| 8959 | ** Insert a new record into the BTree.  The content of the new record | 
| 8960 | ** is described by the pX object.  The pCur cursor is used only to | 
| 8961 | ** define what table the record should be inserted into, and is left | 
| 8962 | ** pointing at a random location. | 
| 8963 | ** | 
| 8964 | ** For a table btree (used for rowid tables), only the pX.nKey value of | 
| 8965 | ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the | 
| 8966 | ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields | 
| 8967 | ** hold the content of the row. | 
| 8968 | ** | 
| 8969 | ** For an index btree (used for indexes and WITHOUT ROWID tables), the | 
| 8970 | ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The  | 
| 8971 | ** pX.pData,nData,nZero fields must be zero. | 
| 8972 | ** | 
| 8973 | ** If the seekResult parameter is non-zero, then a successful call to | 
| 8974 | ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already | 
| 8975 | ** been performed.  In other words, if seekResult!=0 then the cursor | 
| 8976 | ** is currently pointing to a cell that will be adjacent to the cell | 
| 8977 | ** to be inserted.  If seekResult<0 then pCur points to a cell that is | 
| 8978 | ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell | 
| 8979 | ** that is larger than (pKey,nKey). | 
| 8980 | ** | 
| 8981 | ** If seekResult==0, that means pCur is pointing at some unknown location. | 
| 8982 | ** In that case, this routine must seek the cursor to the correct insertion | 
| 8983 | ** point for (pKey,nKey) before doing the insertion.  For index btrees, | 
| 8984 | ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked | 
| 8985 | ** key values and pX->aMem can be used instead of pX->pKey to avoid having | 
| 8986 | ** to decode the key. | 
| 8987 | */ | 
| 8988 | int sqlite3BtreeInsert( | 
| 8989 |   BtCursor *pCur,                /* Insert data into the table of this cursor */ | 
| 8990 |   const BtreePayload *pX,        /* Content of the row to be inserted */ | 
| 8991 |   int flags,                     /* True if this is likely an append */ | 
| 8992 |   int seekResult                 /* Result of prior IndexMoveto() call */ | 
| 8993 | ){ | 
| 8994 |   int rc; | 
| 8995 |   int loc = seekResult;          /* -1: before desired location  +1: after */ | 
| 8996 |   int szNew = 0; | 
| 8997 |   int idx; | 
| 8998 |   MemPage *pPage; | 
| 8999 |   Btree *p = pCur->pBtree; | 
| 9000 |   BtShared *pBt = p->pBt; | 
| 9001 |   unsigned char *oldCell; | 
| 9002 |   unsigned char *newCell = 0; | 
| 9003 |  | 
| 9004 |   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); | 
| 9005 |   assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); | 
| 9006 |  | 
| 9007 |   /* Save the positions of any other cursors open on this table. | 
| 9008 |   ** | 
| 9009 |   ** In some cases, the call to btreeMoveto() below is a no-op. For | 
| 9010 |   ** example, when inserting data into a table with auto-generated integer | 
| 9011 |   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the  | 
| 9012 |   ** integer key to use. It then calls this function to actually insert the  | 
| 9013 |   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes | 
| 9014 |   ** that the cursor is already where it needs to be and returns without | 
| 9015 |   ** doing any work. To avoid thwarting these optimizations, it is important | 
| 9016 |   ** not to clear the cursor here. | 
| 9017 |   */ | 
| 9018 |   if( pCur->curFlags & BTCF_Multiple ){ | 
| 9019 |     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); | 
| 9020 |     if( rc ) return rc; | 
| 9021 |     if( loc && pCur->iPage<0 ){ | 
| 9022 |       /* This can only happen if the schema is corrupt such that there is more | 
| 9023 |       ** than one table or index with the same root page as used by the cursor. | 
| 9024 |       ** Which can only happen if the SQLITE_NoSchemaError flag was set when | 
| 9025 |       ** the schema was loaded. This cannot be asserted though, as a user might | 
| 9026 |       ** set the flag, load the schema, and then unset the flag.  */ | 
| 9027 |       return SQLITE_CORRUPT_BKPT; | 
| 9028 |     } | 
| 9029 |   } | 
| 9030 |  | 
| 9031 |   /* Ensure that the cursor is not in the CURSOR_FAULT state and that it | 
| 9032 |   ** points to a valid cell. | 
| 9033 |   */ | 
| 9034 |   if( pCur->eState>=CURSOR_REQUIRESEEK ){ | 
| 9035 |     testcase( pCur->eState==CURSOR_REQUIRESEEK ); | 
| 9036 |     testcase( pCur->eState==CURSOR_FAULT ); | 
| 9037 |     rc = moveToRoot(pCur); | 
| 9038 |     if( rc && rc!=SQLITE_EMPTY ) return rc; | 
| 9039 |   } | 
| 9040 |  | 
| 9041 |   assert( cursorOwnsBtShared(pCur) ); | 
| 9042 |   assert( (pCur->curFlags & BTCF_WriteFlag)!=0 | 
| 9043 |               && pBt->inTransaction==TRANS_WRITE | 
| 9044 |               && (pBt->btsFlags & BTS_READ_ONLY)==0 ); | 
| 9045 |   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); | 
| 9046 |  | 
| 9047 |   /* Assert that the caller has been consistent. If this cursor was opened | 
| 9048 |   ** expecting an index b-tree, then the caller should be inserting blob | 
| 9049 |   ** keys with no associated data. If the cursor was opened expecting an | 
| 9050 |   ** intkey table, the caller should be inserting integer keys with a | 
| 9051 |   ** blob of associated data.  */ | 
| 9052 |   assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); | 
| 9053 |  | 
| 9054 |   if( pCur->pKeyInfo==0 ){ | 
| 9055 |     assert( pX->pKey==0 ); | 
| 9056 |     /* If this is an insert into a table b-tree, invalidate any incrblob  | 
| 9057 |     ** cursors open on the row being replaced */ | 
| 9058 |     if( p->hasIncrblobCur ){ | 
| 9059 |       invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); | 
| 9060 |     } | 
| 9061 |  | 
| 9062 |     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing  | 
| 9063 |     ** to a row with the same key as the new entry being inserted. | 
| 9064 |     */ | 
| 9065 | #ifdef SQLITE_DEBUG | 
| 9066 |     if( flags & BTREE_SAVEPOSITION ){ | 
| 9067 |       assert( pCur->curFlags & BTCF_ValidNKey ); | 
| 9068 |       assert( pX->nKey==pCur->info.nKey ); | 
| 9069 |       assert( loc==0 ); | 
| 9070 |     } | 
| 9071 | #endif | 
| 9072 |  | 
| 9073 |     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply | 
| 9074 |     ** that the cursor is not pointing to a row to be overwritten. | 
| 9075 |     ** So do a complete check. | 
| 9076 |     */ | 
| 9077 |     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ | 
| 9078 |       /* The cursor is pointing to the entry that is to be | 
| 9079 |       ** overwritten */ | 
| 9080 |       assert( pX->nData>=0 && pX->nZero>=0 ); | 
| 9081 |       if( pCur->info.nSize!=0 | 
| 9082 |        && pCur->info.nPayload==(u32)pX->nData+pX->nZero | 
| 9083 |       ){ | 
| 9084 |         /* New entry is the same size as the old.  Do an overwrite */ | 
| 9085 |         return btreeOverwriteCell(pCur, pX); | 
| 9086 |       } | 
| 9087 |       assert( loc==0 ); | 
| 9088 |     }else if( loc==0 ){ | 
| 9089 |       /* The cursor is *not* pointing to the cell to be overwritten, nor | 
| 9090 |       ** to an adjacent cell.  Move the cursor so that it is pointing either | 
| 9091 |       ** to the cell to be overwritten or an adjacent cell. | 
| 9092 |       */ | 
| 9093 |       rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,  | 
| 9094 |                (flags & BTREE_APPEND)!=0, &loc); | 
| 9095 |       if( rc ) return rc; | 
| 9096 |     } | 
| 9097 |   }else{ | 
| 9098 |     /* This is an index or a WITHOUT ROWID table */ | 
| 9099 |  | 
| 9100 |     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing  | 
| 9101 |     ** to a row with the same key as the new entry being inserted. | 
| 9102 |     */ | 
| 9103 |     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); | 
| 9104 |  | 
| 9105 |     /* If the cursor is not already pointing either to the cell to be | 
| 9106 |     ** overwritten, or if a new cell is being inserted, if the cursor is | 
| 9107 |     ** not pointing to an immediately adjacent cell, then move the cursor | 
| 9108 |     ** so that it does. | 
| 9109 |     */ | 
| 9110 |     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ | 
| 9111 |       if( pX->nMem ){ | 
| 9112 |         UnpackedRecord r; | 
| 9113 |         r.pKeyInfo = pCur->pKeyInfo; | 
| 9114 |         r.aMem = pX->aMem; | 
| 9115 |         r.nField = pX->nMem; | 
| 9116 |         r.default_rc = 0; | 
| 9117 |         r.eqSeen = 0; | 
| 9118 |         rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); | 
| 9119 |       }else{ | 
| 9120 |         rc = btreeMoveto(pCur, pX->pKey, pX->nKey,  | 
| 9121 |                     (flags & BTREE_APPEND)!=0, &loc); | 
| 9122 |       } | 
| 9123 |       if( rc ) return rc; | 
| 9124 |     } | 
| 9125 |  | 
| 9126 |     /* If the cursor is currently pointing to an entry to be overwritten | 
| 9127 |     ** and the new content is the same as as the old, then use the | 
| 9128 |     ** overwrite optimization. | 
| 9129 |     */ | 
| 9130 |     if( loc==0 ){ | 
| 9131 |       getCellInfo(pCur); | 
| 9132 |       if( pCur->info.nKey==pX->nKey ){ | 
| 9133 |         BtreePayload x2; | 
| 9134 |         x2.pData = pX->pKey; | 
| 9135 |         x2.nData = pX->nKey; | 
| 9136 |         x2.nZero = 0; | 
| 9137 |         return btreeOverwriteCell(pCur, &x2); | 
| 9138 |       } | 
| 9139 |     } | 
| 9140 |   } | 
| 9141 |   assert( pCur->eState==CURSOR_VALID  | 
| 9142 |        || (pCur->eState==CURSOR_INVALID && loc) ); | 
| 9143 |  | 
| 9144 |   pPage = pCur->pPage; | 
| 9145 |   assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); | 
| 9146 |   assert( pPage->leaf || !pPage->intKey ); | 
| 9147 |   if( pPage->nFree<0 ){ | 
| 9148 |     if( NEVER(pCur->eState>CURSOR_INVALID) ){ | 
| 9149 |      /* ^^^^^--- due to the moveToRoot() call above */ | 
| 9150 |       rc = SQLITE_CORRUPT_BKPT; | 
| 9151 |     }else{ | 
| 9152 |       rc = btreeComputeFreeSpace(pPage); | 
| 9153 |     } | 
| 9154 |     if( rc ) return rc; | 
| 9155 |   } | 
| 9156 |  | 
| 9157 |   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n" , | 
| 9158 |           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, | 
| 9159 |           loc==0 ? "overwrite"  : "new entry" )); | 
| 9160 |   assert( pPage->isInit || CORRUPT_DB ); | 
| 9161 |   newCell = pBt->pTmpSpace; | 
| 9162 |   assert( newCell!=0 ); | 
| 9163 |   if( flags & BTREE_PREFORMAT ){ | 
| 9164 |     rc = SQLITE_OK; | 
| 9165 |     szNew = pBt->nPreformatSize; | 
| 9166 |     if( szNew<4 ) szNew = 4; | 
| 9167 |     if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ | 
| 9168 |       CellInfo info; | 
| 9169 |       pPage->xParseCell(pPage, newCell, &info); | 
| 9170 |       if( info.nPayload!=info.nLocal ){ | 
| 9171 |         Pgno ovfl = get4byte(&newCell[szNew-4]); | 
| 9172 |         ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); | 
| 9173 |       } | 
| 9174 |     } | 
| 9175 |   }else{ | 
| 9176 |     rc = fillInCell(pPage, newCell, pX, &szNew); | 
| 9177 |   } | 
| 9178 |   if( rc ) goto end_insert; | 
| 9179 |   assert( szNew==pPage->xCellSize(pPage, newCell) ); | 
| 9180 |   assert( szNew <= MX_CELL_SIZE(pBt) ); | 
| 9181 |   idx = pCur->ix; | 
| 9182 |   if( loc==0 ){ | 
| 9183 |     CellInfo info; | 
| 9184 |     assert( idx>=0 ); | 
| 9185 |     if( idx>=pPage->nCell ){ | 
| 9186 |       return SQLITE_CORRUPT_BKPT; | 
| 9187 |     } | 
| 9188 |     rc = sqlite3PagerWrite(pPage->pDbPage); | 
| 9189 |     if( rc ){ | 
| 9190 |       goto end_insert; | 
| 9191 |     } | 
| 9192 |     oldCell = findCell(pPage, idx); | 
| 9193 |     if( !pPage->leaf ){ | 
| 9194 |       memcpy(newCell, oldCell, 4); | 
| 9195 |     } | 
| 9196 |     BTREE_CLEAR_CELL(rc, pPage, oldCell, info); | 
| 9197 |     testcase( pCur->curFlags & BTCF_ValidOvfl ); | 
| 9198 |     invalidateOverflowCache(pCur); | 
| 9199 |     if( info.nSize==szNew && info.nLocal==info.nPayload  | 
| 9200 |      && (!ISAUTOVACUUM || szNew<pPage->minLocal) | 
| 9201 |     ){ | 
| 9202 |       /* Overwrite the old cell with the new if they are the same size. | 
| 9203 |       ** We could also try to do this if the old cell is smaller, then add | 
| 9204 |       ** the leftover space to the free list.  But experiments show that | 
| 9205 |       ** doing that is no faster then skipping this optimization and just | 
| 9206 |       ** calling dropCell() and insertCell().  | 
| 9207 |       ** | 
| 9208 |       ** This optimization cannot be used on an autovacuum database if the | 
| 9209 |       ** new entry uses overflow pages, as the insertCell() call below is | 
| 9210 |       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */ | 
| 9211 |       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ | 
| 9212 |       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ | 
| 9213 |         return SQLITE_CORRUPT_BKPT; | 
| 9214 |       } | 
| 9215 |       if( oldCell+szNew > pPage->aDataEnd ){ | 
| 9216 |         return SQLITE_CORRUPT_BKPT; | 
| 9217 |       } | 
| 9218 |       memcpy(oldCell, newCell, szNew); | 
| 9219 |       return SQLITE_OK; | 
| 9220 |     } | 
| 9221 |     dropCell(pPage, idx, info.nSize, &rc); | 
| 9222 |     if( rc ) goto end_insert; | 
| 9223 |   }else if( loc<0 && pPage->nCell>0 ){ | 
| 9224 |     assert( pPage->leaf ); | 
| 9225 |     idx = ++pCur->ix; | 
| 9226 |     pCur->curFlags &= ~BTCF_ValidNKey; | 
| 9227 |   }else{ | 
| 9228 |     assert( pPage->leaf ); | 
| 9229 |   } | 
| 9230 |   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); | 
| 9231 |   assert( pPage->nOverflow==0 || rc==SQLITE_OK ); | 
| 9232 |   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); | 
| 9233 |  | 
| 9234 |   /* If no error has occurred and pPage has an overflow cell, call balance()  | 
| 9235 |   ** to redistribute the cells within the tree. Since balance() may move | 
| 9236 |   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey | 
| 9237 |   ** variables. | 
| 9238 |   ** | 
| 9239 |   ** Previous versions of SQLite called moveToRoot() to move the cursor | 
| 9240 |   ** back to the root page as balance() used to invalidate the contents | 
| 9241 |   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, | 
| 9242 |   ** set the cursor state to "invalid". This makes common insert operations | 
| 9243 |   ** slightly faster. | 
| 9244 |   ** | 
| 9245 |   ** There is a subtle but important optimization here too. When inserting | 
| 9246 |   ** multiple records into an intkey b-tree using a single cursor (as can | 
| 9247 |   ** happen while processing an "INSERT INTO ... SELECT" statement), it | 
| 9248 |   ** is advantageous to leave the cursor pointing to the last entry in | 
| 9249 |   ** the b-tree if possible. If the cursor is left pointing to the last | 
| 9250 |   ** entry in the table, and the next row inserted has an integer key | 
| 9251 |   ** larger than the largest existing key, it is possible to insert the | 
| 9252 |   ** row without seeking the cursor. This can be a big performance boost. | 
| 9253 |   */ | 
| 9254 |   pCur->info.nSize = 0; | 
| 9255 |   if( pPage->nOverflow ){ | 
| 9256 |     assert( rc==SQLITE_OK ); | 
| 9257 |     pCur->curFlags &= ~(BTCF_ValidNKey); | 
| 9258 |     rc = balance(pCur); | 
| 9259 |  | 
| 9260 |     /* Must make sure nOverflow is reset to zero even if the balance() | 
| 9261 |     ** fails. Internal data structure corruption will result otherwise.  | 
| 9262 |     ** Also, set the cursor state to invalid. This stops saveCursorPosition() | 
| 9263 |     ** from trying to save the current position of the cursor.  */ | 
| 9264 |     pCur->pPage->nOverflow = 0; | 
| 9265 |     pCur->eState = CURSOR_INVALID; | 
| 9266 |     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ | 
| 9267 |       btreeReleaseAllCursorPages(pCur); | 
| 9268 |       if( pCur->pKeyInfo ){ | 
| 9269 |         assert( pCur->pKey==0 ); | 
| 9270 |         pCur->pKey = sqlite3Malloc( pX->nKey ); | 
| 9271 |         if( pCur->pKey==0 ){ | 
| 9272 |           rc = SQLITE_NOMEM; | 
| 9273 |         }else{ | 
| 9274 |           memcpy(pCur->pKey, pX->pKey, pX->nKey); | 
| 9275 |         } | 
| 9276 |       } | 
| 9277 |       pCur->eState = CURSOR_REQUIRESEEK; | 
| 9278 |       pCur->nKey = pX->nKey; | 
| 9279 |     } | 
| 9280 |   } | 
| 9281 |   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); | 
| 9282 |  | 
| 9283 | end_insert: | 
| 9284 |   return rc; | 
| 9285 | } | 
| 9286 |  | 
| 9287 | /* | 
| 9288 | ** This function is used as part of copying the current row from cursor | 
| 9289 | ** pSrc into cursor pDest. If the cursors are open on intkey tables, then | 
| 9290 | ** parameter iKey is used as the rowid value when the record is copied | 
| 9291 | ** into pDest. Otherwise, the record is copied verbatim. | 
| 9292 | ** | 
| 9293 | ** This function does not actually write the new value to cursor pDest. | 
| 9294 | ** Instead, it creates and populates any required overflow pages and | 
| 9295 | ** writes the data for the new cell into the BtShared.pTmpSpace buffer | 
| 9296 | ** for the destination database. The size of the cell, in bytes, is left | 
| 9297 | ** in BtShared.nPreformatSize. The caller completes the insertion by | 
| 9298 | ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. | 
| 9299 | ** | 
| 9300 | ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. | 
| 9301 | */ | 
| 9302 | int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ | 
| 9303 |   int rc = SQLITE_OK; | 
| 9304 |   BtShared *pBt = pDest->pBt; | 
| 9305 |   u8 *aOut = pBt->pTmpSpace;    /* Pointer to next output buffer */ | 
| 9306 |   const u8 *aIn;                /* Pointer to next input buffer */ | 
| 9307 |   u32 nIn;                      /* Size of input buffer aIn[] */ | 
| 9308 |   u32 nRem;                     /* Bytes of data still to copy */ | 
| 9309 |  | 
| 9310 |   getCellInfo(pSrc); | 
| 9311 |   if( pSrc->info.nPayload<0x80 ){ | 
| 9312 |     *(aOut++) = pSrc->info.nPayload; | 
| 9313 |   }else{ | 
| 9314 |     aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); | 
| 9315 |   } | 
| 9316 |   if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); | 
| 9317 |   nIn = pSrc->info.nLocal; | 
| 9318 |   aIn = pSrc->info.pPayload; | 
| 9319 |   if( aIn+nIn>pSrc->pPage->aDataEnd ){ | 
| 9320 |     return SQLITE_CORRUPT_BKPT; | 
| 9321 |   } | 
| 9322 |   nRem = pSrc->info.nPayload; | 
| 9323 |   if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ | 
| 9324 |     memcpy(aOut, aIn, nIn); | 
| 9325 |     pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); | 
| 9326 |   }else{ | 
| 9327 |     Pager * = pSrc->pBt->pPager; | 
| 9328 |     u8 *pPgnoOut = 0; | 
| 9329 |     Pgno ovflIn = 0; | 
| 9330 |     DbPage *pPageIn = 0; | 
| 9331 |     MemPage *pPageOut = 0; | 
| 9332 |     u32 nOut;                     /* Size of output buffer aOut[] */ | 
| 9333 |  | 
| 9334 |     nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); | 
| 9335 |     pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); | 
| 9336 |     if( nOut<pSrc->info.nPayload ){ | 
| 9337 |       pPgnoOut = &aOut[nOut]; | 
| 9338 |       pBt->nPreformatSize += 4; | 
| 9339 |     } | 
| 9340 |    | 
| 9341 |     if( nRem>nIn ){ | 
| 9342 |       if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ | 
| 9343 |         return SQLITE_CORRUPT_BKPT; | 
| 9344 |       } | 
| 9345 |       ovflIn = get4byte(&pSrc->info.pPayload[nIn]); | 
| 9346 |     } | 
| 9347 |    | 
| 9348 |     do { | 
| 9349 |       nRem -= nOut; | 
| 9350 |       do{ | 
| 9351 |         assert( nOut>0 ); | 
| 9352 |         if( nIn>0 ){ | 
| 9353 |           int nCopy = MIN(nOut, nIn); | 
| 9354 |           memcpy(aOut, aIn, nCopy); | 
| 9355 |           nOut -= nCopy; | 
| 9356 |           nIn -= nCopy; | 
| 9357 |           aOut += nCopy; | 
| 9358 |           aIn += nCopy; | 
| 9359 |         } | 
| 9360 |         if( nOut>0 ){ | 
| 9361 |           sqlite3PagerUnref(pPageIn); | 
| 9362 |           pPageIn = 0; | 
| 9363 |           rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); | 
| 9364 |           if( rc==SQLITE_OK ){ | 
| 9365 |             aIn = (const u8*)sqlite3PagerGetData(pPageIn); | 
| 9366 |             ovflIn = get4byte(aIn); | 
| 9367 |             aIn += 4; | 
| 9368 |             nIn = pSrc->pBt->usableSize - 4; | 
| 9369 |           } | 
| 9370 |         } | 
| 9371 |       }while( rc==SQLITE_OK && nOut>0 ); | 
| 9372 |    | 
| 9373 |       if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ | 
| 9374 |         Pgno pgnoNew; | 
| 9375 |         MemPage *pNew = 0; | 
| 9376 |         rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); | 
| 9377 |         put4byte(pPgnoOut, pgnoNew); | 
| 9378 |         if( ISAUTOVACUUM && pPageOut ){ | 
| 9379 |           ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); | 
| 9380 |         } | 
| 9381 |         releasePage(pPageOut); | 
| 9382 |         pPageOut = pNew; | 
| 9383 |         if( pPageOut ){ | 
| 9384 |           pPgnoOut = pPageOut->aData; | 
| 9385 |           put4byte(pPgnoOut, 0); | 
| 9386 |           aOut = &pPgnoOut[4]; | 
| 9387 |           nOut = MIN(pBt->usableSize - 4, nRem); | 
| 9388 |         } | 
| 9389 |       } | 
| 9390 |     }while( nRem>0 && rc==SQLITE_OK ); | 
| 9391 |    | 
| 9392 |     releasePage(pPageOut); | 
| 9393 |     sqlite3PagerUnref(pPageIn); | 
| 9394 |   } | 
| 9395 |  | 
| 9396 |   return rc; | 
| 9397 | } | 
| 9398 |  | 
| 9399 | /* | 
| 9400 | ** Delete the entry that the cursor is pointing to.  | 
| 9401 | ** | 
| 9402 | ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then | 
| 9403 | ** the cursor is left pointing at an arbitrary location after the delete. | 
| 9404 | ** But if that bit is set, then the cursor is left in a state such that | 
| 9405 | ** the next call to BtreeNext() or BtreePrev() moves it to the same row | 
| 9406 | ** as it would have been on if the call to BtreeDelete() had been omitted. | 
| 9407 | ** | 
| 9408 | ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes | 
| 9409 | ** associated with a single table entry and its indexes.  Only one of those | 
| 9410 | ** deletes is considered the "primary" delete.  The primary delete occurs | 
| 9411 | ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete | 
| 9412 | ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. | 
| 9413 | ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, | 
| 9414 | ** but which might be used by alternative storage engines. | 
| 9415 | */ | 
| 9416 | int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ | 
| 9417 |   Btree *p = pCur->pBtree; | 
| 9418 |   BtShared *pBt = p->pBt;               | 
| 9419 |   int rc;                    /* Return code */ | 
| 9420 |   MemPage *pPage;            /* Page to delete cell from */ | 
| 9421 |   unsigned char *pCell;      /* Pointer to cell to delete */ | 
| 9422 |   int iCellIdx;              /* Index of cell to delete */ | 
| 9423 |   int iCellDepth;            /* Depth of node containing pCell */  | 
| 9424 |   CellInfo info;             /* Size of the cell being deleted */ | 
| 9425 |   u8 bPreserve;              /* Keep cursor valid.  2 for CURSOR_SKIPNEXT */ | 
| 9426 |  | 
| 9427 |   assert( cursorOwnsBtShared(pCur) ); | 
| 9428 |   assert( pBt->inTransaction==TRANS_WRITE ); | 
| 9429 |   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); | 
| 9430 |   assert( pCur->curFlags & BTCF_WriteFlag ); | 
| 9431 |   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); | 
| 9432 |   assert( !hasReadConflicts(p, pCur->pgnoRoot) ); | 
| 9433 |   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); | 
| 9434 |   if( pCur->eState!=CURSOR_VALID ){ | 
| 9435 |     if( pCur->eState>=CURSOR_REQUIRESEEK ){ | 
| 9436 |       rc = btreeRestoreCursorPosition(pCur); | 
| 9437 |       assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); | 
| 9438 |       if( rc || pCur->eState!=CURSOR_VALID ) return rc; | 
| 9439 |     }else{ | 
| 9440 |       return SQLITE_CORRUPT_BKPT; | 
| 9441 |     } | 
| 9442 |   } | 
| 9443 |   assert( pCur->eState==CURSOR_VALID ); | 
| 9444 |  | 
| 9445 |   iCellDepth = pCur->iPage; | 
| 9446 |   iCellIdx = pCur->ix; | 
| 9447 |   pPage = pCur->pPage; | 
| 9448 |   if( pPage->nCell<=iCellIdx ){ | 
| 9449 |     return SQLITE_CORRUPT_BKPT; | 
| 9450 |   } | 
| 9451 |   pCell = findCell(pPage, iCellIdx); | 
| 9452 |   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ | 
| 9453 |     return SQLITE_CORRUPT_BKPT; | 
| 9454 |   } | 
| 9455 |  | 
| 9456 |   /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must | 
| 9457 |   ** be preserved following this delete operation. If the current delete | 
| 9458 |   ** will cause a b-tree rebalance, then this is done by saving the cursor | 
| 9459 |   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before  | 
| 9460 |   ** returning.  | 
| 9461 |   ** | 
| 9462 |   ** If the current delete will not cause a rebalance, then the cursor | 
| 9463 |   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately | 
| 9464 |   ** before or after the deleted entry. | 
| 9465 |   ** | 
| 9466 |   ** The bPreserve value records which path is required: | 
| 9467 |   ** | 
| 9468 |   **    bPreserve==0         Not necessary to save the cursor position | 
| 9469 |   **    bPreserve==1         Use CURSOR_REQUIRESEEK to save the cursor position | 
| 9470 |   **    bPreserve==2         Cursor won't move.  Set CURSOR_SKIPNEXT. | 
| 9471 |   */ | 
| 9472 |   bPreserve = (flags & BTREE_SAVEPOSITION)!=0; | 
| 9473 |   if( bPreserve ){ | 
| 9474 |     if( !pPage->leaf  | 
| 9475 |      || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > | 
| 9476 |                                                    (int)(pBt->usableSize*2/3) | 
| 9477 |      || pPage->nCell==1  /* See dbfuzz001.test for a test case */ | 
| 9478 |     ){ | 
| 9479 |       /* A b-tree rebalance will be required after deleting this entry. | 
| 9480 |       ** Save the cursor key.  */ | 
| 9481 |       rc = saveCursorKey(pCur); | 
| 9482 |       if( rc ) return rc; | 
| 9483 |     }else{ | 
| 9484 |       bPreserve = 2; | 
| 9485 |     } | 
| 9486 |   } | 
| 9487 |  | 
| 9488 |   /* If the page containing the entry to delete is not a leaf page, move | 
| 9489 |   ** the cursor to the largest entry in the tree that is smaller than | 
| 9490 |   ** the entry being deleted. This cell will replace the cell being deleted | 
| 9491 |   ** from the internal node. The 'previous' entry is used for this instead | 
| 9492 |   ** of the 'next' entry, as the previous entry is always a part of the | 
| 9493 |   ** sub-tree headed by the child page of the cell being deleted. This makes | 
| 9494 |   ** balancing the tree following the delete operation easier.  */ | 
| 9495 |   if( !pPage->leaf ){ | 
| 9496 |     rc = sqlite3BtreePrevious(pCur, 0); | 
| 9497 |     assert( rc!=SQLITE_DONE ); | 
| 9498 |     if( rc ) return rc; | 
| 9499 |   } | 
| 9500 |  | 
| 9501 |   /* Save the positions of any other cursors open on this table before | 
| 9502 |   ** making any modifications.  */ | 
| 9503 |   if( pCur->curFlags & BTCF_Multiple ){ | 
| 9504 |     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); | 
| 9505 |     if( rc ) return rc; | 
| 9506 |   } | 
| 9507 |  | 
| 9508 |   /* If this is a delete operation to remove a row from a table b-tree, | 
| 9509 |   ** invalidate any incrblob cursors open on the row being deleted.  */ | 
| 9510 |   if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ | 
| 9511 |     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); | 
| 9512 |   } | 
| 9513 |  | 
| 9514 |   /* Make the page containing the entry to be deleted writable. Then free any | 
| 9515 |   ** overflow pages associated with the entry and finally remove the cell | 
| 9516 |   ** itself from within the page.  */ | 
| 9517 |   rc = sqlite3PagerWrite(pPage->pDbPage); | 
| 9518 |   if( rc ) return rc; | 
| 9519 |   BTREE_CLEAR_CELL(rc, pPage, pCell, info); | 
| 9520 |   dropCell(pPage, iCellIdx, info.nSize, &rc); | 
| 9521 |   if( rc ) return rc; | 
| 9522 |  | 
| 9523 |   /* If the cell deleted was not located on a leaf page, then the cursor | 
| 9524 |   ** is currently pointing to the largest entry in the sub-tree headed | 
| 9525 |   ** by the child-page of the cell that was just deleted from an internal | 
| 9526 |   ** node. The cell from the leaf node needs to be moved to the internal | 
| 9527 |   ** node to replace the deleted cell.  */ | 
| 9528 |   if( !pPage->leaf ){ | 
| 9529 |     MemPage *pLeaf = pCur->pPage; | 
| 9530 |     int nCell; | 
| 9531 |     Pgno n; | 
| 9532 |     unsigned char *pTmp; | 
| 9533 |  | 
| 9534 |     if( pLeaf->nFree<0 ){ | 
| 9535 |       rc = btreeComputeFreeSpace(pLeaf); | 
| 9536 |       if( rc ) return rc; | 
| 9537 |     } | 
| 9538 |     if( iCellDepth<pCur->iPage-1 ){ | 
| 9539 |       n = pCur->apPage[iCellDepth+1]->pgno; | 
| 9540 |     }else{ | 
| 9541 |       n = pCur->pPage->pgno; | 
| 9542 |     } | 
| 9543 |     pCell = findCell(pLeaf, pLeaf->nCell-1); | 
| 9544 |     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; | 
| 9545 |     nCell = pLeaf->xCellSize(pLeaf, pCell); | 
| 9546 |     assert( MX_CELL_SIZE(pBt) >= nCell ); | 
| 9547 |     pTmp = pBt->pTmpSpace; | 
| 9548 |     assert( pTmp!=0 ); | 
| 9549 |     rc = sqlite3PagerWrite(pLeaf->pDbPage); | 
| 9550 |     if( rc==SQLITE_OK ){ | 
| 9551 |       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); | 
| 9552 |     } | 
| 9553 |     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); | 
| 9554 |     if( rc ) return rc; | 
| 9555 |   } | 
| 9556 |  | 
| 9557 |   /* Balance the tree. If the entry deleted was located on a leaf page, | 
| 9558 |   ** then the cursor still points to that page. In this case the first | 
| 9559 |   ** call to balance() repairs the tree, and the if(...) condition is | 
| 9560 |   ** never true. | 
| 9561 |   ** | 
| 9562 |   ** Otherwise, if the entry deleted was on an internal node page, then | 
| 9563 |   ** pCur is pointing to the leaf page from which a cell was removed to | 
| 9564 |   ** replace the cell deleted from the internal node. This is slightly | 
| 9565 |   ** tricky as the leaf node may be underfull, and the internal node may | 
| 9566 |   ** be either under or overfull. In this case run the balancing algorithm | 
| 9567 |   ** on the leaf node first. If the balance proceeds far enough up the | 
| 9568 |   ** tree that we can be sure that any problem in the internal node has | 
| 9569 |   ** been corrected, so be it. Otherwise, after balancing the leaf node, | 
| 9570 |   ** walk the cursor up the tree to the internal node and balance it as  | 
| 9571 |   ** well.  */ | 
| 9572 |   assert( pCur->pPage->nOverflow==0 ); | 
| 9573 |   assert( pCur->pPage->nFree>=0 ); | 
| 9574 |   if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ | 
| 9575 |     /* Optimization: If the free space is less than 2/3rds of the page, | 
| 9576 |     ** then balance() will always be a no-op.  No need to invoke it. */ | 
| 9577 |     rc = SQLITE_OK; | 
| 9578 |   }else{ | 
| 9579 |     rc = balance(pCur); | 
| 9580 |   } | 
| 9581 |   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ | 
| 9582 |     releasePageNotNull(pCur->pPage); | 
| 9583 |     pCur->iPage--; | 
| 9584 |     while( pCur->iPage>iCellDepth ){ | 
| 9585 |       releasePage(pCur->apPage[pCur->iPage--]); | 
| 9586 |     } | 
| 9587 |     pCur->pPage = pCur->apPage[pCur->iPage]; | 
| 9588 |     rc = balance(pCur); | 
| 9589 |   } | 
| 9590 |  | 
| 9591 |   if( rc==SQLITE_OK ){ | 
| 9592 |     if( bPreserve>1 ){ | 
| 9593 |       assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); | 
| 9594 |       assert( pPage==pCur->pPage || CORRUPT_DB ); | 
| 9595 |       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); | 
| 9596 |       pCur->eState = CURSOR_SKIPNEXT; | 
| 9597 |       if( iCellIdx>=pPage->nCell ){ | 
| 9598 |         pCur->skipNext = -1; | 
| 9599 |         pCur->ix = pPage->nCell-1; | 
| 9600 |       }else{ | 
| 9601 |         pCur->skipNext = 1; | 
| 9602 |       } | 
| 9603 |     }else{ | 
| 9604 |       rc = moveToRoot(pCur); | 
| 9605 |       if( bPreserve ){ | 
| 9606 |         btreeReleaseAllCursorPages(pCur); | 
| 9607 |         pCur->eState = CURSOR_REQUIRESEEK; | 
| 9608 |       } | 
| 9609 |       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; | 
| 9610 |     } | 
| 9611 |   } | 
| 9612 |   return rc; | 
| 9613 | } | 
| 9614 |  | 
| 9615 | /* | 
| 9616 | ** Create a new BTree table.  Write into *piTable the page | 
| 9617 | ** number for the root page of the new table. | 
| 9618 | ** | 
| 9619 | ** The type of type is determined by the flags parameter.  Only the | 
| 9620 | ** following values of flags are currently in use.  Other values for | 
| 9621 | ** flags might not work: | 
| 9622 | ** | 
| 9623 | **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys | 
| 9624 | **     BTREE_ZERODATA                  Used for SQL indices | 
| 9625 | */ | 
| 9626 | static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ | 
| 9627 |   BtShared *pBt = p->pBt; | 
| 9628 |   MemPage *pRoot; | 
| 9629 |   Pgno pgnoRoot; | 
| 9630 |   int rc; | 
| 9631 |   int ptfFlags;          /* Page-type flage for the root page of new table */ | 
| 9632 |  | 
| 9633 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 9634 |   assert( pBt->inTransaction==TRANS_WRITE ); | 
| 9635 |   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); | 
| 9636 |  | 
| 9637 | #ifdef SQLITE_OMIT_AUTOVACUUM | 
| 9638 |   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); | 
| 9639 |   if( rc ){ | 
| 9640 |     return rc; | 
| 9641 |   } | 
| 9642 | #else | 
| 9643 |   if( pBt->autoVacuum ){ | 
| 9644 |     Pgno pgnoMove;      /* Move a page here to make room for the root-page */ | 
| 9645 |     MemPage *pPageMove; /* The page to move to. */ | 
| 9646 |  | 
| 9647 |     /* Creating a new table may probably require moving an existing database | 
| 9648 |     ** to make room for the new tables root page. In case this page turns | 
| 9649 |     ** out to be an overflow page, delete all overflow page-map caches | 
| 9650 |     ** held by open cursors. | 
| 9651 |     */ | 
| 9652 |     invalidateAllOverflowCache(pBt); | 
| 9653 |  | 
| 9654 |     /* Read the value of meta[3] from the database to determine where the | 
| 9655 |     ** root page of the new table should go. meta[3] is the largest root-page | 
| 9656 |     ** created so far, so the new root-page is (meta[3]+1). | 
| 9657 |     */ | 
| 9658 |     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); | 
| 9659 |     if( pgnoRoot>btreePagecount(pBt) ){ | 
| 9660 |       return SQLITE_CORRUPT_BKPT; | 
| 9661 |     } | 
| 9662 |     pgnoRoot++; | 
| 9663 |  | 
| 9664 |     /* The new root-page may not be allocated on a pointer-map page, or the | 
| 9665 |     ** PENDING_BYTE page. | 
| 9666 |     */ | 
| 9667 |     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || | 
| 9668 |         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ | 
| 9669 |       pgnoRoot++; | 
| 9670 |     } | 
| 9671 |     assert( pgnoRoot>=3 ); | 
| 9672 |  | 
| 9673 |     /* Allocate a page. The page that currently resides at pgnoRoot will | 
| 9674 |     ** be moved to the allocated page (unless the allocated page happens | 
| 9675 |     ** to reside at pgnoRoot). | 
| 9676 |     */ | 
| 9677 |     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); | 
| 9678 |     if( rc!=SQLITE_OK ){ | 
| 9679 |       return rc; | 
| 9680 |     } | 
| 9681 |  | 
| 9682 |     if( pgnoMove!=pgnoRoot ){ | 
| 9683 |       /* pgnoRoot is the page that will be used for the root-page of | 
| 9684 |       ** the new table (assuming an error did not occur). But we were | 
| 9685 |       ** allocated pgnoMove. If required (i.e. if it was not allocated | 
| 9686 |       ** by extending the file), the current page at position pgnoMove | 
| 9687 |       ** is already journaled. | 
| 9688 |       */ | 
| 9689 |       u8 eType = 0; | 
| 9690 |       Pgno iPtrPage = 0; | 
| 9691 |  | 
| 9692 |       /* Save the positions of any open cursors. This is required in | 
| 9693 |       ** case they are holding a reference to an xFetch reference | 
| 9694 |       ** corresponding to page pgnoRoot.  */ | 
| 9695 |       rc = saveAllCursors(pBt, 0, 0); | 
| 9696 |       releasePage(pPageMove); | 
| 9697 |       if( rc!=SQLITE_OK ){ | 
| 9698 |         return rc; | 
| 9699 |       } | 
| 9700 |  | 
| 9701 |       /* Move the page currently at pgnoRoot to pgnoMove. */ | 
| 9702 |       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); | 
| 9703 |       if( rc!=SQLITE_OK ){ | 
| 9704 |         return rc; | 
| 9705 |       } | 
| 9706 |       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); | 
| 9707 |       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ | 
| 9708 |         rc = SQLITE_CORRUPT_BKPT; | 
| 9709 |       } | 
| 9710 |       if( rc!=SQLITE_OK ){ | 
| 9711 |         releasePage(pRoot); | 
| 9712 |         return rc; | 
| 9713 |       } | 
| 9714 |       assert( eType!=PTRMAP_ROOTPAGE ); | 
| 9715 |       assert( eType!=PTRMAP_FREEPAGE ); | 
| 9716 |       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); | 
| 9717 |       releasePage(pRoot); | 
| 9718 |  | 
| 9719 |       /* Obtain the page at pgnoRoot */ | 
| 9720 |       if( rc!=SQLITE_OK ){ | 
| 9721 |         return rc; | 
| 9722 |       } | 
| 9723 |       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); | 
| 9724 |       if( rc!=SQLITE_OK ){ | 
| 9725 |         return rc; | 
| 9726 |       } | 
| 9727 |       rc = sqlite3PagerWrite(pRoot->pDbPage); | 
| 9728 |       if( rc!=SQLITE_OK ){ | 
| 9729 |         releasePage(pRoot); | 
| 9730 |         return rc; | 
| 9731 |       } | 
| 9732 |     }else{ | 
| 9733 |       pRoot = pPageMove; | 
| 9734 |     }  | 
| 9735 |  | 
| 9736 |     /* Update the pointer-map and meta-data with the new root-page number. */ | 
| 9737 |     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); | 
| 9738 |     if( rc ){ | 
| 9739 |       releasePage(pRoot); | 
| 9740 |       return rc; | 
| 9741 |     } | 
| 9742 |  | 
| 9743 |     /* When the new root page was allocated, page 1 was made writable in | 
| 9744 |     ** order either to increase the database filesize, or to decrement the | 
| 9745 |     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail. | 
| 9746 |     */ | 
| 9747 |     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); | 
| 9748 |     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); | 
| 9749 |     if( NEVER(rc) ){ | 
| 9750 |       releasePage(pRoot); | 
| 9751 |       return rc; | 
| 9752 |     } | 
| 9753 |  | 
| 9754 |   }else{ | 
| 9755 |     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); | 
| 9756 |     if( rc ) return rc; | 
| 9757 |   } | 
| 9758 | #endif | 
| 9759 |   assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); | 
| 9760 |   if( createTabFlags & BTREE_INTKEY ){ | 
| 9761 |     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; | 
| 9762 |   }else{ | 
| 9763 |     ptfFlags = PTF_ZERODATA | PTF_LEAF; | 
| 9764 |   } | 
| 9765 |   zeroPage(pRoot, ptfFlags); | 
| 9766 |   sqlite3PagerUnref(pRoot->pDbPage); | 
| 9767 |   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); | 
| 9768 |   *piTable = pgnoRoot; | 
| 9769 |   return SQLITE_OK; | 
| 9770 | } | 
| 9771 | int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ | 
| 9772 |   int rc; | 
| 9773 |   sqlite3BtreeEnter(p); | 
| 9774 |   rc = btreeCreateTable(p, piTable, flags); | 
| 9775 |   sqlite3BtreeLeave(p); | 
| 9776 |   return rc; | 
| 9777 | } | 
| 9778 |  | 
| 9779 | /* | 
| 9780 | ** Erase the given database page and all its children.  Return | 
| 9781 | ** the page to the freelist. | 
| 9782 | */ | 
| 9783 | static int clearDatabasePage( | 
| 9784 |   BtShared *pBt,           /* The BTree that contains the table */ | 
| 9785 |   Pgno pgno,               /* Page number to clear */ | 
| 9786 |   int freePageFlag,        /* Deallocate page if true */ | 
| 9787 |   i64 *pnChange            /* Add number of Cells freed to this counter */ | 
| 9788 | ){ | 
| 9789 |   MemPage *pPage; | 
| 9790 |   int rc; | 
| 9791 |   unsigned char *pCell; | 
| 9792 |   int i; | 
| 9793 |   int hdr; | 
| 9794 |   CellInfo info; | 
| 9795 |  | 
| 9796 |   assert( sqlite3_mutex_held(pBt->mutex) ); | 
| 9797 |   if( pgno>btreePagecount(pBt) ){ | 
| 9798 |     return SQLITE_CORRUPT_BKPT; | 
| 9799 |   } | 
| 9800 |   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); | 
| 9801 |   if( rc ) return rc; | 
| 9802 |   if( (pBt->openFlags & BTREE_SINGLE)==0  | 
| 9803 |    && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) | 
| 9804 |   ){ | 
| 9805 |     rc = SQLITE_CORRUPT_BKPT; | 
| 9806 |     goto cleardatabasepage_out; | 
| 9807 |   } | 
| 9808 |   hdr = pPage->hdrOffset; | 
| 9809 |   for(i=0; i<pPage->nCell; i++){ | 
| 9810 |     pCell = findCell(pPage, i); | 
| 9811 |     if( !pPage->leaf ){ | 
| 9812 |       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); | 
| 9813 |       if( rc ) goto cleardatabasepage_out; | 
| 9814 |     } | 
| 9815 |     BTREE_CLEAR_CELL(rc, pPage, pCell, info); | 
| 9816 |     if( rc ) goto cleardatabasepage_out; | 
| 9817 |   } | 
| 9818 |   if( !pPage->leaf ){ | 
| 9819 |     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); | 
| 9820 |     if( rc ) goto cleardatabasepage_out; | 
| 9821 |     if( pPage->intKey ) pnChange = 0; | 
| 9822 |   } | 
| 9823 |   if( pnChange ){ | 
| 9824 |     testcase( !pPage->intKey ); | 
| 9825 |     *pnChange += pPage->nCell; | 
| 9826 |   } | 
| 9827 |   if( freePageFlag ){ | 
| 9828 |     freePage(pPage, &rc); | 
| 9829 |   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ | 
| 9830 |     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); | 
| 9831 |   } | 
| 9832 |  | 
| 9833 | cleardatabasepage_out: | 
| 9834 |   releasePage(pPage); | 
| 9835 |   return rc; | 
| 9836 | } | 
| 9837 |  | 
| 9838 | /* | 
| 9839 | ** Delete all information from a single table in the database.  iTable is | 
| 9840 | ** the page number of the root of the table.  After this routine returns, | 
| 9841 | ** the root page is empty, but still exists. | 
| 9842 | ** | 
| 9843 | ** This routine will fail with SQLITE_LOCKED if there are any open | 
| 9844 | ** read cursors on the table.  Open write cursors are moved to the | 
| 9845 | ** root of the table. | 
| 9846 | ** | 
| 9847 | ** If pnChange is not NULL, then the integer value pointed to by pnChange | 
| 9848 | ** is incremented by the number of entries in the table. | 
| 9849 | */ | 
| 9850 | int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ | 
| 9851 |   int rc; | 
| 9852 |   BtShared *pBt = p->pBt; | 
| 9853 |   sqlite3BtreeEnter(p); | 
| 9854 |   assert( p->inTrans==TRANS_WRITE ); | 
| 9855 |  | 
| 9856 |   rc = saveAllCursors(pBt, (Pgno)iTable, 0); | 
| 9857 |  | 
| 9858 |   if( SQLITE_OK==rc ){ | 
| 9859 |     /* Invalidate all incrblob cursors open on table iTable (assuming iTable | 
| 9860 |     ** is the root of a table b-tree - if it is not, the following call is | 
| 9861 |     ** a no-op).  */ | 
| 9862 |     if( p->hasIncrblobCur ){ | 
| 9863 |       invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); | 
| 9864 |     } | 
| 9865 |     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); | 
| 9866 |   } | 
| 9867 |   sqlite3BtreeLeave(p); | 
| 9868 |   return rc; | 
| 9869 | } | 
| 9870 |  | 
| 9871 | /* | 
| 9872 | ** Delete all information from the single table that pCur is open on. | 
| 9873 | ** | 
| 9874 | ** This routine only work for pCur on an ephemeral table. | 
| 9875 | */ | 
| 9876 | int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ | 
| 9877 |   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); | 
| 9878 | } | 
| 9879 |  | 
| 9880 | /* | 
| 9881 | ** Erase all information in a table and add the root of the table to | 
| 9882 | ** the freelist.  Except, the root of the principle table (the one on | 
| 9883 | ** page 1) is never added to the freelist. | 
| 9884 | ** | 
| 9885 | ** This routine will fail with SQLITE_LOCKED if there are any open | 
| 9886 | ** cursors on the table. | 
| 9887 | ** | 
| 9888 | ** If AUTOVACUUM is enabled and the page at iTable is not the last | 
| 9889 | ** root page in the database file, then the last root page  | 
| 9890 | ** in the database file is moved into the slot formerly occupied by | 
| 9891 | ** iTable and that last slot formerly occupied by the last root page | 
| 9892 | ** is added to the freelist instead of iTable.  In this say, all | 
| 9893 | ** root pages are kept at the beginning of the database file, which | 
| 9894 | ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the  | 
| 9895 | ** page number that used to be the last root page in the file before | 
| 9896 | ** the move.  If no page gets moved, *piMoved is set to 0. | 
| 9897 | ** The last root page is recorded in meta[3] and the value of | 
| 9898 | ** meta[3] is updated by this procedure. | 
| 9899 | */ | 
| 9900 | static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ | 
| 9901 |   int rc; | 
| 9902 |   MemPage *pPage = 0; | 
| 9903 |   BtShared *pBt = p->pBt; | 
| 9904 |  | 
| 9905 |   assert( sqlite3BtreeHoldsMutex(p) ); | 
| 9906 |   assert( p->inTrans==TRANS_WRITE ); | 
| 9907 |   assert( iTable>=2 ); | 
| 9908 |   if( iTable>btreePagecount(pBt) ){ | 
| 9909 |     return SQLITE_CORRUPT_BKPT; | 
| 9910 |   } | 
| 9911 |  | 
| 9912 |   rc = sqlite3BtreeClearTable(p, iTable, 0); | 
| 9913 |   if( rc ) return rc; | 
| 9914 |   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); | 
| 9915 |   if( NEVER(rc) ){ | 
| 9916 |     releasePage(pPage); | 
| 9917 |     return rc; | 
| 9918 |   } | 
| 9919 |  | 
| 9920 |   *piMoved = 0; | 
| 9921 |  | 
| 9922 | #ifdef SQLITE_OMIT_AUTOVACUUM | 
| 9923 |   freePage(pPage, &rc); | 
| 9924 |   releasePage(pPage); | 
| 9925 | #else | 
| 9926 |   if( pBt->autoVacuum ){ | 
| 9927 |     Pgno maxRootPgno; | 
| 9928 |     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); | 
| 9929 |  | 
| 9930 |     if( iTable==maxRootPgno ){ | 
| 9931 |       /* If the table being dropped is the table with the largest root-page | 
| 9932 |       ** number in the database, put the root page on the free list.  | 
| 9933 |       */ | 
| 9934 |       freePage(pPage, &rc); | 
| 9935 |       releasePage(pPage); | 
| 9936 |       if( rc!=SQLITE_OK ){ | 
| 9937 |         return rc; | 
| 9938 |       } | 
| 9939 |     }else{ | 
| 9940 |       /* The table being dropped does not have the largest root-page | 
| 9941 |       ** number in the database. So move the page that does into the  | 
| 9942 |       ** gap left by the deleted root-page. | 
| 9943 |       */ | 
| 9944 |       MemPage *pMove; | 
| 9945 |       releasePage(pPage); | 
| 9946 |       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); | 
| 9947 |       if( rc!=SQLITE_OK ){ | 
| 9948 |         return rc; | 
| 9949 |       } | 
| 9950 |       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); | 
| 9951 |       releasePage(pMove); | 
| 9952 |       if( rc!=SQLITE_OK ){ | 
| 9953 |         return rc; | 
| 9954 |       } | 
| 9955 |       pMove = 0; | 
| 9956 |       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); | 
| 9957 |       freePage(pMove, &rc); | 
| 9958 |       releasePage(pMove); | 
| 9959 |       if( rc!=SQLITE_OK ){ | 
| 9960 |         return rc; | 
| 9961 |       } | 
| 9962 |       *piMoved = maxRootPgno; | 
| 9963 |     } | 
| 9964 |  | 
| 9965 |     /* Set the new 'max-root-page' value in the database header. This | 
| 9966 |     ** is the old value less one, less one more if that happens to | 
| 9967 |     ** be a root-page number, less one again if that is the | 
| 9968 |     ** PENDING_BYTE_PAGE. | 
| 9969 |     */ | 
| 9970 |     maxRootPgno--; | 
| 9971 |     while( maxRootPgno==PENDING_BYTE_PAGE(pBt) | 
| 9972 |            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ | 
| 9973 |       maxRootPgno--; | 
| 9974 |     } | 
| 9975 |     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); | 
| 9976 |  | 
| 9977 |     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); | 
| 9978 |   }else{ | 
| 9979 |     freePage(pPage, &rc); | 
| 9980 |     releasePage(pPage); | 
| 9981 |   } | 
| 9982 | #endif | 
| 9983 |   return rc;   | 
| 9984 | } | 
| 9985 | int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ | 
| 9986 |   int rc; | 
| 9987 |   sqlite3BtreeEnter(p); | 
| 9988 |   rc = btreeDropTable(p, iTable, piMoved); | 
| 9989 |   sqlite3BtreeLeave(p); | 
| 9990 |   return rc; | 
| 9991 | } | 
| 9992 |  | 
| 9993 |  | 
| 9994 | /* | 
| 9995 | ** This function may only be called if the b-tree connection already | 
| 9996 | ** has a read or write transaction open on the database. | 
| 9997 | ** | 
| 9998 | ** Read the meta-information out of a database file.  Meta[0] | 
| 9999 | ** is the number of free pages currently in the database.  Meta[1] | 
| 10000 | ** through meta[15] are available for use by higher layers.  Meta[0] | 
| 10001 | ** is read-only, the others are read/write. | 
| 10002 | **  | 
| 10003 | ** The schema layer numbers meta values differently.  At the schema | 
| 10004 | ** layer (and the SetCookie and ReadCookie opcodes) the number of | 
| 10005 | ** free pages is not visible.  So Cookie[0] is the same as Meta[1]. | 
| 10006 | ** | 
| 10007 | ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead | 
| 10008 | ** of reading the value out of the header, it instead loads the "DataVersion" | 
| 10009 | ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the | 
| 10010 | ** database file.  It is a number computed by the pager.  But its access | 
| 10011 | ** pattern is the same as header meta values, and so it is convenient to | 
| 10012 | ** read it from this routine. | 
| 10013 | */ | 
| 10014 | void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ | 
| 10015 |   BtShared *pBt = p->pBt; | 
| 10016 |  | 
| 10017 |   sqlite3BtreeEnter(p); | 
| 10018 |   assert( p->inTrans>TRANS_NONE ); | 
| 10019 |   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); | 
| 10020 |   assert( pBt->pPage1 ); | 
| 10021 |   assert( idx>=0 && idx<=15 ); | 
| 10022 |  | 
| 10023 |   if( idx==BTREE_DATA_VERSION ){ | 
| 10024 |     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; | 
| 10025 |   }else{ | 
| 10026 |     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); | 
| 10027 |   } | 
| 10028 |  | 
| 10029 |   /* If auto-vacuum is disabled in this build and this is an auto-vacuum | 
| 10030 |   ** database, mark the database as read-only.  */ | 
| 10031 | #ifdef SQLITE_OMIT_AUTOVACUUM | 
| 10032 |   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ | 
| 10033 |     pBt->btsFlags |= BTS_READ_ONLY; | 
| 10034 |   } | 
| 10035 | #endif | 
| 10036 |  | 
| 10037 |   sqlite3BtreeLeave(p); | 
| 10038 | } | 
| 10039 |  | 
| 10040 | /* | 
| 10041 | ** Write meta-information back into the database.  Meta[0] is | 
| 10042 | ** read-only and may not be written. | 
| 10043 | */ | 
| 10044 | int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ | 
| 10045 |   BtShared *pBt = p->pBt; | 
| 10046 |   unsigned char *pP1; | 
| 10047 |   int rc; | 
| 10048 |   assert( idx>=1 && idx<=15 ); | 
| 10049 |   sqlite3BtreeEnter(p); | 
| 10050 |   assert( p->inTrans==TRANS_WRITE ); | 
| 10051 |   assert( pBt->pPage1!=0 ); | 
| 10052 |   pP1 = pBt->pPage1->aData; | 
| 10053 |   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); | 
| 10054 |   if( rc==SQLITE_OK ){ | 
| 10055 |     put4byte(&pP1[36 + idx*4], iMeta); | 
| 10056 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10057 |     if( idx==BTREE_INCR_VACUUM ){ | 
| 10058 |       assert( pBt->autoVacuum || iMeta==0 ); | 
| 10059 |       assert( iMeta==0 || iMeta==1 ); | 
| 10060 |       pBt->incrVacuum = (u8)iMeta; | 
| 10061 |     } | 
| 10062 | #endif | 
| 10063 |   } | 
| 10064 |   sqlite3BtreeLeave(p); | 
| 10065 |   return rc; | 
| 10066 | } | 
| 10067 |  | 
| 10068 | /* | 
| 10069 | ** The first argument, pCur, is a cursor opened on some b-tree. Count the | 
| 10070 | ** number of entries in the b-tree and write the result to *pnEntry. | 
| 10071 | ** | 
| 10072 | ** SQLITE_OK is returned if the operation is successfully executed.  | 
| 10073 | ** Otherwise, if an error is encountered (i.e. an IO error or database | 
| 10074 | ** corruption) an SQLite error code is returned. | 
| 10075 | */ | 
| 10076 | int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ | 
| 10077 |   i64 nEntry = 0;                      /* Value to return in *pnEntry */ | 
| 10078 |   int rc;                              /* Return code */ | 
| 10079 |  | 
| 10080 |   rc = moveToRoot(pCur); | 
| 10081 |   if( rc==SQLITE_EMPTY ){ | 
| 10082 |     *pnEntry = 0; | 
| 10083 |     return SQLITE_OK; | 
| 10084 |   } | 
| 10085 |  | 
| 10086 |   /* Unless an error occurs, the following loop runs one iteration for each | 
| 10087 |   ** page in the B-Tree structure (not including overflow pages).  | 
| 10088 |   */ | 
| 10089 |   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ | 
| 10090 |     int iIdx;                          /* Index of child node in parent */ | 
| 10091 |     MemPage *pPage;                    /* Current page of the b-tree */ | 
| 10092 |  | 
| 10093 |     /* If this is a leaf page or the tree is not an int-key tree, then  | 
| 10094 |     ** this page contains countable entries. Increment the entry counter | 
| 10095 |     ** accordingly. | 
| 10096 |     */ | 
| 10097 |     pPage = pCur->pPage; | 
| 10098 |     if( pPage->leaf || !pPage->intKey ){ | 
| 10099 |       nEntry += pPage->nCell; | 
| 10100 |     } | 
| 10101 |  | 
| 10102 |     /* pPage is a leaf node. This loop navigates the cursor so that it  | 
| 10103 |     ** points to the first interior cell that it points to the parent of | 
| 10104 |     ** the next page in the tree that has not yet been visited. The | 
| 10105 |     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell | 
| 10106 |     ** of the page, or to the number of cells in the page if the next page | 
| 10107 |     ** to visit is the right-child of its parent. | 
| 10108 |     ** | 
| 10109 |     ** If all pages in the tree have been visited, return SQLITE_OK to the | 
| 10110 |     ** caller. | 
| 10111 |     */ | 
| 10112 |     if( pPage->leaf ){ | 
| 10113 |       do { | 
| 10114 |         if( pCur->iPage==0 ){ | 
| 10115 |           /* All pages of the b-tree have been visited. Return successfully. */ | 
| 10116 |           *pnEntry = nEntry; | 
| 10117 |           return moveToRoot(pCur); | 
| 10118 |         } | 
| 10119 |         moveToParent(pCur); | 
| 10120 |       }while ( pCur->ix>=pCur->pPage->nCell ); | 
| 10121 |  | 
| 10122 |       pCur->ix++; | 
| 10123 |       pPage = pCur->pPage; | 
| 10124 |     } | 
| 10125 |  | 
| 10126 |     /* Descend to the child node of the cell that the cursor currently  | 
| 10127 |     ** points at. This is the right-child if (iIdx==pPage->nCell). | 
| 10128 |     */ | 
| 10129 |     iIdx = pCur->ix; | 
| 10130 |     if( iIdx==pPage->nCell ){ | 
| 10131 |       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); | 
| 10132 |     }else{ | 
| 10133 |       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); | 
| 10134 |     } | 
| 10135 |   } | 
| 10136 |  | 
| 10137 |   /* An error has occurred. Return an error code. */ | 
| 10138 |   return rc; | 
| 10139 | } | 
| 10140 |  | 
| 10141 | /* | 
| 10142 | ** Return the pager associated with a BTree.  This routine is used for | 
| 10143 | ** testing and debugging only. | 
| 10144 | */ | 
| 10145 | Pager *(Btree *p){ | 
| 10146 |   return p->pBt->pPager; | 
| 10147 | } | 
| 10148 |  | 
| 10149 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK | 
| 10150 | /* | 
| 10151 | ** Append a message to the error message string. | 
| 10152 | */ | 
| 10153 | static void checkAppendMsg( | 
| 10154 |   IntegrityCk *pCheck, | 
| 10155 |   const char *zFormat, | 
| 10156 |   ... | 
| 10157 | ){ | 
| 10158 |   va_list ap; | 
| 10159 |   if( !pCheck->mxErr ) return; | 
| 10160 |   pCheck->mxErr--; | 
| 10161 |   pCheck->nErr++; | 
| 10162 |   va_start(ap, zFormat); | 
| 10163 |   if( pCheck->errMsg.nChar ){ | 
| 10164 |     sqlite3_str_append(&pCheck->errMsg, "\n" , 1); | 
| 10165 |   } | 
| 10166 |   if( pCheck->zPfx ){ | 
| 10167 |     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); | 
| 10168 |   } | 
| 10169 |   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); | 
| 10170 |   va_end(ap); | 
| 10171 |   if( pCheck->errMsg.accError==SQLITE_NOMEM ){ | 
| 10172 |     pCheck->bOomFault = 1; | 
| 10173 |   } | 
| 10174 | } | 
| 10175 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ | 
| 10176 |  | 
| 10177 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK | 
| 10178 |  | 
| 10179 | /* | 
| 10180 | ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that | 
| 10181 | ** corresponds to page iPg is already set. | 
| 10182 | */ | 
| 10183 | static int (IntegrityCk *pCheck, Pgno iPg){ | 
| 10184 |   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); | 
| 10185 |   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); | 
| 10186 | } | 
| 10187 |  | 
| 10188 | /* | 
| 10189 | ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. | 
| 10190 | */ | 
| 10191 | static void (IntegrityCk *pCheck, Pgno iPg){ | 
| 10192 |   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); | 
| 10193 |   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); | 
| 10194 | } | 
| 10195 |  | 
| 10196 |  | 
| 10197 | /* | 
| 10198 | ** Add 1 to the reference count for page iPage.  If this is the second | 
| 10199 | ** reference to the page, add an error message to pCheck->zErrMsg. | 
| 10200 | ** Return 1 if there are 2 or more references to the page and 0 if | 
| 10201 | ** if this is the first reference to the page. | 
| 10202 | ** | 
| 10203 | ** Also check that the page number is in bounds. | 
| 10204 | */ | 
| 10205 | static int checkRef(IntegrityCk *pCheck, Pgno iPage){ | 
| 10206 |   if( iPage>pCheck->nPage || iPage==0 ){ | 
| 10207 |     checkAppendMsg(pCheck, "invalid page number %d" , iPage); | 
| 10208 |     return 1; | 
| 10209 |   } | 
| 10210 |   if( getPageReferenced(pCheck, iPage) ){ | 
| 10211 |     checkAppendMsg(pCheck, "2nd reference to page %d" , iPage); | 
| 10212 |     return 1; | 
| 10213 |   } | 
| 10214 |   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; | 
| 10215 |   setPageReferenced(pCheck, iPage); | 
| 10216 |   return 0; | 
| 10217 | } | 
| 10218 |  | 
| 10219 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10220 | /* | 
| 10221 | ** Check that the entry in the pointer-map for page iChild maps to  | 
| 10222 | ** page iParent, pointer type ptrType. If not, append an error message | 
| 10223 | ** to pCheck. | 
| 10224 | */ | 
| 10225 | static void checkPtrmap( | 
| 10226 |   IntegrityCk *pCheck,   /* Integrity check context */ | 
| 10227 |   Pgno iChild,           /* Child page number */ | 
| 10228 |   u8 eType,              /* Expected pointer map type */ | 
| 10229 |   Pgno iParent           /* Expected pointer map parent page number */ | 
| 10230 | ){ | 
| 10231 |   int rc; | 
| 10232 |   u8 ePtrmapType; | 
| 10233 |   Pgno iPtrmapParent; | 
| 10234 |  | 
| 10235 |   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); | 
| 10236 |   if( rc!=SQLITE_OK ){ | 
| 10237 |     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; | 
| 10238 |     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d" , iChild); | 
| 10239 |     return; | 
| 10240 |   } | 
| 10241 |  | 
| 10242 |   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ | 
| 10243 |     checkAppendMsg(pCheck, | 
| 10244 |       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)" ,  | 
| 10245 |       iChild, eType, iParent, ePtrmapType, iPtrmapParent); | 
| 10246 |   } | 
| 10247 | } | 
| 10248 | #endif | 
| 10249 |  | 
| 10250 | /* | 
| 10251 | ** Check the integrity of the freelist or of an overflow page list. | 
| 10252 | ** Verify that the number of pages on the list is N. | 
| 10253 | */ | 
| 10254 | static void checkList( | 
| 10255 |   IntegrityCk *pCheck,  /* Integrity checking context */ | 
| 10256 |   int isFreeList,       /* True for a freelist.  False for overflow page list */ | 
| 10257 |   Pgno iPage,           /* Page number for first page in the list */ | 
| 10258 |   u32 N                 /* Expected number of pages in the list */ | 
| 10259 | ){ | 
| 10260 |   int i; | 
| 10261 |   u32 expected = N; | 
| 10262 |   int nErrAtStart = pCheck->nErr; | 
| 10263 |   while( iPage!=0 && pCheck->mxErr ){ | 
| 10264 |     DbPage *pOvflPage; | 
| 10265 |     unsigned char *pOvflData; | 
| 10266 |     if( checkRef(pCheck, iPage) ) break; | 
| 10267 |     N--; | 
| 10268 |     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ | 
| 10269 |       checkAppendMsg(pCheck, "failed to get page %d" , iPage); | 
| 10270 |       break; | 
| 10271 |     } | 
| 10272 |     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); | 
| 10273 |     if( isFreeList ){ | 
| 10274 |       u32 n = (u32)get4byte(&pOvflData[4]); | 
| 10275 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10276 |       if( pCheck->pBt->autoVacuum ){ | 
| 10277 |         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); | 
| 10278 |       } | 
| 10279 | #endif | 
| 10280 |       if( n>pCheck->pBt->usableSize/4-2 ){ | 
| 10281 |         checkAppendMsg(pCheck, | 
| 10282 |            "freelist leaf count too big on page %d" , iPage); | 
| 10283 |         N--; | 
| 10284 |       }else{ | 
| 10285 |         for(i=0; i<(int)n; i++){ | 
| 10286 |           Pgno iFreePage = get4byte(&pOvflData[8+i*4]); | 
| 10287 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10288 |           if( pCheck->pBt->autoVacuum ){ | 
| 10289 |             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); | 
| 10290 |           } | 
| 10291 | #endif | 
| 10292 |           checkRef(pCheck, iFreePage); | 
| 10293 |         } | 
| 10294 |         N -= n; | 
| 10295 |       } | 
| 10296 |     } | 
| 10297 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10298 |     else{ | 
| 10299 |       /* If this database supports auto-vacuum and iPage is not the last | 
| 10300 |       ** page in this overflow list, check that the pointer-map entry for | 
| 10301 |       ** the following page matches iPage. | 
| 10302 |       */ | 
| 10303 |       if( pCheck->pBt->autoVacuum && N>0 ){ | 
| 10304 |         i = get4byte(pOvflData); | 
| 10305 |         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); | 
| 10306 |       } | 
| 10307 |     } | 
| 10308 | #endif | 
| 10309 |     iPage = get4byte(pOvflData); | 
| 10310 |     sqlite3PagerUnref(pOvflPage); | 
| 10311 |   } | 
| 10312 |   if( N && nErrAtStart==pCheck->nErr ){ | 
| 10313 |     checkAppendMsg(pCheck, | 
| 10314 |       "%s is %d but should be %d" , | 
| 10315 |       isFreeList ? "size"  : "overflow list length" , | 
| 10316 |       expected-N, expected); | 
| 10317 |   } | 
| 10318 | } | 
| 10319 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ | 
| 10320 |  | 
| 10321 | /* | 
| 10322 | ** An implementation of a min-heap. | 
| 10323 | ** | 
| 10324 | ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the | 
| 10325 | ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2] | 
| 10326 | ** and aHeap[N*2+1]. | 
| 10327 | ** | 
| 10328 | ** The heap property is this:  Every node is less than or equal to both | 
| 10329 | ** of its daughter nodes.  A consequence of the heap property is that the | 
| 10330 | ** root node aHeap[1] is always the minimum value currently in the heap. | 
| 10331 | ** | 
| 10332 | ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto | 
| 10333 | ** the heap, preserving the heap property.  The btreeHeapPull() routine | 
| 10334 | ** removes the root element from the heap (the minimum value in the heap) | 
| 10335 | ** and then moves other nodes around as necessary to preserve the heap | 
| 10336 | ** property. | 
| 10337 | ** | 
| 10338 | ** This heap is used for cell overlap and coverage testing.  Each u32 | 
| 10339 | ** entry represents the span of a cell or freeblock on a btree page.   | 
| 10340 | ** The upper 16 bits are the index of the first byte of a range and the | 
| 10341 | ** lower 16 bits are the index of the last byte of that range. | 
| 10342 | */ | 
| 10343 | static void btreeHeapInsert(u32 *aHeap, u32 x){ | 
| 10344 |   u32 j, i = ++aHeap[0]; | 
| 10345 |   aHeap[i] = x; | 
| 10346 |   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ | 
| 10347 |     x = aHeap[j]; | 
| 10348 |     aHeap[j] = aHeap[i]; | 
| 10349 |     aHeap[i] = x; | 
| 10350 |     i = j; | 
| 10351 |   } | 
| 10352 | } | 
| 10353 | static int btreeHeapPull(u32 *aHeap, u32 *pOut){ | 
| 10354 |   u32 j, i, x; | 
| 10355 |   if( (x = aHeap[0])==0 ) return 0; | 
| 10356 |   *pOut = aHeap[1]; | 
| 10357 |   aHeap[1] = aHeap[x]; | 
| 10358 |   aHeap[x] = 0xffffffff; | 
| 10359 |   aHeap[0]--; | 
| 10360 |   i = 1; | 
| 10361 |   while( (j = i*2)<=aHeap[0] ){ | 
| 10362 |     if( aHeap[j]>aHeap[j+1] ) j++; | 
| 10363 |     if( aHeap[i]<aHeap[j] ) break; | 
| 10364 |     x = aHeap[i]; | 
| 10365 |     aHeap[i] = aHeap[j]; | 
| 10366 |     aHeap[j] = x; | 
| 10367 |     i = j; | 
| 10368 |   } | 
| 10369 |   return 1;   | 
| 10370 | } | 
| 10371 |  | 
| 10372 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK | 
| 10373 | /* | 
| 10374 | ** Do various sanity checks on a single page of a tree.  Return | 
| 10375 | ** the tree depth.  Root pages return 0.  Parents of root pages | 
| 10376 | ** return 1, and so forth. | 
| 10377 | **  | 
| 10378 | ** These checks are done: | 
| 10379 | ** | 
| 10380 | **      1.  Make sure that cells and freeblocks do not overlap | 
| 10381 | **          but combine to completely cover the page. | 
| 10382 | **      2.  Make sure integer cell keys are in order. | 
| 10383 | **      3.  Check the integrity of overflow pages. | 
| 10384 | **      4.  Recursively call checkTreePage on all children. | 
| 10385 | **      5.  Verify that the depth of all children is the same. | 
| 10386 | */ | 
| 10387 | static int checkTreePage( | 
| 10388 |   IntegrityCk *pCheck,  /* Context for the sanity check */ | 
| 10389 |   Pgno iPage,           /* Page number of the page to check */ | 
| 10390 |   i64 *piMinKey,        /* Write minimum integer primary key here */ | 
| 10391 |   i64 maxKey            /* Error if integer primary key greater than this */ | 
| 10392 | ){ | 
| 10393 |   MemPage *pPage = 0;      /* The page being analyzed */ | 
| 10394 |   int i;                   /* Loop counter */ | 
| 10395 |   int rc;                  /* Result code from subroutine call */ | 
| 10396 |   int depth = -1, d2;      /* Depth of a subtree */ | 
| 10397 |   int pgno;                /* Page number */ | 
| 10398 |   int nFrag;               /* Number of fragmented bytes on the page */ | 
| 10399 |   int hdr;                 /* Offset to the page header */ | 
| 10400 |   int cellStart;           /* Offset to the start of the cell pointer array */ | 
| 10401 |   int nCell;               /* Number of cells */ | 
| 10402 |   int doCoverageCheck = 1; /* True if cell coverage checking should be done */ | 
| 10403 |   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey | 
| 10404 |                            ** False if IPK must be strictly less than maxKey */ | 
| 10405 |   u8 *data;                /* Page content */ | 
| 10406 |   u8 *pCell;               /* Cell content */ | 
| 10407 |   u8 *pCellIdx;            /* Next element of the cell pointer array */ | 
| 10408 |   BtShared *pBt;           /* The BtShared object that owns pPage */ | 
| 10409 |   u32 pc;                  /* Address of a cell */ | 
| 10410 |   u32 usableSize;          /* Usable size of the page */ | 
| 10411 |   u32 contentOffset;       /* Offset to the start of the cell content area */ | 
| 10412 |   u32 *heap = 0;           /* Min-heap used for checking cell coverage */ | 
| 10413 |   u32 x, prev = 0;         /* Next and previous entry on the min-heap */ | 
| 10414 |   const char *saved_zPfx = pCheck->zPfx; | 
| 10415 |   int saved_v1 = pCheck->v1; | 
| 10416 |   int saved_v2 = pCheck->v2; | 
| 10417 |   u8 savedIsInit = 0; | 
| 10418 |  | 
| 10419 |   /* Check that the page exists | 
| 10420 |   */ | 
| 10421 |   pBt = pCheck->pBt; | 
| 10422 |   usableSize = pBt->usableSize; | 
| 10423 |   if( iPage==0 ) return 0; | 
| 10424 |   if( checkRef(pCheck, iPage) ) return 0; | 
| 10425 |   pCheck->zPfx = "Page %u: " ; | 
| 10426 |   pCheck->v1 = iPage; | 
| 10427 |   if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ | 
| 10428 |     checkAppendMsg(pCheck, | 
| 10429 |        "unable to get the page. error code=%d" , rc); | 
| 10430 |     goto end_of_check; | 
| 10431 |   } | 
| 10432 |  | 
| 10433 |   /* Clear MemPage.isInit to make sure the corruption detection code in | 
| 10434 |   ** btreeInitPage() is executed.  */ | 
| 10435 |   savedIsInit = pPage->isInit; | 
| 10436 |   pPage->isInit = 0; | 
| 10437 |   if( (rc = btreeInitPage(pPage))!=0 ){ | 
| 10438 |     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */ | 
| 10439 |     checkAppendMsg(pCheck, | 
| 10440 |                    "btreeInitPage() returns error code %d" , rc); | 
| 10441 |     goto end_of_check; | 
| 10442 |   } | 
| 10443 |   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ | 
| 10444 |     assert( rc==SQLITE_CORRUPT ); | 
| 10445 |     checkAppendMsg(pCheck, "free space corruption" , rc); | 
| 10446 |     goto end_of_check; | 
| 10447 |   } | 
| 10448 |   data = pPage->aData; | 
| 10449 |   hdr = pPage->hdrOffset; | 
| 10450 |  | 
| 10451 |   /* Set up for cell analysis */ | 
| 10452 |   pCheck->zPfx = "On tree page %u cell %d: " ; | 
| 10453 |   contentOffset = get2byteNotZero(&data[hdr+5]); | 
| 10454 |   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */ | 
| 10455 |  | 
| 10456 |   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the | 
| 10457 |   ** number of cells on the page. */ | 
| 10458 |   nCell = get2byte(&data[hdr+3]); | 
| 10459 |   assert( pPage->nCell==nCell ); | 
| 10460 |  | 
| 10461 |   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page | 
| 10462 |   ** immediately follows the b-tree page header. */ | 
| 10463 |   cellStart = hdr + 12 - 4*pPage->leaf; | 
| 10464 |   assert( pPage->aCellIdx==&data[cellStart] ); | 
| 10465 |   pCellIdx = &data[cellStart + 2*(nCell-1)]; | 
| 10466 |  | 
| 10467 |   if( !pPage->leaf ){ | 
| 10468 |     /* Analyze the right-child page of internal pages */ | 
| 10469 |     pgno = get4byte(&data[hdr+8]); | 
| 10470 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10471 |     if( pBt->autoVacuum ){ | 
| 10472 |       pCheck->zPfx = "On page %u at right child: " ; | 
| 10473 |       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); | 
| 10474 |     } | 
| 10475 | #endif | 
| 10476 |     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); | 
| 10477 |     keyCanBeEqual = 0; | 
| 10478 |   }else{ | 
| 10479 |     /* For leaf pages, the coverage check will occur in the same loop | 
| 10480 |     ** as the other cell checks, so initialize the heap.  */ | 
| 10481 |     heap = pCheck->heap; | 
| 10482 |     heap[0] = 0; | 
| 10483 |   } | 
| 10484 |  | 
| 10485 |   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte | 
| 10486 |   ** integer offsets to the cell contents. */ | 
| 10487 |   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ | 
| 10488 |     CellInfo info; | 
| 10489 |  | 
| 10490 |     /* Check cell size */ | 
| 10491 |     pCheck->v2 = i; | 
| 10492 |     assert( pCellIdx==&data[cellStart + i*2] ); | 
| 10493 |     pc = get2byteAligned(pCellIdx); | 
| 10494 |     pCellIdx -= 2; | 
| 10495 |     if( pc<contentOffset || pc>usableSize-4 ){ | 
| 10496 |       checkAppendMsg(pCheck, "Offset %d out of range %d..%d" , | 
| 10497 |                              pc, contentOffset, usableSize-4); | 
| 10498 |       doCoverageCheck = 0; | 
| 10499 |       continue; | 
| 10500 |     } | 
| 10501 |     pCell = &data[pc]; | 
| 10502 |     pPage->xParseCell(pPage, pCell, &info); | 
| 10503 |     if( pc+info.nSize>usableSize ){ | 
| 10504 |       checkAppendMsg(pCheck, "Extends off end of page" ); | 
| 10505 |       doCoverageCheck = 0; | 
| 10506 |       continue; | 
| 10507 |     } | 
| 10508 |  | 
| 10509 |     /* Check for integer primary key out of range */ | 
| 10510 |     if( pPage->intKey ){ | 
| 10511 |       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ | 
| 10512 |         checkAppendMsg(pCheck, "Rowid %lld out of order" , info.nKey); | 
| 10513 |       } | 
| 10514 |       maxKey = info.nKey; | 
| 10515 |       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */ | 
| 10516 |     } | 
| 10517 |  | 
| 10518 |     /* Check the content overflow list */ | 
| 10519 |     if( info.nPayload>info.nLocal ){ | 
| 10520 |       u32 nPage;       /* Number of pages on the overflow chain */ | 
| 10521 |       Pgno pgnoOvfl;   /* First page of the overflow chain */ | 
| 10522 |       assert( pc + info.nSize - 4 <= usableSize ); | 
| 10523 |       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); | 
| 10524 |       pgnoOvfl = get4byte(&pCell[info.nSize - 4]); | 
| 10525 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10526 |       if( pBt->autoVacuum ){ | 
| 10527 |         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); | 
| 10528 |       } | 
| 10529 | #endif | 
| 10530 |       checkList(pCheck, 0, pgnoOvfl, nPage); | 
| 10531 |     } | 
| 10532 |  | 
| 10533 |     if( !pPage->leaf ){ | 
| 10534 |       /* Check sanity of left child page for internal pages */ | 
| 10535 |       pgno = get4byte(pCell); | 
| 10536 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10537 |       if( pBt->autoVacuum ){ | 
| 10538 |         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); | 
| 10539 |       } | 
| 10540 | #endif | 
| 10541 |       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); | 
| 10542 |       keyCanBeEqual = 0; | 
| 10543 |       if( d2!=depth ){ | 
| 10544 |         checkAppendMsg(pCheck, "Child page depth differs" ); | 
| 10545 |         depth = d2; | 
| 10546 |       } | 
| 10547 |     }else{ | 
| 10548 |       /* Populate the coverage-checking heap for leaf pages */ | 
| 10549 |       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); | 
| 10550 |     } | 
| 10551 |   } | 
| 10552 |   *piMinKey = maxKey; | 
| 10553 |  | 
| 10554 |   /* Check for complete coverage of the page | 
| 10555 |   */ | 
| 10556 |   pCheck->zPfx = 0; | 
| 10557 |   if( doCoverageCheck && pCheck->mxErr>0 ){ | 
| 10558 |     /* For leaf pages, the min-heap has already been initialized and the | 
| 10559 |     ** cells have already been inserted.  But for internal pages, that has | 
| 10560 |     ** not yet been done, so do it now */ | 
| 10561 |     if( !pPage->leaf ){ | 
| 10562 |       heap = pCheck->heap; | 
| 10563 |       heap[0] = 0; | 
| 10564 |       for(i=nCell-1; i>=0; i--){ | 
| 10565 |         u32 size; | 
| 10566 |         pc = get2byteAligned(&data[cellStart+i*2]); | 
| 10567 |         size = pPage->xCellSize(pPage, &data[pc]); | 
| 10568 |         btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); | 
| 10569 |       } | 
| 10570 |     } | 
| 10571 |     /* Add the freeblocks to the min-heap | 
| 10572 |     ** | 
| 10573 |     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header | 
| 10574 |     ** is the offset of the first freeblock, or zero if there are no | 
| 10575 |     ** freeblocks on the page.  | 
| 10576 |     */ | 
| 10577 |     i = get2byte(&data[hdr+1]); | 
| 10578 |     while( i>0 ){ | 
| 10579 |       int size, j; | 
| 10580 |       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ | 
| 10581 |       size = get2byte(&data[i+2]); | 
| 10582 |       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ | 
| 10583 |       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); | 
| 10584 |       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a | 
| 10585 |       ** big-endian integer which is the offset in the b-tree page of the next | 
| 10586 |       ** freeblock in the chain, or zero if the freeblock is the last on the | 
| 10587 |       ** chain. */ | 
| 10588 |       j = get2byte(&data[i]); | 
| 10589 |       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of | 
| 10590 |       ** increasing offset. */ | 
| 10591 |       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */ | 
| 10592 |       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ | 
| 10593 |       i = j; | 
| 10594 |     } | 
| 10595 |     /* Analyze the min-heap looking for overlap between cells and/or  | 
| 10596 |     ** freeblocks, and counting the number of untracked bytes in nFrag. | 
| 10597 |     **  | 
| 10598 |     ** Each min-heap entry is of the form:    (start_address<<16)|end_address. | 
| 10599 |     ** There is an implied first entry the covers the page header, the cell | 
| 10600 |     ** pointer index, and the gap between the cell pointer index and the start | 
| 10601 |     ** of cell content.   | 
| 10602 |     ** | 
| 10603 |     ** The loop below pulls entries from the min-heap in order and compares | 
| 10604 |     ** the start_address against the previous end_address.  If there is an | 
| 10605 |     ** overlap, that means bytes are used multiple times.  If there is a gap, | 
| 10606 |     ** that gap is added to the fragmentation count. | 
| 10607 |     */ | 
| 10608 |     nFrag = 0; | 
| 10609 |     prev = contentOffset - 1;   /* Implied first min-heap entry */ | 
| 10610 |     while( btreeHeapPull(heap,&x) ){ | 
| 10611 |       if( (prev&0xffff)>=(x>>16) ){ | 
| 10612 |         checkAppendMsg(pCheck, | 
| 10613 |           "Multiple uses for byte %u of page %u" , x>>16, iPage); | 
| 10614 |         break; | 
| 10615 |       }else{ | 
| 10616 |         nFrag += (x>>16) - (prev&0xffff) - 1; | 
| 10617 |         prev = x; | 
| 10618 |       } | 
| 10619 |     } | 
| 10620 |     nFrag += usableSize - (prev&0xffff) - 1; | 
| 10621 |     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments | 
| 10622 |     ** is stored in the fifth field of the b-tree page header. | 
| 10623 |     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the | 
| 10624 |     ** number of fragmented free bytes within the cell content area. | 
| 10625 |     */ | 
| 10626 |     if( heap[0]==0 && nFrag!=data[hdr+7] ){ | 
| 10627 |       checkAppendMsg(pCheck, | 
| 10628 |           "Fragmentation of %d bytes reported as %d on page %u" , | 
| 10629 |           nFrag, data[hdr+7], iPage); | 
| 10630 |     } | 
| 10631 |   } | 
| 10632 |  | 
| 10633 | end_of_check: | 
| 10634 |   if( !doCoverageCheck ) pPage->isInit = savedIsInit; | 
| 10635 |   releasePage(pPage); | 
| 10636 |   pCheck->zPfx = saved_zPfx; | 
| 10637 |   pCheck->v1 = saved_v1; | 
| 10638 |   pCheck->v2 = saved_v2; | 
| 10639 |   return depth+1; | 
| 10640 | } | 
| 10641 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ | 
| 10642 |  | 
| 10643 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK | 
| 10644 | /* | 
| 10645 | ** This routine does a complete check of the given BTree file.  aRoot[] is | 
| 10646 | ** an array of pages numbers were each page number is the root page of | 
| 10647 | ** a table.  nRoot is the number of entries in aRoot. | 
| 10648 | ** | 
| 10649 | ** A read-only or read-write transaction must be opened before calling | 
| 10650 | ** this function. | 
| 10651 | ** | 
| 10652 | ** Write the number of error seen in *pnErr.  Except for some memory | 
| 10653 | ** allocation errors,  an error message held in memory obtained from | 
| 10654 | ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is | 
| 10655 | ** returned.  If a memory allocation error occurs, NULL is returned. | 
| 10656 | ** | 
| 10657 | ** If the first entry in aRoot[] is 0, that indicates that the list of | 
| 10658 | ** root pages is incomplete.  This is a "partial integrity-check".  This | 
| 10659 | ** happens when performing an integrity check on a single table.  The | 
| 10660 | ** zero is skipped, of course.  But in addition, the freelist checks | 
| 10661 | ** and the checks to make sure every page is referenced are also skipped, | 
| 10662 | ** since obviously it is not possible to know which pages are covered by | 
| 10663 | ** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist | 
| 10664 | ** checks are still performed. | 
| 10665 | */ | 
| 10666 | char *sqlite3BtreeIntegrityCheck( | 
| 10667 |   sqlite3 *db,  /* Database connection that is running the check */ | 
| 10668 |   Btree *p,     /* The btree to be checked */ | 
| 10669 |   Pgno *aRoot,  /* An array of root pages numbers for individual trees */ | 
| 10670 |   int nRoot,    /* Number of entries in aRoot[] */ | 
| 10671 |   int mxErr,    /* Stop reporting errors after this many */ | 
| 10672 |   int *pnErr    /* Write number of errors seen to this variable */ | 
| 10673 | ){ | 
| 10674 |   Pgno i; | 
| 10675 |   IntegrityCk sCheck; | 
| 10676 |   BtShared *pBt = p->pBt; | 
| 10677 |   u64 savedDbFlags = pBt->db->flags; | 
| 10678 |   char zErr[100]; | 
| 10679 |   int bPartial = 0;            /* True if not checking all btrees */ | 
| 10680 |   int bCkFreelist = 1;         /* True to scan the freelist */ | 
| 10681 |   VVA_ONLY( int nRef ); | 
| 10682 |   assert( nRoot>0 ); | 
| 10683 |  | 
| 10684 |   /* aRoot[0]==0 means this is a partial check */ | 
| 10685 |   if( aRoot[0]==0 ){ | 
| 10686 |     assert( nRoot>1 ); | 
| 10687 |     bPartial = 1; | 
| 10688 |     if( aRoot[1]!=1 ) bCkFreelist = 0; | 
| 10689 |   } | 
| 10690 |  | 
| 10691 |   sqlite3BtreeEnter(p); | 
| 10692 |   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); | 
| 10693 |   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); | 
| 10694 |   assert( nRef>=0 ); | 
| 10695 |   sCheck.db = db; | 
| 10696 |   sCheck.pBt = pBt; | 
| 10697 |   sCheck.pPager = pBt->pPager; | 
| 10698 |   sCheck.nPage = btreePagecount(sCheck.pBt); | 
| 10699 |   sCheck.mxErr = mxErr; | 
| 10700 |   sCheck.nErr = 0; | 
| 10701 |   sCheck.bOomFault = 0; | 
| 10702 |   sCheck.zPfx = 0; | 
| 10703 |   sCheck.v1 = 0; | 
| 10704 |   sCheck.v2 = 0; | 
| 10705 |   sCheck.aPgRef = 0; | 
| 10706 |   sCheck.heap = 0; | 
| 10707 |   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); | 
| 10708 |   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; | 
| 10709 |   if( sCheck.nPage==0 ){ | 
| 10710 |     goto integrity_ck_cleanup; | 
| 10711 |   } | 
| 10712 |  | 
| 10713 |   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); | 
| 10714 |   if( !sCheck.aPgRef ){ | 
| 10715 |     sCheck.bOomFault = 1; | 
| 10716 |     goto integrity_ck_cleanup; | 
| 10717 |   } | 
| 10718 |   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); | 
| 10719 |   if( sCheck.heap==0 ){ | 
| 10720 |     sCheck.bOomFault = 1; | 
| 10721 |     goto integrity_ck_cleanup; | 
| 10722 |   } | 
| 10723 |  | 
| 10724 |   i = PENDING_BYTE_PAGE(pBt); | 
| 10725 |   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); | 
| 10726 |  | 
| 10727 |   /* Check the integrity of the freelist | 
| 10728 |   */ | 
| 10729 |   if( bCkFreelist ){ | 
| 10730 |     sCheck.zPfx = "Main freelist: " ; | 
| 10731 |     checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), | 
| 10732 |               get4byte(&pBt->pPage1->aData[36])); | 
| 10733 |     sCheck.zPfx = 0; | 
| 10734 |   } | 
| 10735 |  | 
| 10736 |   /* Check all the tables. | 
| 10737 |   */ | 
| 10738 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10739 |   if( !bPartial ){ | 
| 10740 |     if( pBt->autoVacuum ){ | 
| 10741 |       Pgno mx = 0; | 
| 10742 |       Pgno mxInHdr; | 
| 10743 |       for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; | 
| 10744 |       mxInHdr = get4byte(&pBt->pPage1->aData[52]); | 
| 10745 |       if( mx!=mxInHdr ){ | 
| 10746 |         checkAppendMsg(&sCheck, | 
| 10747 |           "max rootpage (%d) disagrees with header (%d)" , | 
| 10748 |           mx, mxInHdr | 
| 10749 |         ); | 
| 10750 |       } | 
| 10751 |     }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ | 
| 10752 |       checkAppendMsg(&sCheck, | 
| 10753 |         "incremental_vacuum enabled with a max rootpage of zero"  | 
| 10754 |       ); | 
| 10755 |     } | 
| 10756 |   } | 
| 10757 | #endif | 
| 10758 |   testcase( pBt->db->flags & SQLITE_CellSizeCk ); | 
| 10759 |   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; | 
| 10760 |   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ | 
| 10761 |     i64 notUsed; | 
| 10762 |     if( aRoot[i]==0 ) continue; | 
| 10763 | #ifndef SQLITE_OMIT_AUTOVACUUM | 
| 10764 |     if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ | 
| 10765 |       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); | 
| 10766 |     } | 
| 10767 | #endif | 
| 10768 |     checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); | 
| 10769 |   } | 
| 10770 |   pBt->db->flags = savedDbFlags; | 
| 10771 |  | 
| 10772 |   /* Make sure every page in the file is referenced | 
| 10773 |   */ | 
| 10774 |   if( !bPartial ){ | 
| 10775 |     for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ | 
| 10776 | #ifdef SQLITE_OMIT_AUTOVACUUM | 
| 10777 |       if( getPageReferenced(&sCheck, i)==0 ){ | 
| 10778 |         checkAppendMsg(&sCheck, "Page %d is never used" , i); | 
| 10779 |       } | 
| 10780 | #else | 
| 10781 |       /* If the database supports auto-vacuum, make sure no tables contain | 
| 10782 |       ** references to pointer-map pages. | 
| 10783 |       */ | 
| 10784 |       if( getPageReferenced(&sCheck, i)==0 &&  | 
| 10785 |          (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ | 
| 10786 |         checkAppendMsg(&sCheck, "Page %d is never used" , i); | 
| 10787 |       } | 
| 10788 |       if( getPageReferenced(&sCheck, i)!=0 &&  | 
| 10789 |          (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ | 
| 10790 |         checkAppendMsg(&sCheck, "Pointer map page %d is referenced" , i); | 
| 10791 |       } | 
| 10792 | #endif | 
| 10793 |     } | 
| 10794 |   } | 
| 10795 |  | 
| 10796 |   /* Clean  up and report errors. | 
| 10797 |   */ | 
| 10798 | integrity_ck_cleanup: | 
| 10799 |   sqlite3PageFree(sCheck.heap); | 
| 10800 |   sqlite3_free(sCheck.aPgRef); | 
| 10801 |   if( sCheck.bOomFault ){ | 
| 10802 |     sqlite3_str_reset(&sCheck.errMsg); | 
| 10803 |     sCheck.nErr++; | 
| 10804 |   } | 
| 10805 |   *pnErr = sCheck.nErr; | 
| 10806 |   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); | 
| 10807 |   /* Make sure this analysis did not leave any unref() pages. */ | 
| 10808 |   assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); | 
| 10809 |   sqlite3BtreeLeave(p); | 
| 10810 |   return sqlite3StrAccumFinish(&sCheck.errMsg); | 
| 10811 | } | 
| 10812 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ | 
| 10813 |  | 
| 10814 | /* | 
| 10815 | ** Return the full pathname of the underlying database file.  Return | 
| 10816 | ** an empty string if the database is in-memory or a TEMP database. | 
| 10817 | ** | 
| 10818 | ** The pager filename is invariant as long as the pager is | 
| 10819 | ** open so it is safe to access without the BtShared mutex. | 
| 10820 | */ | 
| 10821 | const char *sqlite3BtreeGetFilename(Btree *p){ | 
| 10822 |   assert( p->pBt->pPager!=0 ); | 
| 10823 |   return sqlite3PagerFilename(p->pBt->pPager, 1); | 
| 10824 | } | 
| 10825 |  | 
| 10826 | /* | 
| 10827 | ** Return the pathname of the journal file for this database. The return | 
| 10828 | ** value of this routine is the same regardless of whether the journal file | 
| 10829 | ** has been created or not. | 
| 10830 | ** | 
| 10831 | ** The pager journal filename is invariant as long as the pager is | 
| 10832 | ** open so it is safe to access without the BtShared mutex. | 
| 10833 | */ | 
| 10834 | const char *sqlite3BtreeGetJournalname(Btree *p){ | 
| 10835 |   assert( p->pBt->pPager!=0 ); | 
| 10836 |   return sqlite3PagerJournalname(p->pBt->pPager); | 
| 10837 | } | 
| 10838 |  | 
| 10839 | /* | 
| 10840 | ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE | 
| 10841 | ** to describe the current transaction state of Btree p. | 
| 10842 | */ | 
| 10843 | int sqlite3BtreeTxnState(Btree *p){ | 
| 10844 |   assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); | 
| 10845 |   return p ? p->inTrans : 0; | 
| 10846 | } | 
| 10847 |  | 
| 10848 | #ifndef SQLITE_OMIT_WAL | 
| 10849 | /* | 
| 10850 | ** Run a checkpoint on the Btree passed as the first argument. | 
| 10851 | ** | 
| 10852 | ** Return SQLITE_LOCKED if this or any other connection has an open  | 
| 10853 | ** transaction on the shared-cache the argument Btree is connected to. | 
| 10854 | ** | 
| 10855 | ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. | 
| 10856 | */ | 
| 10857 | int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ | 
| 10858 |   int rc = SQLITE_OK; | 
| 10859 |   if( p ){ | 
| 10860 |     BtShared *pBt = p->pBt; | 
| 10861 |     sqlite3BtreeEnter(p); | 
| 10862 |     if( pBt->inTransaction!=TRANS_NONE ){ | 
| 10863 |       rc = SQLITE_LOCKED; | 
| 10864 |     }else{ | 
| 10865 |       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); | 
| 10866 |     } | 
| 10867 |     sqlite3BtreeLeave(p); | 
| 10868 |   } | 
| 10869 |   return rc; | 
| 10870 | } | 
| 10871 | #endif | 
| 10872 |  | 
| 10873 | /* | 
| 10874 | ** Return true if there is currently a backup running on Btree p. | 
| 10875 | */ | 
| 10876 | int sqlite3BtreeIsInBackup(Btree *p){ | 
| 10877 |   assert( p ); | 
| 10878 |   assert( sqlite3_mutex_held(p->db->mutex) ); | 
| 10879 |   return p->nBackup!=0; | 
| 10880 | } | 
| 10881 |  | 
| 10882 | /* | 
| 10883 | ** This function returns a pointer to a blob of memory associated with | 
| 10884 | ** a single shared-btree. The memory is used by client code for its own | 
| 10885 | ** purposes (for example, to store a high-level schema associated with  | 
| 10886 | ** the shared-btree). The btree layer manages reference counting issues. | 
| 10887 | ** | 
| 10888 | ** The first time this is called on a shared-btree, nBytes bytes of memory | 
| 10889 | ** are allocated, zeroed, and returned to the caller. For each subsequent  | 
| 10890 | ** call the nBytes parameter is ignored and a pointer to the same blob | 
| 10891 | ** of memory returned.  | 
| 10892 | ** | 
| 10893 | ** If the nBytes parameter is 0 and the blob of memory has not yet been | 
| 10894 | ** allocated, a null pointer is returned. If the blob has already been | 
| 10895 | ** allocated, it is returned as normal. | 
| 10896 | ** | 
| 10897 | ** Just before the shared-btree is closed, the function passed as the  | 
| 10898 | ** xFree argument when the memory allocation was made is invoked on the  | 
| 10899 | ** blob of allocated memory. The xFree function should not call sqlite3_free() | 
| 10900 | ** on the memory, the btree layer does that. | 
| 10901 | */ | 
| 10902 | void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ | 
| 10903 |   BtShared *pBt = p->pBt; | 
| 10904 |   sqlite3BtreeEnter(p); | 
| 10905 |   if( !pBt->pSchema && nBytes ){ | 
| 10906 |     pBt->pSchema = sqlite3DbMallocZero(0, nBytes); | 
| 10907 |     pBt->xFreeSchema = xFree; | 
| 10908 |   } | 
| 10909 |   sqlite3BtreeLeave(p); | 
| 10910 |   return pBt->pSchema; | 
| 10911 | } | 
| 10912 |  | 
| 10913 | /* | 
| 10914 | ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared  | 
| 10915 | ** btree as the argument handle holds an exclusive lock on the  | 
| 10916 | ** sqlite_schema table. Otherwise SQLITE_OK. | 
| 10917 | */ | 
| 10918 | int sqlite3BtreeSchemaLocked(Btree *p){ | 
| 10919 |   int rc; | 
| 10920 |   assert( sqlite3_mutex_held(p->db->mutex) ); | 
| 10921 |   sqlite3BtreeEnter(p); | 
| 10922 |   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); | 
| 10923 |   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); | 
| 10924 |   sqlite3BtreeLeave(p); | 
| 10925 |   return rc; | 
| 10926 | } | 
| 10927 |  | 
| 10928 |  | 
| 10929 | #ifndef SQLITE_OMIT_SHARED_CACHE | 
| 10930 | /* | 
| 10931 | ** Obtain a lock on the table whose root page is iTab.  The | 
| 10932 | ** lock is a write lock if isWritelock is true or a read lock | 
| 10933 | ** if it is false. | 
| 10934 | */ | 
| 10935 | int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ | 
| 10936 |   int rc = SQLITE_OK; | 
| 10937 |   assert( p->inTrans!=TRANS_NONE ); | 
| 10938 |   if( p->sharable ){ | 
| 10939 |     u8 lockType = READ_LOCK + isWriteLock; | 
| 10940 |     assert( READ_LOCK+1==WRITE_LOCK ); | 
| 10941 |     assert( isWriteLock==0 || isWriteLock==1 ); | 
| 10942 |  | 
| 10943 |     sqlite3BtreeEnter(p); | 
| 10944 |     rc = querySharedCacheTableLock(p, iTab, lockType); | 
| 10945 |     if( rc==SQLITE_OK ){ | 
| 10946 |       rc = setSharedCacheTableLock(p, iTab, lockType); | 
| 10947 |     } | 
| 10948 |     sqlite3BtreeLeave(p); | 
| 10949 |   } | 
| 10950 |   return rc; | 
| 10951 | } | 
| 10952 | #endif | 
| 10953 |  | 
| 10954 | #ifndef SQLITE_OMIT_INCRBLOB | 
| 10955 | /* | 
| 10956 | ** Argument pCsr must be a cursor opened for writing on an  | 
| 10957 | ** INTKEY table currently pointing at a valid table entry.  | 
| 10958 | ** This function modifies the data stored as part of that entry. | 
| 10959 | ** | 
| 10960 | ** Only the data content may only be modified, it is not possible to  | 
| 10961 | ** change the length of the data stored. If this function is called with | 
| 10962 | ** parameters that attempt to write past the end of the existing data, | 
| 10963 | ** no modifications are made and SQLITE_CORRUPT is returned. | 
| 10964 | */ | 
| 10965 | int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ | 
| 10966 |   int rc; | 
| 10967 |   assert( cursorOwnsBtShared(pCsr) ); | 
| 10968 |   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); | 
| 10969 |   assert( pCsr->curFlags & BTCF_Incrblob ); | 
| 10970 |  | 
| 10971 |   rc = restoreCursorPosition(pCsr); | 
| 10972 |   if( rc!=SQLITE_OK ){ | 
| 10973 |     return rc; | 
| 10974 |   } | 
| 10975 |   assert( pCsr->eState!=CURSOR_REQUIRESEEK ); | 
| 10976 |   if( pCsr->eState!=CURSOR_VALID ){ | 
| 10977 |     return SQLITE_ABORT; | 
| 10978 |   } | 
| 10979 |  | 
| 10980 |   /* Save the positions of all other cursors open on this table. This is | 
| 10981 |   ** required in case any of them are holding references to an xFetch | 
| 10982 |   ** version of the b-tree page modified by the accessPayload call below. | 
| 10983 |   ** | 
| 10984 |   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() | 
| 10985 |   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence | 
| 10986 |   ** saveAllCursors can only return SQLITE_OK. | 
| 10987 |   */ | 
| 10988 |   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); | 
| 10989 |   assert( rc==SQLITE_OK ); | 
| 10990 |  | 
| 10991 |   /* Check some assumptions:  | 
| 10992 |   **   (a) the cursor is open for writing, | 
| 10993 |   **   (b) there is a read/write transaction open, | 
| 10994 |   **   (c) the connection holds a write-lock on the table (if required), | 
| 10995 |   **   (d) there are no conflicting read-locks, and | 
| 10996 |   **   (e) the cursor points at a valid row of an intKey table. | 
| 10997 |   */ | 
| 10998 |   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ | 
| 10999 |     return SQLITE_READONLY; | 
| 11000 |   } | 
| 11001 |   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 | 
| 11002 |               && pCsr->pBt->inTransaction==TRANS_WRITE ); | 
| 11003 |   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); | 
| 11004 |   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); | 
| 11005 |   assert( pCsr->pPage->intKey ); | 
| 11006 |  | 
| 11007 |   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); | 
| 11008 | } | 
| 11009 |  | 
| 11010 | /*  | 
| 11011 | ** Mark this cursor as an incremental blob cursor. | 
| 11012 | */ | 
| 11013 | void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ | 
| 11014 |   pCur->curFlags |= BTCF_Incrblob; | 
| 11015 |   pCur->pBtree->hasIncrblobCur = 1; | 
| 11016 | } | 
| 11017 | #endif | 
| 11018 |  | 
| 11019 | /* | 
| 11020 | ** Set both the "read version" (single byte at byte offset 18) and  | 
| 11021 | ** "write version" (single byte at byte offset 19) fields in the database | 
| 11022 | ** header to iVersion. | 
| 11023 | */ | 
| 11024 | int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ | 
| 11025 |   BtShared *pBt = pBtree->pBt; | 
| 11026 |   int rc;                         /* Return code */ | 
| 11027 |   | 
| 11028 |   assert( iVersion==1 || iVersion==2 ); | 
| 11029 |  | 
| 11030 |   /* If setting the version fields to 1, do not automatically open the | 
| 11031 |   ** WAL connection, even if the version fields are currently set to 2. | 
| 11032 |   */ | 
| 11033 |   pBt->btsFlags &= ~BTS_NO_WAL; | 
| 11034 |   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; | 
| 11035 |  | 
| 11036 |   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); | 
| 11037 |   if( rc==SQLITE_OK ){ | 
| 11038 |     u8 *aData = pBt->pPage1->aData; | 
| 11039 |     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ | 
| 11040 |       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); | 
| 11041 |       if( rc==SQLITE_OK ){ | 
| 11042 |         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); | 
| 11043 |         if( rc==SQLITE_OK ){ | 
| 11044 |           aData[18] = (u8)iVersion; | 
| 11045 |           aData[19] = (u8)iVersion; | 
| 11046 |         } | 
| 11047 |       } | 
| 11048 |     } | 
| 11049 |   } | 
| 11050 |  | 
| 11051 |   pBt->btsFlags &= ~BTS_NO_WAL; | 
| 11052 |   return rc; | 
| 11053 | } | 
| 11054 |  | 
| 11055 | /* | 
| 11056 | ** Return true if the cursor has a hint specified.  This routine is | 
| 11057 | ** only used from within assert() statements | 
| 11058 | */ | 
| 11059 | int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ | 
| 11060 |   return (pCsr->hints & mask)!=0; | 
| 11061 | } | 
| 11062 |  | 
| 11063 | /* | 
| 11064 | ** Return true if the given Btree is read-only. | 
| 11065 | */ | 
| 11066 | int sqlite3BtreeIsReadonly(Btree *p){ | 
| 11067 |   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; | 
| 11068 | } | 
| 11069 |  | 
| 11070 | /* | 
| 11071 | ** Return the size of the header added to each page by this module. | 
| 11072 | */ | 
| 11073 | int (void){ return ROUND8(sizeof(MemPage)); } | 
| 11074 |  | 
| 11075 | /* | 
| 11076 | ** If no transaction is active and the database is not a temp-db, clear | 
| 11077 | ** the in-memory pager cache. | 
| 11078 | */ | 
| 11079 | void sqlite3BtreeClearCache(Btree *p){ | 
| 11080 |   BtShared *pBt = p->pBt; | 
| 11081 |   if( pBt->inTransaction==TRANS_NONE ){ | 
| 11082 |     sqlite3PagerClearCache(pBt->pPager); | 
| 11083 |   } | 
| 11084 | } | 
| 11085 |  | 
| 11086 | #if !defined(SQLITE_OMIT_SHARED_CACHE) | 
| 11087 | /* | 
| 11088 | ** Return true if the Btree passed as the only argument is sharable. | 
| 11089 | */ | 
| 11090 | int sqlite3BtreeSharable(Btree *p){ | 
| 11091 |   return p->sharable; | 
| 11092 | } | 
| 11093 |  | 
| 11094 | /* | 
| 11095 | ** Return the number of connections to the BtShared object accessed by | 
| 11096 | ** the Btree handle passed as the only argument. For private caches  | 
| 11097 | ** this is always 1. For shared caches it may be 1 or greater. | 
| 11098 | */ | 
| 11099 | int sqlite3BtreeConnectionCount(Btree *p){ | 
| 11100 |   testcase( p->sharable ); | 
| 11101 |   return p->pBt->nRef; | 
| 11102 | } | 
| 11103 | #endif | 
| 11104 |  |