| 1 | /* |
| 2 | ** 2004 April 6 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file implements an external (disk-based) database using BTrees. |
| 13 | ** See the header comment on "btreeInt.h" for additional information. |
| 14 | ** Including a description of file format and an overview of operation. |
| 15 | */ |
| 16 | #include "btreeInt.h" |
| 17 | |
| 18 | /* |
| 19 | ** The header string that appears at the beginning of every |
| 20 | ** SQLite database. |
| 21 | */ |
| 22 | static const char [] = SQLITE_FILE_HEADER; |
| 23 | |
| 24 | /* |
| 25 | ** Set this global variable to 1 to enable tracing using the TRACE |
| 26 | ** macro. |
| 27 | */ |
| 28 | #if 0 |
| 29 | int sqlite3BtreeTrace=1; /* True to enable tracing */ |
| 30 | # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} |
| 31 | #else |
| 32 | # define TRACE(X) |
| 33 | #endif |
| 34 | |
| 35 | /* |
| 36 | ** Extract a 2-byte big-endian integer from an array of unsigned bytes. |
| 37 | ** But if the value is zero, make it 65536. |
| 38 | ** |
| 39 | ** This routine is used to extract the "offset to cell content area" value |
| 40 | ** from the header of a btree page. If the page size is 65536 and the page |
| 41 | ** is empty, the offset should be 65536, but the 2-byte value stores zero. |
| 42 | ** This routine makes the necessary adjustment to 65536. |
| 43 | */ |
| 44 | #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) |
| 45 | |
| 46 | /* |
| 47 | ** Values passed as the 5th argument to allocateBtreePage() |
| 48 | */ |
| 49 | #define BTALLOC_ANY 0 /* Allocate any page */ |
| 50 | #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ |
| 51 | #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ |
| 52 | |
| 53 | /* |
| 54 | ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not |
| 55 | ** defined, or 0 if it is. For example: |
| 56 | ** |
| 57 | ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); |
| 58 | */ |
| 59 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 60 | #define IfNotOmitAV(expr) (expr) |
| 61 | #else |
| 62 | #define IfNotOmitAV(expr) 0 |
| 63 | #endif |
| 64 | |
| 65 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 66 | /* |
| 67 | ** A list of BtShared objects that are eligible for participation |
| 68 | ** in shared cache. This variable has file scope during normal builds, |
| 69 | ** but the test harness needs to access it so we make it global for |
| 70 | ** test builds. |
| 71 | ** |
| 72 | ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. |
| 73 | */ |
| 74 | #ifdef SQLITE_TEST |
| 75 | BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| 76 | #else |
| 77 | static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| 78 | #endif |
| 79 | #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 80 | |
| 81 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 82 | /* |
| 83 | ** Enable or disable the shared pager and schema features. |
| 84 | ** |
| 85 | ** This routine has no effect on existing database connections. |
| 86 | ** The shared cache setting effects only future calls to |
| 87 | ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). |
| 88 | */ |
| 89 | int sqlite3_enable_shared_cache(int enable){ |
| 90 | sqlite3GlobalConfig.sharedCacheEnabled = enable; |
| 91 | return SQLITE_OK; |
| 92 | } |
| 93 | #endif |
| 94 | |
| 95 | |
| 96 | |
| 97 | #ifdef SQLITE_OMIT_SHARED_CACHE |
| 98 | /* |
| 99 | ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), |
| 100 | ** and clearAllSharedCacheTableLocks() |
| 101 | ** manipulate entries in the BtShared.pLock linked list used to store |
| 102 | ** shared-cache table level locks. If the library is compiled with the |
| 103 | ** shared-cache feature disabled, then there is only ever one user |
| 104 | ** of each BtShared structure and so this locking is not necessary. |
| 105 | ** So define the lock related functions as no-ops. |
| 106 | */ |
| 107 | #define querySharedCacheTableLock(a,b,c) SQLITE_OK |
| 108 | #define setSharedCacheTableLock(a,b,c) SQLITE_OK |
| 109 | #define clearAllSharedCacheTableLocks(a) |
| 110 | #define downgradeAllSharedCacheTableLocks(a) |
| 111 | #define hasSharedCacheTableLock(a,b,c,d) 1 |
| 112 | #define hasReadConflicts(a, b) 0 |
| 113 | #endif |
| 114 | |
| 115 | #ifdef SQLITE_DEBUG |
| 116 | /* |
| 117 | ** Return and reset the seek counter for a Btree object. |
| 118 | */ |
| 119 | sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ |
| 120 | u64 n = pBt->nSeek; |
| 121 | pBt->nSeek = 0; |
| 122 | return n; |
| 123 | } |
| 124 | #endif |
| 125 | |
| 126 | /* |
| 127 | ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single |
| 128 | ** (MemPage*) as an argument. The (MemPage*) must not be NULL. |
| 129 | ** |
| 130 | ** If SQLITE_DEBUG is not defined, then this macro is equivalent to |
| 131 | ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message |
| 132 | ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented |
| 133 | ** with the page number and filename associated with the (MemPage*). |
| 134 | */ |
| 135 | #ifdef SQLITE_DEBUG |
| 136 | int corruptPageError(int lineno, MemPage *p){ |
| 137 | char *zMsg; |
| 138 | sqlite3BeginBenignMalloc(); |
| 139 | zMsg = sqlite3_mprintf("database corruption page %d of %s" , |
| 140 | (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) |
| 141 | ); |
| 142 | sqlite3EndBenignMalloc(); |
| 143 | if( zMsg ){ |
| 144 | sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); |
| 145 | } |
| 146 | sqlite3_free(zMsg); |
| 147 | return SQLITE_CORRUPT_BKPT; |
| 148 | } |
| 149 | # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) |
| 150 | #else |
| 151 | # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) |
| 152 | #endif |
| 153 | |
| 154 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 155 | |
| 156 | #ifdef SQLITE_DEBUG |
| 157 | /* |
| 158 | **** This function is only used as part of an assert() statement. *** |
| 159 | ** |
| 160 | ** Check to see if pBtree holds the required locks to read or write to the |
| 161 | ** table with root page iRoot. Return 1 if it does and 0 if not. |
| 162 | ** |
| 163 | ** For example, when writing to a table with root-page iRoot via |
| 164 | ** Btree connection pBtree: |
| 165 | ** |
| 166 | ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); |
| 167 | ** |
| 168 | ** When writing to an index that resides in a sharable database, the |
| 169 | ** caller should have first obtained a lock specifying the root page of |
| 170 | ** the corresponding table. This makes things a bit more complicated, |
| 171 | ** as this module treats each table as a separate structure. To determine |
| 172 | ** the table corresponding to the index being written, this |
| 173 | ** function has to search through the database schema. |
| 174 | ** |
| 175 | ** Instead of a lock on the table/index rooted at page iRoot, the caller may |
| 176 | ** hold a write-lock on the schema table (root page 1). This is also |
| 177 | ** acceptable. |
| 178 | */ |
| 179 | static int hasSharedCacheTableLock( |
| 180 | Btree *pBtree, /* Handle that must hold lock */ |
| 181 | Pgno iRoot, /* Root page of b-tree */ |
| 182 | int isIndex, /* True if iRoot is the root of an index b-tree */ |
| 183 | int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ |
| 184 | ){ |
| 185 | Schema *pSchema = (Schema *)pBtree->pBt->pSchema; |
| 186 | Pgno iTab = 0; |
| 187 | BtLock *pLock; |
| 188 | |
| 189 | /* If this database is not shareable, or if the client is reading |
| 190 | ** and has the read-uncommitted flag set, then no lock is required. |
| 191 | ** Return true immediately. |
| 192 | */ |
| 193 | if( (pBtree->sharable==0) |
| 194 | || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) |
| 195 | ){ |
| 196 | return 1; |
| 197 | } |
| 198 | |
| 199 | /* If the client is reading or writing an index and the schema is |
| 200 | ** not loaded, then it is too difficult to actually check to see if |
| 201 | ** the correct locks are held. So do not bother - just return true. |
| 202 | ** This case does not come up very often anyhow. |
| 203 | */ |
| 204 | if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ |
| 205 | return 1; |
| 206 | } |
| 207 | |
| 208 | /* Figure out the root-page that the lock should be held on. For table |
| 209 | ** b-trees, this is just the root page of the b-tree being read or |
| 210 | ** written. For index b-trees, it is the root page of the associated |
| 211 | ** table. */ |
| 212 | if( isIndex ){ |
| 213 | HashElem *p; |
| 214 | int bSeen = 0; |
| 215 | for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ |
| 216 | Index *pIdx = (Index *)sqliteHashData(p); |
| 217 | if( pIdx->tnum==iRoot ){ |
| 218 | if( bSeen ){ |
| 219 | /* Two or more indexes share the same root page. There must |
| 220 | ** be imposter tables. So just return true. The assert is not |
| 221 | ** useful in that case. */ |
| 222 | return 1; |
| 223 | } |
| 224 | iTab = pIdx->pTable->tnum; |
| 225 | bSeen = 1; |
| 226 | } |
| 227 | } |
| 228 | }else{ |
| 229 | iTab = iRoot; |
| 230 | } |
| 231 | |
| 232 | /* Search for the required lock. Either a write-lock on root-page iTab, a |
| 233 | ** write-lock on the schema table, or (if the client is reading) a |
| 234 | ** read-lock on iTab will suffice. Return 1 if any of these are found. */ |
| 235 | for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ |
| 236 | if( pLock->pBtree==pBtree |
| 237 | && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) |
| 238 | && pLock->eLock>=eLockType |
| 239 | ){ |
| 240 | return 1; |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | /* Failed to find the required lock. */ |
| 245 | return 0; |
| 246 | } |
| 247 | #endif /* SQLITE_DEBUG */ |
| 248 | |
| 249 | #ifdef SQLITE_DEBUG |
| 250 | /* |
| 251 | **** This function may be used as part of assert() statements only. **** |
| 252 | ** |
| 253 | ** Return true if it would be illegal for pBtree to write into the |
| 254 | ** table or index rooted at iRoot because other shared connections are |
| 255 | ** simultaneously reading that same table or index. |
| 256 | ** |
| 257 | ** It is illegal for pBtree to write if some other Btree object that |
| 258 | ** shares the same BtShared object is currently reading or writing |
| 259 | ** the iRoot table. Except, if the other Btree object has the |
| 260 | ** read-uncommitted flag set, then it is OK for the other object to |
| 261 | ** have a read cursor. |
| 262 | ** |
| 263 | ** For example, before writing to any part of the table or index |
| 264 | ** rooted at page iRoot, one should call: |
| 265 | ** |
| 266 | ** assert( !hasReadConflicts(pBtree, iRoot) ); |
| 267 | */ |
| 268 | static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ |
| 269 | BtCursor *p; |
| 270 | for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 271 | if( p->pgnoRoot==iRoot |
| 272 | && p->pBtree!=pBtree |
| 273 | && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) |
| 274 | ){ |
| 275 | return 1; |
| 276 | } |
| 277 | } |
| 278 | return 0; |
| 279 | } |
| 280 | #endif /* #ifdef SQLITE_DEBUG */ |
| 281 | |
| 282 | /* |
| 283 | ** Query to see if Btree handle p may obtain a lock of type eLock |
| 284 | ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
| 285 | ** SQLITE_OK if the lock may be obtained (by calling |
| 286 | ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. |
| 287 | */ |
| 288 | static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ |
| 289 | BtShared *pBt = p->pBt; |
| 290 | BtLock *pIter; |
| 291 | |
| 292 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 293 | assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| 294 | assert( p->db!=0 ); |
| 295 | assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); |
| 296 | |
| 297 | /* If requesting a write-lock, then the Btree must have an open write |
| 298 | ** transaction on this file. And, obviously, for this to be so there |
| 299 | ** must be an open write transaction on the file itself. |
| 300 | */ |
| 301 | assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); |
| 302 | assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); |
| 303 | |
| 304 | /* This routine is a no-op if the shared-cache is not enabled */ |
| 305 | if( !p->sharable ){ |
| 306 | return SQLITE_OK; |
| 307 | } |
| 308 | |
| 309 | /* If some other connection is holding an exclusive lock, the |
| 310 | ** requested lock may not be obtained. |
| 311 | */ |
| 312 | if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ |
| 313 | sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); |
| 314 | return SQLITE_LOCKED_SHAREDCACHE; |
| 315 | } |
| 316 | |
| 317 | for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 318 | /* The condition (pIter->eLock!=eLock) in the following if(...) |
| 319 | ** statement is a simplification of: |
| 320 | ** |
| 321 | ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) |
| 322 | ** |
| 323 | ** since we know that if eLock==WRITE_LOCK, then no other connection |
| 324 | ** may hold a WRITE_LOCK on any table in this file (since there can |
| 325 | ** only be a single writer). |
| 326 | */ |
| 327 | assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); |
| 328 | assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); |
| 329 | if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ |
| 330 | sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); |
| 331 | if( eLock==WRITE_LOCK ){ |
| 332 | assert( p==pBt->pWriter ); |
| 333 | pBt->btsFlags |= BTS_PENDING; |
| 334 | } |
| 335 | return SQLITE_LOCKED_SHAREDCACHE; |
| 336 | } |
| 337 | } |
| 338 | return SQLITE_OK; |
| 339 | } |
| 340 | #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| 341 | |
| 342 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 343 | /* |
| 344 | ** Add a lock on the table with root-page iTable to the shared-btree used |
| 345 | ** by Btree handle p. Parameter eLock must be either READ_LOCK or |
| 346 | ** WRITE_LOCK. |
| 347 | ** |
| 348 | ** This function assumes the following: |
| 349 | ** |
| 350 | ** (a) The specified Btree object p is connected to a sharable |
| 351 | ** database (one with the BtShared.sharable flag set), and |
| 352 | ** |
| 353 | ** (b) No other Btree objects hold a lock that conflicts |
| 354 | ** with the requested lock (i.e. querySharedCacheTableLock() has |
| 355 | ** already been called and returned SQLITE_OK). |
| 356 | ** |
| 357 | ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM |
| 358 | ** is returned if a malloc attempt fails. |
| 359 | */ |
| 360 | static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ |
| 361 | BtShared *pBt = p->pBt; |
| 362 | BtLock *pLock = 0; |
| 363 | BtLock *pIter; |
| 364 | |
| 365 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 366 | assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| 367 | assert( p->db!=0 ); |
| 368 | |
| 369 | /* A connection with the read-uncommitted flag set will never try to |
| 370 | ** obtain a read-lock using this function. The only read-lock obtained |
| 371 | ** by a connection in read-uncommitted mode is on the sqlite_schema |
| 372 | ** table, and that lock is obtained in BtreeBeginTrans(). */ |
| 373 | assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); |
| 374 | |
| 375 | /* This function should only be called on a sharable b-tree after it |
| 376 | ** has been determined that no other b-tree holds a conflicting lock. */ |
| 377 | assert( p->sharable ); |
| 378 | assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); |
| 379 | |
| 380 | /* First search the list for an existing lock on this table. */ |
| 381 | for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 382 | if( pIter->iTable==iTable && pIter->pBtree==p ){ |
| 383 | pLock = pIter; |
| 384 | break; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | /* If the above search did not find a BtLock struct associating Btree p |
| 389 | ** with table iTable, allocate one and link it into the list. |
| 390 | */ |
| 391 | if( !pLock ){ |
| 392 | pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); |
| 393 | if( !pLock ){ |
| 394 | return SQLITE_NOMEM_BKPT; |
| 395 | } |
| 396 | pLock->iTable = iTable; |
| 397 | pLock->pBtree = p; |
| 398 | pLock->pNext = pBt->pLock; |
| 399 | pBt->pLock = pLock; |
| 400 | } |
| 401 | |
| 402 | /* Set the BtLock.eLock variable to the maximum of the current lock |
| 403 | ** and the requested lock. This means if a write-lock was already held |
| 404 | ** and a read-lock requested, we don't incorrectly downgrade the lock. |
| 405 | */ |
| 406 | assert( WRITE_LOCK>READ_LOCK ); |
| 407 | if( eLock>pLock->eLock ){ |
| 408 | pLock->eLock = eLock; |
| 409 | } |
| 410 | |
| 411 | return SQLITE_OK; |
| 412 | } |
| 413 | #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| 414 | |
| 415 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 416 | /* |
| 417 | ** Release all the table locks (locks obtained via calls to |
| 418 | ** the setSharedCacheTableLock() procedure) held by Btree object p. |
| 419 | ** |
| 420 | ** This function assumes that Btree p has an open read or write |
| 421 | ** transaction. If it does not, then the BTS_PENDING flag |
| 422 | ** may be incorrectly cleared. |
| 423 | */ |
| 424 | static void clearAllSharedCacheTableLocks(Btree *p){ |
| 425 | BtShared *pBt = p->pBt; |
| 426 | BtLock **ppIter = &pBt->pLock; |
| 427 | |
| 428 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 429 | assert( p->sharable || 0==*ppIter ); |
| 430 | assert( p->inTrans>0 ); |
| 431 | |
| 432 | while( *ppIter ){ |
| 433 | BtLock *pLock = *ppIter; |
| 434 | assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); |
| 435 | assert( pLock->pBtree->inTrans>=pLock->eLock ); |
| 436 | if( pLock->pBtree==p ){ |
| 437 | *ppIter = pLock->pNext; |
| 438 | assert( pLock->iTable!=1 || pLock==&p->lock ); |
| 439 | if( pLock->iTable!=1 ){ |
| 440 | sqlite3_free(pLock); |
| 441 | } |
| 442 | }else{ |
| 443 | ppIter = &pLock->pNext; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); |
| 448 | if( pBt->pWriter==p ){ |
| 449 | pBt->pWriter = 0; |
| 450 | pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| 451 | }else if( pBt->nTransaction==2 ){ |
| 452 | /* This function is called when Btree p is concluding its |
| 453 | ** transaction. If there currently exists a writer, and p is not |
| 454 | ** that writer, then the number of locks held by connections other |
| 455 | ** than the writer must be about to drop to zero. In this case |
| 456 | ** set the BTS_PENDING flag to 0. |
| 457 | ** |
| 458 | ** If there is not currently a writer, then BTS_PENDING must |
| 459 | ** be zero already. So this next line is harmless in that case. |
| 460 | */ |
| 461 | pBt->btsFlags &= ~BTS_PENDING; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | ** This function changes all write-locks held by Btree p into read-locks. |
| 467 | */ |
| 468 | static void downgradeAllSharedCacheTableLocks(Btree *p){ |
| 469 | BtShared *pBt = p->pBt; |
| 470 | if( pBt->pWriter==p ){ |
| 471 | BtLock *pLock; |
| 472 | pBt->pWriter = 0; |
| 473 | pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| 474 | for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ |
| 475 | assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); |
| 476 | pLock->eLock = READ_LOCK; |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 482 | |
| 483 | static void releasePage(MemPage *pPage); /* Forward reference */ |
| 484 | static void releasePageOne(MemPage *pPage); /* Forward reference */ |
| 485 | static void releasePageNotNull(MemPage *pPage); /* Forward reference */ |
| 486 | |
| 487 | /* |
| 488 | ***** This routine is used inside of assert() only **** |
| 489 | ** |
| 490 | ** Verify that the cursor holds the mutex on its BtShared |
| 491 | */ |
| 492 | #ifdef SQLITE_DEBUG |
| 493 | static int cursorHoldsMutex(BtCursor *p){ |
| 494 | return sqlite3_mutex_held(p->pBt->mutex); |
| 495 | } |
| 496 | |
| 497 | /* Verify that the cursor and the BtShared agree about what is the current |
| 498 | ** database connetion. This is important in shared-cache mode. If the database |
| 499 | ** connection pointers get out-of-sync, it is possible for routines like |
| 500 | ** btreeInitPage() to reference an stale connection pointer that references a |
| 501 | ** a connection that has already closed. This routine is used inside assert() |
| 502 | ** statements only and for the purpose of double-checking that the btree code |
| 503 | ** does keep the database connection pointers up-to-date. |
| 504 | */ |
| 505 | static int cursorOwnsBtShared(BtCursor *p){ |
| 506 | assert( cursorHoldsMutex(p) ); |
| 507 | return (p->pBtree->db==p->pBt->db); |
| 508 | } |
| 509 | #endif |
| 510 | |
| 511 | /* |
| 512 | ** Invalidate the overflow cache of the cursor passed as the first argument. |
| 513 | ** on the shared btree structure pBt. |
| 514 | */ |
| 515 | #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) |
| 516 | |
| 517 | /* |
| 518 | ** Invalidate the overflow page-list cache for all cursors opened |
| 519 | ** on the shared btree structure pBt. |
| 520 | */ |
| 521 | static void invalidateAllOverflowCache(BtShared *pBt){ |
| 522 | BtCursor *p; |
| 523 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 524 | for(p=pBt->pCursor; p; p=p->pNext){ |
| 525 | invalidateOverflowCache(p); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | #ifndef SQLITE_OMIT_INCRBLOB |
| 530 | /* |
| 531 | ** This function is called before modifying the contents of a table |
| 532 | ** to invalidate any incrblob cursors that are open on the |
| 533 | ** row or one of the rows being modified. |
| 534 | ** |
| 535 | ** If argument isClearTable is true, then the entire contents of the |
| 536 | ** table is about to be deleted. In this case invalidate all incrblob |
| 537 | ** cursors open on any row within the table with root-page pgnoRoot. |
| 538 | ** |
| 539 | ** Otherwise, if argument isClearTable is false, then the row with |
| 540 | ** rowid iRow is being replaced or deleted. In this case invalidate |
| 541 | ** only those incrblob cursors open on that specific row. |
| 542 | */ |
| 543 | static void invalidateIncrblobCursors( |
| 544 | Btree *pBtree, /* The database file to check */ |
| 545 | Pgno pgnoRoot, /* The table that might be changing */ |
| 546 | i64 iRow, /* The rowid that might be changing */ |
| 547 | int isClearTable /* True if all rows are being deleted */ |
| 548 | ){ |
| 549 | BtCursor *p; |
| 550 | assert( pBtree->hasIncrblobCur ); |
| 551 | assert( sqlite3BtreeHoldsMutex(pBtree) ); |
| 552 | pBtree->hasIncrblobCur = 0; |
| 553 | for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 554 | if( (p->curFlags & BTCF_Incrblob)!=0 ){ |
| 555 | pBtree->hasIncrblobCur = 1; |
| 556 | if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ |
| 557 | p->eState = CURSOR_INVALID; |
| 558 | } |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | #else |
| 564 | /* Stub function when INCRBLOB is omitted */ |
| 565 | #define invalidateIncrblobCursors(w,x,y,z) |
| 566 | #endif /* SQLITE_OMIT_INCRBLOB */ |
| 567 | |
| 568 | /* |
| 569 | ** Set bit pgno of the BtShared.pHasContent bitvec. This is called |
| 570 | ** when a page that previously contained data becomes a free-list leaf |
| 571 | ** page. |
| 572 | ** |
| 573 | ** The BtShared.pHasContent bitvec exists to work around an obscure |
| 574 | ** bug caused by the interaction of two useful IO optimizations surrounding |
| 575 | ** free-list leaf pages: |
| 576 | ** |
| 577 | ** 1) When all data is deleted from a page and the page becomes |
| 578 | ** a free-list leaf page, the page is not written to the database |
| 579 | ** (as free-list leaf pages contain no meaningful data). Sometimes |
| 580 | ** such a page is not even journalled (as it will not be modified, |
| 581 | ** why bother journalling it?). |
| 582 | ** |
| 583 | ** 2) When a free-list leaf page is reused, its content is not read |
| 584 | ** from the database or written to the journal file (why should it |
| 585 | ** be, if it is not at all meaningful?). |
| 586 | ** |
| 587 | ** By themselves, these optimizations work fine and provide a handy |
| 588 | ** performance boost to bulk delete or insert operations. However, if |
| 589 | ** a page is moved to the free-list and then reused within the same |
| 590 | ** transaction, a problem comes up. If the page is not journalled when |
| 591 | ** it is moved to the free-list and it is also not journalled when it |
| 592 | ** is extracted from the free-list and reused, then the original data |
| 593 | ** may be lost. In the event of a rollback, it may not be possible |
| 594 | ** to restore the database to its original configuration. |
| 595 | ** |
| 596 | ** The solution is the BtShared.pHasContent bitvec. Whenever a page is |
| 597 | ** moved to become a free-list leaf page, the corresponding bit is |
| 598 | ** set in the bitvec. Whenever a leaf page is extracted from the free-list, |
| 599 | ** optimization 2 above is omitted if the corresponding bit is already |
| 600 | ** set in BtShared.pHasContent. The contents of the bitvec are cleared |
| 601 | ** at the end of every transaction. |
| 602 | */ |
| 603 | static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ |
| 604 | int rc = SQLITE_OK; |
| 605 | if( !pBt->pHasContent ){ |
| 606 | assert( pgno<=pBt->nPage ); |
| 607 | pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); |
| 608 | if( !pBt->pHasContent ){ |
| 609 | rc = SQLITE_NOMEM_BKPT; |
| 610 | } |
| 611 | } |
| 612 | if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ |
| 613 | rc = sqlite3BitvecSet(pBt->pHasContent, pgno); |
| 614 | } |
| 615 | return rc; |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | ** Query the BtShared.pHasContent vector. |
| 620 | ** |
| 621 | ** This function is called when a free-list leaf page is removed from the |
| 622 | ** free-list for reuse. It returns false if it is safe to retrieve the |
| 623 | ** page from the pager layer with the 'no-content' flag set. True otherwise. |
| 624 | */ |
| 625 | static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ |
| 626 | Bitvec *p = pBt->pHasContent; |
| 627 | return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | ** Clear (destroy) the BtShared.pHasContent bitvec. This should be |
| 632 | ** invoked at the conclusion of each write-transaction. |
| 633 | */ |
| 634 | static void btreeClearHasContent(BtShared *pBt){ |
| 635 | sqlite3BitvecDestroy(pBt->pHasContent); |
| 636 | pBt->pHasContent = 0; |
| 637 | } |
| 638 | |
| 639 | /* |
| 640 | ** Release all of the apPage[] pages for a cursor. |
| 641 | */ |
| 642 | static void btreeReleaseAllCursorPages(BtCursor *pCur){ |
| 643 | int i; |
| 644 | if( pCur->iPage>=0 ){ |
| 645 | for(i=0; i<pCur->iPage; i++){ |
| 646 | releasePageNotNull(pCur->apPage[i]); |
| 647 | } |
| 648 | releasePageNotNull(pCur->pPage); |
| 649 | pCur->iPage = -1; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | /* |
| 654 | ** The cursor passed as the only argument must point to a valid entry |
| 655 | ** when this function is called (i.e. have eState==CURSOR_VALID). This |
| 656 | ** function saves the current cursor key in variables pCur->nKey and |
| 657 | ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error |
| 658 | ** code otherwise. |
| 659 | ** |
| 660 | ** If the cursor is open on an intkey table, then the integer key |
| 661 | ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to |
| 662 | ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is |
| 663 | ** set to point to a malloced buffer pCur->nKey bytes in size containing |
| 664 | ** the key. |
| 665 | */ |
| 666 | static int saveCursorKey(BtCursor *pCur){ |
| 667 | int rc = SQLITE_OK; |
| 668 | assert( CURSOR_VALID==pCur->eState ); |
| 669 | assert( 0==pCur->pKey ); |
| 670 | assert( cursorHoldsMutex(pCur) ); |
| 671 | |
| 672 | if( pCur->curIntKey ){ |
| 673 | /* Only the rowid is required for a table btree */ |
| 674 | pCur->nKey = sqlite3BtreeIntegerKey(pCur); |
| 675 | }else{ |
| 676 | /* For an index btree, save the complete key content. It is possible |
| 677 | ** that the current key is corrupt. In that case, it is possible that |
| 678 | ** the sqlite3VdbeRecordUnpack() function may overread the buffer by |
| 679 | ** up to the size of 1 varint plus 1 8-byte value when the cursor |
| 680 | ** position is restored. Hence the 17 bytes of padding allocated |
| 681 | ** below. */ |
| 682 | void *pKey; |
| 683 | pCur->nKey = sqlite3BtreePayloadSize(pCur); |
| 684 | pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); |
| 685 | if( pKey ){ |
| 686 | rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); |
| 687 | if( rc==SQLITE_OK ){ |
| 688 | memset(((u8*)pKey)+pCur->nKey, 0, 9+8); |
| 689 | pCur->pKey = pKey; |
| 690 | }else{ |
| 691 | sqlite3_free(pKey); |
| 692 | } |
| 693 | }else{ |
| 694 | rc = SQLITE_NOMEM_BKPT; |
| 695 | } |
| 696 | } |
| 697 | assert( !pCur->curIntKey || !pCur->pKey ); |
| 698 | return rc; |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | ** Save the current cursor position in the variables BtCursor.nKey |
| 703 | ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
| 704 | ** |
| 705 | ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) |
| 706 | ** prior to calling this routine. |
| 707 | */ |
| 708 | static int saveCursorPosition(BtCursor *pCur){ |
| 709 | int rc; |
| 710 | |
| 711 | assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); |
| 712 | assert( 0==pCur->pKey ); |
| 713 | assert( cursorHoldsMutex(pCur) ); |
| 714 | |
| 715 | if( pCur->curFlags & BTCF_Pinned ){ |
| 716 | return SQLITE_CONSTRAINT_PINNED; |
| 717 | } |
| 718 | if( pCur->eState==CURSOR_SKIPNEXT ){ |
| 719 | pCur->eState = CURSOR_VALID; |
| 720 | }else{ |
| 721 | pCur->skipNext = 0; |
| 722 | } |
| 723 | |
| 724 | rc = saveCursorKey(pCur); |
| 725 | if( rc==SQLITE_OK ){ |
| 726 | btreeReleaseAllCursorPages(pCur); |
| 727 | pCur->eState = CURSOR_REQUIRESEEK; |
| 728 | } |
| 729 | |
| 730 | pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); |
| 731 | return rc; |
| 732 | } |
| 733 | |
| 734 | /* Forward reference */ |
| 735 | static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); |
| 736 | |
| 737 | /* |
| 738 | ** Save the positions of all cursors (except pExcept) that are open on |
| 739 | ** the table with root-page iRoot. "Saving the cursor position" means that |
| 740 | ** the location in the btree is remembered in such a way that it can be |
| 741 | ** moved back to the same spot after the btree has been modified. This |
| 742 | ** routine is called just before cursor pExcept is used to modify the |
| 743 | ** table, for example in BtreeDelete() or BtreeInsert(). |
| 744 | ** |
| 745 | ** If there are two or more cursors on the same btree, then all such |
| 746 | ** cursors should have their BTCF_Multiple flag set. The btreeCursor() |
| 747 | ** routine enforces that rule. This routine only needs to be called in |
| 748 | ** the uncommon case when pExpect has the BTCF_Multiple flag set. |
| 749 | ** |
| 750 | ** If pExpect!=NULL and if no other cursors are found on the same root-page, |
| 751 | ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another |
| 752 | ** pointless call to this routine. |
| 753 | ** |
| 754 | ** Implementation note: This routine merely checks to see if any cursors |
| 755 | ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) |
| 756 | ** event that cursors are in need to being saved. |
| 757 | */ |
| 758 | static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
| 759 | BtCursor *p; |
| 760 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 761 | assert( pExcept==0 || pExcept->pBt==pBt ); |
| 762 | for(p=pBt->pCursor; p; p=p->pNext){ |
| 763 | if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; |
| 764 | } |
| 765 | if( p ) return saveCursorsOnList(p, iRoot, pExcept); |
| 766 | if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; |
| 767 | return SQLITE_OK; |
| 768 | } |
| 769 | |
| 770 | /* This helper routine to saveAllCursors does the actual work of saving |
| 771 | ** the cursors if and when a cursor is found that actually requires saving. |
| 772 | ** The common case is that no cursors need to be saved, so this routine is |
| 773 | ** broken out from its caller to avoid unnecessary stack pointer movement. |
| 774 | */ |
| 775 | static int SQLITE_NOINLINE saveCursorsOnList( |
| 776 | BtCursor *p, /* The first cursor that needs saving */ |
| 777 | Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ |
| 778 | BtCursor *pExcept /* Do not save this cursor */ |
| 779 | ){ |
| 780 | do{ |
| 781 | if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ |
| 782 | if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
| 783 | int rc = saveCursorPosition(p); |
| 784 | if( SQLITE_OK!=rc ){ |
| 785 | return rc; |
| 786 | } |
| 787 | }else{ |
| 788 | testcase( p->iPage>=0 ); |
| 789 | btreeReleaseAllCursorPages(p); |
| 790 | } |
| 791 | } |
| 792 | p = p->pNext; |
| 793 | }while( p ); |
| 794 | return SQLITE_OK; |
| 795 | } |
| 796 | |
| 797 | /* |
| 798 | ** Clear the current cursor position. |
| 799 | */ |
| 800 | void sqlite3BtreeClearCursor(BtCursor *pCur){ |
| 801 | assert( cursorHoldsMutex(pCur) ); |
| 802 | sqlite3_free(pCur->pKey); |
| 803 | pCur->pKey = 0; |
| 804 | pCur->eState = CURSOR_INVALID; |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | ** In this version of BtreeMoveto, pKey is a packed index record |
| 809 | ** such as is generated by the OP_MakeRecord opcode. Unpack the |
| 810 | ** record and then call sqlite3BtreeIndexMoveto() to do the work. |
| 811 | */ |
| 812 | static int btreeMoveto( |
| 813 | BtCursor *pCur, /* Cursor open on the btree to be searched */ |
| 814 | const void *pKey, /* Packed key if the btree is an index */ |
| 815 | i64 nKey, /* Integer key for tables. Size of pKey for indices */ |
| 816 | int bias, /* Bias search to the high end */ |
| 817 | int *pRes /* Write search results here */ |
| 818 | ){ |
| 819 | int rc; /* Status code */ |
| 820 | UnpackedRecord *pIdxKey; /* Unpacked index key */ |
| 821 | |
| 822 | if( pKey ){ |
| 823 | KeyInfo *pKeyInfo = pCur->pKeyInfo; |
| 824 | assert( nKey==(i64)(int)nKey ); |
| 825 | pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); |
| 826 | if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; |
| 827 | sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); |
| 828 | if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ |
| 829 | rc = SQLITE_CORRUPT_BKPT; |
| 830 | }else{ |
| 831 | rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); |
| 832 | } |
| 833 | sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); |
| 834 | }else{ |
| 835 | pIdxKey = 0; |
| 836 | rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); |
| 837 | } |
| 838 | return rc; |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | ** Restore the cursor to the position it was in (or as close to as possible) |
| 843 | ** when saveCursorPosition() was called. Note that this call deletes the |
| 844 | ** saved position info stored by saveCursorPosition(), so there can be |
| 845 | ** at most one effective restoreCursorPosition() call after each |
| 846 | ** saveCursorPosition(). |
| 847 | */ |
| 848 | static int btreeRestoreCursorPosition(BtCursor *pCur){ |
| 849 | int rc; |
| 850 | int skipNext = 0; |
| 851 | assert( cursorOwnsBtShared(pCur) ); |
| 852 | assert( pCur->eState>=CURSOR_REQUIRESEEK ); |
| 853 | if( pCur->eState==CURSOR_FAULT ){ |
| 854 | return pCur->skipNext; |
| 855 | } |
| 856 | pCur->eState = CURSOR_INVALID; |
| 857 | if( sqlite3FaultSim(410) ){ |
| 858 | rc = SQLITE_IOERR; |
| 859 | }else{ |
| 860 | rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); |
| 861 | } |
| 862 | if( rc==SQLITE_OK ){ |
| 863 | sqlite3_free(pCur->pKey); |
| 864 | pCur->pKey = 0; |
| 865 | assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); |
| 866 | if( skipNext ) pCur->skipNext = skipNext; |
| 867 | if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ |
| 868 | pCur->eState = CURSOR_SKIPNEXT; |
| 869 | } |
| 870 | } |
| 871 | return rc; |
| 872 | } |
| 873 | |
| 874 | #define restoreCursorPosition(p) \ |
| 875 | (p->eState>=CURSOR_REQUIRESEEK ? \ |
| 876 | btreeRestoreCursorPosition(p) : \ |
| 877 | SQLITE_OK) |
| 878 | |
| 879 | /* |
| 880 | ** Determine whether or not a cursor has moved from the position where |
| 881 | ** it was last placed, or has been invalidated for any other reason. |
| 882 | ** Cursors can move when the row they are pointing at is deleted out |
| 883 | ** from under them, for example. Cursor might also move if a btree |
| 884 | ** is rebalanced. |
| 885 | ** |
| 886 | ** Calling this routine with a NULL cursor pointer returns false. |
| 887 | ** |
| 888 | ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor |
| 889 | ** back to where it ought to be if this routine returns true. |
| 890 | */ |
| 891 | int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ |
| 892 | assert( EIGHT_BYTE_ALIGNMENT(pCur) |
| 893 | || pCur==sqlite3BtreeFakeValidCursor() ); |
| 894 | assert( offsetof(BtCursor, eState)==0 ); |
| 895 | assert( sizeof(pCur->eState)==1 ); |
| 896 | return CURSOR_VALID != *(u8*)pCur; |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | ** Return a pointer to a fake BtCursor object that will always answer |
| 901 | ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake |
| 902 | ** cursor returned must not be used with any other Btree interface. |
| 903 | */ |
| 904 | BtCursor *sqlite3BtreeFakeValidCursor(void){ |
| 905 | static u8 fakeCursor = CURSOR_VALID; |
| 906 | assert( offsetof(BtCursor, eState)==0 ); |
| 907 | return (BtCursor*)&fakeCursor; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | ** This routine restores a cursor back to its original position after it |
| 912 | ** has been moved by some outside activity (such as a btree rebalance or |
| 913 | ** a row having been deleted out from under the cursor). |
| 914 | ** |
| 915 | ** On success, the *pDifferentRow parameter is false if the cursor is left |
| 916 | ** pointing at exactly the same row. *pDifferntRow is the row the cursor |
| 917 | ** was pointing to has been deleted, forcing the cursor to point to some |
| 918 | ** nearby row. |
| 919 | ** |
| 920 | ** This routine should only be called for a cursor that just returned |
| 921 | ** TRUE from sqlite3BtreeCursorHasMoved(). |
| 922 | */ |
| 923 | int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ |
| 924 | int rc; |
| 925 | |
| 926 | assert( pCur!=0 ); |
| 927 | assert( pCur->eState!=CURSOR_VALID ); |
| 928 | rc = restoreCursorPosition(pCur); |
| 929 | if( rc ){ |
| 930 | *pDifferentRow = 1; |
| 931 | return rc; |
| 932 | } |
| 933 | if( pCur->eState!=CURSOR_VALID ){ |
| 934 | *pDifferentRow = 1; |
| 935 | }else{ |
| 936 | *pDifferentRow = 0; |
| 937 | } |
| 938 | return SQLITE_OK; |
| 939 | } |
| 940 | |
| 941 | #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 942 | /* |
| 943 | ** Provide hints to the cursor. The particular hint given (and the type |
| 944 | ** and number of the varargs parameters) is determined by the eHintType |
| 945 | ** parameter. See the definitions of the BTREE_HINT_* macros for details. |
| 946 | */ |
| 947 | void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ |
| 948 | /* Used only by system that substitute their own storage engine */ |
| 949 | } |
| 950 | #endif |
| 951 | |
| 952 | /* |
| 953 | ** Provide flag hints to the cursor. |
| 954 | */ |
| 955 | void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ |
| 956 | assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); |
| 957 | pCur->hints = x; |
| 958 | } |
| 959 | |
| 960 | |
| 961 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 962 | /* |
| 963 | ** Given a page number of a regular database page, return the page |
| 964 | ** number for the pointer-map page that contains the entry for the |
| 965 | ** input page number. |
| 966 | ** |
| 967 | ** Return 0 (not a valid page) for pgno==1 since there is |
| 968 | ** no pointer map associated with page 1. The integrity_check logic |
| 969 | ** requires that ptrmapPageno(*,1)!=1. |
| 970 | */ |
| 971 | static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
| 972 | int nPagesPerMapPage; |
| 973 | Pgno iPtrMap, ret; |
| 974 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 975 | if( pgno<2 ) return 0; |
| 976 | nPagesPerMapPage = (pBt->usableSize/5)+1; |
| 977 | iPtrMap = (pgno-2)/nPagesPerMapPage; |
| 978 | ret = (iPtrMap*nPagesPerMapPage) + 2; |
| 979 | if( ret==PENDING_BYTE_PAGE(pBt) ){ |
| 980 | ret++; |
| 981 | } |
| 982 | return ret; |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | ** Write an entry into the pointer map. |
| 987 | ** |
| 988 | ** This routine updates the pointer map entry for page number 'key' |
| 989 | ** so that it maps to type 'eType' and parent page number 'pgno'. |
| 990 | ** |
| 991 | ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is |
| 992 | ** a no-op. If an error occurs, the appropriate error code is written |
| 993 | ** into *pRC. |
| 994 | */ |
| 995 | static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ |
| 996 | DbPage *pDbPage; /* The pointer map page */ |
| 997 | u8 *pPtrmap; /* The pointer map data */ |
| 998 | Pgno iPtrmap; /* The pointer map page number */ |
| 999 | int offset; /* Offset in pointer map page */ |
| 1000 | int rc; /* Return code from subfunctions */ |
| 1001 | |
| 1002 | if( *pRC ) return; |
| 1003 | |
| 1004 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1005 | /* The super-journal page number must never be used as a pointer map page */ |
| 1006 | assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
| 1007 | |
| 1008 | assert( pBt->autoVacuum ); |
| 1009 | if( key==0 ){ |
| 1010 | *pRC = SQLITE_CORRUPT_BKPT; |
| 1011 | return; |
| 1012 | } |
| 1013 | iPtrmap = PTRMAP_PAGENO(pBt, key); |
| 1014 | rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
| 1015 | if( rc!=SQLITE_OK ){ |
| 1016 | *pRC = rc; |
| 1017 | return; |
| 1018 | } |
| 1019 | if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ |
| 1020 | /* The first byte of the extra data is the MemPage.isInit byte. |
| 1021 | ** If that byte is set, it means this page is also being used |
| 1022 | ** as a btree page. */ |
| 1023 | *pRC = SQLITE_CORRUPT_BKPT; |
| 1024 | goto ptrmap_exit; |
| 1025 | } |
| 1026 | offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| 1027 | if( offset<0 ){ |
| 1028 | *pRC = SQLITE_CORRUPT_BKPT; |
| 1029 | goto ptrmap_exit; |
| 1030 | } |
| 1031 | assert( offset <= (int)pBt->usableSize-5 ); |
| 1032 | pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| 1033 | |
| 1034 | if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
| 1035 | TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n" , key, eType, parent)); |
| 1036 | *pRC= rc = sqlite3PagerWrite(pDbPage); |
| 1037 | if( rc==SQLITE_OK ){ |
| 1038 | pPtrmap[offset] = eType; |
| 1039 | put4byte(&pPtrmap[offset+1], parent); |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | ptrmap_exit: |
| 1044 | sqlite3PagerUnref(pDbPage); |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | ** Read an entry from the pointer map. |
| 1049 | ** |
| 1050 | ** This routine retrieves the pointer map entry for page 'key', writing |
| 1051 | ** the type and parent page number to *pEType and *pPgno respectively. |
| 1052 | ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
| 1053 | */ |
| 1054 | static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
| 1055 | DbPage *pDbPage; /* The pointer map page */ |
| 1056 | int iPtrmap; /* Pointer map page index */ |
| 1057 | u8 *pPtrmap; /* Pointer map page data */ |
| 1058 | int offset; /* Offset of entry in pointer map */ |
| 1059 | int rc; |
| 1060 | |
| 1061 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1062 | |
| 1063 | iPtrmap = PTRMAP_PAGENO(pBt, key); |
| 1064 | rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
| 1065 | if( rc!=0 ){ |
| 1066 | return rc; |
| 1067 | } |
| 1068 | pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| 1069 | |
| 1070 | offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| 1071 | if( offset<0 ){ |
| 1072 | sqlite3PagerUnref(pDbPage); |
| 1073 | return SQLITE_CORRUPT_BKPT; |
| 1074 | } |
| 1075 | assert( offset <= (int)pBt->usableSize-5 ); |
| 1076 | assert( pEType!=0 ); |
| 1077 | *pEType = pPtrmap[offset]; |
| 1078 | if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
| 1079 | |
| 1080 | sqlite3PagerUnref(pDbPage); |
| 1081 | if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); |
| 1082 | return SQLITE_OK; |
| 1083 | } |
| 1084 | |
| 1085 | #else /* if defined SQLITE_OMIT_AUTOVACUUM */ |
| 1086 | #define ptrmapPut(w,x,y,z,rc) |
| 1087 | #define ptrmapGet(w,x,y,z) SQLITE_OK |
| 1088 | #define ptrmapPutOvflPtr(x, y, z, rc) |
| 1089 | #endif |
| 1090 | |
| 1091 | /* |
| 1092 | ** Given a btree page and a cell index (0 means the first cell on |
| 1093 | ** the page, 1 means the second cell, and so forth) return a pointer |
| 1094 | ** to the cell content. |
| 1095 | ** |
| 1096 | ** findCellPastPtr() does the same except it skips past the initial |
| 1097 | ** 4-byte child pointer found on interior pages, if there is one. |
| 1098 | ** |
| 1099 | ** This routine works only for pages that do not contain overflow cells. |
| 1100 | */ |
| 1101 | #define findCell(P,I) \ |
| 1102 | ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
| 1103 | #define findCellPastPtr(P,I) \ |
| 1104 | ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
| 1105 | |
| 1106 | |
| 1107 | /* |
| 1108 | ** This is common tail processing for btreeParseCellPtr() and |
| 1109 | ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely |
| 1110 | ** on a single B-tree page. Make necessary adjustments to the CellInfo |
| 1111 | ** structure. |
| 1112 | */ |
| 1113 | static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( |
| 1114 | MemPage *pPage, /* Page containing the cell */ |
| 1115 | u8 *pCell, /* Pointer to the cell text. */ |
| 1116 | CellInfo *pInfo /* Fill in this structure */ |
| 1117 | ){ |
| 1118 | /* If the payload will not fit completely on the local page, we have |
| 1119 | ** to decide how much to store locally and how much to spill onto |
| 1120 | ** overflow pages. The strategy is to minimize the amount of unused |
| 1121 | ** space on overflow pages while keeping the amount of local storage |
| 1122 | ** in between minLocal and maxLocal. |
| 1123 | ** |
| 1124 | ** Warning: changing the way overflow payload is distributed in any |
| 1125 | ** way will result in an incompatible file format. |
| 1126 | */ |
| 1127 | int minLocal; /* Minimum amount of payload held locally */ |
| 1128 | int maxLocal; /* Maximum amount of payload held locally */ |
| 1129 | int surplus; /* Overflow payload available for local storage */ |
| 1130 | |
| 1131 | minLocal = pPage->minLocal; |
| 1132 | maxLocal = pPage->maxLocal; |
| 1133 | surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); |
| 1134 | testcase( surplus==maxLocal ); |
| 1135 | testcase( surplus==maxLocal+1 ); |
| 1136 | if( surplus <= maxLocal ){ |
| 1137 | pInfo->nLocal = (u16)surplus; |
| 1138 | }else{ |
| 1139 | pInfo->nLocal = (u16)minLocal; |
| 1140 | } |
| 1141 | pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | ** Given a record with nPayload bytes of payload stored within btree |
| 1146 | ** page pPage, return the number of bytes of payload stored locally. |
| 1147 | */ |
| 1148 | static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ |
| 1149 | int maxLocal; /* Maximum amount of payload held locally */ |
| 1150 | maxLocal = pPage->maxLocal; |
| 1151 | if( nPayload<=maxLocal ){ |
| 1152 | return nPayload; |
| 1153 | }else{ |
| 1154 | int minLocal; /* Minimum amount of payload held locally */ |
| 1155 | int surplus; /* Overflow payload available for local storage */ |
| 1156 | minLocal = pPage->minLocal; |
| 1157 | surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); |
| 1158 | return ( surplus <= maxLocal ) ? surplus : minLocal; |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | /* |
| 1163 | ** The following routines are implementations of the MemPage.xParseCell() |
| 1164 | ** method. |
| 1165 | ** |
| 1166 | ** Parse a cell content block and fill in the CellInfo structure. |
| 1167 | ** |
| 1168 | ** btreeParseCellPtr() => table btree leaf nodes |
| 1169 | ** btreeParseCellNoPayload() => table btree internal nodes |
| 1170 | ** btreeParseCellPtrIndex() => index btree nodes |
| 1171 | ** |
| 1172 | ** There is also a wrapper function btreeParseCell() that works for |
| 1173 | ** all MemPage types and that references the cell by index rather than |
| 1174 | ** by pointer. |
| 1175 | */ |
| 1176 | static void btreeParseCellPtrNoPayload( |
| 1177 | MemPage *pPage, /* Page containing the cell */ |
| 1178 | u8 *pCell, /* Pointer to the cell text. */ |
| 1179 | CellInfo *pInfo /* Fill in this structure */ |
| 1180 | ){ |
| 1181 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1182 | assert( pPage->leaf==0 ); |
| 1183 | assert( pPage->childPtrSize==4 ); |
| 1184 | #ifndef SQLITE_DEBUG |
| 1185 | UNUSED_PARAMETER(pPage); |
| 1186 | #endif |
| 1187 | pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); |
| 1188 | pInfo->nPayload = 0; |
| 1189 | pInfo->nLocal = 0; |
| 1190 | pInfo->pPayload = 0; |
| 1191 | return; |
| 1192 | } |
| 1193 | static void btreeParseCellPtr( |
| 1194 | MemPage *pPage, /* Page containing the cell */ |
| 1195 | u8 *pCell, /* Pointer to the cell text. */ |
| 1196 | CellInfo *pInfo /* Fill in this structure */ |
| 1197 | ){ |
| 1198 | u8 *pIter; /* For scanning through pCell */ |
| 1199 | u32 nPayload; /* Number of bytes of cell payload */ |
| 1200 | u64 iKey; /* Extracted Key value */ |
| 1201 | |
| 1202 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1203 | assert( pPage->leaf==0 || pPage->leaf==1 ); |
| 1204 | assert( pPage->intKeyLeaf ); |
| 1205 | assert( pPage->childPtrSize==0 ); |
| 1206 | pIter = pCell; |
| 1207 | |
| 1208 | /* The next block of code is equivalent to: |
| 1209 | ** |
| 1210 | ** pIter += getVarint32(pIter, nPayload); |
| 1211 | ** |
| 1212 | ** The code is inlined to avoid a function call. |
| 1213 | */ |
| 1214 | nPayload = *pIter; |
| 1215 | if( nPayload>=0x80 ){ |
| 1216 | u8 *pEnd = &pIter[8]; |
| 1217 | nPayload &= 0x7f; |
| 1218 | do{ |
| 1219 | nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
| 1220 | }while( (*pIter)>=0x80 && pIter<pEnd ); |
| 1221 | } |
| 1222 | pIter++; |
| 1223 | |
| 1224 | /* The next block of code is equivalent to: |
| 1225 | ** |
| 1226 | ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); |
| 1227 | ** |
| 1228 | ** The code is inlined and the loop is unrolled for performance. |
| 1229 | ** This routine is a high-runner. |
| 1230 | */ |
| 1231 | iKey = *pIter; |
| 1232 | if( iKey>=0x80 ){ |
| 1233 | u8 x; |
| 1234 | iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); |
| 1235 | if( x>=0x80 ){ |
| 1236 | iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); |
| 1237 | if( x>=0x80 ){ |
| 1238 | iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| 1239 | if( x>=0x80 ){ |
| 1240 | iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| 1241 | if( x>=0x80 ){ |
| 1242 | iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| 1243 | if( x>=0x80 ){ |
| 1244 | iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| 1245 | if( x>=0x80 ){ |
| 1246 | iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| 1247 | if( x>=0x80 ){ |
| 1248 | iKey = (iKey<<8) | (*++pIter); |
| 1249 | } |
| 1250 | } |
| 1251 | } |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | } |
| 1256 | } |
| 1257 | pIter++; |
| 1258 | |
| 1259 | pInfo->nKey = *(i64*)&iKey; |
| 1260 | pInfo->nPayload = nPayload; |
| 1261 | pInfo->pPayload = pIter; |
| 1262 | testcase( nPayload==pPage->maxLocal ); |
| 1263 | testcase( nPayload==(u32)pPage->maxLocal+1 ); |
| 1264 | if( nPayload<=pPage->maxLocal ){ |
| 1265 | /* This is the (easy) common case where the entire payload fits |
| 1266 | ** on the local page. No overflow is required. |
| 1267 | */ |
| 1268 | pInfo->nSize = nPayload + (u16)(pIter - pCell); |
| 1269 | if( pInfo->nSize<4 ) pInfo->nSize = 4; |
| 1270 | pInfo->nLocal = (u16)nPayload; |
| 1271 | }else{ |
| 1272 | btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
| 1273 | } |
| 1274 | } |
| 1275 | static void btreeParseCellPtrIndex( |
| 1276 | MemPage *pPage, /* Page containing the cell */ |
| 1277 | u8 *pCell, /* Pointer to the cell text. */ |
| 1278 | CellInfo *pInfo /* Fill in this structure */ |
| 1279 | ){ |
| 1280 | u8 *pIter; /* For scanning through pCell */ |
| 1281 | u32 nPayload; /* Number of bytes of cell payload */ |
| 1282 | |
| 1283 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1284 | assert( pPage->leaf==0 || pPage->leaf==1 ); |
| 1285 | assert( pPage->intKeyLeaf==0 ); |
| 1286 | pIter = pCell + pPage->childPtrSize; |
| 1287 | nPayload = *pIter; |
| 1288 | if( nPayload>=0x80 ){ |
| 1289 | u8 *pEnd = &pIter[8]; |
| 1290 | nPayload &= 0x7f; |
| 1291 | do{ |
| 1292 | nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
| 1293 | }while( *(pIter)>=0x80 && pIter<pEnd ); |
| 1294 | } |
| 1295 | pIter++; |
| 1296 | pInfo->nKey = nPayload; |
| 1297 | pInfo->nPayload = nPayload; |
| 1298 | pInfo->pPayload = pIter; |
| 1299 | testcase( nPayload==pPage->maxLocal ); |
| 1300 | testcase( nPayload==(u32)pPage->maxLocal+1 ); |
| 1301 | if( nPayload<=pPage->maxLocal ){ |
| 1302 | /* This is the (easy) common case where the entire payload fits |
| 1303 | ** on the local page. No overflow is required. |
| 1304 | */ |
| 1305 | pInfo->nSize = nPayload + (u16)(pIter - pCell); |
| 1306 | if( pInfo->nSize<4 ) pInfo->nSize = 4; |
| 1307 | pInfo->nLocal = (u16)nPayload; |
| 1308 | }else{ |
| 1309 | btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
| 1310 | } |
| 1311 | } |
| 1312 | static void btreeParseCell( |
| 1313 | MemPage *pPage, /* Page containing the cell */ |
| 1314 | int iCell, /* The cell index. First cell is 0 */ |
| 1315 | CellInfo *pInfo /* Fill in this structure */ |
| 1316 | ){ |
| 1317 | pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); |
| 1318 | } |
| 1319 | |
| 1320 | /* |
| 1321 | ** The following routines are implementations of the MemPage.xCellSize |
| 1322 | ** method. |
| 1323 | ** |
| 1324 | ** Compute the total number of bytes that a Cell needs in the cell |
| 1325 | ** data area of the btree-page. The return number includes the cell |
| 1326 | ** data header and the local payload, but not any overflow page or |
| 1327 | ** the space used by the cell pointer. |
| 1328 | ** |
| 1329 | ** cellSizePtrNoPayload() => table internal nodes |
| 1330 | ** cellSizePtrTableLeaf() => table leaf nodes |
| 1331 | ** cellSizePtr() => all index nodes & table leaf nodes |
| 1332 | */ |
| 1333 | static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ |
| 1334 | u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ |
| 1335 | u8 *pEnd; /* End mark for a varint */ |
| 1336 | u32 nSize; /* Size value to return */ |
| 1337 | |
| 1338 | #ifdef SQLITE_DEBUG |
| 1339 | /* The value returned by this function should always be the same as |
| 1340 | ** the (CellInfo.nSize) value found by doing a full parse of the |
| 1341 | ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| 1342 | ** this function verifies that this invariant is not violated. */ |
| 1343 | CellInfo debuginfo; |
| 1344 | pPage->xParseCell(pPage, pCell, &debuginfo); |
| 1345 | #endif |
| 1346 | |
| 1347 | nSize = *pIter; |
| 1348 | if( nSize>=0x80 ){ |
| 1349 | pEnd = &pIter[8]; |
| 1350 | nSize &= 0x7f; |
| 1351 | do{ |
| 1352 | nSize = (nSize<<7) | (*++pIter & 0x7f); |
| 1353 | }while( *(pIter)>=0x80 && pIter<pEnd ); |
| 1354 | } |
| 1355 | pIter++; |
| 1356 | testcase( nSize==pPage->maxLocal ); |
| 1357 | testcase( nSize==(u32)pPage->maxLocal+1 ); |
| 1358 | if( nSize<=pPage->maxLocal ){ |
| 1359 | nSize += (u32)(pIter - pCell); |
| 1360 | if( nSize<4 ) nSize = 4; |
| 1361 | }else{ |
| 1362 | int minLocal = pPage->minLocal; |
| 1363 | nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
| 1364 | testcase( nSize==pPage->maxLocal ); |
| 1365 | testcase( nSize==(u32)pPage->maxLocal+1 ); |
| 1366 | if( nSize>pPage->maxLocal ){ |
| 1367 | nSize = minLocal; |
| 1368 | } |
| 1369 | nSize += 4 + (u16)(pIter - pCell); |
| 1370 | } |
| 1371 | assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
| 1372 | return (u16)nSize; |
| 1373 | } |
| 1374 | static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ |
| 1375 | u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ |
| 1376 | u8 *pEnd; /* End mark for a varint */ |
| 1377 | |
| 1378 | #ifdef SQLITE_DEBUG |
| 1379 | /* The value returned by this function should always be the same as |
| 1380 | ** the (CellInfo.nSize) value found by doing a full parse of the |
| 1381 | ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| 1382 | ** this function verifies that this invariant is not violated. */ |
| 1383 | CellInfo debuginfo; |
| 1384 | pPage->xParseCell(pPage, pCell, &debuginfo); |
| 1385 | #else |
| 1386 | UNUSED_PARAMETER(pPage); |
| 1387 | #endif |
| 1388 | |
| 1389 | assert( pPage->childPtrSize==4 ); |
| 1390 | pEnd = pIter + 9; |
| 1391 | while( (*pIter++)&0x80 && pIter<pEnd ); |
| 1392 | assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); |
| 1393 | return (u16)(pIter - pCell); |
| 1394 | } |
| 1395 | static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ |
| 1396 | u8 *pIter = pCell; /* For looping over bytes of pCell */ |
| 1397 | u8 *pEnd; /* End mark for a varint */ |
| 1398 | u32 nSize; /* Size value to return */ |
| 1399 | |
| 1400 | #ifdef SQLITE_DEBUG |
| 1401 | /* The value returned by this function should always be the same as |
| 1402 | ** the (CellInfo.nSize) value found by doing a full parse of the |
| 1403 | ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| 1404 | ** this function verifies that this invariant is not violated. */ |
| 1405 | CellInfo debuginfo; |
| 1406 | pPage->xParseCell(pPage, pCell, &debuginfo); |
| 1407 | #endif |
| 1408 | |
| 1409 | nSize = *pIter; |
| 1410 | if( nSize>=0x80 ){ |
| 1411 | pEnd = &pIter[8]; |
| 1412 | nSize &= 0x7f; |
| 1413 | do{ |
| 1414 | nSize = (nSize<<7) | (*++pIter & 0x7f); |
| 1415 | }while( *(pIter)>=0x80 && pIter<pEnd ); |
| 1416 | } |
| 1417 | pIter++; |
| 1418 | /* pIter now points at the 64-bit integer key value, a variable length |
| 1419 | ** integer. The following block moves pIter to point at the first byte |
| 1420 | ** past the end of the key value. */ |
| 1421 | if( (*pIter++)&0x80 |
| 1422 | && (*pIter++)&0x80 |
| 1423 | && (*pIter++)&0x80 |
| 1424 | && (*pIter++)&0x80 |
| 1425 | && (*pIter++)&0x80 |
| 1426 | && (*pIter++)&0x80 |
| 1427 | && (*pIter++)&0x80 |
| 1428 | && (*pIter++)&0x80 ){ pIter++; } |
| 1429 | testcase( nSize==pPage->maxLocal ); |
| 1430 | testcase( nSize==(u32)pPage->maxLocal+1 ); |
| 1431 | if( nSize<=pPage->maxLocal ){ |
| 1432 | nSize += (u32)(pIter - pCell); |
| 1433 | if( nSize<4 ) nSize = 4; |
| 1434 | }else{ |
| 1435 | int minLocal = pPage->minLocal; |
| 1436 | nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
| 1437 | testcase( nSize==pPage->maxLocal ); |
| 1438 | testcase( nSize==(u32)pPage->maxLocal+1 ); |
| 1439 | if( nSize>pPage->maxLocal ){ |
| 1440 | nSize = minLocal; |
| 1441 | } |
| 1442 | nSize += 4 + (u16)(pIter - pCell); |
| 1443 | } |
| 1444 | assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
| 1445 | return (u16)nSize; |
| 1446 | } |
| 1447 | |
| 1448 | |
| 1449 | #ifdef SQLITE_DEBUG |
| 1450 | /* This variation on cellSizePtr() is used inside of assert() statements |
| 1451 | ** only. */ |
| 1452 | static u16 cellSize(MemPage *pPage, int iCell){ |
| 1453 | return pPage->xCellSize(pPage, findCell(pPage, iCell)); |
| 1454 | } |
| 1455 | #endif |
| 1456 | |
| 1457 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 1458 | /* |
| 1459 | ** The cell pCell is currently part of page pSrc but will ultimately be part |
| 1460 | ** of pPage. (pSrc and pPage are often the same.) If pCell contains a |
| 1461 | ** pointer to an overflow page, insert an entry into the pointer-map for |
| 1462 | ** the overflow page that will be valid after pCell has been moved to pPage. |
| 1463 | */ |
| 1464 | static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ |
| 1465 | CellInfo info; |
| 1466 | if( *pRC ) return; |
| 1467 | assert( pCell!=0 ); |
| 1468 | pPage->xParseCell(pPage, pCell, &info); |
| 1469 | if( info.nLocal<info.nPayload ){ |
| 1470 | Pgno ovfl; |
| 1471 | if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ |
| 1472 | testcase( pSrc!=pPage ); |
| 1473 | *pRC = SQLITE_CORRUPT_BKPT; |
| 1474 | return; |
| 1475 | } |
| 1476 | ovfl = get4byte(&pCell[info.nSize-4]); |
| 1477 | ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); |
| 1478 | } |
| 1479 | } |
| 1480 | #endif |
| 1481 | |
| 1482 | |
| 1483 | /* |
| 1484 | ** Defragment the page given. This routine reorganizes cells within the |
| 1485 | ** page so that there are no free-blocks on the free-block list. |
| 1486 | ** |
| 1487 | ** Parameter nMaxFrag is the maximum amount of fragmented space that may be |
| 1488 | ** present in the page after this routine returns. |
| 1489 | ** |
| 1490 | ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a |
| 1491 | ** b-tree page so that there are no freeblocks or fragment bytes, all |
| 1492 | ** unused bytes are contained in the unallocated space region, and all |
| 1493 | ** cells are packed tightly at the end of the page. |
| 1494 | */ |
| 1495 | static int defragmentPage(MemPage *pPage, int nMaxFrag){ |
| 1496 | int i; /* Loop counter */ |
| 1497 | int pc; /* Address of the i-th cell */ |
| 1498 | int hdr; /* Offset to the page header */ |
| 1499 | int size; /* Size of a cell */ |
| 1500 | int usableSize; /* Number of usable bytes on a page */ |
| 1501 | int cellOffset; /* Offset to the cell pointer array */ |
| 1502 | int cbrk; /* Offset to the cell content area */ |
| 1503 | int nCell; /* Number of cells on the page */ |
| 1504 | unsigned char *data; /* The page data */ |
| 1505 | unsigned char *temp; /* Temp area for cell content */ |
| 1506 | unsigned char *src; /* Source of content */ |
| 1507 | int iCellFirst; /* First allowable cell index */ |
| 1508 | int iCellLast; /* Last possible cell index */ |
| 1509 | int iCellStart; /* First cell offset in input */ |
| 1510 | |
| 1511 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1512 | assert( pPage->pBt!=0 ); |
| 1513 | assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
| 1514 | assert( pPage->nOverflow==0 ); |
| 1515 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1516 | data = pPage->aData; |
| 1517 | hdr = pPage->hdrOffset; |
| 1518 | cellOffset = pPage->cellOffset; |
| 1519 | nCell = pPage->nCell; |
| 1520 | assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); |
| 1521 | iCellFirst = cellOffset + 2*nCell; |
| 1522 | usableSize = pPage->pBt->usableSize; |
| 1523 | |
| 1524 | /* This block handles pages with two or fewer free blocks and nMaxFrag |
| 1525 | ** or fewer fragmented bytes. In this case it is faster to move the |
| 1526 | ** two (or one) blocks of cells using memmove() and add the required |
| 1527 | ** offsets to each pointer in the cell-pointer array than it is to |
| 1528 | ** reconstruct the entire page. */ |
| 1529 | if( (int)data[hdr+7]<=nMaxFrag ){ |
| 1530 | int iFree = get2byte(&data[hdr+1]); |
| 1531 | if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1532 | if( iFree ){ |
| 1533 | int iFree2 = get2byte(&data[iFree]); |
| 1534 | if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1535 | if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ |
| 1536 | u8 *pEnd = &data[cellOffset + nCell*2]; |
| 1537 | u8 *pAddr; |
| 1538 | int sz2 = 0; |
| 1539 | int sz = get2byte(&data[iFree+2]); |
| 1540 | int top = get2byte(&data[hdr+5]); |
| 1541 | if( top>=iFree ){ |
| 1542 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1543 | } |
| 1544 | if( iFree2 ){ |
| 1545 | if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1546 | sz2 = get2byte(&data[iFree2+2]); |
| 1547 | if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1548 | memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); |
| 1549 | sz += sz2; |
| 1550 | }else if( iFree+sz>usableSize ){ |
| 1551 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1552 | } |
| 1553 | |
| 1554 | cbrk = top+sz; |
| 1555 | assert( cbrk+(iFree-top) <= usableSize ); |
| 1556 | memmove(&data[cbrk], &data[top], iFree-top); |
| 1557 | for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ |
| 1558 | pc = get2byte(pAddr); |
| 1559 | if( pc<iFree ){ put2byte(pAddr, pc+sz); } |
| 1560 | else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } |
| 1561 | } |
| 1562 | goto defragment_out; |
| 1563 | } |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | cbrk = usableSize; |
| 1568 | iCellLast = usableSize - 4; |
| 1569 | iCellStart = get2byte(&data[hdr+5]); |
| 1570 | if( nCell>0 ){ |
| 1571 | temp = sqlite3PagerTempSpace(pPage->pBt->pPager); |
| 1572 | memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); |
| 1573 | src = temp; |
| 1574 | for(i=0; i<nCell; i++){ |
| 1575 | u8 *pAddr; /* The i-th cell pointer */ |
| 1576 | pAddr = &data[cellOffset + i*2]; |
| 1577 | pc = get2byte(pAddr); |
| 1578 | testcase( pc==iCellFirst ); |
| 1579 | testcase( pc==iCellLast ); |
| 1580 | /* These conditions have already been verified in btreeInitPage() |
| 1581 | ** if PRAGMA cell_size_check=ON. |
| 1582 | */ |
| 1583 | if( pc<iCellStart || pc>iCellLast ){ |
| 1584 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1585 | } |
| 1586 | assert( pc>=iCellStart && pc<=iCellLast ); |
| 1587 | size = pPage->xCellSize(pPage, &src[pc]); |
| 1588 | cbrk -= size; |
| 1589 | if( cbrk<iCellStart || pc+size>usableSize ){ |
| 1590 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1591 | } |
| 1592 | assert( cbrk+size<=usableSize && cbrk>=iCellStart ); |
| 1593 | testcase( cbrk+size==usableSize ); |
| 1594 | testcase( pc+size==usableSize ); |
| 1595 | put2byte(pAddr, cbrk); |
| 1596 | memcpy(&data[cbrk], &src[pc], size); |
| 1597 | } |
| 1598 | } |
| 1599 | data[hdr+7] = 0; |
| 1600 | |
| 1601 | defragment_out: |
| 1602 | assert( pPage->nFree>=0 ); |
| 1603 | if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ |
| 1604 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1605 | } |
| 1606 | assert( cbrk>=iCellFirst ); |
| 1607 | put2byte(&data[hdr+5], cbrk); |
| 1608 | data[hdr+1] = 0; |
| 1609 | data[hdr+2] = 0; |
| 1610 | memset(&data[iCellFirst], 0, cbrk-iCellFirst); |
| 1611 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1612 | return SQLITE_OK; |
| 1613 | } |
| 1614 | |
| 1615 | /* |
| 1616 | ** Search the free-list on page pPg for space to store a cell nByte bytes in |
| 1617 | ** size. If one can be found, return a pointer to the space and remove it |
| 1618 | ** from the free-list. |
| 1619 | ** |
| 1620 | ** If no suitable space can be found on the free-list, return NULL. |
| 1621 | ** |
| 1622 | ** This function may detect corruption within pPg. If corruption is |
| 1623 | ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. |
| 1624 | ** |
| 1625 | ** Slots on the free list that are between 1 and 3 bytes larger than nByte |
| 1626 | ** will be ignored if adding the extra space to the fragmentation count |
| 1627 | ** causes the fragmentation count to exceed 60. |
| 1628 | */ |
| 1629 | static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ |
| 1630 | const int hdr = pPg->hdrOffset; /* Offset to page header */ |
| 1631 | u8 * const aData = pPg->aData; /* Page data */ |
| 1632 | int iAddr = hdr + 1; /* Address of ptr to pc */ |
| 1633 | u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ |
| 1634 | int pc = get2byte(pTmp); /* Address of a free slot */ |
| 1635 | int x; /* Excess size of the slot */ |
| 1636 | int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ |
| 1637 | int size; /* Size of the free slot */ |
| 1638 | |
| 1639 | assert( pc>0 ); |
| 1640 | while( pc<=maxPC ){ |
| 1641 | /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each |
| 1642 | ** freeblock form a big-endian integer which is the size of the freeblock |
| 1643 | ** in bytes, including the 4-byte header. */ |
| 1644 | pTmp = &aData[pc+2]; |
| 1645 | size = get2byte(pTmp); |
| 1646 | if( (x = size - nByte)>=0 ){ |
| 1647 | testcase( x==4 ); |
| 1648 | testcase( x==3 ); |
| 1649 | if( x<4 ){ |
| 1650 | /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total |
| 1651 | ** number of bytes in fragments may not exceed 60. */ |
| 1652 | if( aData[hdr+7]>57 ) return 0; |
| 1653 | |
| 1654 | /* Remove the slot from the free-list. Update the number of |
| 1655 | ** fragmented bytes within the page. */ |
| 1656 | memcpy(&aData[iAddr], &aData[pc], 2); |
| 1657 | aData[hdr+7] += (u8)x; |
| 1658 | return &aData[pc]; |
| 1659 | }else if( x+pc > maxPC ){ |
| 1660 | /* This slot extends off the end of the usable part of the page */ |
| 1661 | *pRc = SQLITE_CORRUPT_PAGE(pPg); |
| 1662 | return 0; |
| 1663 | }else{ |
| 1664 | /* The slot remains on the free-list. Reduce its size to account |
| 1665 | ** for the portion used by the new allocation. */ |
| 1666 | put2byte(&aData[pc+2], x); |
| 1667 | } |
| 1668 | return &aData[pc + x]; |
| 1669 | } |
| 1670 | iAddr = pc; |
| 1671 | pTmp = &aData[pc]; |
| 1672 | pc = get2byte(pTmp); |
| 1673 | if( pc<=iAddr ){ |
| 1674 | if( pc ){ |
| 1675 | /* The next slot in the chain comes before the current slot */ |
| 1676 | *pRc = SQLITE_CORRUPT_PAGE(pPg); |
| 1677 | } |
| 1678 | return 0; |
| 1679 | } |
| 1680 | } |
| 1681 | if( pc>maxPC+nByte-4 ){ |
| 1682 | /* The free slot chain extends off the end of the page */ |
| 1683 | *pRc = SQLITE_CORRUPT_PAGE(pPg); |
| 1684 | } |
| 1685 | return 0; |
| 1686 | } |
| 1687 | |
| 1688 | /* |
| 1689 | ** Allocate nByte bytes of space from within the B-Tree page passed |
| 1690 | ** as the first argument. Write into *pIdx the index into pPage->aData[] |
| 1691 | ** of the first byte of allocated space. Return either SQLITE_OK or |
| 1692 | ** an error code (usually SQLITE_CORRUPT). |
| 1693 | ** |
| 1694 | ** The caller guarantees that there is sufficient space to make the |
| 1695 | ** allocation. This routine might need to defragment in order to bring |
| 1696 | ** all the space together, however. This routine will avoid using |
| 1697 | ** the first two bytes past the cell pointer area since presumably this |
| 1698 | ** allocation is being made in order to insert a new cell, so we will |
| 1699 | ** also end up needing a new cell pointer. |
| 1700 | */ |
| 1701 | static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ |
| 1702 | const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ |
| 1703 | u8 * const data = pPage->aData; /* Local cache of pPage->aData */ |
| 1704 | int top; /* First byte of cell content area */ |
| 1705 | int rc = SQLITE_OK; /* Integer return code */ |
| 1706 | u8 *pTmp; /* Temp ptr into data[] */ |
| 1707 | int gap; /* First byte of gap between cell pointers and cell content */ |
| 1708 | |
| 1709 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1710 | assert( pPage->pBt ); |
| 1711 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1712 | assert( nByte>=0 ); /* Minimum cell size is 4 */ |
| 1713 | assert( pPage->nFree>=nByte ); |
| 1714 | assert( pPage->nOverflow==0 ); |
| 1715 | assert( nByte < (int)(pPage->pBt->usableSize-8) ); |
| 1716 | |
| 1717 | assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); |
| 1718 | gap = pPage->cellOffset + 2*pPage->nCell; |
| 1719 | assert( gap<=65536 ); |
| 1720 | /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size |
| 1721 | ** and the reserved space is zero (the usual value for reserved space) |
| 1722 | ** then the cell content offset of an empty page wants to be 65536. |
| 1723 | ** However, that integer is too large to be stored in a 2-byte unsigned |
| 1724 | ** integer, so a value of 0 is used in its place. */ |
| 1725 | pTmp = &data[hdr+5]; |
| 1726 | top = get2byte(pTmp); |
| 1727 | assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ |
| 1728 | if( gap>top ){ |
| 1729 | if( top==0 && pPage->pBt->usableSize==65536 ){ |
| 1730 | top = 65536; |
| 1731 | }else{ |
| 1732 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | /* If there is enough space between gap and top for one more cell pointer, |
| 1737 | ** and if the freelist is not empty, then search the |
| 1738 | ** freelist looking for a slot big enough to satisfy the request. |
| 1739 | */ |
| 1740 | testcase( gap+2==top ); |
| 1741 | testcase( gap+1==top ); |
| 1742 | testcase( gap==top ); |
| 1743 | if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ |
| 1744 | u8 *pSpace = pageFindSlot(pPage, nByte, &rc); |
| 1745 | if( pSpace ){ |
| 1746 | int g2; |
| 1747 | assert( pSpace+nByte<=data+pPage->pBt->usableSize ); |
| 1748 | *pIdx = g2 = (int)(pSpace-data); |
| 1749 | if( g2<=gap ){ |
| 1750 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1751 | }else{ |
| 1752 | return SQLITE_OK; |
| 1753 | } |
| 1754 | }else if( rc ){ |
| 1755 | return rc; |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | /* The request could not be fulfilled using a freelist slot. Check |
| 1760 | ** to see if defragmentation is necessary. |
| 1761 | */ |
| 1762 | testcase( gap+2+nByte==top ); |
| 1763 | if( gap+2+nByte>top ){ |
| 1764 | assert( pPage->nCell>0 || CORRUPT_DB ); |
| 1765 | assert( pPage->nFree>=0 ); |
| 1766 | rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); |
| 1767 | if( rc ) return rc; |
| 1768 | top = get2byteNotZero(&data[hdr+5]); |
| 1769 | assert( gap+2+nByte<=top ); |
| 1770 | } |
| 1771 | |
| 1772 | |
| 1773 | /* Allocate memory from the gap in between the cell pointer array |
| 1774 | ** and the cell content area. The btreeComputeFreeSpace() call has already |
| 1775 | ** validated the freelist. Given that the freelist is valid, there |
| 1776 | ** is no way that the allocation can extend off the end of the page. |
| 1777 | ** The assert() below verifies the previous sentence. |
| 1778 | */ |
| 1779 | top -= nByte; |
| 1780 | put2byte(&data[hdr+5], top); |
| 1781 | assert( top+nByte <= (int)pPage->pBt->usableSize ); |
| 1782 | *pIdx = top; |
| 1783 | return SQLITE_OK; |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | ** Return a section of the pPage->aData to the freelist. |
| 1788 | ** The first byte of the new free block is pPage->aData[iStart] |
| 1789 | ** and the size of the block is iSize bytes. |
| 1790 | ** |
| 1791 | ** Adjacent freeblocks are coalesced. |
| 1792 | ** |
| 1793 | ** Even though the freeblock list was checked by btreeComputeFreeSpace(), |
| 1794 | ** that routine will not detect overlap between cells or freeblocks. Nor |
| 1795 | ** does it detect cells or freeblocks that encrouch into the reserved bytes |
| 1796 | ** at the end of the page. So do additional corruption checks inside this |
| 1797 | ** routine and return SQLITE_CORRUPT if any problems are found. |
| 1798 | */ |
| 1799 | static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ |
| 1800 | u16 iPtr; /* Address of ptr to next freeblock */ |
| 1801 | u16 iFreeBlk; /* Address of the next freeblock */ |
| 1802 | u8 hdr; /* Page header size. 0 or 100 */ |
| 1803 | u8 nFrag = 0; /* Reduction in fragmentation */ |
| 1804 | u16 iOrigSize = iSize; /* Original value of iSize */ |
| 1805 | u16 x; /* Offset to cell content area */ |
| 1806 | u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ |
| 1807 | unsigned char *data = pPage->aData; /* Page content */ |
| 1808 | u8 *pTmp; /* Temporary ptr into data[] */ |
| 1809 | |
| 1810 | assert( pPage->pBt!=0 ); |
| 1811 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1812 | assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); |
| 1813 | assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); |
| 1814 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1815 | assert( iSize>=4 ); /* Minimum cell size is 4 */ |
| 1816 | assert( iStart<=pPage->pBt->usableSize-4 ); |
| 1817 | |
| 1818 | /* The list of freeblocks must be in ascending order. Find the |
| 1819 | ** spot on the list where iStart should be inserted. |
| 1820 | */ |
| 1821 | hdr = pPage->hdrOffset; |
| 1822 | iPtr = hdr + 1; |
| 1823 | if( data[iPtr+1]==0 && data[iPtr]==0 ){ |
| 1824 | iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ |
| 1825 | }else{ |
| 1826 | while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ |
| 1827 | if( iFreeBlk<=iPtr ){ |
| 1828 | if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ |
| 1829 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1830 | } |
| 1831 | iPtr = iFreeBlk; |
| 1832 | } |
| 1833 | if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ |
| 1834 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1835 | } |
| 1836 | assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); |
| 1837 | |
| 1838 | /* At this point: |
| 1839 | ** iFreeBlk: First freeblock after iStart, or zero if none |
| 1840 | ** iPtr: The address of a pointer to iFreeBlk |
| 1841 | ** |
| 1842 | ** Check to see if iFreeBlk should be coalesced onto the end of iStart. |
| 1843 | */ |
| 1844 | if( iFreeBlk && iEnd+3>=iFreeBlk ){ |
| 1845 | nFrag = iFreeBlk - iEnd; |
| 1846 | if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1847 | iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); |
| 1848 | if( iEnd > pPage->pBt->usableSize ){ |
| 1849 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1850 | } |
| 1851 | iSize = iEnd - iStart; |
| 1852 | iFreeBlk = get2byte(&data[iFreeBlk]); |
| 1853 | } |
| 1854 | |
| 1855 | /* If iPtr is another freeblock (that is, if iPtr is not the freelist |
| 1856 | ** pointer in the page header) then check to see if iStart should be |
| 1857 | ** coalesced onto the end of iPtr. |
| 1858 | */ |
| 1859 | if( iPtr>hdr+1 ){ |
| 1860 | int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); |
| 1861 | if( iPtrEnd+3>=iStart ){ |
| 1862 | if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1863 | nFrag += iStart - iPtrEnd; |
| 1864 | iSize = iEnd - iPtr; |
| 1865 | iStart = iPtr; |
| 1866 | } |
| 1867 | } |
| 1868 | if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1869 | data[hdr+7] -= nFrag; |
| 1870 | } |
| 1871 | pTmp = &data[hdr+5]; |
| 1872 | x = get2byte(pTmp); |
| 1873 | if( iStart<=x ){ |
| 1874 | /* The new freeblock is at the beginning of the cell content area, |
| 1875 | ** so just extend the cell content area rather than create another |
| 1876 | ** freelist entry */ |
| 1877 | if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1878 | if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); |
| 1879 | put2byte(&data[hdr+1], iFreeBlk); |
| 1880 | put2byte(&data[hdr+5], iEnd); |
| 1881 | }else{ |
| 1882 | /* Insert the new freeblock into the freelist */ |
| 1883 | put2byte(&data[iPtr], iStart); |
| 1884 | } |
| 1885 | if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ |
| 1886 | /* Overwrite deleted information with zeros when the secure_delete |
| 1887 | ** option is enabled */ |
| 1888 | memset(&data[iStart], 0, iSize); |
| 1889 | } |
| 1890 | put2byte(&data[iStart], iFreeBlk); |
| 1891 | put2byte(&data[iStart+2], iSize); |
| 1892 | pPage->nFree += iOrigSize; |
| 1893 | return SQLITE_OK; |
| 1894 | } |
| 1895 | |
| 1896 | /* |
| 1897 | ** Decode the flags byte (the first byte of the header) for a page |
| 1898 | ** and initialize fields of the MemPage structure accordingly. |
| 1899 | ** |
| 1900 | ** Only the following combinations are supported. Anything different |
| 1901 | ** indicates a corrupt database files: |
| 1902 | ** |
| 1903 | ** PTF_ZERODATA |
| 1904 | ** PTF_ZERODATA | PTF_LEAF |
| 1905 | ** PTF_LEAFDATA | PTF_INTKEY |
| 1906 | ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF |
| 1907 | */ |
| 1908 | static int decodeFlags(MemPage *pPage, int flagByte){ |
| 1909 | BtShared *pBt; /* A copy of pPage->pBt */ |
| 1910 | |
| 1911 | assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
| 1912 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1913 | pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); |
| 1914 | flagByte &= ~PTF_LEAF; |
| 1915 | pPage->childPtrSize = 4-4*pPage->leaf; |
| 1916 | pBt = pPage->pBt; |
| 1917 | if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ |
| 1918 | /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an |
| 1919 | ** interior table b-tree page. */ |
| 1920 | assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); |
| 1921 | /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a |
| 1922 | ** leaf table b-tree page. */ |
| 1923 | assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); |
| 1924 | pPage->intKey = 1; |
| 1925 | if( pPage->leaf ){ |
| 1926 | pPage->intKeyLeaf = 1; |
| 1927 | pPage->xCellSize = cellSizePtrTableLeaf; |
| 1928 | pPage->xParseCell = btreeParseCellPtr; |
| 1929 | }else{ |
| 1930 | pPage->intKeyLeaf = 0; |
| 1931 | pPage->xCellSize = cellSizePtrNoPayload; |
| 1932 | pPage->xParseCell = btreeParseCellPtrNoPayload; |
| 1933 | } |
| 1934 | pPage->maxLocal = pBt->maxLeaf; |
| 1935 | pPage->minLocal = pBt->minLeaf; |
| 1936 | }else if( flagByte==PTF_ZERODATA ){ |
| 1937 | /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an |
| 1938 | ** interior index b-tree page. */ |
| 1939 | assert( (PTF_ZERODATA)==2 ); |
| 1940 | /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a |
| 1941 | ** leaf index b-tree page. */ |
| 1942 | assert( (PTF_ZERODATA|PTF_LEAF)==10 ); |
| 1943 | pPage->intKey = 0; |
| 1944 | pPage->intKeyLeaf = 0; |
| 1945 | pPage->xCellSize = cellSizePtr; |
| 1946 | pPage->xParseCell = btreeParseCellPtrIndex; |
| 1947 | pPage->maxLocal = pBt->maxLocal; |
| 1948 | pPage->minLocal = pBt->minLocal; |
| 1949 | }else{ |
| 1950 | /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is |
| 1951 | ** an error. */ |
| 1952 | pPage->intKey = 0; |
| 1953 | pPage->intKeyLeaf = 0; |
| 1954 | pPage->xCellSize = cellSizePtr; |
| 1955 | pPage->xParseCell = btreeParseCellPtrIndex; |
| 1956 | return SQLITE_CORRUPT_PAGE(pPage); |
| 1957 | } |
| 1958 | pPage->max1bytePayload = pBt->max1bytePayload; |
| 1959 | return SQLITE_OK; |
| 1960 | } |
| 1961 | |
| 1962 | /* |
| 1963 | ** Compute the amount of freespace on the page. In other words, fill |
| 1964 | ** in the pPage->nFree field. |
| 1965 | */ |
| 1966 | static int btreeComputeFreeSpace(MemPage *pPage){ |
| 1967 | int pc; /* Address of a freeblock within pPage->aData[] */ |
| 1968 | u8 hdr; /* Offset to beginning of page header */ |
| 1969 | u8 *data; /* Equal to pPage->aData */ |
| 1970 | int usableSize; /* Amount of usable space on each page */ |
| 1971 | int nFree; /* Number of unused bytes on the page */ |
| 1972 | int top; /* First byte of the cell content area */ |
| 1973 | int iCellFirst; /* First allowable cell or freeblock offset */ |
| 1974 | int iCellLast; /* Last possible cell or freeblock offset */ |
| 1975 | |
| 1976 | assert( pPage->pBt!=0 ); |
| 1977 | assert( pPage->pBt->db!=0 ); |
| 1978 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1979 | assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
| 1980 | assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
| 1981 | assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
| 1982 | assert( pPage->isInit==1 ); |
| 1983 | assert( pPage->nFree<0 ); |
| 1984 | |
| 1985 | usableSize = pPage->pBt->usableSize; |
| 1986 | hdr = pPage->hdrOffset; |
| 1987 | data = pPage->aData; |
| 1988 | /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates |
| 1989 | ** the start of the cell content area. A zero value for this integer is |
| 1990 | ** interpreted as 65536. */ |
| 1991 | top = get2byteNotZero(&data[hdr+5]); |
| 1992 | iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; |
| 1993 | iCellLast = usableSize - 4; |
| 1994 | |
| 1995 | /* Compute the total free space on the page |
| 1996 | ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the |
| 1997 | ** start of the first freeblock on the page, or is zero if there are no |
| 1998 | ** freeblocks. */ |
| 1999 | pc = get2byte(&data[hdr+1]); |
| 2000 | nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ |
| 2001 | if( pc>0 ){ |
| 2002 | u32 next, size; |
| 2003 | if( pc<top ){ |
| 2004 | /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will |
| 2005 | ** always be at least one cell before the first freeblock. |
| 2006 | */ |
| 2007 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2008 | } |
| 2009 | while( 1 ){ |
| 2010 | if( pc>iCellLast ){ |
| 2011 | /* Freeblock off the end of the page */ |
| 2012 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2013 | } |
| 2014 | next = get2byte(&data[pc]); |
| 2015 | size = get2byte(&data[pc+2]); |
| 2016 | nFree = nFree + size; |
| 2017 | if( next<=pc+size+3 ) break; |
| 2018 | pc = next; |
| 2019 | } |
| 2020 | if( next>0 ){ |
| 2021 | /* Freeblock not in ascending order */ |
| 2022 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2023 | } |
| 2024 | if( pc+size>(unsigned int)usableSize ){ |
| 2025 | /* Last freeblock extends past page end */ |
| 2026 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | /* At this point, nFree contains the sum of the offset to the start |
| 2031 | ** of the cell-content area plus the number of free bytes within |
| 2032 | ** the cell-content area. If this is greater than the usable-size |
| 2033 | ** of the page, then the page must be corrupted. This check also |
| 2034 | ** serves to verify that the offset to the start of the cell-content |
| 2035 | ** area, according to the page header, lies within the page. |
| 2036 | */ |
| 2037 | if( nFree>usableSize || nFree<iCellFirst ){ |
| 2038 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2039 | } |
| 2040 | pPage->nFree = (u16)(nFree - iCellFirst); |
| 2041 | return SQLITE_OK; |
| 2042 | } |
| 2043 | |
| 2044 | /* |
| 2045 | ** Do additional sanity check after btreeInitPage() if |
| 2046 | ** PRAGMA cell_size_check=ON |
| 2047 | */ |
| 2048 | static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ |
| 2049 | int iCellFirst; /* First allowable cell or freeblock offset */ |
| 2050 | int iCellLast; /* Last possible cell or freeblock offset */ |
| 2051 | int i; /* Index into the cell pointer array */ |
| 2052 | int sz; /* Size of a cell */ |
| 2053 | int pc; /* Address of a freeblock within pPage->aData[] */ |
| 2054 | u8 *data; /* Equal to pPage->aData */ |
| 2055 | int usableSize; /* Maximum usable space on the page */ |
| 2056 | int cellOffset; /* Start of cell content area */ |
| 2057 | |
| 2058 | iCellFirst = pPage->cellOffset + 2*pPage->nCell; |
| 2059 | usableSize = pPage->pBt->usableSize; |
| 2060 | iCellLast = usableSize - 4; |
| 2061 | data = pPage->aData; |
| 2062 | cellOffset = pPage->cellOffset; |
| 2063 | if( !pPage->leaf ) iCellLast--; |
| 2064 | for(i=0; i<pPage->nCell; i++){ |
| 2065 | pc = get2byteAligned(&data[cellOffset+i*2]); |
| 2066 | testcase( pc==iCellFirst ); |
| 2067 | testcase( pc==iCellLast ); |
| 2068 | if( pc<iCellFirst || pc>iCellLast ){ |
| 2069 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2070 | } |
| 2071 | sz = pPage->xCellSize(pPage, &data[pc]); |
| 2072 | testcase( pc+sz==usableSize ); |
| 2073 | if( pc+sz>usableSize ){ |
| 2074 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2075 | } |
| 2076 | } |
| 2077 | return SQLITE_OK; |
| 2078 | } |
| 2079 | |
| 2080 | /* |
| 2081 | ** Initialize the auxiliary information for a disk block. |
| 2082 | ** |
| 2083 | ** Return SQLITE_OK on success. If we see that the page does |
| 2084 | ** not contain a well-formed database page, then return |
| 2085 | ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
| 2086 | ** guarantee that the page is well-formed. It only shows that |
| 2087 | ** we failed to detect any corruption. |
| 2088 | */ |
| 2089 | static int btreeInitPage(MemPage *pPage){ |
| 2090 | u8 *data; /* Equal to pPage->aData */ |
| 2091 | BtShared *pBt; /* The main btree structure */ |
| 2092 | |
| 2093 | assert( pPage->pBt!=0 ); |
| 2094 | assert( pPage->pBt->db!=0 ); |
| 2095 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2096 | assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
| 2097 | assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
| 2098 | assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
| 2099 | assert( pPage->isInit==0 ); |
| 2100 | |
| 2101 | pBt = pPage->pBt; |
| 2102 | data = pPage->aData + pPage->hdrOffset; |
| 2103 | /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating |
| 2104 | ** the b-tree page type. */ |
| 2105 | if( decodeFlags(pPage, data[0]) ){ |
| 2106 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2107 | } |
| 2108 | assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| 2109 | pPage->maskPage = (u16)(pBt->pageSize - 1); |
| 2110 | pPage->nOverflow = 0; |
| 2111 | pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; |
| 2112 | pPage->aCellIdx = data + pPage->childPtrSize + 8; |
| 2113 | pPage->aDataEnd = pPage->aData + pBt->pageSize; |
| 2114 | pPage->aDataOfst = pPage->aData + pPage->childPtrSize; |
| 2115 | /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
| 2116 | ** number of cells on the page. */ |
| 2117 | pPage->nCell = get2byte(&data[3]); |
| 2118 | if( pPage->nCell>MX_CELL(pBt) ){ |
| 2119 | /* To many cells for a single page. The page must be corrupt */ |
| 2120 | return SQLITE_CORRUPT_PAGE(pPage); |
| 2121 | } |
| 2122 | testcase( pPage->nCell==MX_CELL(pBt) ); |
| 2123 | /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only |
| 2124 | ** possible for a root page of a table that contains no rows) then the |
| 2125 | ** offset to the cell content area will equal the page size minus the |
| 2126 | ** bytes of reserved space. */ |
| 2127 | assert( pPage->nCell>0 |
| 2128 | || get2byteNotZero(&data[5])==(int)pBt->usableSize |
| 2129 | || CORRUPT_DB ); |
| 2130 | pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ |
| 2131 | pPage->isInit = 1; |
| 2132 | if( pBt->db->flags & SQLITE_CellSizeCk ){ |
| 2133 | return btreeCellSizeCheck(pPage); |
| 2134 | } |
| 2135 | return SQLITE_OK; |
| 2136 | } |
| 2137 | |
| 2138 | /* |
| 2139 | ** Set up a raw page so that it looks like a database page holding |
| 2140 | ** no entries. |
| 2141 | */ |
| 2142 | static void zeroPage(MemPage *pPage, int flags){ |
| 2143 | unsigned char *data = pPage->aData; |
| 2144 | BtShared *pBt = pPage->pBt; |
| 2145 | u8 hdr = pPage->hdrOffset; |
| 2146 | u16 first; |
| 2147 | |
| 2148 | assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); |
| 2149 | assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| 2150 | assert( sqlite3PagerGetData(pPage->pDbPage) == data ); |
| 2151 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 2152 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2153 | if( pBt->btsFlags & BTS_FAST_SECURE ){ |
| 2154 | memset(&data[hdr], 0, pBt->usableSize - hdr); |
| 2155 | } |
| 2156 | data[hdr] = (char)flags; |
| 2157 | first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); |
| 2158 | memset(&data[hdr+1], 0, 4); |
| 2159 | data[hdr+7] = 0; |
| 2160 | put2byte(&data[hdr+5], pBt->usableSize); |
| 2161 | pPage->nFree = (u16)(pBt->usableSize - first); |
| 2162 | decodeFlags(pPage, flags); |
| 2163 | pPage->cellOffset = first; |
| 2164 | pPage->aDataEnd = &data[pBt->pageSize]; |
| 2165 | pPage->aCellIdx = &data[first]; |
| 2166 | pPage->aDataOfst = &data[pPage->childPtrSize]; |
| 2167 | pPage->nOverflow = 0; |
| 2168 | assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| 2169 | pPage->maskPage = (u16)(pBt->pageSize - 1); |
| 2170 | pPage->nCell = 0; |
| 2171 | pPage->isInit = 1; |
| 2172 | } |
| 2173 | |
| 2174 | |
| 2175 | /* |
| 2176 | ** Convert a DbPage obtained from the pager into a MemPage used by |
| 2177 | ** the btree layer. |
| 2178 | */ |
| 2179 | static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ |
| 2180 | MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
| 2181 | if( pgno!=pPage->pgno ){ |
| 2182 | pPage->aData = sqlite3PagerGetData(pDbPage); |
| 2183 | pPage->pDbPage = pDbPage; |
| 2184 | pPage->pBt = pBt; |
| 2185 | pPage->pgno = pgno; |
| 2186 | pPage->hdrOffset = pgno==1 ? 100 : 0; |
| 2187 | } |
| 2188 | assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); |
| 2189 | return pPage; |
| 2190 | } |
| 2191 | |
| 2192 | /* |
| 2193 | ** Get a page from the pager. Initialize the MemPage.pBt and |
| 2194 | ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). |
| 2195 | ** |
| 2196 | ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care |
| 2197 | ** about the content of the page at this time. So do not go to the disk |
| 2198 | ** to fetch the content. Just fill in the content with zeros for now. |
| 2199 | ** If in the future we call sqlite3PagerWrite() on this page, that |
| 2200 | ** means we have started to be concerned about content and the disk |
| 2201 | ** read should occur at that point. |
| 2202 | */ |
| 2203 | static int btreeGetPage( |
| 2204 | BtShared *pBt, /* The btree */ |
| 2205 | Pgno pgno, /* Number of the page to fetch */ |
| 2206 | MemPage **ppPage, /* Return the page in this parameter */ |
| 2207 | int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
| 2208 | ){ |
| 2209 | int rc; |
| 2210 | DbPage *pDbPage; |
| 2211 | |
| 2212 | assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); |
| 2213 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2214 | rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); |
| 2215 | if( rc ) return rc; |
| 2216 | *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); |
| 2217 | return SQLITE_OK; |
| 2218 | } |
| 2219 | |
| 2220 | /* |
| 2221 | ** Retrieve a page from the pager cache. If the requested page is not |
| 2222 | ** already in the pager cache return NULL. Initialize the MemPage.pBt and |
| 2223 | ** MemPage.aData elements if needed. |
| 2224 | */ |
| 2225 | static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ |
| 2226 | DbPage *pDbPage; |
| 2227 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2228 | pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); |
| 2229 | if( pDbPage ){ |
| 2230 | return btreePageFromDbPage(pDbPage, pgno, pBt); |
| 2231 | } |
| 2232 | return 0; |
| 2233 | } |
| 2234 | |
| 2235 | /* |
| 2236 | ** Return the size of the database file in pages. If there is any kind of |
| 2237 | ** error, return ((unsigned int)-1). |
| 2238 | */ |
| 2239 | static Pgno btreePagecount(BtShared *pBt){ |
| 2240 | return pBt->nPage; |
| 2241 | } |
| 2242 | Pgno sqlite3BtreeLastPage(Btree *p){ |
| 2243 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 2244 | return btreePagecount(p->pBt); |
| 2245 | } |
| 2246 | |
| 2247 | /* |
| 2248 | ** Get a page from the pager and initialize it. |
| 2249 | ** |
| 2250 | ** If pCur!=0 then the page is being fetched as part of a moveToChild() |
| 2251 | ** call. Do additional sanity checking on the page in this case. |
| 2252 | ** And if the fetch fails, this routine must decrement pCur->iPage. |
| 2253 | ** |
| 2254 | ** The page is fetched as read-write unless pCur is not NULL and is |
| 2255 | ** a read-only cursor. |
| 2256 | ** |
| 2257 | ** If an error occurs, then *ppPage is undefined. It |
| 2258 | ** may remain unchanged, or it may be set to an invalid value. |
| 2259 | */ |
| 2260 | static int getAndInitPage( |
| 2261 | BtShared *pBt, /* The database file */ |
| 2262 | Pgno pgno, /* Number of the page to get */ |
| 2263 | MemPage **ppPage, /* Write the page pointer here */ |
| 2264 | BtCursor *pCur, /* Cursor to receive the page, or NULL */ |
| 2265 | int bReadOnly /* True for a read-only page */ |
| 2266 | ){ |
| 2267 | int rc; |
| 2268 | DbPage *pDbPage; |
| 2269 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2270 | assert( pCur==0 || ppPage==&pCur->pPage ); |
| 2271 | assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); |
| 2272 | assert( pCur==0 || pCur->iPage>0 ); |
| 2273 | |
| 2274 | if( pgno>btreePagecount(pBt) ){ |
| 2275 | rc = SQLITE_CORRUPT_BKPT; |
| 2276 | goto getAndInitPage_error1; |
| 2277 | } |
| 2278 | rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); |
| 2279 | if( rc ){ |
| 2280 | goto getAndInitPage_error1; |
| 2281 | } |
| 2282 | *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
| 2283 | if( (*ppPage)->isInit==0 ){ |
| 2284 | btreePageFromDbPage(pDbPage, pgno, pBt); |
| 2285 | rc = btreeInitPage(*ppPage); |
| 2286 | if( rc!=SQLITE_OK ){ |
| 2287 | goto getAndInitPage_error2; |
| 2288 | } |
| 2289 | } |
| 2290 | assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); |
| 2291 | assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); |
| 2292 | |
| 2293 | /* If obtaining a child page for a cursor, we must verify that the page is |
| 2294 | ** compatible with the root page. */ |
| 2295 | if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ |
| 2296 | rc = SQLITE_CORRUPT_PGNO(pgno); |
| 2297 | goto getAndInitPage_error2; |
| 2298 | } |
| 2299 | return SQLITE_OK; |
| 2300 | |
| 2301 | getAndInitPage_error2: |
| 2302 | releasePage(*ppPage); |
| 2303 | getAndInitPage_error1: |
| 2304 | if( pCur ){ |
| 2305 | pCur->iPage--; |
| 2306 | pCur->pPage = pCur->apPage[pCur->iPage]; |
| 2307 | } |
| 2308 | testcase( pgno==0 ); |
| 2309 | assert( pgno!=0 || rc!=SQLITE_OK ); |
| 2310 | return rc; |
| 2311 | } |
| 2312 | |
| 2313 | /* |
| 2314 | ** Release a MemPage. This should be called once for each prior |
| 2315 | ** call to btreeGetPage. |
| 2316 | ** |
| 2317 | ** Page1 is a special case and must be released using releasePageOne(). |
| 2318 | */ |
| 2319 | static void releasePageNotNull(MemPage *pPage){ |
| 2320 | assert( pPage->aData ); |
| 2321 | assert( pPage->pBt ); |
| 2322 | assert( pPage->pDbPage!=0 ); |
| 2323 | assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| 2324 | assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
| 2325 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2326 | sqlite3PagerUnrefNotNull(pPage->pDbPage); |
| 2327 | } |
| 2328 | static void releasePage(MemPage *pPage){ |
| 2329 | if( pPage ) releasePageNotNull(pPage); |
| 2330 | } |
| 2331 | static void releasePageOne(MemPage *pPage){ |
| 2332 | assert( pPage!=0 ); |
| 2333 | assert( pPage->aData ); |
| 2334 | assert( pPage->pBt ); |
| 2335 | assert( pPage->pDbPage!=0 ); |
| 2336 | assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| 2337 | assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
| 2338 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2339 | sqlite3PagerUnrefPageOne(pPage->pDbPage); |
| 2340 | } |
| 2341 | |
| 2342 | /* |
| 2343 | ** Get an unused page. |
| 2344 | ** |
| 2345 | ** This works just like btreeGetPage() with the addition: |
| 2346 | ** |
| 2347 | ** * If the page is already in use for some other purpose, immediately |
| 2348 | ** release it and return an SQLITE_CURRUPT error. |
| 2349 | ** * Make sure the isInit flag is clear |
| 2350 | */ |
| 2351 | static int btreeGetUnusedPage( |
| 2352 | BtShared *pBt, /* The btree */ |
| 2353 | Pgno pgno, /* Number of the page to fetch */ |
| 2354 | MemPage **ppPage, /* Return the page in this parameter */ |
| 2355 | int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
| 2356 | ){ |
| 2357 | int rc = btreeGetPage(pBt, pgno, ppPage, flags); |
| 2358 | if( rc==SQLITE_OK ){ |
| 2359 | if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ |
| 2360 | releasePage(*ppPage); |
| 2361 | *ppPage = 0; |
| 2362 | return SQLITE_CORRUPT_BKPT; |
| 2363 | } |
| 2364 | (*ppPage)->isInit = 0; |
| 2365 | }else{ |
| 2366 | *ppPage = 0; |
| 2367 | } |
| 2368 | return rc; |
| 2369 | } |
| 2370 | |
| 2371 | |
| 2372 | /* |
| 2373 | ** During a rollback, when the pager reloads information into the cache |
| 2374 | ** so that the cache is restored to its original state at the start of |
| 2375 | ** the transaction, for each page restored this routine is called. |
| 2376 | ** |
| 2377 | ** This routine needs to reset the extra data section at the end of the |
| 2378 | ** page to agree with the restored data. |
| 2379 | */ |
| 2380 | static void (DbPage *pData){ |
| 2381 | MemPage *pPage; |
| 2382 | pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
| 2383 | assert( sqlite3PagerPageRefcount(pData)>0 ); |
| 2384 | if( pPage->isInit ){ |
| 2385 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2386 | pPage->isInit = 0; |
| 2387 | if( sqlite3PagerPageRefcount(pData)>1 ){ |
| 2388 | /* pPage might not be a btree page; it might be an overflow page |
| 2389 | ** or ptrmap page or a free page. In those cases, the following |
| 2390 | ** call to btreeInitPage() will likely return SQLITE_CORRUPT. |
| 2391 | ** But no harm is done by this. And it is very important that |
| 2392 | ** btreeInitPage() be called on every btree page so we make |
| 2393 | ** the call for every page that comes in for re-initing. */ |
| 2394 | btreeInitPage(pPage); |
| 2395 | } |
| 2396 | } |
| 2397 | } |
| 2398 | |
| 2399 | /* |
| 2400 | ** Invoke the busy handler for a btree. |
| 2401 | */ |
| 2402 | static int btreeInvokeBusyHandler(void *pArg){ |
| 2403 | BtShared *pBt = (BtShared*)pArg; |
| 2404 | assert( pBt->db ); |
| 2405 | assert( sqlite3_mutex_held(pBt->db->mutex) ); |
| 2406 | return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); |
| 2407 | } |
| 2408 | |
| 2409 | /* |
| 2410 | ** Open a database file. |
| 2411 | ** |
| 2412 | ** zFilename is the name of the database file. If zFilename is NULL |
| 2413 | ** then an ephemeral database is created. The ephemeral database might |
| 2414 | ** be exclusively in memory, or it might use a disk-based memory cache. |
| 2415 | ** Either way, the ephemeral database will be automatically deleted |
| 2416 | ** when sqlite3BtreeClose() is called. |
| 2417 | ** |
| 2418 | ** If zFilename is ":memory:" then an in-memory database is created |
| 2419 | ** that is automatically destroyed when it is closed. |
| 2420 | ** |
| 2421 | ** The "flags" parameter is a bitmask that might contain bits like |
| 2422 | ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. |
| 2423 | ** |
| 2424 | ** If the database is already opened in the same database connection |
| 2425 | ** and we are in shared cache mode, then the open will fail with an |
| 2426 | ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared |
| 2427 | ** objects in the same database connection since doing so will lead |
| 2428 | ** to problems with locking. |
| 2429 | */ |
| 2430 | int sqlite3BtreeOpen( |
| 2431 | sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ |
| 2432 | const char *zFilename, /* Name of the file containing the BTree database */ |
| 2433 | sqlite3 *db, /* Associated database handle */ |
| 2434 | Btree **ppBtree, /* Pointer to new Btree object written here */ |
| 2435 | int flags, /* Options */ |
| 2436 | int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ |
| 2437 | ){ |
| 2438 | BtShared *pBt = 0; /* Shared part of btree structure */ |
| 2439 | Btree *p; /* Handle to return */ |
| 2440 | sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ |
| 2441 | int rc = SQLITE_OK; /* Result code from this function */ |
| 2442 | u8 nReserve; /* Byte of unused space on each page */ |
| 2443 | unsigned char [100]; /* Database header content */ |
| 2444 | |
| 2445 | /* True if opening an ephemeral, temporary database */ |
| 2446 | const int isTempDb = zFilename==0 || zFilename[0]==0; |
| 2447 | |
| 2448 | /* Set the variable isMemdb to true for an in-memory database, or |
| 2449 | ** false for a file-based database. |
| 2450 | */ |
| 2451 | #ifdef SQLITE_OMIT_MEMORYDB |
| 2452 | const int isMemdb = 0; |
| 2453 | #else |
| 2454 | const int isMemdb = (zFilename && strcmp(zFilename, ":memory:" )==0) |
| 2455 | || (isTempDb && sqlite3TempInMemory(db)) |
| 2456 | || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; |
| 2457 | #endif |
| 2458 | |
| 2459 | assert( db!=0 ); |
| 2460 | assert( pVfs!=0 ); |
| 2461 | assert( sqlite3_mutex_held(db->mutex) ); |
| 2462 | assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ |
| 2463 | |
| 2464 | /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ |
| 2465 | assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); |
| 2466 | |
| 2467 | /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ |
| 2468 | assert( (flags & BTREE_SINGLE)==0 || isTempDb ); |
| 2469 | |
| 2470 | if( isMemdb ){ |
| 2471 | flags |= BTREE_MEMORY; |
| 2472 | } |
| 2473 | if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ |
| 2474 | vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; |
| 2475 | } |
| 2476 | p = sqlite3MallocZero(sizeof(Btree)); |
| 2477 | if( !p ){ |
| 2478 | return SQLITE_NOMEM_BKPT; |
| 2479 | } |
| 2480 | p->inTrans = TRANS_NONE; |
| 2481 | p->db = db; |
| 2482 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2483 | p->lock.pBtree = p; |
| 2484 | p->lock.iTable = 1; |
| 2485 | #endif |
| 2486 | |
| 2487 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 2488 | /* |
| 2489 | ** If this Btree is a candidate for shared cache, try to find an |
| 2490 | ** existing BtShared object that we can share with |
| 2491 | */ |
| 2492 | if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ |
| 2493 | if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ |
| 2494 | int nFilename = sqlite3Strlen30(zFilename)+1; |
| 2495 | int nFullPathname = pVfs->mxPathname+1; |
| 2496 | char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); |
| 2497 | MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| 2498 | |
| 2499 | p->sharable = 1; |
| 2500 | if( !zFullPathname ){ |
| 2501 | sqlite3_free(p); |
| 2502 | return SQLITE_NOMEM_BKPT; |
| 2503 | } |
| 2504 | if( isMemdb ){ |
| 2505 | memcpy(zFullPathname, zFilename, nFilename); |
| 2506 | }else{ |
| 2507 | rc = sqlite3OsFullPathname(pVfs, zFilename, |
| 2508 | nFullPathname, zFullPathname); |
| 2509 | if( rc ){ |
| 2510 | if( rc==SQLITE_OK_SYMLINK ){ |
| 2511 | rc = SQLITE_OK; |
| 2512 | }else{ |
| 2513 | sqlite3_free(zFullPathname); |
| 2514 | sqlite3_free(p); |
| 2515 | return rc; |
| 2516 | } |
| 2517 | } |
| 2518 | } |
| 2519 | #if SQLITE_THREADSAFE |
| 2520 | mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); |
| 2521 | sqlite3_mutex_enter(mutexOpen); |
| 2522 | mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); |
| 2523 | sqlite3_mutex_enter(mutexShared); |
| 2524 | #endif |
| 2525 | for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ |
| 2526 | assert( pBt->nRef>0 ); |
| 2527 | if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) |
| 2528 | && sqlite3PagerVfs(pBt->pPager)==pVfs ){ |
| 2529 | int iDb; |
| 2530 | for(iDb=db->nDb-1; iDb>=0; iDb--){ |
| 2531 | Btree *pExisting = db->aDb[iDb].pBt; |
| 2532 | if( pExisting && pExisting->pBt==pBt ){ |
| 2533 | sqlite3_mutex_leave(mutexShared); |
| 2534 | sqlite3_mutex_leave(mutexOpen); |
| 2535 | sqlite3_free(zFullPathname); |
| 2536 | sqlite3_free(p); |
| 2537 | return SQLITE_CONSTRAINT; |
| 2538 | } |
| 2539 | } |
| 2540 | p->pBt = pBt; |
| 2541 | pBt->nRef++; |
| 2542 | break; |
| 2543 | } |
| 2544 | } |
| 2545 | sqlite3_mutex_leave(mutexShared); |
| 2546 | sqlite3_free(zFullPathname); |
| 2547 | } |
| 2548 | #ifdef SQLITE_DEBUG |
| 2549 | else{ |
| 2550 | /* In debug mode, we mark all persistent databases as sharable |
| 2551 | ** even when they are not. This exercises the locking code and |
| 2552 | ** gives more opportunity for asserts(sqlite3_mutex_held()) |
| 2553 | ** statements to find locking problems. |
| 2554 | */ |
| 2555 | p->sharable = 1; |
| 2556 | } |
| 2557 | #endif |
| 2558 | } |
| 2559 | #endif |
| 2560 | if( pBt==0 ){ |
| 2561 | /* |
| 2562 | ** The following asserts make sure that structures used by the btree are |
| 2563 | ** the right size. This is to guard against size changes that result |
| 2564 | ** when compiling on a different architecture. |
| 2565 | */ |
| 2566 | assert( sizeof(i64)==8 ); |
| 2567 | assert( sizeof(u64)==8 ); |
| 2568 | assert( sizeof(u32)==4 ); |
| 2569 | assert( sizeof(u16)==2 ); |
| 2570 | assert( sizeof(Pgno)==4 ); |
| 2571 | |
| 2572 | pBt = sqlite3MallocZero( sizeof(*pBt) ); |
| 2573 | if( pBt==0 ){ |
| 2574 | rc = SQLITE_NOMEM_BKPT; |
| 2575 | goto btree_open_out; |
| 2576 | } |
| 2577 | rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
| 2578 | sizeof(MemPage), flags, vfsFlags, pageReinit); |
| 2579 | if( rc==SQLITE_OK ){ |
| 2580 | sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); |
| 2581 | rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); |
| 2582 | } |
| 2583 | if( rc!=SQLITE_OK ){ |
| 2584 | goto btree_open_out; |
| 2585 | } |
| 2586 | pBt->openFlags = (u8)flags; |
| 2587 | pBt->db = db; |
| 2588 | sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); |
| 2589 | p->pBt = pBt; |
| 2590 | |
| 2591 | pBt->pCursor = 0; |
| 2592 | pBt->pPage1 = 0; |
| 2593 | if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; |
| 2594 | #if defined(SQLITE_SECURE_DELETE) |
| 2595 | pBt->btsFlags |= BTS_SECURE_DELETE; |
| 2596 | #elif defined(SQLITE_FAST_SECURE_DELETE) |
| 2597 | pBt->btsFlags |= BTS_OVERWRITE; |
| 2598 | #endif |
| 2599 | /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
| 2600 | ** determined by the 2-byte integer located at an offset of 16 bytes from |
| 2601 | ** the beginning of the database file. */ |
| 2602 | pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); |
| 2603 | if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
| 2604 | || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
| 2605 | pBt->pageSize = 0; |
| 2606 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2607 | /* If the magic name ":memory:" will create an in-memory database, then |
| 2608 | ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if |
| 2609 | ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
| 2610 | ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a |
| 2611 | ** regular file-name. In this case the auto-vacuum applies as per normal. |
| 2612 | */ |
| 2613 | if( zFilename && !isMemdb ){ |
| 2614 | pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); |
| 2615 | pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); |
| 2616 | } |
| 2617 | #endif |
| 2618 | nReserve = 0; |
| 2619 | }else{ |
| 2620 | /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
| 2621 | ** determined by the one-byte unsigned integer found at an offset of 20 |
| 2622 | ** into the database file header. */ |
| 2623 | nReserve = zDbHeader[20]; |
| 2624 | pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 2625 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2626 | pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
| 2627 | pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); |
| 2628 | #endif |
| 2629 | } |
| 2630 | rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| 2631 | if( rc ) goto btree_open_out; |
| 2632 | pBt->usableSize = pBt->pageSize - nReserve; |
| 2633 | assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
| 2634 | |
| 2635 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 2636 | /* Add the new BtShared object to the linked list sharable BtShareds. |
| 2637 | */ |
| 2638 | pBt->nRef = 1; |
| 2639 | if( p->sharable ){ |
| 2640 | MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| 2641 | MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) |
| 2642 | if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ |
| 2643 | pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); |
| 2644 | if( pBt->mutex==0 ){ |
| 2645 | rc = SQLITE_NOMEM_BKPT; |
| 2646 | goto btree_open_out; |
| 2647 | } |
| 2648 | } |
| 2649 | sqlite3_mutex_enter(mutexShared); |
| 2650 | pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| 2651 | GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; |
| 2652 | sqlite3_mutex_leave(mutexShared); |
| 2653 | } |
| 2654 | #endif |
| 2655 | } |
| 2656 | |
| 2657 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 2658 | /* If the new Btree uses a sharable pBtShared, then link the new |
| 2659 | ** Btree into the list of all sharable Btrees for the same connection. |
| 2660 | ** The list is kept in ascending order by pBt address. |
| 2661 | */ |
| 2662 | if( p->sharable ){ |
| 2663 | int i; |
| 2664 | Btree *pSib; |
| 2665 | for(i=0; i<db->nDb; i++){ |
| 2666 | if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ |
| 2667 | while( pSib->pPrev ){ pSib = pSib->pPrev; } |
| 2668 | if( (uptr)p->pBt<(uptr)pSib->pBt ){ |
| 2669 | p->pNext = pSib; |
| 2670 | p->pPrev = 0; |
| 2671 | pSib->pPrev = p; |
| 2672 | }else{ |
| 2673 | while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ |
| 2674 | pSib = pSib->pNext; |
| 2675 | } |
| 2676 | p->pNext = pSib->pNext; |
| 2677 | p->pPrev = pSib; |
| 2678 | if( p->pNext ){ |
| 2679 | p->pNext->pPrev = p; |
| 2680 | } |
| 2681 | pSib->pNext = p; |
| 2682 | } |
| 2683 | break; |
| 2684 | } |
| 2685 | } |
| 2686 | } |
| 2687 | #endif |
| 2688 | *ppBtree = p; |
| 2689 | |
| 2690 | btree_open_out: |
| 2691 | if( rc!=SQLITE_OK ){ |
| 2692 | if( pBt && pBt->pPager ){ |
| 2693 | sqlite3PagerClose(pBt->pPager, 0); |
| 2694 | } |
| 2695 | sqlite3_free(pBt); |
| 2696 | sqlite3_free(p); |
| 2697 | *ppBtree = 0; |
| 2698 | }else{ |
| 2699 | sqlite3_file *pFile; |
| 2700 | |
| 2701 | /* If the B-Tree was successfully opened, set the pager-cache size to the |
| 2702 | ** default value. Except, when opening on an existing shared pager-cache, |
| 2703 | ** do not change the pager-cache size. |
| 2704 | */ |
| 2705 | if( sqlite3BtreeSchema(p, 0, 0)==0 ){ |
| 2706 | sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); |
| 2707 | } |
| 2708 | |
| 2709 | pFile = sqlite3PagerFile(pBt->pPager); |
| 2710 | if( pFile->pMethods ){ |
| 2711 | sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); |
| 2712 | } |
| 2713 | } |
| 2714 | if( mutexOpen ){ |
| 2715 | assert( sqlite3_mutex_held(mutexOpen) ); |
| 2716 | sqlite3_mutex_leave(mutexOpen); |
| 2717 | } |
| 2718 | assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); |
| 2719 | return rc; |
| 2720 | } |
| 2721 | |
| 2722 | /* |
| 2723 | ** Decrement the BtShared.nRef counter. When it reaches zero, |
| 2724 | ** remove the BtShared structure from the sharing list. Return |
| 2725 | ** true if the BtShared.nRef counter reaches zero and return |
| 2726 | ** false if it is still positive. |
| 2727 | */ |
| 2728 | static int removeFromSharingList(BtShared *pBt){ |
| 2729 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2730 | MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) |
| 2731 | BtShared *pList; |
| 2732 | int removed = 0; |
| 2733 | |
| 2734 | assert( sqlite3_mutex_notheld(pBt->mutex) ); |
| 2735 | MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) |
| 2736 | sqlite3_mutex_enter(pMainMtx); |
| 2737 | pBt->nRef--; |
| 2738 | if( pBt->nRef<=0 ){ |
| 2739 | if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ |
| 2740 | GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; |
| 2741 | }else{ |
| 2742 | pList = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| 2743 | while( ALWAYS(pList) && pList->pNext!=pBt ){ |
| 2744 | pList=pList->pNext; |
| 2745 | } |
| 2746 | if( ALWAYS(pList) ){ |
| 2747 | pList->pNext = pBt->pNext; |
| 2748 | } |
| 2749 | } |
| 2750 | if( SQLITE_THREADSAFE ){ |
| 2751 | sqlite3_mutex_free(pBt->mutex); |
| 2752 | } |
| 2753 | removed = 1; |
| 2754 | } |
| 2755 | sqlite3_mutex_leave(pMainMtx); |
| 2756 | return removed; |
| 2757 | #else |
| 2758 | return 1; |
| 2759 | #endif |
| 2760 | } |
| 2761 | |
| 2762 | /* |
| 2763 | ** Make sure pBt->pTmpSpace points to an allocation of |
| 2764 | ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child |
| 2765 | ** pointer. |
| 2766 | */ |
| 2767 | static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ |
| 2768 | assert( pBt!=0 ); |
| 2769 | assert( pBt->pTmpSpace==0 ); |
| 2770 | /* This routine is called only by btreeCursor() when allocating the |
| 2771 | ** first write cursor for the BtShared object */ |
| 2772 | assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); |
| 2773 | pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); |
| 2774 | if( pBt->pTmpSpace==0 ){ |
| 2775 | BtCursor *pCur = pBt->pCursor; |
| 2776 | pBt->pCursor = pCur->pNext; /* Unlink the cursor */ |
| 2777 | memset(pCur, 0, sizeof(*pCur)); |
| 2778 | return SQLITE_NOMEM_BKPT; |
| 2779 | } |
| 2780 | |
| 2781 | /* One of the uses of pBt->pTmpSpace is to format cells before |
| 2782 | ** inserting them into a leaf page (function fillInCell()). If |
| 2783 | ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes |
| 2784 | ** by the various routines that manipulate binary cells. Which |
| 2785 | ** can mean that fillInCell() only initializes the first 2 or 3 |
| 2786 | ** bytes of pTmpSpace, but that the first 4 bytes are copied from |
| 2787 | ** it into a database page. This is not actually a problem, but it |
| 2788 | ** does cause a valgrind error when the 1 or 2 bytes of unitialized |
| 2789 | ** data is passed to system call write(). So to avoid this error, |
| 2790 | ** zero the first 4 bytes of temp space here. |
| 2791 | ** |
| 2792 | ** Also: Provide four bytes of initialized space before the |
| 2793 | ** beginning of pTmpSpace as an area available to prepend the |
| 2794 | ** left-child pointer to the beginning of a cell. |
| 2795 | */ |
| 2796 | memset(pBt->pTmpSpace, 0, 8); |
| 2797 | pBt->pTmpSpace += 4; |
| 2798 | return SQLITE_OK; |
| 2799 | } |
| 2800 | |
| 2801 | /* |
| 2802 | ** Free the pBt->pTmpSpace allocation |
| 2803 | */ |
| 2804 | static void freeTempSpace(BtShared *pBt){ |
| 2805 | if( pBt->pTmpSpace ){ |
| 2806 | pBt->pTmpSpace -= 4; |
| 2807 | sqlite3PageFree(pBt->pTmpSpace); |
| 2808 | pBt->pTmpSpace = 0; |
| 2809 | } |
| 2810 | } |
| 2811 | |
| 2812 | /* |
| 2813 | ** Close an open database and invalidate all cursors. |
| 2814 | */ |
| 2815 | int sqlite3BtreeClose(Btree *p){ |
| 2816 | BtShared *pBt = p->pBt; |
| 2817 | |
| 2818 | /* Close all cursors opened via this handle. */ |
| 2819 | assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2820 | sqlite3BtreeEnter(p); |
| 2821 | |
| 2822 | /* Verify that no other cursors have this Btree open */ |
| 2823 | #ifdef SQLITE_DEBUG |
| 2824 | { |
| 2825 | BtCursor *pCur = pBt->pCursor; |
| 2826 | while( pCur ){ |
| 2827 | BtCursor *pTmp = pCur; |
| 2828 | pCur = pCur->pNext; |
| 2829 | assert( pTmp->pBtree!=p ); |
| 2830 | |
| 2831 | } |
| 2832 | } |
| 2833 | #endif |
| 2834 | |
| 2835 | /* Rollback any active transaction and free the handle structure. |
| 2836 | ** The call to sqlite3BtreeRollback() drops any table-locks held by |
| 2837 | ** this handle. |
| 2838 | */ |
| 2839 | sqlite3BtreeRollback(p, SQLITE_OK, 0); |
| 2840 | sqlite3BtreeLeave(p); |
| 2841 | |
| 2842 | /* If there are still other outstanding references to the shared-btree |
| 2843 | ** structure, return now. The remainder of this procedure cleans |
| 2844 | ** up the shared-btree. |
| 2845 | */ |
| 2846 | assert( p->wantToLock==0 && p->locked==0 ); |
| 2847 | if( !p->sharable || removeFromSharingList(pBt) ){ |
| 2848 | /* The pBt is no longer on the sharing list, so we can access |
| 2849 | ** it without having to hold the mutex. |
| 2850 | ** |
| 2851 | ** Clean out and delete the BtShared object. |
| 2852 | */ |
| 2853 | assert( !pBt->pCursor ); |
| 2854 | sqlite3PagerClose(pBt->pPager, p->db); |
| 2855 | if( pBt->xFreeSchema && pBt->pSchema ){ |
| 2856 | pBt->xFreeSchema(pBt->pSchema); |
| 2857 | } |
| 2858 | sqlite3DbFree(0, pBt->pSchema); |
| 2859 | freeTempSpace(pBt); |
| 2860 | sqlite3_free(pBt); |
| 2861 | } |
| 2862 | |
| 2863 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2864 | assert( p->wantToLock==0 ); |
| 2865 | assert( p->locked==0 ); |
| 2866 | if( p->pPrev ) p->pPrev->pNext = p->pNext; |
| 2867 | if( p->pNext ) p->pNext->pPrev = p->pPrev; |
| 2868 | #endif |
| 2869 | |
| 2870 | sqlite3_free(p); |
| 2871 | return SQLITE_OK; |
| 2872 | } |
| 2873 | |
| 2874 | /* |
| 2875 | ** Change the "soft" limit on the number of pages in the cache. |
| 2876 | ** Unused and unmodified pages will be recycled when the number of |
| 2877 | ** pages in the cache exceeds this soft limit. But the size of the |
| 2878 | ** cache is allowed to grow larger than this limit if it contains |
| 2879 | ** dirty pages or pages still in active use. |
| 2880 | */ |
| 2881 | int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
| 2882 | BtShared *pBt = p->pBt; |
| 2883 | assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2884 | sqlite3BtreeEnter(p); |
| 2885 | sqlite3PagerSetCachesize(pBt->pPager, mxPage); |
| 2886 | sqlite3BtreeLeave(p); |
| 2887 | return SQLITE_OK; |
| 2888 | } |
| 2889 | |
| 2890 | /* |
| 2891 | ** Change the "spill" limit on the number of pages in the cache. |
| 2892 | ** If the number of pages exceeds this limit during a write transaction, |
| 2893 | ** the pager might attempt to "spill" pages to the journal early in |
| 2894 | ** order to free up memory. |
| 2895 | ** |
| 2896 | ** The value returned is the current spill size. If zero is passed |
| 2897 | ** as an argument, no changes are made to the spill size setting, so |
| 2898 | ** using mxPage of 0 is a way to query the current spill size. |
| 2899 | */ |
| 2900 | int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ |
| 2901 | BtShared *pBt = p->pBt; |
| 2902 | int res; |
| 2903 | assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2904 | sqlite3BtreeEnter(p); |
| 2905 | res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); |
| 2906 | sqlite3BtreeLeave(p); |
| 2907 | return res; |
| 2908 | } |
| 2909 | |
| 2910 | #if SQLITE_MAX_MMAP_SIZE>0 |
| 2911 | /* |
| 2912 | ** Change the limit on the amount of the database file that may be |
| 2913 | ** memory mapped. |
| 2914 | */ |
| 2915 | int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ |
| 2916 | BtShared *pBt = p->pBt; |
| 2917 | assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2918 | sqlite3BtreeEnter(p); |
| 2919 | sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); |
| 2920 | sqlite3BtreeLeave(p); |
| 2921 | return SQLITE_OK; |
| 2922 | } |
| 2923 | #endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
| 2924 | |
| 2925 | /* |
| 2926 | ** Change the way data is synced to disk in order to increase or decrease |
| 2927 | ** how well the database resists damage due to OS crashes and power |
| 2928 | ** failures. Level 1 is the same as asynchronous (no syncs() occur and |
| 2929 | ** there is a high probability of damage) Level 2 is the default. There |
| 2930 | ** is a very low but non-zero probability of damage. Level 3 reduces the |
| 2931 | ** probability of damage to near zero but with a write performance reduction. |
| 2932 | */ |
| 2933 | #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| 2934 | int ( |
| 2935 | Btree *p, /* The btree to set the safety level on */ |
| 2936 | unsigned pgFlags /* Various PAGER_* flags */ |
| 2937 | ){ |
| 2938 | BtShared *pBt = p->pBt; |
| 2939 | assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2940 | sqlite3BtreeEnter(p); |
| 2941 | sqlite3PagerSetFlags(pBt->pPager, pgFlags); |
| 2942 | sqlite3BtreeLeave(p); |
| 2943 | return SQLITE_OK; |
| 2944 | } |
| 2945 | #endif |
| 2946 | |
| 2947 | /* |
| 2948 | ** Change the default pages size and the number of reserved bytes per page. |
| 2949 | ** Or, if the page size has already been fixed, return SQLITE_READONLY |
| 2950 | ** without changing anything. |
| 2951 | ** |
| 2952 | ** The page size must be a power of 2 between 512 and 65536. If the page |
| 2953 | ** size supplied does not meet this constraint then the page size is not |
| 2954 | ** changed. |
| 2955 | ** |
| 2956 | ** Page sizes are constrained to be a power of two so that the region |
| 2957 | ** of the database file used for locking (beginning at PENDING_BYTE, |
| 2958 | ** the first byte past the 1GB boundary, 0x40000000) needs to occur |
| 2959 | ** at the beginning of a page. |
| 2960 | ** |
| 2961 | ** If parameter nReserve is less than zero, then the number of reserved |
| 2962 | ** bytes per page is left unchanged. |
| 2963 | ** |
| 2964 | ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size |
| 2965 | ** and autovacuum mode can no longer be changed. |
| 2966 | */ |
| 2967 | int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ |
| 2968 | int rc = SQLITE_OK; |
| 2969 | int x; |
| 2970 | BtShared *pBt = p->pBt; |
| 2971 | assert( nReserve>=0 && nReserve<=255 ); |
| 2972 | sqlite3BtreeEnter(p); |
| 2973 | pBt->nReserveWanted = nReserve; |
| 2974 | x = pBt->pageSize - pBt->usableSize; |
| 2975 | if( nReserve<x ) nReserve = x; |
| 2976 | if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ |
| 2977 | sqlite3BtreeLeave(p); |
| 2978 | return SQLITE_READONLY; |
| 2979 | } |
| 2980 | assert( nReserve>=0 && nReserve<=255 ); |
| 2981 | if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
| 2982 | ((pageSize-1)&pageSize)==0 ){ |
| 2983 | assert( (pageSize & 7)==0 ); |
| 2984 | assert( !pBt->pCursor ); |
| 2985 | if( nReserve>32 && pageSize==512 ) pageSize = 1024; |
| 2986 | pBt->pageSize = (u32)pageSize; |
| 2987 | freeTempSpace(pBt); |
| 2988 | } |
| 2989 | rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| 2990 | pBt->usableSize = pBt->pageSize - (u16)nReserve; |
| 2991 | if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 2992 | sqlite3BtreeLeave(p); |
| 2993 | return rc; |
| 2994 | } |
| 2995 | |
| 2996 | /* |
| 2997 | ** Return the currently defined page size |
| 2998 | */ |
| 2999 | int sqlite3BtreeGetPageSize(Btree *p){ |
| 3000 | return p->pBt->pageSize; |
| 3001 | } |
| 3002 | |
| 3003 | /* |
| 3004 | ** This function is similar to sqlite3BtreeGetReserve(), except that it |
| 3005 | ** may only be called if it is guaranteed that the b-tree mutex is already |
| 3006 | ** held. |
| 3007 | ** |
| 3008 | ** This is useful in one special case in the backup API code where it is |
| 3009 | ** known that the shared b-tree mutex is held, but the mutex on the |
| 3010 | ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() |
| 3011 | ** were to be called, it might collide with some other operation on the |
| 3012 | ** database handle that owns *p, causing undefined behavior. |
| 3013 | */ |
| 3014 | int sqlite3BtreeGetReserveNoMutex(Btree *p){ |
| 3015 | int n; |
| 3016 | assert( sqlite3_mutex_held(p->pBt->mutex) ); |
| 3017 | n = p->pBt->pageSize - p->pBt->usableSize; |
| 3018 | return n; |
| 3019 | } |
| 3020 | |
| 3021 | /* |
| 3022 | ** Return the number of bytes of space at the end of every page that |
| 3023 | ** are intentually left unused. This is the "reserved" space that is |
| 3024 | ** sometimes used by extensions. |
| 3025 | ** |
| 3026 | ** The value returned is the larger of the current reserve size and |
| 3027 | ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. |
| 3028 | ** The amount of reserve can only grow - never shrink. |
| 3029 | */ |
| 3030 | int sqlite3BtreeGetRequestedReserve(Btree *p){ |
| 3031 | int n1, n2; |
| 3032 | sqlite3BtreeEnter(p); |
| 3033 | n1 = (int)p->pBt->nReserveWanted; |
| 3034 | n2 = sqlite3BtreeGetReserveNoMutex(p); |
| 3035 | sqlite3BtreeLeave(p); |
| 3036 | return n1>n2 ? n1 : n2; |
| 3037 | } |
| 3038 | |
| 3039 | |
| 3040 | /* |
| 3041 | ** Set the maximum page count for a database if mxPage is positive. |
| 3042 | ** No changes are made if mxPage is 0 or negative. |
| 3043 | ** Regardless of the value of mxPage, return the maximum page count. |
| 3044 | */ |
| 3045 | Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ |
| 3046 | Pgno n; |
| 3047 | sqlite3BtreeEnter(p); |
| 3048 | n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); |
| 3049 | sqlite3BtreeLeave(p); |
| 3050 | return n; |
| 3051 | } |
| 3052 | |
| 3053 | /* |
| 3054 | ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: |
| 3055 | ** |
| 3056 | ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared |
| 3057 | ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared |
| 3058 | ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set |
| 3059 | ** newFlag==(-1) No changes |
| 3060 | ** |
| 3061 | ** This routine acts as a query if newFlag is less than zero |
| 3062 | ** |
| 3063 | ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but |
| 3064 | ** freelist leaf pages are not written back to the database. Thus in-page |
| 3065 | ** deleted content is cleared, but freelist deleted content is not. |
| 3066 | ** |
| 3067 | ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition |
| 3068 | ** that freelist leaf pages are written back into the database, increasing |
| 3069 | ** the amount of disk I/O. |
| 3070 | */ |
| 3071 | int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ |
| 3072 | int b; |
| 3073 | if( p==0 ) return 0; |
| 3074 | sqlite3BtreeEnter(p); |
| 3075 | assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); |
| 3076 | assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); |
| 3077 | if( newFlag>=0 ){ |
| 3078 | p->pBt->btsFlags &= ~BTS_FAST_SECURE; |
| 3079 | p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; |
| 3080 | } |
| 3081 | b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; |
| 3082 | sqlite3BtreeLeave(p); |
| 3083 | return b; |
| 3084 | } |
| 3085 | |
| 3086 | /* |
| 3087 | ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
| 3088 | ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
| 3089 | ** is disabled. The default value for the auto-vacuum property is |
| 3090 | ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
| 3091 | */ |
| 3092 | int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
| 3093 | #ifdef SQLITE_OMIT_AUTOVACUUM |
| 3094 | return SQLITE_READONLY; |
| 3095 | #else |
| 3096 | BtShared *pBt = p->pBt; |
| 3097 | int rc = SQLITE_OK; |
| 3098 | u8 av = (u8)autoVacuum; |
| 3099 | |
| 3100 | sqlite3BtreeEnter(p); |
| 3101 | if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ |
| 3102 | rc = SQLITE_READONLY; |
| 3103 | }else{ |
| 3104 | pBt->autoVacuum = av ?1:0; |
| 3105 | pBt->incrVacuum = av==2 ?1:0; |
| 3106 | } |
| 3107 | sqlite3BtreeLeave(p); |
| 3108 | return rc; |
| 3109 | #endif |
| 3110 | } |
| 3111 | |
| 3112 | /* |
| 3113 | ** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
| 3114 | ** enabled 1 is returned. Otherwise 0. |
| 3115 | */ |
| 3116 | int sqlite3BtreeGetAutoVacuum(Btree *p){ |
| 3117 | #ifdef SQLITE_OMIT_AUTOVACUUM |
| 3118 | return BTREE_AUTOVACUUM_NONE; |
| 3119 | #else |
| 3120 | int rc; |
| 3121 | sqlite3BtreeEnter(p); |
| 3122 | rc = ( |
| 3123 | (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: |
| 3124 | (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: |
| 3125 | BTREE_AUTOVACUUM_INCR |
| 3126 | ); |
| 3127 | sqlite3BtreeLeave(p); |
| 3128 | return rc; |
| 3129 | #endif |
| 3130 | } |
| 3131 | |
| 3132 | /* |
| 3133 | ** If the user has not set the safety-level for this database connection |
| 3134 | ** using "PRAGMA synchronous", and if the safety-level is not already |
| 3135 | ** set to the value passed to this function as the second parameter, |
| 3136 | ** set it so. |
| 3137 | */ |
| 3138 | #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ |
| 3139 | && !defined(SQLITE_OMIT_WAL) |
| 3140 | static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ |
| 3141 | sqlite3 *db; |
| 3142 | Db *pDb; |
| 3143 | if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ |
| 3144 | while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } |
| 3145 | if( pDb->bSyncSet==0 |
| 3146 | && pDb->safety_level!=safety_level |
| 3147 | && pDb!=&db->aDb[1] |
| 3148 | ){ |
| 3149 | pDb->safety_level = safety_level; |
| 3150 | sqlite3PagerSetFlags(pBt->pPager, |
| 3151 | pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); |
| 3152 | } |
| 3153 | } |
| 3154 | } |
| 3155 | #else |
| 3156 | # define setDefaultSyncFlag(pBt,safety_level) |
| 3157 | #endif |
| 3158 | |
| 3159 | /* Forward declaration */ |
| 3160 | static int newDatabase(BtShared*); |
| 3161 | |
| 3162 | |
| 3163 | /* |
| 3164 | ** Get a reference to pPage1 of the database file. This will |
| 3165 | ** also acquire a readlock on that file. |
| 3166 | ** |
| 3167 | ** SQLITE_OK is returned on success. If the file is not a |
| 3168 | ** well-formed database file, then SQLITE_CORRUPT is returned. |
| 3169 | ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
| 3170 | ** is returned if we run out of memory. |
| 3171 | */ |
| 3172 | static int lockBtree(BtShared *pBt){ |
| 3173 | int rc; /* Result code from subfunctions */ |
| 3174 | MemPage *pPage1; /* Page 1 of the database file */ |
| 3175 | u32 nPage; /* Number of pages in the database */ |
| 3176 | u32 nPageFile = 0; /* Number of pages in the database file */ |
| 3177 | |
| 3178 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3179 | assert( pBt->pPage1==0 ); |
| 3180 | rc = sqlite3PagerSharedLock(pBt->pPager); |
| 3181 | if( rc!=SQLITE_OK ) return rc; |
| 3182 | rc = btreeGetPage(pBt, 1, &pPage1, 0); |
| 3183 | if( rc!=SQLITE_OK ) return rc; |
| 3184 | |
| 3185 | /* Do some checking to help insure the file we opened really is |
| 3186 | ** a valid database file. |
| 3187 | */ |
| 3188 | nPage = get4byte(28+(u8*)pPage1->aData); |
| 3189 | sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); |
| 3190 | if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ |
| 3191 | nPage = nPageFile; |
| 3192 | } |
| 3193 | if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ |
| 3194 | nPage = 0; |
| 3195 | } |
| 3196 | if( nPage>0 ){ |
| 3197 | u32 pageSize; |
| 3198 | u32 usableSize; |
| 3199 | u8 *page1 = pPage1->aData; |
| 3200 | rc = SQLITE_NOTADB; |
| 3201 | /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins |
| 3202 | ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d |
| 3203 | ** 61 74 20 33 00. */ |
| 3204 | if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
| 3205 | goto page1_init_failed; |
| 3206 | } |
| 3207 | |
| 3208 | #ifdef SQLITE_OMIT_WAL |
| 3209 | if( page1[18]>1 ){ |
| 3210 | pBt->btsFlags |= BTS_READ_ONLY; |
| 3211 | } |
| 3212 | if( page1[19]>1 ){ |
| 3213 | goto page1_init_failed; |
| 3214 | } |
| 3215 | #else |
| 3216 | if( page1[18]>2 ){ |
| 3217 | pBt->btsFlags |= BTS_READ_ONLY; |
| 3218 | } |
| 3219 | if( page1[19]>2 ){ |
| 3220 | goto page1_init_failed; |
| 3221 | } |
| 3222 | |
| 3223 | /* If the read version is set to 2, this database should be accessed |
| 3224 | ** in WAL mode. If the log is not already open, open it now. Then |
| 3225 | ** return SQLITE_OK and return without populating BtShared.pPage1. |
| 3226 | ** The caller detects this and calls this function again. This is |
| 3227 | ** required as the version of page 1 currently in the page1 buffer |
| 3228 | ** may not be the latest version - there may be a newer one in the log |
| 3229 | ** file. |
| 3230 | */ |
| 3231 | if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ |
| 3232 | int isOpen = 0; |
| 3233 | rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); |
| 3234 | if( rc!=SQLITE_OK ){ |
| 3235 | goto page1_init_failed; |
| 3236 | }else{ |
| 3237 | setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); |
| 3238 | if( isOpen==0 ){ |
| 3239 | releasePageOne(pPage1); |
| 3240 | return SQLITE_OK; |
| 3241 | } |
| 3242 | } |
| 3243 | rc = SQLITE_NOTADB; |
| 3244 | }else{ |
| 3245 | setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); |
| 3246 | } |
| 3247 | #endif |
| 3248 | |
| 3249 | /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload |
| 3250 | ** fractions and the leaf payload fraction values must be 64, 32, and 32. |
| 3251 | ** |
| 3252 | ** The original design allowed these amounts to vary, but as of |
| 3253 | ** version 3.6.0, we require them to be fixed. |
| 3254 | */ |
| 3255 | if( memcmp(&page1[21], "\100\040\040" ,3)!=0 ){ |
| 3256 | goto page1_init_failed; |
| 3257 | } |
| 3258 | /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
| 3259 | ** determined by the 2-byte integer located at an offset of 16 bytes from |
| 3260 | ** the beginning of the database file. */ |
| 3261 | pageSize = (page1[16]<<8) | (page1[17]<<16); |
| 3262 | /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two |
| 3263 | ** between 512 and 65536 inclusive. */ |
| 3264 | if( ((pageSize-1)&pageSize)!=0 |
| 3265 | || pageSize>SQLITE_MAX_PAGE_SIZE |
| 3266 | || pageSize<=256 |
| 3267 | ){ |
| 3268 | goto page1_init_failed; |
| 3269 | } |
| 3270 | pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 3271 | assert( (pageSize & 7)==0 ); |
| 3272 | /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte |
| 3273 | ** integer at offset 20 is the number of bytes of space at the end of |
| 3274 | ** each page to reserve for extensions. |
| 3275 | ** |
| 3276 | ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
| 3277 | ** determined by the one-byte unsigned integer found at an offset of 20 |
| 3278 | ** into the database file header. */ |
| 3279 | usableSize = pageSize - page1[20]; |
| 3280 | if( (u32)pageSize!=pBt->pageSize ){ |
| 3281 | /* After reading the first page of the database assuming a page size |
| 3282 | ** of BtShared.pageSize, we have discovered that the page-size is |
| 3283 | ** actually pageSize. Unlock the database, leave pBt->pPage1 at |
| 3284 | ** zero and return SQLITE_OK. The caller will call this function |
| 3285 | ** again with the correct page-size. |
| 3286 | */ |
| 3287 | releasePageOne(pPage1); |
| 3288 | pBt->usableSize = usableSize; |
| 3289 | pBt->pageSize = pageSize; |
| 3290 | freeTempSpace(pBt); |
| 3291 | rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, |
| 3292 | pageSize-usableSize); |
| 3293 | return rc; |
| 3294 | } |
| 3295 | if( nPage>nPageFile ){ |
| 3296 | if( sqlite3WritableSchema(pBt->db)==0 ){ |
| 3297 | rc = SQLITE_CORRUPT_BKPT; |
| 3298 | goto page1_init_failed; |
| 3299 | }else{ |
| 3300 | nPage = nPageFile; |
| 3301 | } |
| 3302 | } |
| 3303 | /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to |
| 3304 | ** be less than 480. In other words, if the page size is 512, then the |
| 3305 | ** reserved space size cannot exceed 32. */ |
| 3306 | if( usableSize<480 ){ |
| 3307 | goto page1_init_failed; |
| 3308 | } |
| 3309 | pBt->pageSize = pageSize; |
| 3310 | pBt->usableSize = usableSize; |
| 3311 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3312 | pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
| 3313 | pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); |
| 3314 | #endif |
| 3315 | } |
| 3316 | |
| 3317 | /* maxLocal is the maximum amount of payload to store locally for |
| 3318 | ** a cell. Make sure it is small enough so that at least minFanout |
| 3319 | ** cells can will fit on one page. We assume a 10-byte page header. |
| 3320 | ** Besides the payload, the cell must store: |
| 3321 | ** 2-byte pointer to the cell |
| 3322 | ** 4-byte child pointer |
| 3323 | ** 9-byte nKey value |
| 3324 | ** 4-byte nData value |
| 3325 | ** 4-byte overflow page pointer |
| 3326 | ** So a cell consists of a 2-byte pointer, a header which is as much as |
| 3327 | ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
| 3328 | ** page pointer. |
| 3329 | */ |
| 3330 | pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); |
| 3331 | pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); |
| 3332 | pBt->maxLeaf = (u16)(pBt->usableSize - 35); |
| 3333 | pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); |
| 3334 | if( pBt->maxLocal>127 ){ |
| 3335 | pBt->max1bytePayload = 127; |
| 3336 | }else{ |
| 3337 | pBt->max1bytePayload = (u8)pBt->maxLocal; |
| 3338 | } |
| 3339 | assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
| 3340 | pBt->pPage1 = pPage1; |
| 3341 | pBt->nPage = nPage; |
| 3342 | return SQLITE_OK; |
| 3343 | |
| 3344 | page1_init_failed: |
| 3345 | releasePageOne(pPage1); |
| 3346 | pBt->pPage1 = 0; |
| 3347 | return rc; |
| 3348 | } |
| 3349 | |
| 3350 | #ifndef NDEBUG |
| 3351 | /* |
| 3352 | ** Return the number of cursors open on pBt. This is for use |
| 3353 | ** in assert() expressions, so it is only compiled if NDEBUG is not |
| 3354 | ** defined. |
| 3355 | ** |
| 3356 | ** Only write cursors are counted if wrOnly is true. If wrOnly is |
| 3357 | ** false then all cursors are counted. |
| 3358 | ** |
| 3359 | ** For the purposes of this routine, a cursor is any cursor that |
| 3360 | ** is capable of reading or writing to the database. Cursors that |
| 3361 | ** have been tripped into the CURSOR_FAULT state are not counted. |
| 3362 | */ |
| 3363 | static int countValidCursors(BtShared *pBt, int wrOnly){ |
| 3364 | BtCursor *pCur; |
| 3365 | int r = 0; |
| 3366 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
| 3367 | if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) |
| 3368 | && pCur->eState!=CURSOR_FAULT ) r++; |
| 3369 | } |
| 3370 | return r; |
| 3371 | } |
| 3372 | #endif |
| 3373 | |
| 3374 | /* |
| 3375 | ** If there are no outstanding cursors and we are not in the middle |
| 3376 | ** of a transaction but there is a read lock on the database, then |
| 3377 | ** this routine unrefs the first page of the database file which |
| 3378 | ** has the effect of releasing the read lock. |
| 3379 | ** |
| 3380 | ** If there is a transaction in progress, this routine is a no-op. |
| 3381 | */ |
| 3382 | static void unlockBtreeIfUnused(BtShared *pBt){ |
| 3383 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3384 | assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); |
| 3385 | if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ |
| 3386 | MemPage *pPage1 = pBt->pPage1; |
| 3387 | assert( pPage1->aData ); |
| 3388 | assert( sqlite3PagerRefcount(pBt->pPager)==1 ); |
| 3389 | pBt->pPage1 = 0; |
| 3390 | releasePageOne(pPage1); |
| 3391 | } |
| 3392 | } |
| 3393 | |
| 3394 | /* |
| 3395 | ** If pBt points to an empty file then convert that empty file |
| 3396 | ** into a new empty database by initializing the first page of |
| 3397 | ** the database. |
| 3398 | */ |
| 3399 | static int newDatabase(BtShared *pBt){ |
| 3400 | MemPage *pP1; |
| 3401 | unsigned char *data; |
| 3402 | int rc; |
| 3403 | |
| 3404 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3405 | if( pBt->nPage>0 ){ |
| 3406 | return SQLITE_OK; |
| 3407 | } |
| 3408 | pP1 = pBt->pPage1; |
| 3409 | assert( pP1!=0 ); |
| 3410 | data = pP1->aData; |
| 3411 | rc = sqlite3PagerWrite(pP1->pDbPage); |
| 3412 | if( rc ) return rc; |
| 3413 | memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
| 3414 | assert( sizeof(zMagicHeader)==16 ); |
| 3415 | data[16] = (u8)((pBt->pageSize>>8)&0xff); |
| 3416 | data[17] = (u8)((pBt->pageSize>>16)&0xff); |
| 3417 | data[18] = 1; |
| 3418 | data[19] = 1; |
| 3419 | assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); |
| 3420 | data[20] = (u8)(pBt->pageSize - pBt->usableSize); |
| 3421 | data[21] = 64; |
| 3422 | data[22] = 32; |
| 3423 | data[23] = 32; |
| 3424 | memset(&data[24], 0, 100-24); |
| 3425 | zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
| 3426 | pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 3427 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3428 | assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); |
| 3429 | assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); |
| 3430 | put4byte(&data[36 + 4*4], pBt->autoVacuum); |
| 3431 | put4byte(&data[36 + 7*4], pBt->incrVacuum); |
| 3432 | #endif |
| 3433 | pBt->nPage = 1; |
| 3434 | data[31] = 1; |
| 3435 | return SQLITE_OK; |
| 3436 | } |
| 3437 | |
| 3438 | /* |
| 3439 | ** Initialize the first page of the database file (creating a database |
| 3440 | ** consisting of a single page and no schema objects). Return SQLITE_OK |
| 3441 | ** if successful, or an SQLite error code otherwise. |
| 3442 | */ |
| 3443 | int sqlite3BtreeNewDb(Btree *p){ |
| 3444 | int rc; |
| 3445 | sqlite3BtreeEnter(p); |
| 3446 | p->pBt->nPage = 0; |
| 3447 | rc = newDatabase(p->pBt); |
| 3448 | sqlite3BtreeLeave(p); |
| 3449 | return rc; |
| 3450 | } |
| 3451 | |
| 3452 | /* |
| 3453 | ** Attempt to start a new transaction. A write-transaction |
| 3454 | ** is started if the second argument is nonzero, otherwise a read- |
| 3455 | ** transaction. If the second argument is 2 or more and exclusive |
| 3456 | ** transaction is started, meaning that no other process is allowed |
| 3457 | ** to access the database. A preexisting transaction may not be |
| 3458 | ** upgraded to exclusive by calling this routine a second time - the |
| 3459 | ** exclusivity flag only works for a new transaction. |
| 3460 | ** |
| 3461 | ** A write-transaction must be started before attempting any |
| 3462 | ** changes to the database. None of the following routines |
| 3463 | ** will work unless a transaction is started first: |
| 3464 | ** |
| 3465 | ** sqlite3BtreeCreateTable() |
| 3466 | ** sqlite3BtreeCreateIndex() |
| 3467 | ** sqlite3BtreeClearTable() |
| 3468 | ** sqlite3BtreeDropTable() |
| 3469 | ** sqlite3BtreeInsert() |
| 3470 | ** sqlite3BtreeDelete() |
| 3471 | ** sqlite3BtreeUpdateMeta() |
| 3472 | ** |
| 3473 | ** If an initial attempt to acquire the lock fails because of lock contention |
| 3474 | ** and the database was previously unlocked, then invoke the busy handler |
| 3475 | ** if there is one. But if there was previously a read-lock, do not |
| 3476 | ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
| 3477 | ** returned when there is already a read-lock in order to avoid a deadlock. |
| 3478 | ** |
| 3479 | ** Suppose there are two processes A and B. A has a read lock and B has |
| 3480 | ** a reserved lock. B tries to promote to exclusive but is blocked because |
| 3481 | ** of A's read lock. A tries to promote to reserved but is blocked by B. |
| 3482 | ** One or the other of the two processes must give way or there can be |
| 3483 | ** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
| 3484 | ** when A already has a read lock, we encourage A to give up and let B |
| 3485 | ** proceed. |
| 3486 | */ |
| 3487 | int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ |
| 3488 | BtShared *pBt = p->pBt; |
| 3489 | Pager * = pBt->pPager; |
| 3490 | int rc = SQLITE_OK; |
| 3491 | |
| 3492 | sqlite3BtreeEnter(p); |
| 3493 | btreeIntegrity(p); |
| 3494 | |
| 3495 | /* If the btree is already in a write-transaction, or it |
| 3496 | ** is already in a read-transaction and a read-transaction |
| 3497 | ** is requested, this is a no-op. |
| 3498 | */ |
| 3499 | if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
| 3500 | goto trans_begun; |
| 3501 | } |
| 3502 | assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); |
| 3503 | |
| 3504 | if( (p->db->flags & SQLITE_ResetDatabase) |
| 3505 | && sqlite3PagerIsreadonly(pPager)==0 |
| 3506 | ){ |
| 3507 | pBt->btsFlags &= ~BTS_READ_ONLY; |
| 3508 | } |
| 3509 | |
| 3510 | /* Write transactions are not possible on a read-only database */ |
| 3511 | if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ |
| 3512 | rc = SQLITE_READONLY; |
| 3513 | goto trans_begun; |
| 3514 | } |
| 3515 | |
| 3516 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 3517 | { |
| 3518 | sqlite3 *pBlock = 0; |
| 3519 | /* If another database handle has already opened a write transaction |
| 3520 | ** on this shared-btree structure and a second write transaction is |
| 3521 | ** requested, return SQLITE_LOCKED. |
| 3522 | */ |
| 3523 | if( (wrflag && pBt->inTransaction==TRANS_WRITE) |
| 3524 | || (pBt->btsFlags & BTS_PENDING)!=0 |
| 3525 | ){ |
| 3526 | pBlock = pBt->pWriter->db; |
| 3527 | }else if( wrflag>1 ){ |
| 3528 | BtLock *pIter; |
| 3529 | for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 3530 | if( pIter->pBtree!=p ){ |
| 3531 | pBlock = pIter->pBtree->db; |
| 3532 | break; |
| 3533 | } |
| 3534 | } |
| 3535 | } |
| 3536 | if( pBlock ){ |
| 3537 | sqlite3ConnectionBlocked(p->db, pBlock); |
| 3538 | rc = SQLITE_LOCKED_SHAREDCACHE; |
| 3539 | goto trans_begun; |
| 3540 | } |
| 3541 | } |
| 3542 | #endif |
| 3543 | |
| 3544 | /* Any read-only or read-write transaction implies a read-lock on |
| 3545 | ** page 1. So if some other shared-cache client already has a write-lock |
| 3546 | ** on page 1, the transaction cannot be opened. */ |
| 3547 | rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); |
| 3548 | if( SQLITE_OK!=rc ) goto trans_begun; |
| 3549 | |
| 3550 | pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; |
| 3551 | if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; |
| 3552 | do { |
| 3553 | sqlite3PagerWalDb(pPager, p->db); |
| 3554 | |
| 3555 | #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| 3556 | /* If transitioning from no transaction directly to a write transaction, |
| 3557 | ** block for the WRITER lock first if possible. */ |
| 3558 | if( pBt->pPage1==0 && wrflag ){ |
| 3559 | assert( pBt->inTransaction==TRANS_NONE ); |
| 3560 | rc = sqlite3PagerWalWriteLock(pPager, 1); |
| 3561 | if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; |
| 3562 | } |
| 3563 | #endif |
| 3564 | |
| 3565 | /* Call lockBtree() until either pBt->pPage1 is populated or |
| 3566 | ** lockBtree() returns something other than SQLITE_OK. lockBtree() |
| 3567 | ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after |
| 3568 | ** reading page 1 it discovers that the page-size of the database |
| 3569 | ** file is not pBt->pageSize. In this case lockBtree() will update |
| 3570 | ** pBt->pageSize to the page-size of the file on disk. |
| 3571 | */ |
| 3572 | while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); |
| 3573 | |
| 3574 | if( rc==SQLITE_OK && wrflag ){ |
| 3575 | if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ |
| 3576 | rc = SQLITE_READONLY; |
| 3577 | }else{ |
| 3578 | rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); |
| 3579 | if( rc==SQLITE_OK ){ |
| 3580 | rc = newDatabase(pBt); |
| 3581 | }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ |
| 3582 | /* if there was no transaction opened when this function was |
| 3583 | ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error |
| 3584 | ** code to SQLITE_BUSY. */ |
| 3585 | rc = SQLITE_BUSY; |
| 3586 | } |
| 3587 | } |
| 3588 | } |
| 3589 | |
| 3590 | if( rc!=SQLITE_OK ){ |
| 3591 | (void)sqlite3PagerWalWriteLock(pPager, 0); |
| 3592 | unlockBtreeIfUnused(pBt); |
| 3593 | } |
| 3594 | }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
| 3595 | btreeInvokeBusyHandler(pBt) ); |
| 3596 | sqlite3PagerWalDb(pPager, 0); |
| 3597 | #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| 3598 | if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; |
| 3599 | #endif |
| 3600 | |
| 3601 | if( rc==SQLITE_OK ){ |
| 3602 | if( p->inTrans==TRANS_NONE ){ |
| 3603 | pBt->nTransaction++; |
| 3604 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 3605 | if( p->sharable ){ |
| 3606 | assert( p->lock.pBtree==p && p->lock.iTable==1 ); |
| 3607 | p->lock.eLock = READ_LOCK; |
| 3608 | p->lock.pNext = pBt->pLock; |
| 3609 | pBt->pLock = &p->lock; |
| 3610 | } |
| 3611 | #endif |
| 3612 | } |
| 3613 | p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
| 3614 | if( p->inTrans>pBt->inTransaction ){ |
| 3615 | pBt->inTransaction = p->inTrans; |
| 3616 | } |
| 3617 | if( wrflag ){ |
| 3618 | MemPage *pPage1 = pBt->pPage1; |
| 3619 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 3620 | assert( !pBt->pWriter ); |
| 3621 | pBt->pWriter = p; |
| 3622 | pBt->btsFlags &= ~BTS_EXCLUSIVE; |
| 3623 | if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; |
| 3624 | #endif |
| 3625 | |
| 3626 | /* If the db-size header field is incorrect (as it may be if an old |
| 3627 | ** client has been writing the database file), update it now. Doing |
| 3628 | ** this sooner rather than later means the database size can safely |
| 3629 | ** re-read the database size from page 1 if a savepoint or transaction |
| 3630 | ** rollback occurs within the transaction. |
| 3631 | */ |
| 3632 | if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ |
| 3633 | rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 3634 | if( rc==SQLITE_OK ){ |
| 3635 | put4byte(&pPage1->aData[28], pBt->nPage); |
| 3636 | } |
| 3637 | } |
| 3638 | } |
| 3639 | } |
| 3640 | |
| 3641 | trans_begun: |
| 3642 | if( rc==SQLITE_OK ){ |
| 3643 | if( pSchemaVersion ){ |
| 3644 | *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); |
| 3645 | } |
| 3646 | if( wrflag ){ |
| 3647 | /* This call makes sure that the pager has the correct number of |
| 3648 | ** open savepoints. If the second parameter is greater than 0 and |
| 3649 | ** the sub-journal is not already open, then it will be opened here. |
| 3650 | */ |
| 3651 | rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); |
| 3652 | } |
| 3653 | } |
| 3654 | |
| 3655 | btreeIntegrity(p); |
| 3656 | sqlite3BtreeLeave(p); |
| 3657 | return rc; |
| 3658 | } |
| 3659 | |
| 3660 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3661 | |
| 3662 | /* |
| 3663 | ** Set the pointer-map entries for all children of page pPage. Also, if |
| 3664 | ** pPage contains cells that point to overflow pages, set the pointer |
| 3665 | ** map entries for the overflow pages as well. |
| 3666 | */ |
| 3667 | static int setChildPtrmaps(MemPage *pPage){ |
| 3668 | int i; /* Counter variable */ |
| 3669 | int nCell; /* Number of cells in page pPage */ |
| 3670 | int rc; /* Return code */ |
| 3671 | BtShared *pBt = pPage->pBt; |
| 3672 | Pgno pgno = pPage->pgno; |
| 3673 | |
| 3674 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 3675 | rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); |
| 3676 | if( rc!=SQLITE_OK ) return rc; |
| 3677 | nCell = pPage->nCell; |
| 3678 | |
| 3679 | for(i=0; i<nCell; i++){ |
| 3680 | u8 *pCell = findCell(pPage, i); |
| 3681 | |
| 3682 | ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); |
| 3683 | |
| 3684 | if( !pPage->leaf ){ |
| 3685 | Pgno childPgno = get4byte(pCell); |
| 3686 | ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| 3687 | } |
| 3688 | } |
| 3689 | |
| 3690 | if( !pPage->leaf ){ |
| 3691 | Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 3692 | ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| 3693 | } |
| 3694 | |
| 3695 | return rc; |
| 3696 | } |
| 3697 | |
| 3698 | /* |
| 3699 | ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so |
| 3700 | ** that it points to iTo. Parameter eType describes the type of pointer to |
| 3701 | ** be modified, as follows: |
| 3702 | ** |
| 3703 | ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
| 3704 | ** page of pPage. |
| 3705 | ** |
| 3706 | ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
| 3707 | ** page pointed to by one of the cells on pPage. |
| 3708 | ** |
| 3709 | ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
| 3710 | ** overflow page in the list. |
| 3711 | */ |
| 3712 | static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
| 3713 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 3714 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 3715 | if( eType==PTRMAP_OVERFLOW2 ){ |
| 3716 | /* The pointer is always the first 4 bytes of the page in this case. */ |
| 3717 | if( get4byte(pPage->aData)!=iFrom ){ |
| 3718 | return SQLITE_CORRUPT_PAGE(pPage); |
| 3719 | } |
| 3720 | put4byte(pPage->aData, iTo); |
| 3721 | }else{ |
| 3722 | int i; |
| 3723 | int nCell; |
| 3724 | int rc; |
| 3725 | |
| 3726 | rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); |
| 3727 | if( rc ) return rc; |
| 3728 | nCell = pPage->nCell; |
| 3729 | |
| 3730 | for(i=0; i<nCell; i++){ |
| 3731 | u8 *pCell = findCell(pPage, i); |
| 3732 | if( eType==PTRMAP_OVERFLOW1 ){ |
| 3733 | CellInfo info; |
| 3734 | pPage->xParseCell(pPage, pCell, &info); |
| 3735 | if( info.nLocal<info.nPayload ){ |
| 3736 | if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ |
| 3737 | return SQLITE_CORRUPT_PAGE(pPage); |
| 3738 | } |
| 3739 | if( iFrom==get4byte(pCell+info.nSize-4) ){ |
| 3740 | put4byte(pCell+info.nSize-4, iTo); |
| 3741 | break; |
| 3742 | } |
| 3743 | } |
| 3744 | }else{ |
| 3745 | if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){ |
| 3746 | return SQLITE_CORRUPT_PAGE(pPage); |
| 3747 | } |
| 3748 | if( get4byte(pCell)==iFrom ){ |
| 3749 | put4byte(pCell, iTo); |
| 3750 | break; |
| 3751 | } |
| 3752 | } |
| 3753 | } |
| 3754 | |
| 3755 | if( i==nCell ){ |
| 3756 | if( eType!=PTRMAP_BTREE || |
| 3757 | get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
| 3758 | return SQLITE_CORRUPT_PAGE(pPage); |
| 3759 | } |
| 3760 | put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
| 3761 | } |
| 3762 | } |
| 3763 | return SQLITE_OK; |
| 3764 | } |
| 3765 | |
| 3766 | |
| 3767 | /* |
| 3768 | ** Move the open database page pDbPage to location iFreePage in the |
| 3769 | ** database. The pDbPage reference remains valid. |
| 3770 | ** |
| 3771 | ** The isCommit flag indicates that there is no need to remember that |
| 3772 | ** the journal needs to be sync()ed before database page pDbPage->pgno |
| 3773 | ** can be written to. The caller has already promised not to write to that |
| 3774 | ** page. |
| 3775 | */ |
| 3776 | static int relocatePage( |
| 3777 | BtShared *pBt, /* Btree */ |
| 3778 | MemPage *pDbPage, /* Open page to move */ |
| 3779 | u8 eType, /* Pointer map 'type' entry for pDbPage */ |
| 3780 | Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
| 3781 | Pgno iFreePage, /* The location to move pDbPage to */ |
| 3782 | int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ |
| 3783 | ){ |
| 3784 | MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
| 3785 | Pgno iDbPage = pDbPage->pgno; |
| 3786 | Pager * = pBt->pPager; |
| 3787 | int rc; |
| 3788 | |
| 3789 | assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
| 3790 | eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
| 3791 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3792 | assert( pDbPage->pBt==pBt ); |
| 3793 | if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; |
| 3794 | |
| 3795 | /* Move page iDbPage from its current location to page number iFreePage */ |
| 3796 | TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n" , |
| 3797 | iDbPage, iFreePage, iPtrPage, eType)); |
| 3798 | rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); |
| 3799 | if( rc!=SQLITE_OK ){ |
| 3800 | return rc; |
| 3801 | } |
| 3802 | pDbPage->pgno = iFreePage; |
| 3803 | |
| 3804 | /* If pDbPage was a btree-page, then it may have child pages and/or cells |
| 3805 | ** that point to overflow pages. The pointer map entries for all these |
| 3806 | ** pages need to be changed. |
| 3807 | ** |
| 3808 | ** If pDbPage is an overflow page, then the first 4 bytes may store a |
| 3809 | ** pointer to a subsequent overflow page. If this is the case, then |
| 3810 | ** the pointer map needs to be updated for the subsequent overflow page. |
| 3811 | */ |
| 3812 | if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
| 3813 | rc = setChildPtrmaps(pDbPage); |
| 3814 | if( rc!=SQLITE_OK ){ |
| 3815 | return rc; |
| 3816 | } |
| 3817 | }else{ |
| 3818 | Pgno nextOvfl = get4byte(pDbPage->aData); |
| 3819 | if( nextOvfl!=0 ){ |
| 3820 | ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); |
| 3821 | if( rc!=SQLITE_OK ){ |
| 3822 | return rc; |
| 3823 | } |
| 3824 | } |
| 3825 | } |
| 3826 | |
| 3827 | /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
| 3828 | ** that it points at iFreePage. Also fix the pointer map entry for |
| 3829 | ** iPtrPage. |
| 3830 | */ |
| 3831 | if( eType!=PTRMAP_ROOTPAGE ){ |
| 3832 | rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); |
| 3833 | if( rc!=SQLITE_OK ){ |
| 3834 | return rc; |
| 3835 | } |
| 3836 | rc = sqlite3PagerWrite(pPtrPage->pDbPage); |
| 3837 | if( rc!=SQLITE_OK ){ |
| 3838 | releasePage(pPtrPage); |
| 3839 | return rc; |
| 3840 | } |
| 3841 | rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
| 3842 | releasePage(pPtrPage); |
| 3843 | if( rc==SQLITE_OK ){ |
| 3844 | ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); |
| 3845 | } |
| 3846 | } |
| 3847 | return rc; |
| 3848 | } |
| 3849 | |
| 3850 | /* Forward declaration required by incrVacuumStep(). */ |
| 3851 | static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
| 3852 | |
| 3853 | /* |
| 3854 | ** Perform a single step of an incremental-vacuum. If successful, return |
| 3855 | ** SQLITE_OK. If there is no work to do (and therefore no point in |
| 3856 | ** calling this function again), return SQLITE_DONE. Or, if an error |
| 3857 | ** occurs, return some other error code. |
| 3858 | ** |
| 3859 | ** More specifically, this function attempts to re-organize the database so |
| 3860 | ** that the last page of the file currently in use is no longer in use. |
| 3861 | ** |
| 3862 | ** Parameter nFin is the number of pages that this database would contain |
| 3863 | ** were this function called until it returns SQLITE_DONE. |
| 3864 | ** |
| 3865 | ** If the bCommit parameter is non-zero, this function assumes that the |
| 3866 | ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE |
| 3867 | ** or an error. bCommit is passed true for an auto-vacuum-on-commit |
| 3868 | ** operation, or false for an incremental vacuum. |
| 3869 | */ |
| 3870 | static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ |
| 3871 | Pgno nFreeList; /* Number of pages still on the free-list */ |
| 3872 | int rc; |
| 3873 | |
| 3874 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3875 | assert( iLastPg>nFin ); |
| 3876 | |
| 3877 | if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ |
| 3878 | u8 eType; |
| 3879 | Pgno iPtrPage; |
| 3880 | |
| 3881 | nFreeList = get4byte(&pBt->pPage1->aData[36]); |
| 3882 | if( nFreeList==0 ){ |
| 3883 | return SQLITE_DONE; |
| 3884 | } |
| 3885 | |
| 3886 | rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); |
| 3887 | if( rc!=SQLITE_OK ){ |
| 3888 | return rc; |
| 3889 | } |
| 3890 | if( eType==PTRMAP_ROOTPAGE ){ |
| 3891 | return SQLITE_CORRUPT_BKPT; |
| 3892 | } |
| 3893 | |
| 3894 | if( eType==PTRMAP_FREEPAGE ){ |
| 3895 | if( bCommit==0 ){ |
| 3896 | /* Remove the page from the files free-list. This is not required |
| 3897 | ** if bCommit is non-zero. In that case, the free-list will be |
| 3898 | ** truncated to zero after this function returns, so it doesn't |
| 3899 | ** matter if it still contains some garbage entries. |
| 3900 | */ |
| 3901 | Pgno iFreePg; |
| 3902 | MemPage *pFreePg; |
| 3903 | rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); |
| 3904 | if( rc!=SQLITE_OK ){ |
| 3905 | return rc; |
| 3906 | } |
| 3907 | assert( iFreePg==iLastPg ); |
| 3908 | releasePage(pFreePg); |
| 3909 | } |
| 3910 | } else { |
| 3911 | Pgno iFreePg; /* Index of free page to move pLastPg to */ |
| 3912 | MemPage *pLastPg; |
| 3913 | u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ |
| 3914 | Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ |
| 3915 | |
| 3916 | rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); |
| 3917 | if( rc!=SQLITE_OK ){ |
| 3918 | return rc; |
| 3919 | } |
| 3920 | |
| 3921 | /* If bCommit is zero, this loop runs exactly once and page pLastPg |
| 3922 | ** is swapped with the first free page pulled off the free list. |
| 3923 | ** |
| 3924 | ** On the other hand, if bCommit is greater than zero, then keep |
| 3925 | ** looping until a free-page located within the first nFin pages |
| 3926 | ** of the file is found. |
| 3927 | */ |
| 3928 | if( bCommit==0 ){ |
| 3929 | eMode = BTALLOC_LE; |
| 3930 | iNear = nFin; |
| 3931 | } |
| 3932 | do { |
| 3933 | MemPage *pFreePg; |
| 3934 | Pgno dbSize = btreePagecount(pBt); |
| 3935 | rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); |
| 3936 | if( rc!=SQLITE_OK ){ |
| 3937 | releasePage(pLastPg); |
| 3938 | return rc; |
| 3939 | } |
| 3940 | releasePage(pFreePg); |
| 3941 | if( iFreePg>dbSize ){ |
| 3942 | releasePage(pLastPg); |
| 3943 | return SQLITE_CORRUPT_BKPT; |
| 3944 | } |
| 3945 | }while( bCommit && iFreePg>nFin ); |
| 3946 | assert( iFreePg<iLastPg ); |
| 3947 | |
| 3948 | rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); |
| 3949 | releasePage(pLastPg); |
| 3950 | if( rc!=SQLITE_OK ){ |
| 3951 | return rc; |
| 3952 | } |
| 3953 | } |
| 3954 | } |
| 3955 | |
| 3956 | if( bCommit==0 ){ |
| 3957 | do { |
| 3958 | iLastPg--; |
| 3959 | }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); |
| 3960 | pBt->bDoTruncate = 1; |
| 3961 | pBt->nPage = iLastPg; |
| 3962 | } |
| 3963 | return SQLITE_OK; |
| 3964 | } |
| 3965 | |
| 3966 | /* |
| 3967 | ** The database opened by the first argument is an auto-vacuum database |
| 3968 | ** nOrig pages in size containing nFree free pages. Return the expected |
| 3969 | ** size of the database in pages following an auto-vacuum operation. |
| 3970 | */ |
| 3971 | static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ |
| 3972 | int nEntry; /* Number of entries on one ptrmap page */ |
| 3973 | Pgno nPtrmap; /* Number of PtrMap pages to be freed */ |
| 3974 | Pgno nFin; /* Return value */ |
| 3975 | |
| 3976 | nEntry = pBt->usableSize/5; |
| 3977 | nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; |
| 3978 | nFin = nOrig - nFree - nPtrmap; |
| 3979 | if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ |
| 3980 | nFin--; |
| 3981 | } |
| 3982 | while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ |
| 3983 | nFin--; |
| 3984 | } |
| 3985 | |
| 3986 | return nFin; |
| 3987 | } |
| 3988 | |
| 3989 | /* |
| 3990 | ** A write-transaction must be opened before calling this function. |
| 3991 | ** It performs a single unit of work towards an incremental vacuum. |
| 3992 | ** |
| 3993 | ** If the incremental vacuum is finished after this function has run, |
| 3994 | ** SQLITE_DONE is returned. If it is not finished, but no error occurred, |
| 3995 | ** SQLITE_OK is returned. Otherwise an SQLite error code. |
| 3996 | */ |
| 3997 | int sqlite3BtreeIncrVacuum(Btree *p){ |
| 3998 | int rc; |
| 3999 | BtShared *pBt = p->pBt; |
| 4000 | |
| 4001 | sqlite3BtreeEnter(p); |
| 4002 | assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); |
| 4003 | if( !pBt->autoVacuum ){ |
| 4004 | rc = SQLITE_DONE; |
| 4005 | }else{ |
| 4006 | Pgno nOrig = btreePagecount(pBt); |
| 4007 | Pgno nFree = get4byte(&pBt->pPage1->aData[36]); |
| 4008 | Pgno nFin = finalDbSize(pBt, nOrig, nFree); |
| 4009 | |
| 4010 | if( nOrig<nFin || nFree>=nOrig ){ |
| 4011 | rc = SQLITE_CORRUPT_BKPT; |
| 4012 | }else if( nFree>0 ){ |
| 4013 | rc = saveAllCursors(pBt, 0, 0); |
| 4014 | if( rc==SQLITE_OK ){ |
| 4015 | invalidateAllOverflowCache(pBt); |
| 4016 | rc = incrVacuumStep(pBt, nFin, nOrig, 0); |
| 4017 | } |
| 4018 | if( rc==SQLITE_OK ){ |
| 4019 | rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 4020 | put4byte(&pBt->pPage1->aData[28], pBt->nPage); |
| 4021 | } |
| 4022 | }else{ |
| 4023 | rc = SQLITE_DONE; |
| 4024 | } |
| 4025 | } |
| 4026 | sqlite3BtreeLeave(p); |
| 4027 | return rc; |
| 4028 | } |
| 4029 | |
| 4030 | /* |
| 4031 | ** This routine is called prior to sqlite3PagerCommit when a transaction |
| 4032 | ** is committed for an auto-vacuum database. |
| 4033 | */ |
| 4034 | static int autoVacuumCommit(Btree *p){ |
| 4035 | int rc = SQLITE_OK; |
| 4036 | Pager *; |
| 4037 | BtShared *pBt; |
| 4038 | sqlite3 *db; |
| 4039 | VVA_ONLY( int nRef ); |
| 4040 | |
| 4041 | assert( p!=0 ); |
| 4042 | pBt = p->pBt; |
| 4043 | pPager = pBt->pPager; |
| 4044 | VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) |
| 4045 | |
| 4046 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 4047 | invalidateAllOverflowCache(pBt); |
| 4048 | assert(pBt->autoVacuum); |
| 4049 | if( !pBt->incrVacuum ){ |
| 4050 | Pgno nFin; /* Number of pages in database after autovacuuming */ |
| 4051 | Pgno nFree; /* Number of pages on the freelist initially */ |
| 4052 | Pgno nVac; /* Number of pages to vacuum */ |
| 4053 | Pgno iFree; /* The next page to be freed */ |
| 4054 | Pgno nOrig; /* Database size before freeing */ |
| 4055 | |
| 4056 | nOrig = btreePagecount(pBt); |
| 4057 | if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ |
| 4058 | /* It is not possible to create a database for which the final page |
| 4059 | ** is either a pointer-map page or the pending-byte page. If one |
| 4060 | ** is encountered, this indicates corruption. |
| 4061 | */ |
| 4062 | return SQLITE_CORRUPT_BKPT; |
| 4063 | } |
| 4064 | |
| 4065 | nFree = get4byte(&pBt->pPage1->aData[36]); |
| 4066 | db = p->db; |
| 4067 | if( db->xAutovacPages ){ |
| 4068 | int iDb; |
| 4069 | for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ |
| 4070 | if( db->aDb[iDb].pBt==p ) break; |
| 4071 | } |
| 4072 | nVac = db->xAutovacPages( |
| 4073 | db->pAutovacPagesArg, |
| 4074 | db->aDb[iDb].zDbSName, |
| 4075 | nOrig, |
| 4076 | nFree, |
| 4077 | pBt->pageSize |
| 4078 | ); |
| 4079 | if( nVac>nFree ){ |
| 4080 | nVac = nFree; |
| 4081 | } |
| 4082 | if( nVac==0 ){ |
| 4083 | return SQLITE_OK; |
| 4084 | } |
| 4085 | }else{ |
| 4086 | nVac = nFree; |
| 4087 | } |
| 4088 | nFin = finalDbSize(pBt, nOrig, nVac); |
| 4089 | if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; |
| 4090 | if( nFin<nOrig ){ |
| 4091 | rc = saveAllCursors(pBt, 0, 0); |
| 4092 | } |
| 4093 | for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ |
| 4094 | rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); |
| 4095 | } |
| 4096 | if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ |
| 4097 | rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 4098 | if( nVac==nFree ){ |
| 4099 | put4byte(&pBt->pPage1->aData[32], 0); |
| 4100 | put4byte(&pBt->pPage1->aData[36], 0); |
| 4101 | } |
| 4102 | put4byte(&pBt->pPage1->aData[28], nFin); |
| 4103 | pBt->bDoTruncate = 1; |
| 4104 | pBt->nPage = nFin; |
| 4105 | } |
| 4106 | if( rc!=SQLITE_OK ){ |
| 4107 | sqlite3PagerRollback(pPager); |
| 4108 | } |
| 4109 | } |
| 4110 | |
| 4111 | assert( nRef>=sqlite3PagerRefcount(pPager) ); |
| 4112 | return rc; |
| 4113 | } |
| 4114 | |
| 4115 | #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ |
| 4116 | # define setChildPtrmaps(x) SQLITE_OK |
| 4117 | #endif |
| 4118 | |
| 4119 | /* |
| 4120 | ** This routine does the first phase of a two-phase commit. This routine |
| 4121 | ** causes a rollback journal to be created (if it does not already exist) |
| 4122 | ** and populated with enough information so that if a power loss occurs |
| 4123 | ** the database can be restored to its original state by playing back |
| 4124 | ** the journal. Then the contents of the journal are flushed out to |
| 4125 | ** the disk. After the journal is safely on oxide, the changes to the |
| 4126 | ** database are written into the database file and flushed to oxide. |
| 4127 | ** At the end of this call, the rollback journal still exists on the |
| 4128 | ** disk and we are still holding all locks, so the transaction has not |
| 4129 | ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the |
| 4130 | ** commit process. |
| 4131 | ** |
| 4132 | ** This call is a no-op if no write-transaction is currently active on pBt. |
| 4133 | ** |
| 4134 | ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to |
| 4135 | ** the name of a super-journal file that should be written into the |
| 4136 | ** individual journal file, or is NULL, indicating no super-journal file |
| 4137 | ** (single database transaction). |
| 4138 | ** |
| 4139 | ** When this is called, the super-journal should already have been |
| 4140 | ** created, populated with this journal pointer and synced to disk. |
| 4141 | ** |
| 4142 | ** Once this is routine has returned, the only thing required to commit |
| 4143 | ** the write-transaction for this database file is to delete the journal. |
| 4144 | */ |
| 4145 | int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ |
| 4146 | int rc = SQLITE_OK; |
| 4147 | if( p->inTrans==TRANS_WRITE ){ |
| 4148 | BtShared *pBt = p->pBt; |
| 4149 | sqlite3BtreeEnter(p); |
| 4150 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 4151 | if( pBt->autoVacuum ){ |
| 4152 | rc = autoVacuumCommit(p); |
| 4153 | if( rc!=SQLITE_OK ){ |
| 4154 | sqlite3BtreeLeave(p); |
| 4155 | return rc; |
| 4156 | } |
| 4157 | } |
| 4158 | if( pBt->bDoTruncate ){ |
| 4159 | sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); |
| 4160 | } |
| 4161 | #endif |
| 4162 | rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); |
| 4163 | sqlite3BtreeLeave(p); |
| 4164 | } |
| 4165 | return rc; |
| 4166 | } |
| 4167 | |
| 4168 | /* |
| 4169 | ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() |
| 4170 | ** at the conclusion of a transaction. |
| 4171 | */ |
| 4172 | static void btreeEndTransaction(Btree *p){ |
| 4173 | BtShared *pBt = p->pBt; |
| 4174 | sqlite3 *db = p->db; |
| 4175 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 4176 | |
| 4177 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 4178 | pBt->bDoTruncate = 0; |
| 4179 | #endif |
| 4180 | if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ |
| 4181 | /* If there are other active statements that belong to this database |
| 4182 | ** handle, downgrade to a read-only transaction. The other statements |
| 4183 | ** may still be reading from the database. */ |
| 4184 | downgradeAllSharedCacheTableLocks(p); |
| 4185 | p->inTrans = TRANS_READ; |
| 4186 | }else{ |
| 4187 | /* If the handle had any kind of transaction open, decrement the |
| 4188 | ** transaction count of the shared btree. If the transaction count |
| 4189 | ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() |
| 4190 | ** call below will unlock the pager. */ |
| 4191 | if( p->inTrans!=TRANS_NONE ){ |
| 4192 | clearAllSharedCacheTableLocks(p); |
| 4193 | pBt->nTransaction--; |
| 4194 | if( 0==pBt->nTransaction ){ |
| 4195 | pBt->inTransaction = TRANS_NONE; |
| 4196 | } |
| 4197 | } |
| 4198 | |
| 4199 | /* Set the current transaction state to TRANS_NONE and unlock the |
| 4200 | ** pager if this call closed the only read or write transaction. */ |
| 4201 | p->inTrans = TRANS_NONE; |
| 4202 | unlockBtreeIfUnused(pBt); |
| 4203 | } |
| 4204 | |
| 4205 | btreeIntegrity(p); |
| 4206 | } |
| 4207 | |
| 4208 | /* |
| 4209 | ** Commit the transaction currently in progress. |
| 4210 | ** |
| 4211 | ** This routine implements the second phase of a 2-phase commit. The |
| 4212 | ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should |
| 4213 | ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() |
| 4214 | ** routine did all the work of writing information out to disk and flushing the |
| 4215 | ** contents so that they are written onto the disk platter. All this |
| 4216 | ** routine has to do is delete or truncate or zero the header in the |
| 4217 | ** the rollback journal (which causes the transaction to commit) and |
| 4218 | ** drop locks. |
| 4219 | ** |
| 4220 | ** Normally, if an error occurs while the pager layer is attempting to |
| 4221 | ** finalize the underlying journal file, this function returns an error and |
| 4222 | ** the upper layer will attempt a rollback. However, if the second argument |
| 4223 | ** is non-zero then this b-tree transaction is part of a multi-file |
| 4224 | ** transaction. In this case, the transaction has already been committed |
| 4225 | ** (by deleting a super-journal file) and the caller will ignore this |
| 4226 | ** functions return code. So, even if an error occurs in the pager layer, |
| 4227 | ** reset the b-tree objects internal state to indicate that the write |
| 4228 | ** transaction has been closed. This is quite safe, as the pager will have |
| 4229 | ** transitioned to the error state. |
| 4230 | ** |
| 4231 | ** This will release the write lock on the database file. If there |
| 4232 | ** are no active cursors, it also releases the read lock. |
| 4233 | */ |
| 4234 | int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ |
| 4235 | |
| 4236 | if( p->inTrans==TRANS_NONE ) return SQLITE_OK; |
| 4237 | sqlite3BtreeEnter(p); |
| 4238 | btreeIntegrity(p); |
| 4239 | |
| 4240 | /* If the handle has a write-transaction open, commit the shared-btrees |
| 4241 | ** transaction and set the shared state to TRANS_READ. |
| 4242 | */ |
| 4243 | if( p->inTrans==TRANS_WRITE ){ |
| 4244 | int rc; |
| 4245 | BtShared *pBt = p->pBt; |
| 4246 | assert( pBt->inTransaction==TRANS_WRITE ); |
| 4247 | assert( pBt->nTransaction>0 ); |
| 4248 | rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); |
| 4249 | if( rc!=SQLITE_OK && bCleanup==0 ){ |
| 4250 | sqlite3BtreeLeave(p); |
| 4251 | return rc; |
| 4252 | } |
| 4253 | p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ |
| 4254 | pBt->inTransaction = TRANS_READ; |
| 4255 | btreeClearHasContent(pBt); |
| 4256 | } |
| 4257 | |
| 4258 | btreeEndTransaction(p); |
| 4259 | sqlite3BtreeLeave(p); |
| 4260 | return SQLITE_OK; |
| 4261 | } |
| 4262 | |
| 4263 | /* |
| 4264 | ** Do both phases of a commit. |
| 4265 | */ |
| 4266 | int sqlite3BtreeCommit(Btree *p){ |
| 4267 | int rc; |
| 4268 | sqlite3BtreeEnter(p); |
| 4269 | rc = sqlite3BtreeCommitPhaseOne(p, 0); |
| 4270 | if( rc==SQLITE_OK ){ |
| 4271 | rc = sqlite3BtreeCommitPhaseTwo(p, 0); |
| 4272 | } |
| 4273 | sqlite3BtreeLeave(p); |
| 4274 | return rc; |
| 4275 | } |
| 4276 | |
| 4277 | /* |
| 4278 | ** This routine sets the state to CURSOR_FAULT and the error |
| 4279 | ** code to errCode for every cursor on any BtShared that pBtree |
| 4280 | ** references. Or if the writeOnly flag is set to 1, then only |
| 4281 | ** trip write cursors and leave read cursors unchanged. |
| 4282 | ** |
| 4283 | ** Every cursor is a candidate to be tripped, including cursors |
| 4284 | ** that belong to other database connections that happen to be |
| 4285 | ** sharing the cache with pBtree. |
| 4286 | ** |
| 4287 | ** This routine gets called when a rollback occurs. If the writeOnly |
| 4288 | ** flag is true, then only write-cursors need be tripped - read-only |
| 4289 | ** cursors save their current positions so that they may continue |
| 4290 | ** following the rollback. Or, if writeOnly is false, all cursors are |
| 4291 | ** tripped. In general, writeOnly is false if the transaction being |
| 4292 | ** rolled back modified the database schema. In this case b-tree root |
| 4293 | ** pages may be moved or deleted from the database altogether, making |
| 4294 | ** it unsafe for read cursors to continue. |
| 4295 | ** |
| 4296 | ** If the writeOnly flag is true and an error is encountered while |
| 4297 | ** saving the current position of a read-only cursor, all cursors, |
| 4298 | ** including all read-cursors are tripped. |
| 4299 | ** |
| 4300 | ** SQLITE_OK is returned if successful, or if an error occurs while |
| 4301 | ** saving a cursor position, an SQLite error code. |
| 4302 | */ |
| 4303 | int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ |
| 4304 | BtCursor *p; |
| 4305 | int rc = SQLITE_OK; |
| 4306 | |
| 4307 | assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); |
| 4308 | if( pBtree ){ |
| 4309 | sqlite3BtreeEnter(pBtree); |
| 4310 | for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 4311 | if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ |
| 4312 | if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
| 4313 | rc = saveCursorPosition(p); |
| 4314 | if( rc!=SQLITE_OK ){ |
| 4315 | (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); |
| 4316 | break; |
| 4317 | } |
| 4318 | } |
| 4319 | }else{ |
| 4320 | sqlite3BtreeClearCursor(p); |
| 4321 | p->eState = CURSOR_FAULT; |
| 4322 | p->skipNext = errCode; |
| 4323 | } |
| 4324 | btreeReleaseAllCursorPages(p); |
| 4325 | } |
| 4326 | sqlite3BtreeLeave(pBtree); |
| 4327 | } |
| 4328 | return rc; |
| 4329 | } |
| 4330 | |
| 4331 | /* |
| 4332 | ** Set the pBt->nPage field correctly, according to the current |
| 4333 | ** state of the database. Assume pBt->pPage1 is valid. |
| 4334 | */ |
| 4335 | static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ |
| 4336 | int nPage = get4byte(&pPage1->aData[28]); |
| 4337 | testcase( nPage==0 ); |
| 4338 | if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); |
| 4339 | testcase( pBt->nPage!=(u32)nPage ); |
| 4340 | pBt->nPage = nPage; |
| 4341 | } |
| 4342 | |
| 4343 | /* |
| 4344 | ** Rollback the transaction in progress. |
| 4345 | ** |
| 4346 | ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). |
| 4347 | ** Only write cursors are tripped if writeOnly is true but all cursors are |
| 4348 | ** tripped if writeOnly is false. Any attempt to use |
| 4349 | ** a tripped cursor will result in an error. |
| 4350 | ** |
| 4351 | ** This will release the write lock on the database file. If there |
| 4352 | ** are no active cursors, it also releases the read lock. |
| 4353 | */ |
| 4354 | int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ |
| 4355 | int rc; |
| 4356 | BtShared *pBt = p->pBt; |
| 4357 | MemPage *pPage1; |
| 4358 | |
| 4359 | assert( writeOnly==1 || writeOnly==0 ); |
| 4360 | assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); |
| 4361 | sqlite3BtreeEnter(p); |
| 4362 | if( tripCode==SQLITE_OK ){ |
| 4363 | rc = tripCode = saveAllCursors(pBt, 0, 0); |
| 4364 | if( rc ) writeOnly = 0; |
| 4365 | }else{ |
| 4366 | rc = SQLITE_OK; |
| 4367 | } |
| 4368 | if( tripCode ){ |
| 4369 | int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); |
| 4370 | assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); |
| 4371 | if( rc2!=SQLITE_OK ) rc = rc2; |
| 4372 | } |
| 4373 | btreeIntegrity(p); |
| 4374 | |
| 4375 | if( p->inTrans==TRANS_WRITE ){ |
| 4376 | int rc2; |
| 4377 | |
| 4378 | assert( TRANS_WRITE==pBt->inTransaction ); |
| 4379 | rc2 = sqlite3PagerRollback(pBt->pPager); |
| 4380 | if( rc2!=SQLITE_OK ){ |
| 4381 | rc = rc2; |
| 4382 | } |
| 4383 | |
| 4384 | /* The rollback may have destroyed the pPage1->aData value. So |
| 4385 | ** call btreeGetPage() on page 1 again to make |
| 4386 | ** sure pPage1->aData is set correctly. */ |
| 4387 | if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ |
| 4388 | btreeSetNPage(pBt, pPage1); |
| 4389 | releasePageOne(pPage1); |
| 4390 | } |
| 4391 | assert( countValidCursors(pBt, 1)==0 ); |
| 4392 | pBt->inTransaction = TRANS_READ; |
| 4393 | btreeClearHasContent(pBt); |
| 4394 | } |
| 4395 | |
| 4396 | btreeEndTransaction(p); |
| 4397 | sqlite3BtreeLeave(p); |
| 4398 | return rc; |
| 4399 | } |
| 4400 | |
| 4401 | /* |
| 4402 | ** Start a statement subtransaction. The subtransaction can be rolled |
| 4403 | ** back independently of the main transaction. You must start a transaction |
| 4404 | ** before starting a subtransaction. The subtransaction is ended automatically |
| 4405 | ** if the main transaction commits or rolls back. |
| 4406 | ** |
| 4407 | ** Statement subtransactions are used around individual SQL statements |
| 4408 | ** that are contained within a BEGIN...COMMIT block. If a constraint |
| 4409 | ** error occurs within the statement, the effect of that one statement |
| 4410 | ** can be rolled back without having to rollback the entire transaction. |
| 4411 | ** |
| 4412 | ** A statement sub-transaction is implemented as an anonymous savepoint. The |
| 4413 | ** value passed as the second parameter is the total number of savepoints, |
| 4414 | ** including the new anonymous savepoint, open on the B-Tree. i.e. if there |
| 4415 | ** are no active savepoints and no other statement-transactions open, |
| 4416 | ** iStatement is 1. This anonymous savepoint can be released or rolled back |
| 4417 | ** using the sqlite3BtreeSavepoint() function. |
| 4418 | */ |
| 4419 | int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ |
| 4420 | int rc; |
| 4421 | BtShared *pBt = p->pBt; |
| 4422 | sqlite3BtreeEnter(p); |
| 4423 | assert( p->inTrans==TRANS_WRITE ); |
| 4424 | assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 4425 | assert( iStatement>0 ); |
| 4426 | assert( iStatement>p->db->nSavepoint ); |
| 4427 | assert( pBt->inTransaction==TRANS_WRITE ); |
| 4428 | /* At the pager level, a statement transaction is a savepoint with |
| 4429 | ** an index greater than all savepoints created explicitly using |
| 4430 | ** SQL statements. It is illegal to open, release or rollback any |
| 4431 | ** such savepoints while the statement transaction savepoint is active. |
| 4432 | */ |
| 4433 | rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); |
| 4434 | sqlite3BtreeLeave(p); |
| 4435 | return rc; |
| 4436 | } |
| 4437 | |
| 4438 | /* |
| 4439 | ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK |
| 4440 | ** or SAVEPOINT_RELEASE. This function either releases or rolls back the |
| 4441 | ** savepoint identified by parameter iSavepoint, depending on the value |
| 4442 | ** of op. |
| 4443 | ** |
| 4444 | ** Normally, iSavepoint is greater than or equal to zero. However, if op is |
| 4445 | ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the |
| 4446 | ** contents of the entire transaction are rolled back. This is different |
| 4447 | ** from a normal transaction rollback, as no locks are released and the |
| 4448 | ** transaction remains open. |
| 4449 | */ |
| 4450 | int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ |
| 4451 | int rc = SQLITE_OK; |
| 4452 | if( p && p->inTrans==TRANS_WRITE ){ |
| 4453 | BtShared *pBt = p->pBt; |
| 4454 | assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); |
| 4455 | assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); |
| 4456 | sqlite3BtreeEnter(p); |
| 4457 | if( op==SAVEPOINT_ROLLBACK ){ |
| 4458 | rc = saveAllCursors(pBt, 0, 0); |
| 4459 | } |
| 4460 | if( rc==SQLITE_OK ){ |
| 4461 | rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); |
| 4462 | } |
| 4463 | if( rc==SQLITE_OK ){ |
| 4464 | if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ |
| 4465 | pBt->nPage = 0; |
| 4466 | } |
| 4467 | rc = newDatabase(pBt); |
| 4468 | btreeSetNPage(pBt, pBt->pPage1); |
| 4469 | |
| 4470 | /* pBt->nPage might be zero if the database was corrupt when |
| 4471 | ** the transaction was started. Otherwise, it must be at least 1. */ |
| 4472 | assert( CORRUPT_DB || pBt->nPage>0 ); |
| 4473 | } |
| 4474 | sqlite3BtreeLeave(p); |
| 4475 | } |
| 4476 | return rc; |
| 4477 | } |
| 4478 | |
| 4479 | /* |
| 4480 | ** Create a new cursor for the BTree whose root is on the page |
| 4481 | ** iTable. If a read-only cursor is requested, it is assumed that |
| 4482 | ** the caller already has at least a read-only transaction open |
| 4483 | ** on the database already. If a write-cursor is requested, then |
| 4484 | ** the caller is assumed to have an open write transaction. |
| 4485 | ** |
| 4486 | ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only |
| 4487 | ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor |
| 4488 | ** can be used for reading or for writing if other conditions for writing |
| 4489 | ** are also met. These are the conditions that must be met in order |
| 4490 | ** for writing to be allowed: |
| 4491 | ** |
| 4492 | ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR |
| 4493 | ** |
| 4494 | ** 2: Other database connections that share the same pager cache |
| 4495 | ** but which are not in the READ_UNCOMMITTED state may not have |
| 4496 | ** cursors open with wrFlag==0 on the same table. Otherwise |
| 4497 | ** the changes made by this write cursor would be visible to |
| 4498 | ** the read cursors in the other database connection. |
| 4499 | ** |
| 4500 | ** 3: The database must be writable (not on read-only media) |
| 4501 | ** |
| 4502 | ** 4: There must be an active transaction. |
| 4503 | ** |
| 4504 | ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR |
| 4505 | ** is set. If FORDELETE is set, that is a hint to the implementation that |
| 4506 | ** this cursor will only be used to seek to and delete entries of an index |
| 4507 | ** as part of a larger DELETE statement. The FORDELETE hint is not used by |
| 4508 | ** this implementation. But in a hypothetical alternative storage engine |
| 4509 | ** in which index entries are automatically deleted when corresponding table |
| 4510 | ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE |
| 4511 | ** operations on this cursor can be no-ops and all READ operations can |
| 4512 | ** return a null row (2-bytes: 0x01 0x00). |
| 4513 | ** |
| 4514 | ** No checking is done to make sure that page iTable really is the |
| 4515 | ** root page of a b-tree. If it is not, then the cursor acquired |
| 4516 | ** will not work correctly. |
| 4517 | ** |
| 4518 | ** It is assumed that the sqlite3BtreeCursorZero() has been called |
| 4519 | ** on pCur to initialize the memory space prior to invoking this routine. |
| 4520 | */ |
| 4521 | static int btreeCursor( |
| 4522 | Btree *p, /* The btree */ |
| 4523 | Pgno iTable, /* Root page of table to open */ |
| 4524 | int wrFlag, /* 1 to write. 0 read-only */ |
| 4525 | struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
| 4526 | BtCursor *pCur /* Space for new cursor */ |
| 4527 | ){ |
| 4528 | BtShared *pBt = p->pBt; /* Shared b-tree handle */ |
| 4529 | BtCursor *pX; /* Looping over other all cursors */ |
| 4530 | |
| 4531 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 4532 | assert( wrFlag==0 |
| 4533 | || wrFlag==BTREE_WRCSR |
| 4534 | || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) |
| 4535 | ); |
| 4536 | |
| 4537 | /* The following assert statements verify that if this is a sharable |
| 4538 | ** b-tree database, the connection is holding the required table locks, |
| 4539 | ** and that no other connection has any open cursor that conflicts with |
| 4540 | ** this lock. The iTable<1 term disables the check for corrupt schemas. */ |
| 4541 | assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) |
| 4542 | || iTable<1 ); |
| 4543 | assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); |
| 4544 | |
| 4545 | /* Assert that the caller has opened the required transaction. */ |
| 4546 | assert( p->inTrans>TRANS_NONE ); |
| 4547 | assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); |
| 4548 | assert( pBt->pPage1 && pBt->pPage1->aData ); |
| 4549 | assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 4550 | |
| 4551 | if( iTable<=1 ){ |
| 4552 | if( iTable<1 ){ |
| 4553 | return SQLITE_CORRUPT_BKPT; |
| 4554 | }else if( btreePagecount(pBt)==0 ){ |
| 4555 | assert( wrFlag==0 ); |
| 4556 | iTable = 0; |
| 4557 | } |
| 4558 | } |
| 4559 | |
| 4560 | /* Now that no other errors can occur, finish filling in the BtCursor |
| 4561 | ** variables and link the cursor into the BtShared list. */ |
| 4562 | pCur->pgnoRoot = iTable; |
| 4563 | pCur->iPage = -1; |
| 4564 | pCur->pKeyInfo = pKeyInfo; |
| 4565 | pCur->pBtree = p; |
| 4566 | pCur->pBt = pBt; |
| 4567 | pCur->curFlags = 0; |
| 4568 | /* If there are two or more cursors on the same btree, then all such |
| 4569 | ** cursors *must* have the BTCF_Multiple flag set. */ |
| 4570 | for(pX=pBt->pCursor; pX; pX=pX->pNext){ |
| 4571 | if( pX->pgnoRoot==iTable ){ |
| 4572 | pX->curFlags |= BTCF_Multiple; |
| 4573 | pCur->curFlags = BTCF_Multiple; |
| 4574 | } |
| 4575 | } |
| 4576 | pCur->eState = CURSOR_INVALID; |
| 4577 | pCur->pNext = pBt->pCursor; |
| 4578 | pBt->pCursor = pCur; |
| 4579 | if( wrFlag ){ |
| 4580 | pCur->curFlags |= BTCF_WriteFlag; |
| 4581 | pCur->curPagerFlags = 0; |
| 4582 | if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); |
| 4583 | }else{ |
| 4584 | pCur->curPagerFlags = PAGER_GET_READONLY; |
| 4585 | } |
| 4586 | return SQLITE_OK; |
| 4587 | } |
| 4588 | static int btreeCursorWithLock( |
| 4589 | Btree *p, /* The btree */ |
| 4590 | Pgno iTable, /* Root page of table to open */ |
| 4591 | int wrFlag, /* 1 to write. 0 read-only */ |
| 4592 | struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
| 4593 | BtCursor *pCur /* Space for new cursor */ |
| 4594 | ){ |
| 4595 | int rc; |
| 4596 | sqlite3BtreeEnter(p); |
| 4597 | rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
| 4598 | sqlite3BtreeLeave(p); |
| 4599 | return rc; |
| 4600 | } |
| 4601 | int sqlite3BtreeCursor( |
| 4602 | Btree *p, /* The btree */ |
| 4603 | Pgno iTable, /* Root page of table to open */ |
| 4604 | int wrFlag, /* 1 to write. 0 read-only */ |
| 4605 | struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
| 4606 | BtCursor *pCur /* Write new cursor here */ |
| 4607 | ){ |
| 4608 | if( p->sharable ){ |
| 4609 | return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); |
| 4610 | }else{ |
| 4611 | return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
| 4612 | } |
| 4613 | } |
| 4614 | |
| 4615 | /* |
| 4616 | ** Return the size of a BtCursor object in bytes. |
| 4617 | ** |
| 4618 | ** This interfaces is needed so that users of cursors can preallocate |
| 4619 | ** sufficient storage to hold a cursor. The BtCursor object is opaque |
| 4620 | ** to users so they cannot do the sizeof() themselves - they must call |
| 4621 | ** this routine. |
| 4622 | */ |
| 4623 | int sqlite3BtreeCursorSize(void){ |
| 4624 | return ROUND8(sizeof(BtCursor)); |
| 4625 | } |
| 4626 | |
| 4627 | /* |
| 4628 | ** Initialize memory that will be converted into a BtCursor object. |
| 4629 | ** |
| 4630 | ** The simple approach here would be to memset() the entire object |
| 4631 | ** to zero. But it turns out that the apPage[] and aiIdx[] arrays |
| 4632 | ** do not need to be zeroed and they are large, so we can save a lot |
| 4633 | ** of run-time by skipping the initialization of those elements. |
| 4634 | */ |
| 4635 | void sqlite3BtreeCursorZero(BtCursor *p){ |
| 4636 | memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); |
| 4637 | } |
| 4638 | |
| 4639 | /* |
| 4640 | ** Close a cursor. The read lock on the database file is released |
| 4641 | ** when the last cursor is closed. |
| 4642 | */ |
| 4643 | int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
| 4644 | Btree *pBtree = pCur->pBtree; |
| 4645 | if( pBtree ){ |
| 4646 | BtShared *pBt = pCur->pBt; |
| 4647 | sqlite3BtreeEnter(pBtree); |
| 4648 | assert( pBt->pCursor!=0 ); |
| 4649 | if( pBt->pCursor==pCur ){ |
| 4650 | pBt->pCursor = pCur->pNext; |
| 4651 | }else{ |
| 4652 | BtCursor *pPrev = pBt->pCursor; |
| 4653 | do{ |
| 4654 | if( pPrev->pNext==pCur ){ |
| 4655 | pPrev->pNext = pCur->pNext; |
| 4656 | break; |
| 4657 | } |
| 4658 | pPrev = pPrev->pNext; |
| 4659 | }while( ALWAYS(pPrev) ); |
| 4660 | } |
| 4661 | btreeReleaseAllCursorPages(pCur); |
| 4662 | unlockBtreeIfUnused(pBt); |
| 4663 | sqlite3_free(pCur->aOverflow); |
| 4664 | sqlite3_free(pCur->pKey); |
| 4665 | if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ |
| 4666 | /* Since the BtShared is not sharable, there is no need to |
| 4667 | ** worry about the missing sqlite3BtreeLeave() call here. */ |
| 4668 | assert( pBtree->sharable==0 ); |
| 4669 | sqlite3BtreeClose(pBtree); |
| 4670 | }else{ |
| 4671 | sqlite3BtreeLeave(pBtree); |
| 4672 | } |
| 4673 | pCur->pBtree = 0; |
| 4674 | } |
| 4675 | return SQLITE_OK; |
| 4676 | } |
| 4677 | |
| 4678 | /* |
| 4679 | ** Make sure the BtCursor* given in the argument has a valid |
| 4680 | ** BtCursor.info structure. If it is not already valid, call |
| 4681 | ** btreeParseCell() to fill it in. |
| 4682 | ** |
| 4683 | ** BtCursor.info is a cache of the information in the current cell. |
| 4684 | ** Using this cache reduces the number of calls to btreeParseCell(). |
| 4685 | */ |
| 4686 | #ifndef NDEBUG |
| 4687 | static int cellInfoEqual(CellInfo *a, CellInfo *b){ |
| 4688 | if( a->nKey!=b->nKey ) return 0; |
| 4689 | if( a->pPayload!=b->pPayload ) return 0; |
| 4690 | if( a->nPayload!=b->nPayload ) return 0; |
| 4691 | if( a->nLocal!=b->nLocal ) return 0; |
| 4692 | if( a->nSize!=b->nSize ) return 0; |
| 4693 | return 1; |
| 4694 | } |
| 4695 | static void assertCellInfo(BtCursor *pCur){ |
| 4696 | CellInfo info; |
| 4697 | memset(&info, 0, sizeof(info)); |
| 4698 | btreeParseCell(pCur->pPage, pCur->ix, &info); |
| 4699 | assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); |
| 4700 | } |
| 4701 | #else |
| 4702 | #define assertCellInfo(x) |
| 4703 | #endif |
| 4704 | static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ |
| 4705 | if( pCur->info.nSize==0 ){ |
| 4706 | pCur->curFlags |= BTCF_ValidNKey; |
| 4707 | btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); |
| 4708 | }else{ |
| 4709 | assertCellInfo(pCur); |
| 4710 | } |
| 4711 | } |
| 4712 | |
| 4713 | #ifndef NDEBUG /* The next routine used only within assert() statements */ |
| 4714 | /* |
| 4715 | ** Return true if the given BtCursor is valid. A valid cursor is one |
| 4716 | ** that is currently pointing to a row in a (non-empty) table. |
| 4717 | ** This is a verification routine is used only within assert() statements. |
| 4718 | */ |
| 4719 | int sqlite3BtreeCursorIsValid(BtCursor *pCur){ |
| 4720 | return pCur && pCur->eState==CURSOR_VALID; |
| 4721 | } |
| 4722 | #endif /* NDEBUG */ |
| 4723 | int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ |
| 4724 | assert( pCur!=0 ); |
| 4725 | return pCur->eState==CURSOR_VALID; |
| 4726 | } |
| 4727 | |
| 4728 | /* |
| 4729 | ** Return the value of the integer key or "rowid" for a table btree. |
| 4730 | ** This routine is only valid for a cursor that is pointing into a |
| 4731 | ** ordinary table btree. If the cursor points to an index btree or |
| 4732 | ** is invalid, the result of this routine is undefined. |
| 4733 | */ |
| 4734 | i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ |
| 4735 | assert( cursorHoldsMutex(pCur) ); |
| 4736 | assert( pCur->eState==CURSOR_VALID ); |
| 4737 | assert( pCur->curIntKey ); |
| 4738 | getCellInfo(pCur); |
| 4739 | return pCur->info.nKey; |
| 4740 | } |
| 4741 | |
| 4742 | /* |
| 4743 | ** Pin or unpin a cursor. |
| 4744 | */ |
| 4745 | void sqlite3BtreeCursorPin(BtCursor *pCur){ |
| 4746 | assert( (pCur->curFlags & BTCF_Pinned)==0 ); |
| 4747 | pCur->curFlags |= BTCF_Pinned; |
| 4748 | } |
| 4749 | void sqlite3BtreeCursorUnpin(BtCursor *pCur){ |
| 4750 | assert( (pCur->curFlags & BTCF_Pinned)!=0 ); |
| 4751 | pCur->curFlags &= ~BTCF_Pinned; |
| 4752 | } |
| 4753 | |
| 4754 | #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC |
| 4755 | /* |
| 4756 | ** Return the offset into the database file for the start of the |
| 4757 | ** payload to which the cursor is pointing. |
| 4758 | */ |
| 4759 | i64 sqlite3BtreeOffset(BtCursor *pCur){ |
| 4760 | assert( cursorHoldsMutex(pCur) ); |
| 4761 | assert( pCur->eState==CURSOR_VALID ); |
| 4762 | getCellInfo(pCur); |
| 4763 | return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + |
| 4764 | (i64)(pCur->info.pPayload - pCur->pPage->aData); |
| 4765 | } |
| 4766 | #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ |
| 4767 | |
| 4768 | /* |
| 4769 | ** Return the number of bytes of payload for the entry that pCur is |
| 4770 | ** currently pointing to. For table btrees, this will be the amount |
| 4771 | ** of data. For index btrees, this will be the size of the key. |
| 4772 | ** |
| 4773 | ** The caller must guarantee that the cursor is pointing to a non-NULL |
| 4774 | ** valid entry. In other words, the calling procedure must guarantee |
| 4775 | ** that the cursor has Cursor.eState==CURSOR_VALID. |
| 4776 | */ |
| 4777 | u32 sqlite3BtreePayloadSize(BtCursor *pCur){ |
| 4778 | assert( cursorHoldsMutex(pCur) ); |
| 4779 | assert( pCur->eState==CURSOR_VALID ); |
| 4780 | getCellInfo(pCur); |
| 4781 | return pCur->info.nPayload; |
| 4782 | } |
| 4783 | |
| 4784 | /* |
| 4785 | ** Return an upper bound on the size of any record for the table |
| 4786 | ** that the cursor is pointing into. |
| 4787 | ** |
| 4788 | ** This is an optimization. Everything will still work if this |
| 4789 | ** routine always returns 2147483647 (which is the largest record |
| 4790 | ** that SQLite can handle) or more. But returning a smaller value might |
| 4791 | ** prevent large memory allocations when trying to interpret a |
| 4792 | ** corrupt datrabase. |
| 4793 | ** |
| 4794 | ** The current implementation merely returns the size of the underlying |
| 4795 | ** database file. |
| 4796 | */ |
| 4797 | sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ |
| 4798 | assert( cursorHoldsMutex(pCur) ); |
| 4799 | assert( pCur->eState==CURSOR_VALID ); |
| 4800 | return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; |
| 4801 | } |
| 4802 | |
| 4803 | /* |
| 4804 | ** Given the page number of an overflow page in the database (parameter |
| 4805 | ** ovfl), this function finds the page number of the next page in the |
| 4806 | ** linked list of overflow pages. If possible, it uses the auto-vacuum |
| 4807 | ** pointer-map data instead of reading the content of page ovfl to do so. |
| 4808 | ** |
| 4809 | ** If an error occurs an SQLite error code is returned. Otherwise: |
| 4810 | ** |
| 4811 | ** The page number of the next overflow page in the linked list is |
| 4812 | ** written to *pPgnoNext. If page ovfl is the last page in its linked |
| 4813 | ** list, *pPgnoNext is set to zero. |
| 4814 | ** |
| 4815 | ** If ppPage is not NULL, and a reference to the MemPage object corresponding |
| 4816 | ** to page number pOvfl was obtained, then *ppPage is set to point to that |
| 4817 | ** reference. It is the responsibility of the caller to call releasePage() |
| 4818 | ** on *ppPage to free the reference. In no reference was obtained (because |
| 4819 | ** the pointer-map was used to obtain the value for *pPgnoNext), then |
| 4820 | ** *ppPage is set to zero. |
| 4821 | */ |
| 4822 | static int getOverflowPage( |
| 4823 | BtShared *pBt, /* The database file */ |
| 4824 | Pgno ovfl, /* Current overflow page number */ |
| 4825 | MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ |
| 4826 | Pgno *pPgnoNext /* OUT: Next overflow page number */ |
| 4827 | ){ |
| 4828 | Pgno next = 0; |
| 4829 | MemPage *pPage = 0; |
| 4830 | int rc = SQLITE_OK; |
| 4831 | |
| 4832 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 4833 | assert(pPgnoNext); |
| 4834 | |
| 4835 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 4836 | /* Try to find the next page in the overflow list using the |
| 4837 | ** autovacuum pointer-map pages. Guess that the next page in |
| 4838 | ** the overflow list is page number (ovfl+1). If that guess turns |
| 4839 | ** out to be wrong, fall back to loading the data of page |
| 4840 | ** number ovfl to determine the next page number. |
| 4841 | */ |
| 4842 | if( pBt->autoVacuum ){ |
| 4843 | Pgno pgno; |
| 4844 | Pgno iGuess = ovfl+1; |
| 4845 | u8 eType; |
| 4846 | |
| 4847 | while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ |
| 4848 | iGuess++; |
| 4849 | } |
| 4850 | |
| 4851 | if( iGuess<=btreePagecount(pBt) ){ |
| 4852 | rc = ptrmapGet(pBt, iGuess, &eType, &pgno); |
| 4853 | if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ |
| 4854 | next = iGuess; |
| 4855 | rc = SQLITE_DONE; |
| 4856 | } |
| 4857 | } |
| 4858 | } |
| 4859 | #endif |
| 4860 | |
| 4861 | assert( next==0 || rc==SQLITE_DONE ); |
| 4862 | if( rc==SQLITE_OK ){ |
| 4863 | rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); |
| 4864 | assert( rc==SQLITE_OK || pPage==0 ); |
| 4865 | if( rc==SQLITE_OK ){ |
| 4866 | next = get4byte(pPage->aData); |
| 4867 | } |
| 4868 | } |
| 4869 | |
| 4870 | *pPgnoNext = next; |
| 4871 | if( ppPage ){ |
| 4872 | *ppPage = pPage; |
| 4873 | }else{ |
| 4874 | releasePage(pPage); |
| 4875 | } |
| 4876 | return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
| 4877 | } |
| 4878 | |
| 4879 | /* |
| 4880 | ** Copy data from a buffer to a page, or from a page to a buffer. |
| 4881 | ** |
| 4882 | ** pPayload is a pointer to data stored on database page pDbPage. |
| 4883 | ** If argument eOp is false, then nByte bytes of data are copied |
| 4884 | ** from pPayload to the buffer pointed at by pBuf. If eOp is true, |
| 4885 | ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes |
| 4886 | ** of data are copied from the buffer pBuf to pPayload. |
| 4887 | ** |
| 4888 | ** SQLITE_OK is returned on success, otherwise an error code. |
| 4889 | */ |
| 4890 | static int copyPayload( |
| 4891 | void *pPayload, /* Pointer to page data */ |
| 4892 | void *pBuf, /* Pointer to buffer */ |
| 4893 | int nByte, /* Number of bytes to copy */ |
| 4894 | int eOp, /* 0 -> copy from page, 1 -> copy to page */ |
| 4895 | DbPage *pDbPage /* Page containing pPayload */ |
| 4896 | ){ |
| 4897 | if( eOp ){ |
| 4898 | /* Copy data from buffer to page (a write operation) */ |
| 4899 | int rc = sqlite3PagerWrite(pDbPage); |
| 4900 | if( rc!=SQLITE_OK ){ |
| 4901 | return rc; |
| 4902 | } |
| 4903 | memcpy(pPayload, pBuf, nByte); |
| 4904 | }else{ |
| 4905 | /* Copy data from page to buffer (a read operation) */ |
| 4906 | memcpy(pBuf, pPayload, nByte); |
| 4907 | } |
| 4908 | return SQLITE_OK; |
| 4909 | } |
| 4910 | |
| 4911 | /* |
| 4912 | ** This function is used to read or overwrite payload information |
| 4913 | ** for the entry that the pCur cursor is pointing to. The eOp |
| 4914 | ** argument is interpreted as follows: |
| 4915 | ** |
| 4916 | ** 0: The operation is a read. Populate the overflow cache. |
| 4917 | ** 1: The operation is a write. Populate the overflow cache. |
| 4918 | ** |
| 4919 | ** A total of "amt" bytes are read or written beginning at "offset". |
| 4920 | ** Data is read to or from the buffer pBuf. |
| 4921 | ** |
| 4922 | ** The content being read or written might appear on the main page |
| 4923 | ** or be scattered out on multiple overflow pages. |
| 4924 | ** |
| 4925 | ** If the current cursor entry uses one or more overflow pages |
| 4926 | ** this function may allocate space for and lazily populate |
| 4927 | ** the overflow page-list cache array (BtCursor.aOverflow). |
| 4928 | ** Subsequent calls use this cache to make seeking to the supplied offset |
| 4929 | ** more efficient. |
| 4930 | ** |
| 4931 | ** Once an overflow page-list cache has been allocated, it must be |
| 4932 | ** invalidated if some other cursor writes to the same table, or if |
| 4933 | ** the cursor is moved to a different row. Additionally, in auto-vacuum |
| 4934 | ** mode, the following events may invalidate an overflow page-list cache. |
| 4935 | ** |
| 4936 | ** * An incremental vacuum, |
| 4937 | ** * A commit in auto_vacuum="full" mode, |
| 4938 | ** * Creating a table (may require moving an overflow page). |
| 4939 | */ |
| 4940 | static int accessPayload( |
| 4941 | BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| 4942 | u32 offset, /* Begin reading this far into payload */ |
| 4943 | u32 amt, /* Read this many bytes */ |
| 4944 | unsigned char *pBuf, /* Write the bytes into this buffer */ |
| 4945 | int eOp /* zero to read. non-zero to write. */ |
| 4946 | ){ |
| 4947 | unsigned char *aPayload; |
| 4948 | int rc = SQLITE_OK; |
| 4949 | int iIdx = 0; |
| 4950 | MemPage *pPage = pCur->pPage; /* Btree page of current entry */ |
| 4951 | BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ |
| 4952 | #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4953 | unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ |
| 4954 | #endif |
| 4955 | |
| 4956 | assert( pPage ); |
| 4957 | assert( eOp==0 || eOp==1 ); |
| 4958 | assert( pCur->eState==CURSOR_VALID ); |
| 4959 | if( pCur->ix>=pPage->nCell ){ |
| 4960 | return SQLITE_CORRUPT_PAGE(pPage); |
| 4961 | } |
| 4962 | assert( cursorHoldsMutex(pCur) ); |
| 4963 | |
| 4964 | getCellInfo(pCur); |
| 4965 | aPayload = pCur->info.pPayload; |
| 4966 | assert( offset+amt <= pCur->info.nPayload ); |
| 4967 | |
| 4968 | assert( aPayload > pPage->aData ); |
| 4969 | if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ |
| 4970 | /* Trying to read or write past the end of the data is an error. The |
| 4971 | ** conditional above is really: |
| 4972 | ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] |
| 4973 | ** but is recast into its current form to avoid integer overflow problems |
| 4974 | */ |
| 4975 | return SQLITE_CORRUPT_PAGE(pPage); |
| 4976 | } |
| 4977 | |
| 4978 | /* Check if data must be read/written to/from the btree page itself. */ |
| 4979 | if( offset<pCur->info.nLocal ){ |
| 4980 | int a = amt; |
| 4981 | if( a+offset>pCur->info.nLocal ){ |
| 4982 | a = pCur->info.nLocal - offset; |
| 4983 | } |
| 4984 | rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); |
| 4985 | offset = 0; |
| 4986 | pBuf += a; |
| 4987 | amt -= a; |
| 4988 | }else{ |
| 4989 | offset -= pCur->info.nLocal; |
| 4990 | } |
| 4991 | |
| 4992 | |
| 4993 | if( rc==SQLITE_OK && amt>0 ){ |
| 4994 | const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ |
| 4995 | Pgno nextPage; |
| 4996 | |
| 4997 | nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
| 4998 | |
| 4999 | /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. |
| 5000 | ** |
| 5001 | ** The aOverflow[] array is sized at one entry for each overflow page |
| 5002 | ** in the overflow chain. The page number of the first overflow page is |
| 5003 | ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array |
| 5004 | ** means "not yet known" (the cache is lazily populated). |
| 5005 | */ |
| 5006 | if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ |
| 5007 | int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; |
| 5008 | if( pCur->aOverflow==0 |
| 5009 | || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) |
| 5010 | ){ |
| 5011 | Pgno *aNew = (Pgno*)sqlite3Realloc( |
| 5012 | pCur->aOverflow, nOvfl*2*sizeof(Pgno) |
| 5013 | ); |
| 5014 | if( aNew==0 ){ |
| 5015 | return SQLITE_NOMEM_BKPT; |
| 5016 | }else{ |
| 5017 | pCur->aOverflow = aNew; |
| 5018 | } |
| 5019 | } |
| 5020 | memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); |
| 5021 | pCur->curFlags |= BTCF_ValidOvfl; |
| 5022 | }else{ |
| 5023 | /* If the overflow page-list cache has been allocated and the |
| 5024 | ** entry for the first required overflow page is valid, skip |
| 5025 | ** directly to it. |
| 5026 | */ |
| 5027 | if( pCur->aOverflow[offset/ovflSize] ){ |
| 5028 | iIdx = (offset/ovflSize); |
| 5029 | nextPage = pCur->aOverflow[iIdx]; |
| 5030 | offset = (offset%ovflSize); |
| 5031 | } |
| 5032 | } |
| 5033 | |
| 5034 | assert( rc==SQLITE_OK && amt>0 ); |
| 5035 | while( nextPage ){ |
| 5036 | /* If required, populate the overflow page-list cache. */ |
| 5037 | if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; |
| 5038 | assert( pCur->aOverflow[iIdx]==0 |
| 5039 | || pCur->aOverflow[iIdx]==nextPage |
| 5040 | || CORRUPT_DB ); |
| 5041 | pCur->aOverflow[iIdx] = nextPage; |
| 5042 | |
| 5043 | if( offset>=ovflSize ){ |
| 5044 | /* The only reason to read this page is to obtain the page |
| 5045 | ** number for the next page in the overflow chain. The page |
| 5046 | ** data is not required. So first try to lookup the overflow |
| 5047 | ** page-list cache, if any, then fall back to the getOverflowPage() |
| 5048 | ** function. |
| 5049 | */ |
| 5050 | assert( pCur->curFlags & BTCF_ValidOvfl ); |
| 5051 | assert( pCur->pBtree->db==pBt->db ); |
| 5052 | if( pCur->aOverflow[iIdx+1] ){ |
| 5053 | nextPage = pCur->aOverflow[iIdx+1]; |
| 5054 | }else{ |
| 5055 | rc = getOverflowPage(pBt, nextPage, 0, &nextPage); |
| 5056 | } |
| 5057 | offset -= ovflSize; |
| 5058 | }else{ |
| 5059 | /* Need to read this page properly. It contains some of the |
| 5060 | ** range of data that is being read (eOp==0) or written (eOp!=0). |
| 5061 | */ |
| 5062 | int a = amt; |
| 5063 | if( a + offset > ovflSize ){ |
| 5064 | a = ovflSize - offset; |
| 5065 | } |
| 5066 | |
| 5067 | #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 5068 | /* If all the following are true: |
| 5069 | ** |
| 5070 | ** 1) this is a read operation, and |
| 5071 | ** 2) data is required from the start of this overflow page, and |
| 5072 | ** 3) there are no dirty pages in the page-cache |
| 5073 | ** 4) the database is file-backed, and |
| 5074 | ** 5) the page is not in the WAL file |
| 5075 | ** 6) at least 4 bytes have already been read into the output buffer |
| 5076 | ** |
| 5077 | ** then data can be read directly from the database file into the |
| 5078 | ** output buffer, bypassing the page-cache altogether. This speeds |
| 5079 | ** up loading large records that span many overflow pages. |
| 5080 | */ |
| 5081 | if( eOp==0 /* (1) */ |
| 5082 | && offset==0 /* (2) */ |
| 5083 | && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ |
| 5084 | && &pBuf[-4]>=pBufStart /* (6) */ |
| 5085 | ){ |
| 5086 | sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); |
| 5087 | u8 aSave[4]; |
| 5088 | u8 *aWrite = &pBuf[-4]; |
| 5089 | assert( aWrite>=pBufStart ); /* due to (6) */ |
| 5090 | memcpy(aSave, aWrite, 4); |
| 5091 | rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); |
| 5092 | if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; |
| 5093 | nextPage = get4byte(aWrite); |
| 5094 | memcpy(aWrite, aSave, 4); |
| 5095 | }else |
| 5096 | #endif |
| 5097 | |
| 5098 | { |
| 5099 | DbPage *pDbPage; |
| 5100 | rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, |
| 5101 | (eOp==0 ? PAGER_GET_READONLY : 0) |
| 5102 | ); |
| 5103 | if( rc==SQLITE_OK ){ |
| 5104 | aPayload = sqlite3PagerGetData(pDbPage); |
| 5105 | nextPage = get4byte(aPayload); |
| 5106 | rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); |
| 5107 | sqlite3PagerUnref(pDbPage); |
| 5108 | offset = 0; |
| 5109 | } |
| 5110 | } |
| 5111 | amt -= a; |
| 5112 | if( amt==0 ) return rc; |
| 5113 | pBuf += a; |
| 5114 | } |
| 5115 | if( rc ) break; |
| 5116 | iIdx++; |
| 5117 | } |
| 5118 | } |
| 5119 | |
| 5120 | if( rc==SQLITE_OK && amt>0 ){ |
| 5121 | /* Overflow chain ends prematurely */ |
| 5122 | return SQLITE_CORRUPT_PAGE(pPage); |
| 5123 | } |
| 5124 | return rc; |
| 5125 | } |
| 5126 | |
| 5127 | /* |
| 5128 | ** Read part of the payload for the row at which that cursor pCur is currently |
| 5129 | ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer |
| 5130 | ** begins at "offset". |
| 5131 | ** |
| 5132 | ** pCur can be pointing to either a table or an index b-tree. |
| 5133 | ** If pointing to a table btree, then the content section is read. If |
| 5134 | ** pCur is pointing to an index b-tree then the key section is read. |
| 5135 | ** |
| 5136 | ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing |
| 5137 | ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the |
| 5138 | ** cursor might be invalid or might need to be restored before being read. |
| 5139 | ** |
| 5140 | ** Return SQLITE_OK on success or an error code if anything goes |
| 5141 | ** wrong. An error is returned if "offset+amt" is larger than |
| 5142 | ** the available payload. |
| 5143 | */ |
| 5144 | int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| 5145 | assert( cursorHoldsMutex(pCur) ); |
| 5146 | assert( pCur->eState==CURSOR_VALID ); |
| 5147 | assert( pCur->iPage>=0 && pCur->pPage ); |
| 5148 | return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
| 5149 | } |
| 5150 | |
| 5151 | /* |
| 5152 | ** This variant of sqlite3BtreePayload() works even if the cursor has not |
| 5153 | ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() |
| 5154 | ** interface. |
| 5155 | */ |
| 5156 | #ifndef SQLITE_OMIT_INCRBLOB |
| 5157 | static SQLITE_NOINLINE int accessPayloadChecked( |
| 5158 | BtCursor *pCur, |
| 5159 | u32 offset, |
| 5160 | u32 amt, |
| 5161 | void *pBuf |
| 5162 | ){ |
| 5163 | int rc; |
| 5164 | if ( pCur->eState==CURSOR_INVALID ){ |
| 5165 | return SQLITE_ABORT; |
| 5166 | } |
| 5167 | assert( cursorOwnsBtShared(pCur) ); |
| 5168 | rc = btreeRestoreCursorPosition(pCur); |
| 5169 | return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); |
| 5170 | } |
| 5171 | int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| 5172 | if( pCur->eState==CURSOR_VALID ){ |
| 5173 | assert( cursorOwnsBtShared(pCur) ); |
| 5174 | return accessPayload(pCur, offset, amt, pBuf, 0); |
| 5175 | }else{ |
| 5176 | return accessPayloadChecked(pCur, offset, amt, pBuf); |
| 5177 | } |
| 5178 | } |
| 5179 | #endif /* SQLITE_OMIT_INCRBLOB */ |
| 5180 | |
| 5181 | /* |
| 5182 | ** Return a pointer to payload information from the entry that the |
| 5183 | ** pCur cursor is pointing to. The pointer is to the beginning of |
| 5184 | ** the key if index btrees (pPage->intKey==0) and is the data for |
| 5185 | ** table btrees (pPage->intKey==1). The number of bytes of available |
| 5186 | ** key/data is written into *pAmt. If *pAmt==0, then the value |
| 5187 | ** returned will not be a valid pointer. |
| 5188 | ** |
| 5189 | ** This routine is an optimization. It is common for the entire key |
| 5190 | ** and data to fit on the local page and for there to be no overflow |
| 5191 | ** pages. When that is so, this routine can be used to access the |
| 5192 | ** key and data without making a copy. If the key and/or data spills |
| 5193 | ** onto overflow pages, then accessPayload() must be used to reassemble |
| 5194 | ** the key/data and copy it into a preallocated buffer. |
| 5195 | ** |
| 5196 | ** The pointer returned by this routine looks directly into the cached |
| 5197 | ** page of the database. The data might change or move the next time |
| 5198 | ** any btree routine is called. |
| 5199 | */ |
| 5200 | static const void *fetchPayload( |
| 5201 | BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| 5202 | u32 *pAmt /* Write the number of available bytes here */ |
| 5203 | ){ |
| 5204 | int amt; |
| 5205 | assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); |
| 5206 | assert( pCur->eState==CURSOR_VALID ); |
| 5207 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 5208 | assert( cursorOwnsBtShared(pCur) ); |
| 5209 | assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); |
| 5210 | assert( pCur->info.nSize>0 ); |
| 5211 | assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); |
| 5212 | assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); |
| 5213 | amt = pCur->info.nLocal; |
| 5214 | if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ |
| 5215 | /* There is too little space on the page for the expected amount |
| 5216 | ** of local content. Database must be corrupt. */ |
| 5217 | assert( CORRUPT_DB ); |
| 5218 | amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); |
| 5219 | } |
| 5220 | *pAmt = (u32)amt; |
| 5221 | return (void*)pCur->info.pPayload; |
| 5222 | } |
| 5223 | |
| 5224 | |
| 5225 | /* |
| 5226 | ** For the entry that cursor pCur is point to, return as |
| 5227 | ** many bytes of the key or data as are available on the local |
| 5228 | ** b-tree page. Write the number of available bytes into *pAmt. |
| 5229 | ** |
| 5230 | ** The pointer returned is ephemeral. The key/data may move |
| 5231 | ** or be destroyed on the next call to any Btree routine, |
| 5232 | ** including calls from other threads against the same cache. |
| 5233 | ** Hence, a mutex on the BtShared should be held prior to calling |
| 5234 | ** this routine. |
| 5235 | ** |
| 5236 | ** These routines is used to get quick access to key and data |
| 5237 | ** in the common case where no overflow pages are used. |
| 5238 | */ |
| 5239 | const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ |
| 5240 | return fetchPayload(pCur, pAmt); |
| 5241 | } |
| 5242 | |
| 5243 | |
| 5244 | /* |
| 5245 | ** Move the cursor down to a new child page. The newPgno argument is the |
| 5246 | ** page number of the child page to move to. |
| 5247 | ** |
| 5248 | ** This function returns SQLITE_CORRUPT if the page-header flags field of |
| 5249 | ** the new child page does not match the flags field of the parent (i.e. |
| 5250 | ** if an intkey page appears to be the parent of a non-intkey page, or |
| 5251 | ** vice-versa). |
| 5252 | */ |
| 5253 | static int moveToChild(BtCursor *pCur, u32 newPgno){ |
| 5254 | assert( cursorOwnsBtShared(pCur) ); |
| 5255 | assert( pCur->eState==CURSOR_VALID ); |
| 5256 | assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); |
| 5257 | assert( pCur->iPage>=0 ); |
| 5258 | if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ |
| 5259 | return SQLITE_CORRUPT_BKPT; |
| 5260 | } |
| 5261 | pCur->info.nSize = 0; |
| 5262 | pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 5263 | pCur->aiIdx[pCur->iPage] = pCur->ix; |
| 5264 | pCur->apPage[pCur->iPage] = pCur->pPage; |
| 5265 | pCur->ix = 0; |
| 5266 | pCur->iPage++; |
| 5267 | return getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur, |
| 5268 | pCur->curPagerFlags); |
| 5269 | } |
| 5270 | |
| 5271 | #ifdef SQLITE_DEBUG |
| 5272 | /* |
| 5273 | ** Page pParent is an internal (non-leaf) tree page. This function |
| 5274 | ** asserts that page number iChild is the left-child if the iIdx'th |
| 5275 | ** cell in page pParent. Or, if iIdx is equal to the total number of |
| 5276 | ** cells in pParent, that page number iChild is the right-child of |
| 5277 | ** the page. |
| 5278 | */ |
| 5279 | static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ |
| 5280 | if( CORRUPT_DB ) return; /* The conditions tested below might not be true |
| 5281 | ** in a corrupt database */ |
| 5282 | assert( iIdx<=pParent->nCell ); |
| 5283 | if( iIdx==pParent->nCell ){ |
| 5284 | assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); |
| 5285 | }else{ |
| 5286 | assert( get4byte(findCell(pParent, iIdx))==iChild ); |
| 5287 | } |
| 5288 | } |
| 5289 | #else |
| 5290 | # define assertParentIndex(x,y,z) |
| 5291 | #endif |
| 5292 | |
| 5293 | /* |
| 5294 | ** Move the cursor up to the parent page. |
| 5295 | ** |
| 5296 | ** pCur->idx is set to the cell index that contains the pointer |
| 5297 | ** to the page we are coming from. If we are coming from the |
| 5298 | ** right-most child page then pCur->idx is set to one more than |
| 5299 | ** the largest cell index. |
| 5300 | */ |
| 5301 | static void moveToParent(BtCursor *pCur){ |
| 5302 | MemPage *pLeaf; |
| 5303 | assert( cursorOwnsBtShared(pCur) ); |
| 5304 | assert( pCur->eState==CURSOR_VALID ); |
| 5305 | assert( pCur->iPage>0 ); |
| 5306 | assert( pCur->pPage ); |
| 5307 | assertParentIndex( |
| 5308 | pCur->apPage[pCur->iPage-1], |
| 5309 | pCur->aiIdx[pCur->iPage-1], |
| 5310 | pCur->pPage->pgno |
| 5311 | ); |
| 5312 | testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); |
| 5313 | pCur->info.nSize = 0; |
| 5314 | pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 5315 | pCur->ix = pCur->aiIdx[pCur->iPage-1]; |
| 5316 | pLeaf = pCur->pPage; |
| 5317 | pCur->pPage = pCur->apPage[--pCur->iPage]; |
| 5318 | releasePageNotNull(pLeaf); |
| 5319 | } |
| 5320 | |
| 5321 | /* |
| 5322 | ** Move the cursor to point to the root page of its b-tree structure. |
| 5323 | ** |
| 5324 | ** If the table has a virtual root page, then the cursor is moved to point |
| 5325 | ** to the virtual root page instead of the actual root page. A table has a |
| 5326 | ** virtual root page when the actual root page contains no cells and a |
| 5327 | ** single child page. This can only happen with the table rooted at page 1. |
| 5328 | ** |
| 5329 | ** If the b-tree structure is empty, the cursor state is set to |
| 5330 | ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, |
| 5331 | ** the cursor is set to point to the first cell located on the root |
| 5332 | ** (or virtual root) page and the cursor state is set to CURSOR_VALID. |
| 5333 | ** |
| 5334 | ** If this function returns successfully, it may be assumed that the |
| 5335 | ** page-header flags indicate that the [virtual] root-page is the expected |
| 5336 | ** kind of b-tree page (i.e. if when opening the cursor the caller did not |
| 5337 | ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, |
| 5338 | ** indicating a table b-tree, or if the caller did specify a KeyInfo |
| 5339 | ** structure the flags byte is set to 0x02 or 0x0A, indicating an index |
| 5340 | ** b-tree). |
| 5341 | */ |
| 5342 | static int moveToRoot(BtCursor *pCur){ |
| 5343 | MemPage *pRoot; |
| 5344 | int rc = SQLITE_OK; |
| 5345 | |
| 5346 | assert( cursorOwnsBtShared(pCur) ); |
| 5347 | assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); |
| 5348 | assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); |
| 5349 | assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); |
| 5350 | assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); |
| 5351 | assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); |
| 5352 | |
| 5353 | if( pCur->iPage>=0 ){ |
| 5354 | if( pCur->iPage ){ |
| 5355 | releasePageNotNull(pCur->pPage); |
| 5356 | while( --pCur->iPage ){ |
| 5357 | releasePageNotNull(pCur->apPage[pCur->iPage]); |
| 5358 | } |
| 5359 | pRoot = pCur->pPage = pCur->apPage[0]; |
| 5360 | goto skip_init; |
| 5361 | } |
| 5362 | }else if( pCur->pgnoRoot==0 ){ |
| 5363 | pCur->eState = CURSOR_INVALID; |
| 5364 | return SQLITE_EMPTY; |
| 5365 | }else{ |
| 5366 | assert( pCur->iPage==(-1) ); |
| 5367 | if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| 5368 | if( pCur->eState==CURSOR_FAULT ){ |
| 5369 | assert( pCur->skipNext!=SQLITE_OK ); |
| 5370 | return pCur->skipNext; |
| 5371 | } |
| 5372 | sqlite3BtreeClearCursor(pCur); |
| 5373 | } |
| 5374 | rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, |
| 5375 | 0, pCur->curPagerFlags); |
| 5376 | if( rc!=SQLITE_OK ){ |
| 5377 | pCur->eState = CURSOR_INVALID; |
| 5378 | return rc; |
| 5379 | } |
| 5380 | pCur->iPage = 0; |
| 5381 | pCur->curIntKey = pCur->pPage->intKey; |
| 5382 | } |
| 5383 | pRoot = pCur->pPage; |
| 5384 | assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); |
| 5385 | |
| 5386 | /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor |
| 5387 | ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is |
| 5388 | ** NULL, the caller expects a table b-tree. If this is not the case, |
| 5389 | ** return an SQLITE_CORRUPT error. |
| 5390 | ** |
| 5391 | ** Earlier versions of SQLite assumed that this test could not fail |
| 5392 | ** if the root page was already loaded when this function was called (i.e. |
| 5393 | ** if pCur->iPage>=0). But this is not so if the database is corrupted |
| 5394 | ** in such a way that page pRoot is linked into a second b-tree table |
| 5395 | ** (or the freelist). */ |
| 5396 | assert( pRoot->intKey==1 || pRoot->intKey==0 ); |
| 5397 | if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ |
| 5398 | return SQLITE_CORRUPT_PAGE(pCur->pPage); |
| 5399 | } |
| 5400 | |
| 5401 | skip_init: |
| 5402 | pCur->ix = 0; |
| 5403 | pCur->info.nSize = 0; |
| 5404 | pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); |
| 5405 | |
| 5406 | if( pRoot->nCell>0 ){ |
| 5407 | pCur->eState = CURSOR_VALID; |
| 5408 | }else if( !pRoot->leaf ){ |
| 5409 | Pgno subpage; |
| 5410 | if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; |
| 5411 | subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
| 5412 | pCur->eState = CURSOR_VALID; |
| 5413 | rc = moveToChild(pCur, subpage); |
| 5414 | }else{ |
| 5415 | pCur->eState = CURSOR_INVALID; |
| 5416 | rc = SQLITE_EMPTY; |
| 5417 | } |
| 5418 | return rc; |
| 5419 | } |
| 5420 | |
| 5421 | /* |
| 5422 | ** Move the cursor down to the left-most leaf entry beneath the |
| 5423 | ** entry to which it is currently pointing. |
| 5424 | ** |
| 5425 | ** The left-most leaf is the one with the smallest key - the first |
| 5426 | ** in ascending order. |
| 5427 | */ |
| 5428 | static int moveToLeftmost(BtCursor *pCur){ |
| 5429 | Pgno pgno; |
| 5430 | int rc = SQLITE_OK; |
| 5431 | MemPage *pPage; |
| 5432 | |
| 5433 | assert( cursorOwnsBtShared(pCur) ); |
| 5434 | assert( pCur->eState==CURSOR_VALID ); |
| 5435 | while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ |
| 5436 | assert( pCur->ix<pPage->nCell ); |
| 5437 | pgno = get4byte(findCell(pPage, pCur->ix)); |
| 5438 | rc = moveToChild(pCur, pgno); |
| 5439 | } |
| 5440 | return rc; |
| 5441 | } |
| 5442 | |
| 5443 | /* |
| 5444 | ** Move the cursor down to the right-most leaf entry beneath the |
| 5445 | ** page to which it is currently pointing. Notice the difference |
| 5446 | ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
| 5447 | ** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
| 5448 | ** finds the right-most entry beneath the *page*. |
| 5449 | ** |
| 5450 | ** The right-most entry is the one with the largest key - the last |
| 5451 | ** key in ascending order. |
| 5452 | */ |
| 5453 | static int moveToRightmost(BtCursor *pCur){ |
| 5454 | Pgno pgno; |
| 5455 | int rc = SQLITE_OK; |
| 5456 | MemPage *pPage = 0; |
| 5457 | |
| 5458 | assert( cursorOwnsBtShared(pCur) ); |
| 5459 | assert( pCur->eState==CURSOR_VALID ); |
| 5460 | while( !(pPage = pCur->pPage)->leaf ){ |
| 5461 | pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 5462 | pCur->ix = pPage->nCell; |
| 5463 | rc = moveToChild(pCur, pgno); |
| 5464 | if( rc ) return rc; |
| 5465 | } |
| 5466 | pCur->ix = pPage->nCell-1; |
| 5467 | assert( pCur->info.nSize==0 ); |
| 5468 | assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); |
| 5469 | return SQLITE_OK; |
| 5470 | } |
| 5471 | |
| 5472 | /* Move the cursor to the first entry in the table. Return SQLITE_OK |
| 5473 | ** on success. Set *pRes to 0 if the cursor actually points to something |
| 5474 | ** or set *pRes to 1 if the table is empty. |
| 5475 | */ |
| 5476 | int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
| 5477 | int rc; |
| 5478 | |
| 5479 | assert( cursorOwnsBtShared(pCur) ); |
| 5480 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 5481 | rc = moveToRoot(pCur); |
| 5482 | if( rc==SQLITE_OK ){ |
| 5483 | assert( pCur->pPage->nCell>0 ); |
| 5484 | *pRes = 0; |
| 5485 | rc = moveToLeftmost(pCur); |
| 5486 | }else if( rc==SQLITE_EMPTY ){ |
| 5487 | assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| 5488 | *pRes = 1; |
| 5489 | rc = SQLITE_OK; |
| 5490 | } |
| 5491 | return rc; |
| 5492 | } |
| 5493 | |
| 5494 | /* Move the cursor to the last entry in the table. Return SQLITE_OK |
| 5495 | ** on success. Set *pRes to 0 if the cursor actually points to something |
| 5496 | ** or set *pRes to 1 if the table is empty. |
| 5497 | */ |
| 5498 | int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
| 5499 | int rc; |
| 5500 | |
| 5501 | assert( cursorOwnsBtShared(pCur) ); |
| 5502 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 5503 | |
| 5504 | /* If the cursor already points to the last entry, this is a no-op. */ |
| 5505 | if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ |
| 5506 | #ifdef SQLITE_DEBUG |
| 5507 | /* This block serves to assert() that the cursor really does point |
| 5508 | ** to the last entry in the b-tree. */ |
| 5509 | int ii; |
| 5510 | for(ii=0; ii<pCur->iPage; ii++){ |
| 5511 | assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); |
| 5512 | } |
| 5513 | assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); |
| 5514 | testcase( pCur->ix!=pCur->pPage->nCell-1 ); |
| 5515 | /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ |
| 5516 | assert( pCur->pPage->leaf ); |
| 5517 | #endif |
| 5518 | *pRes = 0; |
| 5519 | return SQLITE_OK; |
| 5520 | } |
| 5521 | |
| 5522 | rc = moveToRoot(pCur); |
| 5523 | if( rc==SQLITE_OK ){ |
| 5524 | assert( pCur->eState==CURSOR_VALID ); |
| 5525 | *pRes = 0; |
| 5526 | rc = moveToRightmost(pCur); |
| 5527 | if( rc==SQLITE_OK ){ |
| 5528 | pCur->curFlags |= BTCF_AtLast; |
| 5529 | }else{ |
| 5530 | pCur->curFlags &= ~BTCF_AtLast; |
| 5531 | } |
| 5532 | }else if( rc==SQLITE_EMPTY ){ |
| 5533 | assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| 5534 | *pRes = 1; |
| 5535 | rc = SQLITE_OK; |
| 5536 | } |
| 5537 | return rc; |
| 5538 | } |
| 5539 | |
| 5540 | /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) |
| 5541 | ** table near the key intKey. Return a success code. |
| 5542 | ** |
| 5543 | ** If an exact match is not found, then the cursor is always |
| 5544 | ** left pointing at a leaf page which would hold the entry if it |
| 5545 | ** were present. The cursor might point to an entry that comes |
| 5546 | ** before or after the key. |
| 5547 | ** |
| 5548 | ** An integer is written into *pRes which is the result of |
| 5549 | ** comparing the key with the entry to which the cursor is |
| 5550 | ** pointing. The meaning of the integer written into |
| 5551 | ** *pRes is as follows: |
| 5552 | ** |
| 5553 | ** *pRes<0 The cursor is left pointing at an entry that |
| 5554 | ** is smaller than intKey or if the table is empty |
| 5555 | ** and the cursor is therefore left point to nothing. |
| 5556 | ** |
| 5557 | ** *pRes==0 The cursor is left pointing at an entry that |
| 5558 | ** exactly matches intKey. |
| 5559 | ** |
| 5560 | ** *pRes>0 The cursor is left pointing at an entry that |
| 5561 | ** is larger than intKey. |
| 5562 | */ |
| 5563 | int sqlite3BtreeTableMoveto( |
| 5564 | BtCursor *pCur, /* The cursor to be moved */ |
| 5565 | i64 intKey, /* The table key */ |
| 5566 | int biasRight, /* If true, bias the search to the high end */ |
| 5567 | int *pRes /* Write search results here */ |
| 5568 | ){ |
| 5569 | int rc; |
| 5570 | |
| 5571 | assert( cursorOwnsBtShared(pCur) ); |
| 5572 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 5573 | assert( pRes ); |
| 5574 | assert( pCur->pKeyInfo==0 ); |
| 5575 | assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); |
| 5576 | |
| 5577 | /* If the cursor is already positioned at the point we are trying |
| 5578 | ** to move to, then just return without doing any work */ |
| 5579 | if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ |
| 5580 | if( pCur->info.nKey==intKey ){ |
| 5581 | *pRes = 0; |
| 5582 | return SQLITE_OK; |
| 5583 | } |
| 5584 | if( pCur->info.nKey<intKey ){ |
| 5585 | if( (pCur->curFlags & BTCF_AtLast)!=0 ){ |
| 5586 | *pRes = -1; |
| 5587 | return SQLITE_OK; |
| 5588 | } |
| 5589 | /* If the requested key is one more than the previous key, then |
| 5590 | ** try to get there using sqlite3BtreeNext() rather than a full |
| 5591 | ** binary search. This is an optimization only. The correct answer |
| 5592 | ** is still obtained without this case, only a little more slowely */ |
| 5593 | if( pCur->info.nKey+1==intKey ){ |
| 5594 | *pRes = 0; |
| 5595 | rc = sqlite3BtreeNext(pCur, 0); |
| 5596 | if( rc==SQLITE_OK ){ |
| 5597 | getCellInfo(pCur); |
| 5598 | if( pCur->info.nKey==intKey ){ |
| 5599 | return SQLITE_OK; |
| 5600 | } |
| 5601 | }else if( rc!=SQLITE_DONE ){ |
| 5602 | return rc; |
| 5603 | } |
| 5604 | } |
| 5605 | } |
| 5606 | } |
| 5607 | |
| 5608 | #ifdef SQLITE_DEBUG |
| 5609 | pCur->pBtree->nSeek++; /* Performance measurement during testing */ |
| 5610 | #endif |
| 5611 | |
| 5612 | rc = moveToRoot(pCur); |
| 5613 | if( rc ){ |
| 5614 | if( rc==SQLITE_EMPTY ){ |
| 5615 | assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| 5616 | *pRes = -1; |
| 5617 | return SQLITE_OK; |
| 5618 | } |
| 5619 | return rc; |
| 5620 | } |
| 5621 | assert( pCur->pPage ); |
| 5622 | assert( pCur->pPage->isInit ); |
| 5623 | assert( pCur->eState==CURSOR_VALID ); |
| 5624 | assert( pCur->pPage->nCell > 0 ); |
| 5625 | assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); |
| 5626 | assert( pCur->curIntKey ); |
| 5627 | |
| 5628 | for(;;){ |
| 5629 | int lwr, upr, idx, c; |
| 5630 | Pgno chldPg; |
| 5631 | MemPage *pPage = pCur->pPage; |
| 5632 | u8 *pCell; /* Pointer to current cell in pPage */ |
| 5633 | |
| 5634 | /* pPage->nCell must be greater than zero. If this is the root-page |
| 5635 | ** the cursor would have been INVALID above and this for(;;) loop |
| 5636 | ** not run. If this is not the root-page, then the moveToChild() routine |
| 5637 | ** would have already detected db corruption. Similarly, pPage must |
| 5638 | ** be the right kind (index or table) of b-tree page. Otherwise |
| 5639 | ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
| 5640 | assert( pPage->nCell>0 ); |
| 5641 | assert( pPage->intKey ); |
| 5642 | lwr = 0; |
| 5643 | upr = pPage->nCell-1; |
| 5644 | assert( biasRight==0 || biasRight==1 ); |
| 5645 | idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ |
| 5646 | for(;;){ |
| 5647 | i64 nCellKey; |
| 5648 | pCell = findCellPastPtr(pPage, idx); |
| 5649 | if( pPage->intKeyLeaf ){ |
| 5650 | while( 0x80 <= *(pCell++) ){ |
| 5651 | if( pCell>=pPage->aDataEnd ){ |
| 5652 | return SQLITE_CORRUPT_PAGE(pPage); |
| 5653 | } |
| 5654 | } |
| 5655 | } |
| 5656 | getVarint(pCell, (u64*)&nCellKey); |
| 5657 | if( nCellKey<intKey ){ |
| 5658 | lwr = idx+1; |
| 5659 | if( lwr>upr ){ c = -1; break; } |
| 5660 | }else if( nCellKey>intKey ){ |
| 5661 | upr = idx-1; |
| 5662 | if( lwr>upr ){ c = +1; break; } |
| 5663 | }else{ |
| 5664 | assert( nCellKey==intKey ); |
| 5665 | pCur->ix = (u16)idx; |
| 5666 | if( !pPage->leaf ){ |
| 5667 | lwr = idx; |
| 5668 | goto moveto_table_next_layer; |
| 5669 | }else{ |
| 5670 | pCur->curFlags |= BTCF_ValidNKey; |
| 5671 | pCur->info.nKey = nCellKey; |
| 5672 | pCur->info.nSize = 0; |
| 5673 | *pRes = 0; |
| 5674 | return SQLITE_OK; |
| 5675 | } |
| 5676 | } |
| 5677 | assert( lwr+upr>=0 ); |
| 5678 | idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ |
| 5679 | } |
| 5680 | assert( lwr==upr+1 || !pPage->leaf ); |
| 5681 | assert( pPage->isInit ); |
| 5682 | if( pPage->leaf ){ |
| 5683 | assert( pCur->ix<pCur->pPage->nCell ); |
| 5684 | pCur->ix = (u16)idx; |
| 5685 | *pRes = c; |
| 5686 | rc = SQLITE_OK; |
| 5687 | goto moveto_table_finish; |
| 5688 | } |
| 5689 | moveto_table_next_layer: |
| 5690 | if( lwr>=pPage->nCell ){ |
| 5691 | chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 5692 | }else{ |
| 5693 | chldPg = get4byte(findCell(pPage, lwr)); |
| 5694 | } |
| 5695 | pCur->ix = (u16)lwr; |
| 5696 | rc = moveToChild(pCur, chldPg); |
| 5697 | if( rc ) break; |
| 5698 | } |
| 5699 | moveto_table_finish: |
| 5700 | pCur->info.nSize = 0; |
| 5701 | assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| 5702 | return rc; |
| 5703 | } |
| 5704 | |
| 5705 | /* |
| 5706 | ** Compare the "idx"-th cell on the page the cursor pCur is currently |
| 5707 | ** pointing to to pIdxKey using xRecordCompare. Return negative or |
| 5708 | ** zero if the cell is less than or equal pIdxKey. Return positive |
| 5709 | ** if unknown. |
| 5710 | ** |
| 5711 | ** Return value negative: Cell at pCur[idx] less than pIdxKey |
| 5712 | ** |
| 5713 | ** Return value is zero: Cell at pCur[idx] equals pIdxKey |
| 5714 | ** |
| 5715 | ** Return value positive: Nothing is known about the relationship |
| 5716 | ** of the cell at pCur[idx] and pIdxKey. |
| 5717 | ** |
| 5718 | ** This routine is part of an optimization. It is always safe to return |
| 5719 | ** a positive value as that will cause the optimization to be skipped. |
| 5720 | */ |
| 5721 | static int indexCellCompare( |
| 5722 | BtCursor *pCur, |
| 5723 | int idx, |
| 5724 | UnpackedRecord *pIdxKey, |
| 5725 | RecordCompare xRecordCompare |
| 5726 | ){ |
| 5727 | MemPage *pPage = pCur->pPage; |
| 5728 | int c; |
| 5729 | int nCell; /* Size of the pCell cell in bytes */ |
| 5730 | u8 *pCell = findCellPastPtr(pPage, idx); |
| 5731 | |
| 5732 | nCell = pCell[0]; |
| 5733 | if( nCell<=pPage->max1bytePayload ){ |
| 5734 | /* This branch runs if the record-size field of the cell is a |
| 5735 | ** single byte varint and the record fits entirely on the main |
| 5736 | ** b-tree page. */ |
| 5737 | testcase( pCell+nCell+1==pPage->aDataEnd ); |
| 5738 | c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
| 5739 | }else if( !(pCell[1] & 0x80) |
| 5740 | && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
| 5741 | ){ |
| 5742 | /* The record-size field is a 2 byte varint and the record |
| 5743 | ** fits entirely on the main b-tree page. */ |
| 5744 | testcase( pCell+nCell+2==pPage->aDataEnd ); |
| 5745 | c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
| 5746 | }else{ |
| 5747 | /* If the record extends into overflow pages, do not attempt |
| 5748 | ** the optimization. */ |
| 5749 | c = 99; |
| 5750 | } |
| 5751 | return c; |
| 5752 | } |
| 5753 | |
| 5754 | /* |
| 5755 | ** Return true (non-zero) if pCur is current pointing to the last |
| 5756 | ** page of a table. |
| 5757 | */ |
| 5758 | static int cursorOnLastPage(BtCursor *pCur){ |
| 5759 | int i; |
| 5760 | assert( pCur->eState==CURSOR_VALID ); |
| 5761 | for(i=0; i<pCur->iPage; i++){ |
| 5762 | MemPage *pPage = pCur->apPage[i]; |
| 5763 | if( pCur->aiIdx[i]<pPage->nCell ) return 0; |
| 5764 | } |
| 5765 | return 1; |
| 5766 | } |
| 5767 | |
| 5768 | /* Move the cursor so that it points to an entry in an index table |
| 5769 | ** near the key pIdxKey. Return a success code. |
| 5770 | ** |
| 5771 | ** If an exact match is not found, then the cursor is always |
| 5772 | ** left pointing at a leaf page which would hold the entry if it |
| 5773 | ** were present. The cursor might point to an entry that comes |
| 5774 | ** before or after the key. |
| 5775 | ** |
| 5776 | ** An integer is written into *pRes which is the result of |
| 5777 | ** comparing the key with the entry to which the cursor is |
| 5778 | ** pointing. The meaning of the integer written into |
| 5779 | ** *pRes is as follows: |
| 5780 | ** |
| 5781 | ** *pRes<0 The cursor is left pointing at an entry that |
| 5782 | ** is smaller than pIdxKey or if the table is empty |
| 5783 | ** and the cursor is therefore left point to nothing. |
| 5784 | ** |
| 5785 | ** *pRes==0 The cursor is left pointing at an entry that |
| 5786 | ** exactly matches pIdxKey. |
| 5787 | ** |
| 5788 | ** *pRes>0 The cursor is left pointing at an entry that |
| 5789 | ** is larger than pIdxKey. |
| 5790 | ** |
| 5791 | ** The pIdxKey->eqSeen field is set to 1 if there |
| 5792 | ** exists an entry in the table that exactly matches pIdxKey. |
| 5793 | */ |
| 5794 | int sqlite3BtreeIndexMoveto( |
| 5795 | BtCursor *pCur, /* The cursor to be moved */ |
| 5796 | UnpackedRecord *pIdxKey, /* Unpacked index key */ |
| 5797 | int *pRes /* Write search results here */ |
| 5798 | ){ |
| 5799 | int rc; |
| 5800 | RecordCompare xRecordCompare; |
| 5801 | |
| 5802 | assert( cursorOwnsBtShared(pCur) ); |
| 5803 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 5804 | assert( pRes ); |
| 5805 | assert( pCur->pKeyInfo!=0 ); |
| 5806 | |
| 5807 | #ifdef SQLITE_DEBUG |
| 5808 | pCur->pBtree->nSeek++; /* Performance measurement during testing */ |
| 5809 | #endif |
| 5810 | |
| 5811 | xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); |
| 5812 | pIdxKey->errCode = 0; |
| 5813 | assert( pIdxKey->default_rc==1 |
| 5814 | || pIdxKey->default_rc==0 |
| 5815 | || pIdxKey->default_rc==-1 |
| 5816 | ); |
| 5817 | |
| 5818 | |
| 5819 | /* Check to see if we can skip a lot of work. Two cases: |
| 5820 | ** |
| 5821 | ** (1) If the cursor is already pointing to the very last cell |
| 5822 | ** in the table and the pIdxKey search key is greater than or |
| 5823 | ** equal to that last cell, then no movement is required. |
| 5824 | ** |
| 5825 | ** (2) If the cursor is on the last page of the table and the first |
| 5826 | ** cell on that last page is less than or equal to the pIdxKey |
| 5827 | ** search key, then we can start the search on the current page |
| 5828 | ** without needing to go back to root. |
| 5829 | */ |
| 5830 | if( pCur->eState==CURSOR_VALID |
| 5831 | && pCur->pPage->leaf |
| 5832 | && cursorOnLastPage(pCur) |
| 5833 | ){ |
| 5834 | int c; |
| 5835 | if( pCur->ix==pCur->pPage->nCell-1 |
| 5836 | && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 |
| 5837 | && pIdxKey->errCode==SQLITE_OK |
| 5838 | ){ |
| 5839 | *pRes = c; |
| 5840 | return SQLITE_OK; /* Cursor already pointing at the correct spot */ |
| 5841 | } |
| 5842 | if( pCur->iPage>0 |
| 5843 | && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 |
| 5844 | && pIdxKey->errCode==SQLITE_OK |
| 5845 | ){ |
| 5846 | pCur->curFlags &= ~BTCF_ValidOvfl; |
| 5847 | if( !pCur->pPage->isInit ){ |
| 5848 | return SQLITE_CORRUPT_BKPT; |
| 5849 | } |
| 5850 | goto bypass_moveto_root; /* Start search on the current page */ |
| 5851 | } |
| 5852 | pIdxKey->errCode = SQLITE_OK; |
| 5853 | } |
| 5854 | |
| 5855 | rc = moveToRoot(pCur); |
| 5856 | if( rc ){ |
| 5857 | if( rc==SQLITE_EMPTY ){ |
| 5858 | assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| 5859 | *pRes = -1; |
| 5860 | return SQLITE_OK; |
| 5861 | } |
| 5862 | return rc; |
| 5863 | } |
| 5864 | |
| 5865 | bypass_moveto_root: |
| 5866 | assert( pCur->pPage ); |
| 5867 | assert( pCur->pPage->isInit ); |
| 5868 | assert( pCur->eState==CURSOR_VALID ); |
| 5869 | assert( pCur->pPage->nCell > 0 ); |
| 5870 | assert( pCur->curIntKey==0 ); |
| 5871 | assert( pIdxKey!=0 ); |
| 5872 | for(;;){ |
| 5873 | int lwr, upr, idx, c; |
| 5874 | Pgno chldPg; |
| 5875 | MemPage *pPage = pCur->pPage; |
| 5876 | u8 *pCell; /* Pointer to current cell in pPage */ |
| 5877 | |
| 5878 | /* pPage->nCell must be greater than zero. If this is the root-page |
| 5879 | ** the cursor would have been INVALID above and this for(;;) loop |
| 5880 | ** not run. If this is not the root-page, then the moveToChild() routine |
| 5881 | ** would have already detected db corruption. Similarly, pPage must |
| 5882 | ** be the right kind (index or table) of b-tree page. Otherwise |
| 5883 | ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
| 5884 | assert( pPage->nCell>0 ); |
| 5885 | assert( pPage->intKey==0 ); |
| 5886 | lwr = 0; |
| 5887 | upr = pPage->nCell-1; |
| 5888 | idx = upr>>1; /* idx = (lwr+upr)/2; */ |
| 5889 | for(;;){ |
| 5890 | int nCell; /* Size of the pCell cell in bytes */ |
| 5891 | pCell = findCellPastPtr(pPage, idx); |
| 5892 | |
| 5893 | /* The maximum supported page-size is 65536 bytes. This means that |
| 5894 | ** the maximum number of record bytes stored on an index B-Tree |
| 5895 | ** page is less than 16384 bytes and may be stored as a 2-byte |
| 5896 | ** varint. This information is used to attempt to avoid parsing |
| 5897 | ** the entire cell by checking for the cases where the record is |
| 5898 | ** stored entirely within the b-tree page by inspecting the first |
| 5899 | ** 2 bytes of the cell. |
| 5900 | */ |
| 5901 | nCell = pCell[0]; |
| 5902 | if( nCell<=pPage->max1bytePayload ){ |
| 5903 | /* This branch runs if the record-size field of the cell is a |
| 5904 | ** single byte varint and the record fits entirely on the main |
| 5905 | ** b-tree page. */ |
| 5906 | testcase( pCell+nCell+1==pPage->aDataEnd ); |
| 5907 | c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
| 5908 | }else if( !(pCell[1] & 0x80) |
| 5909 | && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
| 5910 | ){ |
| 5911 | /* The record-size field is a 2 byte varint and the record |
| 5912 | ** fits entirely on the main b-tree page. */ |
| 5913 | testcase( pCell+nCell+2==pPage->aDataEnd ); |
| 5914 | c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
| 5915 | }else{ |
| 5916 | /* The record flows over onto one or more overflow pages. In |
| 5917 | ** this case the whole cell needs to be parsed, a buffer allocated |
| 5918 | ** and accessPayload() used to retrieve the record into the |
| 5919 | ** buffer before VdbeRecordCompare() can be called. |
| 5920 | ** |
| 5921 | ** If the record is corrupt, the xRecordCompare routine may read |
| 5922 | ** up to two varints past the end of the buffer. An extra 18 |
| 5923 | ** bytes of padding is allocated at the end of the buffer in |
| 5924 | ** case this happens. */ |
| 5925 | void *pCellKey; |
| 5926 | u8 * const pCellBody = pCell - pPage->childPtrSize; |
| 5927 | const int nOverrun = 18; /* Size of the overrun padding */ |
| 5928 | pPage->xParseCell(pPage, pCellBody, &pCur->info); |
| 5929 | nCell = (int)pCur->info.nKey; |
| 5930 | testcase( nCell<0 ); /* True if key size is 2^32 or more */ |
| 5931 | testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ |
| 5932 | testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ |
| 5933 | testcase( nCell==2 ); /* Minimum legal index key size */ |
| 5934 | if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ |
| 5935 | rc = SQLITE_CORRUPT_PAGE(pPage); |
| 5936 | goto moveto_index_finish; |
| 5937 | } |
| 5938 | pCellKey = sqlite3Malloc( nCell+nOverrun ); |
| 5939 | if( pCellKey==0 ){ |
| 5940 | rc = SQLITE_NOMEM_BKPT; |
| 5941 | goto moveto_index_finish; |
| 5942 | } |
| 5943 | pCur->ix = (u16)idx; |
| 5944 | rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); |
| 5945 | memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ |
| 5946 | pCur->curFlags &= ~BTCF_ValidOvfl; |
| 5947 | if( rc ){ |
| 5948 | sqlite3_free(pCellKey); |
| 5949 | goto moveto_index_finish; |
| 5950 | } |
| 5951 | c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); |
| 5952 | sqlite3_free(pCellKey); |
| 5953 | } |
| 5954 | assert( |
| 5955 | (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) |
| 5956 | && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) |
| 5957 | ); |
| 5958 | if( c<0 ){ |
| 5959 | lwr = idx+1; |
| 5960 | }else if( c>0 ){ |
| 5961 | upr = idx-1; |
| 5962 | }else{ |
| 5963 | assert( c==0 ); |
| 5964 | *pRes = 0; |
| 5965 | rc = SQLITE_OK; |
| 5966 | pCur->ix = (u16)idx; |
| 5967 | if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; |
| 5968 | goto moveto_index_finish; |
| 5969 | } |
| 5970 | if( lwr>upr ) break; |
| 5971 | assert( lwr+upr>=0 ); |
| 5972 | idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ |
| 5973 | } |
| 5974 | assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); |
| 5975 | assert( pPage->isInit ); |
| 5976 | if( pPage->leaf ){ |
| 5977 | assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); |
| 5978 | pCur->ix = (u16)idx; |
| 5979 | *pRes = c; |
| 5980 | rc = SQLITE_OK; |
| 5981 | goto moveto_index_finish; |
| 5982 | } |
| 5983 | if( lwr>=pPage->nCell ){ |
| 5984 | chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 5985 | }else{ |
| 5986 | chldPg = get4byte(findCell(pPage, lwr)); |
| 5987 | } |
| 5988 | pCur->ix = (u16)lwr; |
| 5989 | rc = moveToChild(pCur, chldPg); |
| 5990 | if( rc ) break; |
| 5991 | } |
| 5992 | moveto_index_finish: |
| 5993 | pCur->info.nSize = 0; |
| 5994 | assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| 5995 | return rc; |
| 5996 | } |
| 5997 | |
| 5998 | |
| 5999 | /* |
| 6000 | ** Return TRUE if the cursor is not pointing at an entry of the table. |
| 6001 | ** |
| 6002 | ** TRUE will be returned after a call to sqlite3BtreeNext() moves |
| 6003 | ** past the last entry in the table or sqlite3BtreePrev() moves past |
| 6004 | ** the first entry. TRUE is also returned if the table is empty. |
| 6005 | */ |
| 6006 | int sqlite3BtreeEof(BtCursor *pCur){ |
| 6007 | /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
| 6008 | ** have been deleted? This API will need to change to return an error code |
| 6009 | ** as well as the boolean result value. |
| 6010 | */ |
| 6011 | return (CURSOR_VALID!=pCur->eState); |
| 6012 | } |
| 6013 | |
| 6014 | /* |
| 6015 | ** Return an estimate for the number of rows in the table that pCur is |
| 6016 | ** pointing to. Return a negative number if no estimate is currently |
| 6017 | ** available. |
| 6018 | */ |
| 6019 | i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ |
| 6020 | i64 n; |
| 6021 | u8 i; |
| 6022 | |
| 6023 | assert( cursorOwnsBtShared(pCur) ); |
| 6024 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 6025 | |
| 6026 | /* Currently this interface is only called by the OP_IfSmaller |
| 6027 | ** opcode, and it that case the cursor will always be valid and |
| 6028 | ** will always point to a leaf node. */ |
| 6029 | if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; |
| 6030 | if( NEVER(pCur->pPage->leaf==0) ) return -1; |
| 6031 | |
| 6032 | n = pCur->pPage->nCell; |
| 6033 | for(i=0; i<pCur->iPage; i++){ |
| 6034 | n *= pCur->apPage[i]->nCell; |
| 6035 | } |
| 6036 | return n; |
| 6037 | } |
| 6038 | |
| 6039 | /* |
| 6040 | ** Advance the cursor to the next entry in the database. |
| 6041 | ** Return value: |
| 6042 | ** |
| 6043 | ** SQLITE_OK success |
| 6044 | ** SQLITE_DONE cursor is already pointing at the last element |
| 6045 | ** otherwise some kind of error occurred |
| 6046 | ** |
| 6047 | ** The main entry point is sqlite3BtreeNext(). That routine is optimized |
| 6048 | ** for the common case of merely incrementing the cell counter BtCursor.aiIdx |
| 6049 | ** to the next cell on the current page. The (slower) btreeNext() helper |
| 6050 | ** routine is called when it is necessary to move to a different page or |
| 6051 | ** to restore the cursor. |
| 6052 | ** |
| 6053 | ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the |
| 6054 | ** cursor corresponds to an SQL index and this routine could have been |
| 6055 | ** skipped if the SQL index had been a unique index. The F argument |
| 6056 | ** is a hint to the implement. SQLite btree implementation does not use |
| 6057 | ** this hint, but COMDB2 does. |
| 6058 | */ |
| 6059 | static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ |
| 6060 | int rc; |
| 6061 | int idx; |
| 6062 | MemPage *pPage; |
| 6063 | |
| 6064 | assert( cursorOwnsBtShared(pCur) ); |
| 6065 | if( pCur->eState!=CURSOR_VALID ){ |
| 6066 | assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| 6067 | rc = restoreCursorPosition(pCur); |
| 6068 | if( rc!=SQLITE_OK ){ |
| 6069 | return rc; |
| 6070 | } |
| 6071 | if( CURSOR_INVALID==pCur->eState ){ |
| 6072 | return SQLITE_DONE; |
| 6073 | } |
| 6074 | if( pCur->eState==CURSOR_SKIPNEXT ){ |
| 6075 | pCur->eState = CURSOR_VALID; |
| 6076 | if( pCur->skipNext>0 ) return SQLITE_OK; |
| 6077 | } |
| 6078 | } |
| 6079 | |
| 6080 | pPage = pCur->pPage; |
| 6081 | idx = ++pCur->ix; |
| 6082 | if( NEVER(!pPage->isInit) || sqlite3FaultSim(412) ){ |
| 6083 | return SQLITE_CORRUPT_BKPT; |
| 6084 | } |
| 6085 | |
| 6086 | if( idx>=pPage->nCell ){ |
| 6087 | if( !pPage->leaf ){ |
| 6088 | rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| 6089 | if( rc ) return rc; |
| 6090 | return moveToLeftmost(pCur); |
| 6091 | } |
| 6092 | do{ |
| 6093 | if( pCur->iPage==0 ){ |
| 6094 | pCur->eState = CURSOR_INVALID; |
| 6095 | return SQLITE_DONE; |
| 6096 | } |
| 6097 | moveToParent(pCur); |
| 6098 | pPage = pCur->pPage; |
| 6099 | }while( pCur->ix>=pPage->nCell ); |
| 6100 | if( pPage->intKey ){ |
| 6101 | return sqlite3BtreeNext(pCur, 0); |
| 6102 | }else{ |
| 6103 | return SQLITE_OK; |
| 6104 | } |
| 6105 | } |
| 6106 | if( pPage->leaf ){ |
| 6107 | return SQLITE_OK; |
| 6108 | }else{ |
| 6109 | return moveToLeftmost(pCur); |
| 6110 | } |
| 6111 | } |
| 6112 | int sqlite3BtreeNext(BtCursor *pCur, int flags){ |
| 6113 | MemPage *pPage; |
| 6114 | UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ |
| 6115 | assert( cursorOwnsBtShared(pCur) ); |
| 6116 | assert( flags==0 || flags==1 ); |
| 6117 | pCur->info.nSize = 0; |
| 6118 | pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 6119 | if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); |
| 6120 | pPage = pCur->pPage; |
| 6121 | if( (++pCur->ix)>=pPage->nCell ){ |
| 6122 | pCur->ix--; |
| 6123 | return btreeNext(pCur); |
| 6124 | } |
| 6125 | if( pPage->leaf ){ |
| 6126 | return SQLITE_OK; |
| 6127 | }else{ |
| 6128 | return moveToLeftmost(pCur); |
| 6129 | } |
| 6130 | } |
| 6131 | |
| 6132 | /* |
| 6133 | ** Step the cursor to the back to the previous entry in the database. |
| 6134 | ** Return values: |
| 6135 | ** |
| 6136 | ** SQLITE_OK success |
| 6137 | ** SQLITE_DONE the cursor is already on the first element of the table |
| 6138 | ** otherwise some kind of error occurred |
| 6139 | ** |
| 6140 | ** The main entry point is sqlite3BtreePrevious(). That routine is optimized |
| 6141 | ** for the common case of merely decrementing the cell counter BtCursor.aiIdx |
| 6142 | ** to the previous cell on the current page. The (slower) btreePrevious() |
| 6143 | ** helper routine is called when it is necessary to move to a different page |
| 6144 | ** or to restore the cursor. |
| 6145 | ** |
| 6146 | ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then |
| 6147 | ** the cursor corresponds to an SQL index and this routine could have been |
| 6148 | ** skipped if the SQL index had been a unique index. The F argument is a |
| 6149 | ** hint to the implement. The native SQLite btree implementation does not |
| 6150 | ** use this hint, but COMDB2 does. |
| 6151 | */ |
| 6152 | static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ |
| 6153 | int rc; |
| 6154 | MemPage *pPage; |
| 6155 | |
| 6156 | assert( cursorOwnsBtShared(pCur) ); |
| 6157 | assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); |
| 6158 | assert( pCur->info.nSize==0 ); |
| 6159 | if( pCur->eState!=CURSOR_VALID ){ |
| 6160 | rc = restoreCursorPosition(pCur); |
| 6161 | if( rc!=SQLITE_OK ){ |
| 6162 | return rc; |
| 6163 | } |
| 6164 | if( CURSOR_INVALID==pCur->eState ){ |
| 6165 | return SQLITE_DONE; |
| 6166 | } |
| 6167 | if( CURSOR_SKIPNEXT==pCur->eState ){ |
| 6168 | pCur->eState = CURSOR_VALID; |
| 6169 | if( pCur->skipNext<0 ) return SQLITE_OK; |
| 6170 | } |
| 6171 | } |
| 6172 | |
| 6173 | pPage = pCur->pPage; |
| 6174 | assert( pPage->isInit ); |
| 6175 | if( !pPage->leaf ){ |
| 6176 | int idx = pCur->ix; |
| 6177 | rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); |
| 6178 | if( rc ) return rc; |
| 6179 | rc = moveToRightmost(pCur); |
| 6180 | }else{ |
| 6181 | while( pCur->ix==0 ){ |
| 6182 | if( pCur->iPage==0 ){ |
| 6183 | pCur->eState = CURSOR_INVALID; |
| 6184 | return SQLITE_DONE; |
| 6185 | } |
| 6186 | moveToParent(pCur); |
| 6187 | } |
| 6188 | assert( pCur->info.nSize==0 ); |
| 6189 | assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); |
| 6190 | |
| 6191 | pCur->ix--; |
| 6192 | pPage = pCur->pPage; |
| 6193 | if( pPage->intKey && !pPage->leaf ){ |
| 6194 | rc = sqlite3BtreePrevious(pCur, 0); |
| 6195 | }else{ |
| 6196 | rc = SQLITE_OK; |
| 6197 | } |
| 6198 | } |
| 6199 | return rc; |
| 6200 | } |
| 6201 | int sqlite3BtreePrevious(BtCursor *pCur, int flags){ |
| 6202 | assert( cursorOwnsBtShared(pCur) ); |
| 6203 | assert( flags==0 || flags==1 ); |
| 6204 | UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ |
| 6205 | pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); |
| 6206 | pCur->info.nSize = 0; |
| 6207 | if( pCur->eState!=CURSOR_VALID |
| 6208 | || pCur->ix==0 |
| 6209 | || pCur->pPage->leaf==0 |
| 6210 | ){ |
| 6211 | return btreePrevious(pCur); |
| 6212 | } |
| 6213 | pCur->ix--; |
| 6214 | return SQLITE_OK; |
| 6215 | } |
| 6216 | |
| 6217 | /* |
| 6218 | ** Allocate a new page from the database file. |
| 6219 | ** |
| 6220 | ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() |
| 6221 | ** has already been called on the new page.) The new page has also |
| 6222 | ** been referenced and the calling routine is responsible for calling |
| 6223 | ** sqlite3PagerUnref() on the new page when it is done. |
| 6224 | ** |
| 6225 | ** SQLITE_OK is returned on success. Any other return value indicates |
| 6226 | ** an error. *ppPage is set to NULL in the event of an error. |
| 6227 | ** |
| 6228 | ** If the "nearby" parameter is not 0, then an effort is made to |
| 6229 | ** locate a page close to the page number "nearby". This can be used in an |
| 6230 | ** attempt to keep related pages close to each other in the database file, |
| 6231 | ** which in turn can make database access faster. |
| 6232 | ** |
| 6233 | ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists |
| 6234 | ** anywhere on the free-list, then it is guaranteed to be returned. If |
| 6235 | ** eMode is BTALLOC_LT then the page returned will be less than or equal |
| 6236 | ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there |
| 6237 | ** are no restrictions on which page is returned. |
| 6238 | */ |
| 6239 | static int allocateBtreePage( |
| 6240 | BtShared *pBt, /* The btree */ |
| 6241 | MemPage **ppPage, /* Store pointer to the allocated page here */ |
| 6242 | Pgno *pPgno, /* Store the page number here */ |
| 6243 | Pgno nearby, /* Search for a page near this one */ |
| 6244 | u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ |
| 6245 | ){ |
| 6246 | MemPage *pPage1; |
| 6247 | int rc; |
| 6248 | u32 n; /* Number of pages on the freelist */ |
| 6249 | u32 k; /* Number of leaves on the trunk of the freelist */ |
| 6250 | MemPage *pTrunk = 0; |
| 6251 | MemPage *pPrevTrunk = 0; |
| 6252 | Pgno mxPage; /* Total size of the database file */ |
| 6253 | |
| 6254 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 6255 | assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); |
| 6256 | pPage1 = pBt->pPage1; |
| 6257 | mxPage = btreePagecount(pBt); |
| 6258 | /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36 |
| 6259 | ** stores the total number of pages on the freelist. */ |
| 6260 | n = get4byte(&pPage1->aData[36]); |
| 6261 | testcase( n==mxPage-1 ); |
| 6262 | if( n>=mxPage ){ |
| 6263 | return SQLITE_CORRUPT_BKPT; |
| 6264 | } |
| 6265 | if( n>0 ){ |
| 6266 | /* There are pages on the freelist. Reuse one of those pages. */ |
| 6267 | Pgno iTrunk; |
| 6268 | u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
| 6269 | u32 nSearch = 0; /* Count of the number of search attempts */ |
| 6270 | |
| 6271 | /* If eMode==BTALLOC_EXACT and a query of the pointer-map |
| 6272 | ** shows that the page 'nearby' is somewhere on the free-list, then |
| 6273 | ** the entire-list will be searched for that page. |
| 6274 | */ |
| 6275 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6276 | if( eMode==BTALLOC_EXACT ){ |
| 6277 | if( nearby<=mxPage ){ |
| 6278 | u8 eType; |
| 6279 | assert( nearby>0 ); |
| 6280 | assert( pBt->autoVacuum ); |
| 6281 | rc = ptrmapGet(pBt, nearby, &eType, 0); |
| 6282 | if( rc ) return rc; |
| 6283 | if( eType==PTRMAP_FREEPAGE ){ |
| 6284 | searchList = 1; |
| 6285 | } |
| 6286 | } |
| 6287 | }else if( eMode==BTALLOC_LE ){ |
| 6288 | searchList = 1; |
| 6289 | } |
| 6290 | #endif |
| 6291 | |
| 6292 | /* Decrement the free-list count by 1. Set iTrunk to the index of the |
| 6293 | ** first free-list trunk page. iPrevTrunk is initially 1. |
| 6294 | */ |
| 6295 | rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 6296 | if( rc ) return rc; |
| 6297 | put4byte(&pPage1->aData[36], n-1); |
| 6298 | |
| 6299 | /* The code within this loop is run only once if the 'searchList' variable |
| 6300 | ** is not true. Otherwise, it runs once for each trunk-page on the |
| 6301 | ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) |
| 6302 | ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) |
| 6303 | */ |
| 6304 | do { |
| 6305 | pPrevTrunk = pTrunk; |
| 6306 | if( pPrevTrunk ){ |
| 6307 | /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page |
| 6308 | ** is the page number of the next freelist trunk page in the list or |
| 6309 | ** zero if this is the last freelist trunk page. */ |
| 6310 | iTrunk = get4byte(&pPrevTrunk->aData[0]); |
| 6311 | }else{ |
| 6312 | /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 |
| 6313 | ** stores the page number of the first page of the freelist, or zero if |
| 6314 | ** the freelist is empty. */ |
| 6315 | iTrunk = get4byte(&pPage1->aData[32]); |
| 6316 | } |
| 6317 | testcase( iTrunk==mxPage ); |
| 6318 | if( iTrunk>mxPage || nSearch++ > n ){ |
| 6319 | rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); |
| 6320 | }else{ |
| 6321 | rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); |
| 6322 | } |
| 6323 | if( rc ){ |
| 6324 | pTrunk = 0; |
| 6325 | goto end_allocate_page; |
| 6326 | } |
| 6327 | assert( pTrunk!=0 ); |
| 6328 | assert( pTrunk->aData!=0 ); |
| 6329 | /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page |
| 6330 | ** is the number of leaf page pointers to follow. */ |
| 6331 | k = get4byte(&pTrunk->aData[4]); |
| 6332 | if( k==0 && !searchList ){ |
| 6333 | /* The trunk has no leaves and the list is not being searched. |
| 6334 | ** So extract the trunk page itself and use it as the newly |
| 6335 | ** allocated page */ |
| 6336 | assert( pPrevTrunk==0 ); |
| 6337 | rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 6338 | if( rc ){ |
| 6339 | goto end_allocate_page; |
| 6340 | } |
| 6341 | *pPgno = iTrunk; |
| 6342 | memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| 6343 | *ppPage = pTrunk; |
| 6344 | pTrunk = 0; |
| 6345 | TRACE(("ALLOCATE: %d trunk - %d free pages left\n" , *pPgno, n-1)); |
| 6346 | }else if( k>(u32)(pBt->usableSize/4 - 2) ){ |
| 6347 | /* Value of k is out of range. Database corruption */ |
| 6348 | rc = SQLITE_CORRUPT_PGNO(iTrunk); |
| 6349 | goto end_allocate_page; |
| 6350 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6351 | }else if( searchList |
| 6352 | && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) |
| 6353 | ){ |
| 6354 | /* The list is being searched and this trunk page is the page |
| 6355 | ** to allocate, regardless of whether it has leaves. |
| 6356 | */ |
| 6357 | *pPgno = iTrunk; |
| 6358 | *ppPage = pTrunk; |
| 6359 | searchList = 0; |
| 6360 | rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 6361 | if( rc ){ |
| 6362 | goto end_allocate_page; |
| 6363 | } |
| 6364 | if( k==0 ){ |
| 6365 | if( !pPrevTrunk ){ |
| 6366 | memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| 6367 | }else{ |
| 6368 | rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| 6369 | if( rc!=SQLITE_OK ){ |
| 6370 | goto end_allocate_page; |
| 6371 | } |
| 6372 | memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
| 6373 | } |
| 6374 | }else{ |
| 6375 | /* The trunk page is required by the caller but it contains |
| 6376 | ** pointers to free-list leaves. The first leaf becomes a trunk |
| 6377 | ** page in this case. |
| 6378 | */ |
| 6379 | MemPage *pNewTrunk; |
| 6380 | Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
| 6381 | if( iNewTrunk>mxPage ){ |
| 6382 | rc = SQLITE_CORRUPT_PGNO(iTrunk); |
| 6383 | goto end_allocate_page; |
| 6384 | } |
| 6385 | testcase( iNewTrunk==mxPage ); |
| 6386 | rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); |
| 6387 | if( rc!=SQLITE_OK ){ |
| 6388 | goto end_allocate_page; |
| 6389 | } |
| 6390 | rc = sqlite3PagerWrite(pNewTrunk->pDbPage); |
| 6391 | if( rc!=SQLITE_OK ){ |
| 6392 | releasePage(pNewTrunk); |
| 6393 | goto end_allocate_page; |
| 6394 | } |
| 6395 | memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
| 6396 | put4byte(&pNewTrunk->aData[4], k-1); |
| 6397 | memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
| 6398 | releasePage(pNewTrunk); |
| 6399 | if( !pPrevTrunk ){ |
| 6400 | assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); |
| 6401 | put4byte(&pPage1->aData[32], iNewTrunk); |
| 6402 | }else{ |
| 6403 | rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| 6404 | if( rc ){ |
| 6405 | goto end_allocate_page; |
| 6406 | } |
| 6407 | put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
| 6408 | } |
| 6409 | } |
| 6410 | pTrunk = 0; |
| 6411 | TRACE(("ALLOCATE: %d trunk - %d free pages left\n" , *pPgno, n-1)); |
| 6412 | #endif |
| 6413 | }else if( k>0 ){ |
| 6414 | /* Extract a leaf from the trunk */ |
| 6415 | u32 closest; |
| 6416 | Pgno iPage; |
| 6417 | unsigned char *aData = pTrunk->aData; |
| 6418 | if( nearby>0 ){ |
| 6419 | u32 i; |
| 6420 | closest = 0; |
| 6421 | if( eMode==BTALLOC_LE ){ |
| 6422 | for(i=0; i<k; i++){ |
| 6423 | iPage = get4byte(&aData[8+i*4]); |
| 6424 | if( iPage<=nearby ){ |
| 6425 | closest = i; |
| 6426 | break; |
| 6427 | } |
| 6428 | } |
| 6429 | }else{ |
| 6430 | int dist; |
| 6431 | dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); |
| 6432 | for(i=1; i<k; i++){ |
| 6433 | int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); |
| 6434 | if( d2<dist ){ |
| 6435 | closest = i; |
| 6436 | dist = d2; |
| 6437 | } |
| 6438 | } |
| 6439 | } |
| 6440 | }else{ |
| 6441 | closest = 0; |
| 6442 | } |
| 6443 | |
| 6444 | iPage = get4byte(&aData[8+closest*4]); |
| 6445 | testcase( iPage==mxPage ); |
| 6446 | if( iPage>mxPage || iPage<2 ){ |
| 6447 | rc = SQLITE_CORRUPT_PGNO(iTrunk); |
| 6448 | goto end_allocate_page; |
| 6449 | } |
| 6450 | testcase( iPage==mxPage ); |
| 6451 | if( !searchList |
| 6452 | || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) |
| 6453 | ){ |
| 6454 | int noContent; |
| 6455 | *pPgno = iPage; |
| 6456 | TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
| 6457 | ": %d more free pages\n" , |
| 6458 | *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
| 6459 | rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 6460 | if( rc ) goto end_allocate_page; |
| 6461 | if( closest<k-1 ){ |
| 6462 | memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
| 6463 | } |
| 6464 | put4byte(&aData[4], k-1); |
| 6465 | noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; |
| 6466 | rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); |
| 6467 | if( rc==SQLITE_OK ){ |
| 6468 | rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| 6469 | if( rc!=SQLITE_OK ){ |
| 6470 | releasePage(*ppPage); |
| 6471 | *ppPage = 0; |
| 6472 | } |
| 6473 | } |
| 6474 | searchList = 0; |
| 6475 | } |
| 6476 | } |
| 6477 | releasePage(pPrevTrunk); |
| 6478 | pPrevTrunk = 0; |
| 6479 | }while( searchList ); |
| 6480 | }else{ |
| 6481 | /* There are no pages on the freelist, so append a new page to the |
| 6482 | ** database image. |
| 6483 | ** |
| 6484 | ** Normally, new pages allocated by this block can be requested from the |
| 6485 | ** pager layer with the 'no-content' flag set. This prevents the pager |
| 6486 | ** from trying to read the pages content from disk. However, if the |
| 6487 | ** current transaction has already run one or more incremental-vacuum |
| 6488 | ** steps, then the page we are about to allocate may contain content |
| 6489 | ** that is required in the event of a rollback. In this case, do |
| 6490 | ** not set the no-content flag. This causes the pager to load and journal |
| 6491 | ** the current page content before overwriting it. |
| 6492 | ** |
| 6493 | ** Note that the pager will not actually attempt to load or journal |
| 6494 | ** content for any page that really does lie past the end of the database |
| 6495 | ** file on disk. So the effects of disabling the no-content optimization |
| 6496 | ** here are confined to those pages that lie between the end of the |
| 6497 | ** database image and the end of the database file. |
| 6498 | */ |
| 6499 | int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; |
| 6500 | |
| 6501 | rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 6502 | if( rc ) return rc; |
| 6503 | pBt->nPage++; |
| 6504 | if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; |
| 6505 | |
| 6506 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6507 | if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ |
| 6508 | /* If *pPgno refers to a pointer-map page, allocate two new pages |
| 6509 | ** at the end of the file instead of one. The first allocated page |
| 6510 | ** becomes a new pointer-map page, the second is used by the caller. |
| 6511 | */ |
| 6512 | MemPage *pPg = 0; |
| 6513 | TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n" , pBt->nPage)); |
| 6514 | assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); |
| 6515 | rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); |
| 6516 | if( rc==SQLITE_OK ){ |
| 6517 | rc = sqlite3PagerWrite(pPg->pDbPage); |
| 6518 | releasePage(pPg); |
| 6519 | } |
| 6520 | if( rc ) return rc; |
| 6521 | pBt->nPage++; |
| 6522 | if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } |
| 6523 | } |
| 6524 | #endif |
| 6525 | put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); |
| 6526 | *pPgno = pBt->nPage; |
| 6527 | |
| 6528 | assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 6529 | rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); |
| 6530 | if( rc ) return rc; |
| 6531 | rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| 6532 | if( rc!=SQLITE_OK ){ |
| 6533 | releasePage(*ppPage); |
| 6534 | *ppPage = 0; |
| 6535 | } |
| 6536 | TRACE(("ALLOCATE: %d from end of file\n" , *pPgno)); |
| 6537 | } |
| 6538 | |
| 6539 | assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 6540 | |
| 6541 | end_allocate_page: |
| 6542 | releasePage(pTrunk); |
| 6543 | releasePage(pPrevTrunk); |
| 6544 | assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); |
| 6545 | assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); |
| 6546 | return rc; |
| 6547 | } |
| 6548 | |
| 6549 | /* |
| 6550 | ** This function is used to add page iPage to the database file free-list. |
| 6551 | ** It is assumed that the page is not already a part of the free-list. |
| 6552 | ** |
| 6553 | ** The value passed as the second argument to this function is optional. |
| 6554 | ** If the caller happens to have a pointer to the MemPage object |
| 6555 | ** corresponding to page iPage handy, it may pass it as the second value. |
| 6556 | ** Otherwise, it may pass NULL. |
| 6557 | ** |
| 6558 | ** If a pointer to a MemPage object is passed as the second argument, |
| 6559 | ** its reference count is not altered by this function. |
| 6560 | */ |
| 6561 | static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ |
| 6562 | MemPage *pTrunk = 0; /* Free-list trunk page */ |
| 6563 | Pgno iTrunk = 0; /* Page number of free-list trunk page */ |
| 6564 | MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ |
| 6565 | MemPage *pPage; /* Page being freed. May be NULL. */ |
| 6566 | int rc; /* Return Code */ |
| 6567 | u32 nFree; /* Initial number of pages on free-list */ |
| 6568 | |
| 6569 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 6570 | assert( CORRUPT_DB || iPage>1 ); |
| 6571 | assert( !pMemPage || pMemPage->pgno==iPage ); |
| 6572 | |
| 6573 | if( iPage<2 || iPage>pBt->nPage ){ |
| 6574 | return SQLITE_CORRUPT_BKPT; |
| 6575 | } |
| 6576 | if( pMemPage ){ |
| 6577 | pPage = pMemPage; |
| 6578 | sqlite3PagerRef(pPage->pDbPage); |
| 6579 | }else{ |
| 6580 | pPage = btreePageLookup(pBt, iPage); |
| 6581 | } |
| 6582 | |
| 6583 | /* Increment the free page count on pPage1 */ |
| 6584 | rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 6585 | if( rc ) goto freepage_out; |
| 6586 | nFree = get4byte(&pPage1->aData[36]); |
| 6587 | put4byte(&pPage1->aData[36], nFree+1); |
| 6588 | |
| 6589 | if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 6590 | /* If the secure_delete option is enabled, then |
| 6591 | ** always fully overwrite deleted information with zeros. |
| 6592 | */ |
| 6593 | if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) |
| 6594 | || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) |
| 6595 | ){ |
| 6596 | goto freepage_out; |
| 6597 | } |
| 6598 | memset(pPage->aData, 0, pPage->pBt->pageSize); |
| 6599 | } |
| 6600 | |
| 6601 | /* If the database supports auto-vacuum, write an entry in the pointer-map |
| 6602 | ** to indicate that the page is free. |
| 6603 | */ |
| 6604 | if( ISAUTOVACUUM ){ |
| 6605 | ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); |
| 6606 | if( rc ) goto freepage_out; |
| 6607 | } |
| 6608 | |
| 6609 | /* Now manipulate the actual database free-list structure. There are two |
| 6610 | ** possibilities. If the free-list is currently empty, or if the first |
| 6611 | ** trunk page in the free-list is full, then this page will become a |
| 6612 | ** new free-list trunk page. Otherwise, it will become a leaf of the |
| 6613 | ** first trunk page in the current free-list. This block tests if it |
| 6614 | ** is possible to add the page as a new free-list leaf. |
| 6615 | */ |
| 6616 | if( nFree!=0 ){ |
| 6617 | u32 nLeaf; /* Initial number of leaf cells on trunk page */ |
| 6618 | |
| 6619 | iTrunk = get4byte(&pPage1->aData[32]); |
| 6620 | if( iTrunk>btreePagecount(pBt) ){ |
| 6621 | rc = SQLITE_CORRUPT_BKPT; |
| 6622 | goto freepage_out; |
| 6623 | } |
| 6624 | rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
| 6625 | if( rc!=SQLITE_OK ){ |
| 6626 | goto freepage_out; |
| 6627 | } |
| 6628 | |
| 6629 | nLeaf = get4byte(&pTrunk->aData[4]); |
| 6630 | assert( pBt->usableSize>32 ); |
| 6631 | if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ |
| 6632 | rc = SQLITE_CORRUPT_BKPT; |
| 6633 | goto freepage_out; |
| 6634 | } |
| 6635 | if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ |
| 6636 | /* In this case there is room on the trunk page to insert the page |
| 6637 | ** being freed as a new leaf. |
| 6638 | ** |
| 6639 | ** Note that the trunk page is not really full until it contains |
| 6640 | ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have |
| 6641 | ** coded. But due to a coding error in versions of SQLite prior to |
| 6642 | ** 3.6.0, databases with freelist trunk pages holding more than |
| 6643 | ** usableSize/4 - 8 entries will be reported as corrupt. In order |
| 6644 | ** to maintain backwards compatibility with older versions of SQLite, |
| 6645 | ** we will continue to restrict the number of entries to usableSize/4 - 8 |
| 6646 | ** for now. At some point in the future (once everyone has upgraded |
| 6647 | ** to 3.6.0 or later) we should consider fixing the conditional above |
| 6648 | ** to read "usableSize/4-2" instead of "usableSize/4-8". |
| 6649 | ** |
| 6650 | ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still |
| 6651 | ** avoid using the last six entries in the freelist trunk page array in |
| 6652 | ** order that database files created by newer versions of SQLite can be |
| 6653 | ** read by older versions of SQLite. |
| 6654 | */ |
| 6655 | rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 6656 | if( rc==SQLITE_OK ){ |
| 6657 | put4byte(&pTrunk->aData[4], nLeaf+1); |
| 6658 | put4byte(&pTrunk->aData[8+nLeaf*4], iPage); |
| 6659 | if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ |
| 6660 | sqlite3PagerDontWrite(pPage->pDbPage); |
| 6661 | } |
| 6662 | rc = btreeSetHasContent(pBt, iPage); |
| 6663 | } |
| 6664 | TRACE(("FREE-PAGE: %d leaf on trunk page %d\n" ,pPage->pgno,pTrunk->pgno)); |
| 6665 | goto freepage_out; |
| 6666 | } |
| 6667 | } |
| 6668 | |
| 6669 | /* If control flows to this point, then it was not possible to add the |
| 6670 | ** the page being freed as a leaf page of the first trunk in the free-list. |
| 6671 | ** Possibly because the free-list is empty, or possibly because the |
| 6672 | ** first trunk in the free-list is full. Either way, the page being freed |
| 6673 | ** will become the new first trunk page in the free-list. |
| 6674 | */ |
| 6675 | if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ |
| 6676 | goto freepage_out; |
| 6677 | } |
| 6678 | rc = sqlite3PagerWrite(pPage->pDbPage); |
| 6679 | if( rc!=SQLITE_OK ){ |
| 6680 | goto freepage_out; |
| 6681 | } |
| 6682 | put4byte(pPage->aData, iTrunk); |
| 6683 | put4byte(&pPage->aData[4], 0); |
| 6684 | put4byte(&pPage1->aData[32], iPage); |
| 6685 | TRACE(("FREE-PAGE: %d new trunk page replacing %d\n" , pPage->pgno, iTrunk)); |
| 6686 | |
| 6687 | freepage_out: |
| 6688 | if( pPage ){ |
| 6689 | pPage->isInit = 0; |
| 6690 | } |
| 6691 | releasePage(pPage); |
| 6692 | releasePage(pTrunk); |
| 6693 | return rc; |
| 6694 | } |
| 6695 | static void freePage(MemPage *pPage, int *pRC){ |
| 6696 | if( (*pRC)==SQLITE_OK ){ |
| 6697 | *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); |
| 6698 | } |
| 6699 | } |
| 6700 | |
| 6701 | /* |
| 6702 | ** Free the overflow pages associated with the given Cell. |
| 6703 | */ |
| 6704 | static SQLITE_NOINLINE int clearCellOverflow( |
| 6705 | MemPage *pPage, /* The page that contains the Cell */ |
| 6706 | unsigned char *pCell, /* First byte of the Cell */ |
| 6707 | CellInfo *pInfo /* Size information about the cell */ |
| 6708 | ){ |
| 6709 | BtShared *pBt; |
| 6710 | Pgno ovflPgno; |
| 6711 | int rc; |
| 6712 | int nOvfl; |
| 6713 | u32 ovflPageSize; |
| 6714 | |
| 6715 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6716 | assert( pInfo->nLocal!=pInfo->nPayload ); |
| 6717 | testcase( pCell + pInfo->nSize == pPage->aDataEnd ); |
| 6718 | testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); |
| 6719 | if( pCell + pInfo->nSize > pPage->aDataEnd ){ |
| 6720 | /* Cell extends past end of page */ |
| 6721 | return SQLITE_CORRUPT_PAGE(pPage); |
| 6722 | } |
| 6723 | ovflPgno = get4byte(pCell + pInfo->nSize - 4); |
| 6724 | pBt = pPage->pBt; |
| 6725 | assert( pBt->usableSize > 4 ); |
| 6726 | ovflPageSize = pBt->usableSize - 4; |
| 6727 | nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; |
| 6728 | assert( nOvfl>0 || |
| 6729 | (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) |
| 6730 | ); |
| 6731 | while( nOvfl-- ){ |
| 6732 | Pgno iNext = 0; |
| 6733 | MemPage *pOvfl = 0; |
| 6734 | if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ |
| 6735 | /* 0 is not a legal page number and page 1 cannot be an |
| 6736 | ** overflow page. Therefore if ovflPgno<2 or past the end of the |
| 6737 | ** file the database must be corrupt. */ |
| 6738 | return SQLITE_CORRUPT_BKPT; |
| 6739 | } |
| 6740 | if( nOvfl ){ |
| 6741 | rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); |
| 6742 | if( rc ) return rc; |
| 6743 | } |
| 6744 | |
| 6745 | if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) |
| 6746 | && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 |
| 6747 | ){ |
| 6748 | /* There is no reason any cursor should have an outstanding reference |
| 6749 | ** to an overflow page belonging to a cell that is being deleted/updated. |
| 6750 | ** So if there exists more than one reference to this page, then it |
| 6751 | ** must not really be an overflow page and the database must be corrupt. |
| 6752 | ** It is helpful to detect this before calling freePage2(), as |
| 6753 | ** freePage2() may zero the page contents if secure-delete mode is |
| 6754 | ** enabled. If this 'overflow' page happens to be a page that the |
| 6755 | ** caller is iterating through or using in some other way, this |
| 6756 | ** can be problematic. |
| 6757 | */ |
| 6758 | rc = SQLITE_CORRUPT_BKPT; |
| 6759 | }else{ |
| 6760 | rc = freePage2(pBt, pOvfl, ovflPgno); |
| 6761 | } |
| 6762 | |
| 6763 | if( pOvfl ){ |
| 6764 | sqlite3PagerUnref(pOvfl->pDbPage); |
| 6765 | } |
| 6766 | if( rc ) return rc; |
| 6767 | ovflPgno = iNext; |
| 6768 | } |
| 6769 | return SQLITE_OK; |
| 6770 | } |
| 6771 | |
| 6772 | /* Call xParseCell to compute the size of a cell. If the cell contains |
| 6773 | ** overflow, then invoke cellClearOverflow to clear out that overflow. |
| 6774 | ** STore the result code (SQLITE_OK or some error code) in rc. |
| 6775 | ** |
| 6776 | ** Implemented as macro to force inlining for performance. |
| 6777 | */ |
| 6778 | #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ |
| 6779 | pPage->xParseCell(pPage, pCell, &sInfo); \ |
| 6780 | if( sInfo.nLocal!=sInfo.nPayload ){ \ |
| 6781 | rc = clearCellOverflow(pPage, pCell, &sInfo); \ |
| 6782 | }else{ \ |
| 6783 | rc = SQLITE_OK; \ |
| 6784 | } |
| 6785 | |
| 6786 | |
| 6787 | /* |
| 6788 | ** Create the byte sequence used to represent a cell on page pPage |
| 6789 | ** and write that byte sequence into pCell[]. Overflow pages are |
| 6790 | ** allocated and filled in as necessary. The calling procedure |
| 6791 | ** is responsible for making sure sufficient space has been allocated |
| 6792 | ** for pCell[]. |
| 6793 | ** |
| 6794 | ** Note that pCell does not necessary need to point to the pPage->aData |
| 6795 | ** area. pCell might point to some temporary storage. The cell will |
| 6796 | ** be constructed in this temporary area then copied into pPage->aData |
| 6797 | ** later. |
| 6798 | */ |
| 6799 | static int fillInCell( |
| 6800 | MemPage *pPage, /* The page that contains the cell */ |
| 6801 | unsigned char *pCell, /* Complete text of the cell */ |
| 6802 | const BtreePayload *pX, /* Payload with which to construct the cell */ |
| 6803 | int *pnSize /* Write cell size here */ |
| 6804 | ){ |
| 6805 | int nPayload; |
| 6806 | const u8 *pSrc; |
| 6807 | int nSrc, n, rc, mn; |
| 6808 | int spaceLeft; |
| 6809 | MemPage *pToRelease; |
| 6810 | unsigned char *pPrior; |
| 6811 | unsigned char *pPayload; |
| 6812 | BtShared *pBt; |
| 6813 | Pgno pgnoOvfl; |
| 6814 | int ; |
| 6815 | |
| 6816 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6817 | |
| 6818 | /* pPage is not necessarily writeable since pCell might be auxiliary |
| 6819 | ** buffer space that is separate from the pPage buffer area */ |
| 6820 | assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] |
| 6821 | || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6822 | |
| 6823 | /* Fill in the header. */ |
| 6824 | nHeader = pPage->childPtrSize; |
| 6825 | if( pPage->intKey ){ |
| 6826 | nPayload = pX->nData + pX->nZero; |
| 6827 | pSrc = pX->pData; |
| 6828 | nSrc = pX->nData; |
| 6829 | assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ |
| 6830 | nHeader += putVarint32(&pCell[nHeader], nPayload); |
| 6831 | nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); |
| 6832 | }else{ |
| 6833 | assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); |
| 6834 | nSrc = nPayload = (int)pX->nKey; |
| 6835 | pSrc = pX->pKey; |
| 6836 | nHeader += putVarint32(&pCell[nHeader], nPayload); |
| 6837 | } |
| 6838 | |
| 6839 | /* Fill in the payload */ |
| 6840 | pPayload = &pCell[nHeader]; |
| 6841 | if( nPayload<=pPage->maxLocal ){ |
| 6842 | /* This is the common case where everything fits on the btree page |
| 6843 | ** and no overflow pages are required. */ |
| 6844 | n = nHeader + nPayload; |
| 6845 | testcase( n==3 ); |
| 6846 | testcase( n==4 ); |
| 6847 | if( n<4 ) n = 4; |
| 6848 | *pnSize = n; |
| 6849 | assert( nSrc<=nPayload ); |
| 6850 | testcase( nSrc<nPayload ); |
| 6851 | memcpy(pPayload, pSrc, nSrc); |
| 6852 | memset(pPayload+nSrc, 0, nPayload-nSrc); |
| 6853 | return SQLITE_OK; |
| 6854 | } |
| 6855 | |
| 6856 | /* If we reach this point, it means that some of the content will need |
| 6857 | ** to spill onto overflow pages. |
| 6858 | */ |
| 6859 | mn = pPage->minLocal; |
| 6860 | n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); |
| 6861 | testcase( n==pPage->maxLocal ); |
| 6862 | testcase( n==pPage->maxLocal+1 ); |
| 6863 | if( n > pPage->maxLocal ) n = mn; |
| 6864 | spaceLeft = n; |
| 6865 | *pnSize = n + nHeader + 4; |
| 6866 | pPrior = &pCell[nHeader+n]; |
| 6867 | pToRelease = 0; |
| 6868 | pgnoOvfl = 0; |
| 6869 | pBt = pPage->pBt; |
| 6870 | |
| 6871 | /* At this point variables should be set as follows: |
| 6872 | ** |
| 6873 | ** nPayload Total payload size in bytes |
| 6874 | ** pPayload Begin writing payload here |
| 6875 | ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, |
| 6876 | ** that means content must spill into overflow pages. |
| 6877 | ** *pnSize Size of the local cell (not counting overflow pages) |
| 6878 | ** pPrior Where to write the pgno of the first overflow page |
| 6879 | ** |
| 6880 | ** Use a call to btreeParseCellPtr() to verify that the values above |
| 6881 | ** were computed correctly. |
| 6882 | */ |
| 6883 | #ifdef SQLITE_DEBUG |
| 6884 | { |
| 6885 | CellInfo info; |
| 6886 | pPage->xParseCell(pPage, pCell, &info); |
| 6887 | assert( nHeader==(int)(info.pPayload - pCell) ); |
| 6888 | assert( info.nKey==pX->nKey ); |
| 6889 | assert( *pnSize == info.nSize ); |
| 6890 | assert( spaceLeft == info.nLocal ); |
| 6891 | } |
| 6892 | #endif |
| 6893 | |
| 6894 | /* Write the payload into the local Cell and any extra into overflow pages */ |
| 6895 | while( 1 ){ |
| 6896 | n = nPayload; |
| 6897 | if( n>spaceLeft ) n = spaceLeft; |
| 6898 | |
| 6899 | /* If pToRelease is not zero than pPayload points into the data area |
| 6900 | ** of pToRelease. Make sure pToRelease is still writeable. */ |
| 6901 | assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| 6902 | |
| 6903 | /* If pPayload is part of the data area of pPage, then make sure pPage |
| 6904 | ** is still writeable */ |
| 6905 | assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] |
| 6906 | || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6907 | |
| 6908 | if( nSrc>=n ){ |
| 6909 | memcpy(pPayload, pSrc, n); |
| 6910 | }else if( nSrc>0 ){ |
| 6911 | n = nSrc; |
| 6912 | memcpy(pPayload, pSrc, n); |
| 6913 | }else{ |
| 6914 | memset(pPayload, 0, n); |
| 6915 | } |
| 6916 | nPayload -= n; |
| 6917 | if( nPayload<=0 ) break; |
| 6918 | pPayload += n; |
| 6919 | pSrc += n; |
| 6920 | nSrc -= n; |
| 6921 | spaceLeft -= n; |
| 6922 | if( spaceLeft==0 ){ |
| 6923 | MemPage *pOvfl = 0; |
| 6924 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6925 | Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
| 6926 | if( pBt->autoVacuum ){ |
| 6927 | do{ |
| 6928 | pgnoOvfl++; |
| 6929 | } while( |
| 6930 | PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) |
| 6931 | ); |
| 6932 | } |
| 6933 | #endif |
| 6934 | rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
| 6935 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6936 | /* If the database supports auto-vacuum, and the second or subsequent |
| 6937 | ** overflow page is being allocated, add an entry to the pointer-map |
| 6938 | ** for that page now. |
| 6939 | ** |
| 6940 | ** If this is the first overflow page, then write a partial entry |
| 6941 | ** to the pointer-map. If we write nothing to this pointer-map slot, |
| 6942 | ** then the optimistic overflow chain processing in clearCell() |
| 6943 | ** may misinterpret the uninitialized values and delete the |
| 6944 | ** wrong pages from the database. |
| 6945 | */ |
| 6946 | if( pBt->autoVacuum && rc==SQLITE_OK ){ |
| 6947 | u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); |
| 6948 | ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); |
| 6949 | if( rc ){ |
| 6950 | releasePage(pOvfl); |
| 6951 | } |
| 6952 | } |
| 6953 | #endif |
| 6954 | if( rc ){ |
| 6955 | releasePage(pToRelease); |
| 6956 | return rc; |
| 6957 | } |
| 6958 | |
| 6959 | /* If pToRelease is not zero than pPrior points into the data area |
| 6960 | ** of pToRelease. Make sure pToRelease is still writeable. */ |
| 6961 | assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| 6962 | |
| 6963 | /* If pPrior is part of the data area of pPage, then make sure pPage |
| 6964 | ** is still writeable */ |
| 6965 | assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] |
| 6966 | || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6967 | |
| 6968 | put4byte(pPrior, pgnoOvfl); |
| 6969 | releasePage(pToRelease); |
| 6970 | pToRelease = pOvfl; |
| 6971 | pPrior = pOvfl->aData; |
| 6972 | put4byte(pPrior, 0); |
| 6973 | pPayload = &pOvfl->aData[4]; |
| 6974 | spaceLeft = pBt->usableSize - 4; |
| 6975 | } |
| 6976 | } |
| 6977 | releasePage(pToRelease); |
| 6978 | return SQLITE_OK; |
| 6979 | } |
| 6980 | |
| 6981 | /* |
| 6982 | ** Remove the i-th cell from pPage. This routine effects pPage only. |
| 6983 | ** The cell content is not freed or deallocated. It is assumed that |
| 6984 | ** the cell content has been copied someplace else. This routine just |
| 6985 | ** removes the reference to the cell from pPage. |
| 6986 | ** |
| 6987 | ** "sz" must be the number of bytes in the cell. |
| 6988 | */ |
| 6989 | static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ |
| 6990 | u32 pc; /* Offset to cell content of cell being deleted */ |
| 6991 | u8 *data; /* pPage->aData */ |
| 6992 | u8 *ptr; /* Used to move bytes around within data[] */ |
| 6993 | int rc; /* The return code */ |
| 6994 | int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ |
| 6995 | |
| 6996 | if( *pRC ) return; |
| 6997 | assert( idx>=0 ); |
| 6998 | assert( idx<pPage->nCell ); |
| 6999 | assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); |
| 7000 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 7001 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 7002 | assert( pPage->nFree>=0 ); |
| 7003 | data = pPage->aData; |
| 7004 | ptr = &pPage->aCellIdx[2*idx]; |
| 7005 | assert( pPage->pBt->usableSize > (u32)(ptr-data) ); |
| 7006 | pc = get2byte(ptr); |
| 7007 | hdr = pPage->hdrOffset; |
| 7008 | testcase( pc==(u32)get2byte(&data[hdr+5]) ); |
| 7009 | testcase( pc+sz==pPage->pBt->usableSize ); |
| 7010 | if( pc+sz > pPage->pBt->usableSize ){ |
| 7011 | *pRC = SQLITE_CORRUPT_BKPT; |
| 7012 | return; |
| 7013 | } |
| 7014 | rc = freeSpace(pPage, pc, sz); |
| 7015 | if( rc ){ |
| 7016 | *pRC = rc; |
| 7017 | return; |
| 7018 | } |
| 7019 | pPage->nCell--; |
| 7020 | if( pPage->nCell==0 ){ |
| 7021 | memset(&data[hdr+1], 0, 4); |
| 7022 | data[hdr+7] = 0; |
| 7023 | put2byte(&data[hdr+5], pPage->pBt->usableSize); |
| 7024 | pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset |
| 7025 | - pPage->childPtrSize - 8; |
| 7026 | }else{ |
| 7027 | memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); |
| 7028 | put2byte(&data[hdr+3], pPage->nCell); |
| 7029 | pPage->nFree += 2; |
| 7030 | } |
| 7031 | } |
| 7032 | |
| 7033 | /* |
| 7034 | ** Insert a new cell on pPage at cell index "i". pCell points to the |
| 7035 | ** content of the cell. |
| 7036 | ** |
| 7037 | ** If the cell content will fit on the page, then put it there. If it |
| 7038 | ** will not fit, then make a copy of the cell content into pTemp if |
| 7039 | ** pTemp is not null. Regardless of pTemp, allocate a new entry |
| 7040 | ** in pPage->apOvfl[] and make it point to the cell content (either |
| 7041 | ** in pTemp or the original pCell) and also record its index. |
| 7042 | ** Allocating a new entry in pPage->aCell[] implies that |
| 7043 | ** pPage->nOverflow is incremented. |
| 7044 | ** |
| 7045 | ** *pRC must be SQLITE_OK when this routine is called. |
| 7046 | */ |
| 7047 | static void insertCell( |
| 7048 | MemPage *pPage, /* Page into which we are copying */ |
| 7049 | int i, /* New cell becomes the i-th cell of the page */ |
| 7050 | u8 *pCell, /* Content of the new cell */ |
| 7051 | int sz, /* Bytes of content in pCell */ |
| 7052 | u8 *pTemp, /* Temp storage space for pCell, if needed */ |
| 7053 | Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ |
| 7054 | int *pRC /* Read and write return code from here */ |
| 7055 | ){ |
| 7056 | int idx = 0; /* Where to write new cell content in data[] */ |
| 7057 | int j; /* Loop counter */ |
| 7058 | u8 *data; /* The content of the whole page */ |
| 7059 | u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ |
| 7060 | |
| 7061 | assert( *pRC==SQLITE_OK ); |
| 7062 | assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
| 7063 | assert( MX_CELL(pPage->pBt)<=10921 ); |
| 7064 | assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); |
| 7065 | assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); |
| 7066 | assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); |
| 7067 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 7068 | assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); |
| 7069 | assert( pPage->nFree>=0 ); |
| 7070 | if( pPage->nOverflow || sz+2>pPage->nFree ){ |
| 7071 | if( pTemp ){ |
| 7072 | memcpy(pTemp, pCell, sz); |
| 7073 | pCell = pTemp; |
| 7074 | } |
| 7075 | if( iChild ){ |
| 7076 | put4byte(pCell, iChild); |
| 7077 | } |
| 7078 | j = pPage->nOverflow++; |
| 7079 | /* Comparison against ArraySize-1 since we hold back one extra slot |
| 7080 | ** as a contingency. In other words, never need more than 3 overflow |
| 7081 | ** slots but 4 are allocated, just to be safe. */ |
| 7082 | assert( j < ArraySize(pPage->apOvfl)-1 ); |
| 7083 | pPage->apOvfl[j] = pCell; |
| 7084 | pPage->aiOvfl[j] = (u16)i; |
| 7085 | |
| 7086 | /* When multiple overflows occur, they are always sequential and in |
| 7087 | ** sorted order. This invariants arise because multiple overflows can |
| 7088 | ** only occur when inserting divider cells into the parent page during |
| 7089 | ** balancing, and the dividers are adjacent and sorted. |
| 7090 | */ |
| 7091 | assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ |
| 7092 | assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ |
| 7093 | }else{ |
| 7094 | int rc = sqlite3PagerWrite(pPage->pDbPage); |
| 7095 | if( rc!=SQLITE_OK ){ |
| 7096 | *pRC = rc; |
| 7097 | return; |
| 7098 | } |
| 7099 | assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 7100 | data = pPage->aData; |
| 7101 | assert( &data[pPage->cellOffset]==pPage->aCellIdx ); |
| 7102 | rc = allocateSpace(pPage, sz, &idx); |
| 7103 | if( rc ){ *pRC = rc; return; } |
| 7104 | /* The allocateSpace() routine guarantees the following properties |
| 7105 | ** if it returns successfully */ |
| 7106 | assert( idx >= 0 ); |
| 7107 | assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); |
| 7108 | assert( idx+sz <= (int)pPage->pBt->usableSize ); |
| 7109 | pPage->nFree -= (u16)(2 + sz); |
| 7110 | if( iChild ){ |
| 7111 | /* In a corrupt database where an entry in the cell index section of |
| 7112 | ** a btree page has a value of 3 or less, the pCell value might point |
| 7113 | ** as many as 4 bytes in front of the start of the aData buffer for |
| 7114 | ** the source page. Make sure this does not cause problems by not |
| 7115 | ** reading the first 4 bytes */ |
| 7116 | memcpy(&data[idx+4], pCell+4, sz-4); |
| 7117 | put4byte(&data[idx], iChild); |
| 7118 | }else{ |
| 7119 | memcpy(&data[idx], pCell, sz); |
| 7120 | } |
| 7121 | pIns = pPage->aCellIdx + i*2; |
| 7122 | memmove(pIns+2, pIns, 2*(pPage->nCell - i)); |
| 7123 | put2byte(pIns, idx); |
| 7124 | pPage->nCell++; |
| 7125 | /* increment the cell count */ |
| 7126 | if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; |
| 7127 | assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); |
| 7128 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 7129 | if( pPage->pBt->autoVacuum ){ |
| 7130 | /* The cell may contain a pointer to an overflow page. If so, write |
| 7131 | ** the entry for the overflow page into the pointer map. |
| 7132 | */ |
| 7133 | ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); |
| 7134 | } |
| 7135 | #endif |
| 7136 | } |
| 7137 | } |
| 7138 | |
| 7139 | /* |
| 7140 | ** The following parameters determine how many adjacent pages get involved |
| 7141 | ** in a balancing operation. NN is the number of neighbors on either side |
| 7142 | ** of the page that participate in the balancing operation. NB is the |
| 7143 | ** total number of pages that participate, including the target page and |
| 7144 | ** NN neighbors on either side. |
| 7145 | ** |
| 7146 | ** The minimum value of NN is 1 (of course). Increasing NN above 1 |
| 7147 | ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
| 7148 | ** in exchange for a larger degradation in INSERT and UPDATE performance. |
| 7149 | ** The value of NN appears to give the best results overall. |
| 7150 | ** |
| 7151 | ** (Later:) The description above makes it seem as if these values are |
| 7152 | ** tunable - as if you could change them and recompile and it would all work. |
| 7153 | ** But that is unlikely. NB has been 3 since the inception of SQLite and |
| 7154 | ** we have never tested any other value. |
| 7155 | */ |
| 7156 | #define NN 1 /* Number of neighbors on either side of pPage */ |
| 7157 | #define NB 3 /* (NN*2+1): Total pages involved in the balance */ |
| 7158 | |
| 7159 | /* |
| 7160 | ** A CellArray object contains a cache of pointers and sizes for a |
| 7161 | ** consecutive sequence of cells that might be held on multiple pages. |
| 7162 | ** |
| 7163 | ** The cells in this array are the divider cell or cells from the pParent |
| 7164 | ** page plus up to three child pages. There are a total of nCell cells. |
| 7165 | ** |
| 7166 | ** pRef is a pointer to one of the pages that contributes cells. This is |
| 7167 | ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize |
| 7168 | ** which should be common to all pages that contribute cells to this array. |
| 7169 | ** |
| 7170 | ** apCell[] and szCell[] hold, respectively, pointers to the start of each |
| 7171 | ** cell and the size of each cell. Some of the apCell[] pointers might refer |
| 7172 | ** to overflow cells. In other words, some apCel[] pointers might not point |
| 7173 | ** to content area of the pages. |
| 7174 | ** |
| 7175 | ** A szCell[] of zero means the size of that cell has not yet been computed. |
| 7176 | ** |
| 7177 | ** The cells come from as many as four different pages: |
| 7178 | ** |
| 7179 | ** ----------- |
| 7180 | ** | Parent | |
| 7181 | ** ----------- |
| 7182 | ** / | \ |
| 7183 | ** / | \ |
| 7184 | ** --------- --------- --------- |
| 7185 | ** |Child-1| |Child-2| |Child-3| |
| 7186 | ** --------- --------- --------- |
| 7187 | ** |
| 7188 | ** The order of cells is in the array is for an index btree is: |
| 7189 | ** |
| 7190 | ** 1. All cells from Child-1 in order |
| 7191 | ** 2. The first divider cell from Parent |
| 7192 | ** 3. All cells from Child-2 in order |
| 7193 | ** 4. The second divider cell from Parent |
| 7194 | ** 5. All cells from Child-3 in order |
| 7195 | ** |
| 7196 | ** For a table-btree (with rowids) the items 2 and 4 are empty because |
| 7197 | ** content exists only in leaves and there are no divider cells. |
| 7198 | ** |
| 7199 | ** For an index btree, the apEnd[] array holds pointer to the end of page |
| 7200 | ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, |
| 7201 | ** respectively. The ixNx[] array holds the number of cells contained in |
| 7202 | ** each of these 5 stages, and all stages to the left. Hence: |
| 7203 | ** |
| 7204 | ** ixNx[0] = Number of cells in Child-1. |
| 7205 | ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. |
| 7206 | ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. |
| 7207 | ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells |
| 7208 | ** ixNx[4] = Total number of cells. |
| 7209 | ** |
| 7210 | ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] |
| 7211 | ** are used and they point to the leaf pages only, and the ixNx value are: |
| 7212 | ** |
| 7213 | ** ixNx[0] = Number of cells in Child-1. |
| 7214 | ** ixNx[1] = Number of cells in Child-1 and Child-2. |
| 7215 | ** ixNx[2] = Total number of cells. |
| 7216 | ** |
| 7217 | ** Sometimes when deleting, a child page can have zero cells. In those |
| 7218 | ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] |
| 7219 | ** entries, shift down. The end result is that each ixNx[] entry should |
| 7220 | ** be larger than the previous |
| 7221 | */ |
| 7222 | typedef struct CellArray CellArray; |
| 7223 | struct CellArray { |
| 7224 | int nCell; /* Number of cells in apCell[] */ |
| 7225 | MemPage *pRef; /* Reference page */ |
| 7226 | u8 **apCell; /* All cells begin balanced */ |
| 7227 | u16 *szCell; /* Local size of all cells in apCell[] */ |
| 7228 | u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ |
| 7229 | int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ |
| 7230 | }; |
| 7231 | |
| 7232 | /* |
| 7233 | ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been |
| 7234 | ** computed. |
| 7235 | */ |
| 7236 | static void populateCellCache(CellArray *p, int idx, int N){ |
| 7237 | assert( idx>=0 && idx+N<=p->nCell ); |
| 7238 | while( N>0 ){ |
| 7239 | assert( p->apCell[idx]!=0 ); |
| 7240 | if( p->szCell[idx]==0 ){ |
| 7241 | p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); |
| 7242 | }else{ |
| 7243 | assert( CORRUPT_DB || |
| 7244 | p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); |
| 7245 | } |
| 7246 | idx++; |
| 7247 | N--; |
| 7248 | } |
| 7249 | } |
| 7250 | |
| 7251 | /* |
| 7252 | ** Return the size of the Nth element of the cell array |
| 7253 | */ |
| 7254 | static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ |
| 7255 | assert( N>=0 && N<p->nCell ); |
| 7256 | assert( p->szCell[N]==0 ); |
| 7257 | p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); |
| 7258 | return p->szCell[N]; |
| 7259 | } |
| 7260 | static u16 cachedCellSize(CellArray *p, int N){ |
| 7261 | assert( N>=0 && N<p->nCell ); |
| 7262 | if( p->szCell[N] ) return p->szCell[N]; |
| 7263 | return computeCellSize(p, N); |
| 7264 | } |
| 7265 | |
| 7266 | /* |
| 7267 | ** Array apCell[] contains pointers to nCell b-tree page cells. The |
| 7268 | ** szCell[] array contains the size in bytes of each cell. This function |
| 7269 | ** replaces the current contents of page pPg with the contents of the cell |
| 7270 | ** array. |
| 7271 | ** |
| 7272 | ** Some of the cells in apCell[] may currently be stored in pPg. This |
| 7273 | ** function works around problems caused by this by making a copy of any |
| 7274 | ** such cells before overwriting the page data. |
| 7275 | ** |
| 7276 | ** The MemPage.nFree field is invalidated by this function. It is the |
| 7277 | ** responsibility of the caller to set it correctly. |
| 7278 | */ |
| 7279 | static int rebuildPage( |
| 7280 | CellArray *pCArray, /* Content to be added to page pPg */ |
| 7281 | int iFirst, /* First cell in pCArray to use */ |
| 7282 | int nCell, /* Final number of cells on page */ |
| 7283 | MemPage *pPg /* The page to be reconstructed */ |
| 7284 | ){ |
| 7285 | const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ |
| 7286 | u8 * const aData = pPg->aData; /* Pointer to data for pPg */ |
| 7287 | const int usableSize = pPg->pBt->usableSize; |
| 7288 | u8 * const pEnd = &aData[usableSize]; |
| 7289 | int i = iFirst; /* Which cell to copy from pCArray*/ |
| 7290 | u32 j; /* Start of cell content area */ |
| 7291 | int iEnd = i+nCell; /* Loop terminator */ |
| 7292 | u8 *pCellptr = pPg->aCellIdx; |
| 7293 | u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
| 7294 | u8 *pData; |
| 7295 | int k; /* Current slot in pCArray->apEnd[] */ |
| 7296 | u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ |
| 7297 | |
| 7298 | assert( i<iEnd ); |
| 7299 | j = get2byte(&aData[hdr+5]); |
| 7300 | if( j>(u32)usableSize ){ j = 0; } |
| 7301 | memcpy(&pTmp[j], &aData[j], usableSize - j); |
| 7302 | |
| 7303 | for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} |
| 7304 | pSrcEnd = pCArray->apEnd[k]; |
| 7305 | |
| 7306 | pData = pEnd; |
| 7307 | while( 1/*exit by break*/ ){ |
| 7308 | u8 *pCell = pCArray->apCell[i]; |
| 7309 | u16 sz = pCArray->szCell[i]; |
| 7310 | assert( sz>0 ); |
| 7311 | if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ |
| 7312 | if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; |
| 7313 | pCell = &pTmp[pCell - aData]; |
| 7314 | }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd |
| 7315 | && (uptr)(pCell)<(uptr)pSrcEnd |
| 7316 | ){ |
| 7317 | return SQLITE_CORRUPT_BKPT; |
| 7318 | } |
| 7319 | |
| 7320 | pData -= sz; |
| 7321 | put2byte(pCellptr, (pData - aData)); |
| 7322 | pCellptr += 2; |
| 7323 | if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; |
| 7324 | memmove(pData, pCell, sz); |
| 7325 | assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); |
| 7326 | i++; |
| 7327 | if( i>=iEnd ) break; |
| 7328 | if( pCArray->ixNx[k]<=i ){ |
| 7329 | k++; |
| 7330 | pSrcEnd = pCArray->apEnd[k]; |
| 7331 | } |
| 7332 | } |
| 7333 | |
| 7334 | /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ |
| 7335 | pPg->nCell = nCell; |
| 7336 | pPg->nOverflow = 0; |
| 7337 | |
| 7338 | put2byte(&aData[hdr+1], 0); |
| 7339 | put2byte(&aData[hdr+3], pPg->nCell); |
| 7340 | put2byte(&aData[hdr+5], pData - aData); |
| 7341 | aData[hdr+7] = 0x00; |
| 7342 | return SQLITE_OK; |
| 7343 | } |
| 7344 | |
| 7345 | /* |
| 7346 | ** The pCArray objects contains pointers to b-tree cells and the cell sizes. |
| 7347 | ** This function attempts to add the cells stored in the array to page pPg. |
| 7348 | ** If it cannot (because the page needs to be defragmented before the cells |
| 7349 | ** will fit), non-zero is returned. Otherwise, if the cells are added |
| 7350 | ** successfully, zero is returned. |
| 7351 | ** |
| 7352 | ** Argument pCellptr points to the first entry in the cell-pointer array |
| 7353 | ** (part of page pPg) to populate. After cell apCell[0] is written to the |
| 7354 | ** page body, a 16-bit offset is written to pCellptr. And so on, for each |
| 7355 | ** cell in the array. It is the responsibility of the caller to ensure |
| 7356 | ** that it is safe to overwrite this part of the cell-pointer array. |
| 7357 | ** |
| 7358 | ** When this function is called, *ppData points to the start of the |
| 7359 | ** content area on page pPg. If the size of the content area is extended, |
| 7360 | ** *ppData is updated to point to the new start of the content area |
| 7361 | ** before returning. |
| 7362 | ** |
| 7363 | ** Finally, argument pBegin points to the byte immediately following the |
| 7364 | ** end of the space required by this page for the cell-pointer area (for |
| 7365 | ** all cells - not just those inserted by the current call). If the content |
| 7366 | ** area must be extended to before this point in order to accomodate all |
| 7367 | ** cells in apCell[], then the cells do not fit and non-zero is returned. |
| 7368 | */ |
| 7369 | static int pageInsertArray( |
| 7370 | MemPage *pPg, /* Page to add cells to */ |
| 7371 | u8 *pBegin, /* End of cell-pointer array */ |
| 7372 | u8 **ppData, /* IN/OUT: Page content-area pointer */ |
| 7373 | u8 *pCellptr, /* Pointer to cell-pointer area */ |
| 7374 | int iFirst, /* Index of first cell to add */ |
| 7375 | int nCell, /* Number of cells to add to pPg */ |
| 7376 | CellArray *pCArray /* Array of cells */ |
| 7377 | ){ |
| 7378 | int i = iFirst; /* Loop counter - cell index to insert */ |
| 7379 | u8 *aData = pPg->aData; /* Complete page */ |
| 7380 | u8 *pData = *ppData; /* Content area. A subset of aData[] */ |
| 7381 | int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ |
| 7382 | int k; /* Current slot in pCArray->apEnd[] */ |
| 7383 | u8 *pEnd; /* Maximum extent of cell data */ |
| 7384 | assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ |
| 7385 | if( iEnd<=iFirst ) return 0; |
| 7386 | for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} |
| 7387 | pEnd = pCArray->apEnd[k]; |
| 7388 | while( 1 /*Exit by break*/ ){ |
| 7389 | int sz, rc; |
| 7390 | u8 *pSlot; |
| 7391 | assert( pCArray->szCell[i]!=0 ); |
| 7392 | sz = pCArray->szCell[i]; |
| 7393 | if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ |
| 7394 | if( (pData - pBegin)<sz ) return 1; |
| 7395 | pData -= sz; |
| 7396 | pSlot = pData; |
| 7397 | } |
| 7398 | /* pSlot and pCArray->apCell[i] will never overlap on a well-formed |
| 7399 | ** database. But they might for a corrupt database. Hence use memmove() |
| 7400 | ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ |
| 7401 | assert( (pSlot+sz)<=pCArray->apCell[i] |
| 7402 | || pSlot>=(pCArray->apCell[i]+sz) |
| 7403 | || CORRUPT_DB ); |
| 7404 | if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd |
| 7405 | && (uptr)(pCArray->apCell[i])<(uptr)pEnd |
| 7406 | ){ |
| 7407 | assert( CORRUPT_DB ); |
| 7408 | (void)SQLITE_CORRUPT_BKPT; |
| 7409 | return 1; |
| 7410 | } |
| 7411 | memmove(pSlot, pCArray->apCell[i], sz); |
| 7412 | put2byte(pCellptr, (pSlot - aData)); |
| 7413 | pCellptr += 2; |
| 7414 | i++; |
| 7415 | if( i>=iEnd ) break; |
| 7416 | if( pCArray->ixNx[k]<=i ){ |
| 7417 | k++; |
| 7418 | pEnd = pCArray->apEnd[k]; |
| 7419 | } |
| 7420 | } |
| 7421 | *ppData = pData; |
| 7422 | return 0; |
| 7423 | } |
| 7424 | |
| 7425 | /* |
| 7426 | ** The pCArray object contains pointers to b-tree cells and their sizes. |
| 7427 | ** |
| 7428 | ** This function adds the space associated with each cell in the array |
| 7429 | ** that is currently stored within the body of pPg to the pPg free-list. |
| 7430 | ** The cell-pointers and other fields of the page are not updated. |
| 7431 | ** |
| 7432 | ** This function returns the total number of cells added to the free-list. |
| 7433 | */ |
| 7434 | static int pageFreeArray( |
| 7435 | MemPage *pPg, /* Page to edit */ |
| 7436 | int iFirst, /* First cell to delete */ |
| 7437 | int nCell, /* Cells to delete */ |
| 7438 | CellArray *pCArray /* Array of cells */ |
| 7439 | ){ |
| 7440 | u8 * const aData = pPg->aData; |
| 7441 | u8 * const pEnd = &aData[pPg->pBt->usableSize]; |
| 7442 | u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; |
| 7443 | int nRet = 0; |
| 7444 | int i; |
| 7445 | int iEnd = iFirst + nCell; |
| 7446 | u8 *pFree = 0; |
| 7447 | int szFree = 0; |
| 7448 | |
| 7449 | for(i=iFirst; i<iEnd; i++){ |
| 7450 | u8 *pCell = pCArray->apCell[i]; |
| 7451 | if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ |
| 7452 | int sz; |
| 7453 | /* No need to use cachedCellSize() here. The sizes of all cells that |
| 7454 | ** are to be freed have already been computing while deciding which |
| 7455 | ** cells need freeing */ |
| 7456 | sz = pCArray->szCell[i]; assert( sz>0 ); |
| 7457 | if( pFree!=(pCell + sz) ){ |
| 7458 | if( pFree ){ |
| 7459 | assert( pFree>aData && (pFree - aData)<65536 ); |
| 7460 | freeSpace(pPg, (u16)(pFree - aData), szFree); |
| 7461 | } |
| 7462 | pFree = pCell; |
| 7463 | szFree = sz; |
| 7464 | if( pFree+sz>pEnd ){ |
| 7465 | return 0; |
| 7466 | } |
| 7467 | }else{ |
| 7468 | pFree = pCell; |
| 7469 | szFree += sz; |
| 7470 | } |
| 7471 | nRet++; |
| 7472 | } |
| 7473 | } |
| 7474 | if( pFree ){ |
| 7475 | assert( pFree>aData && (pFree - aData)<65536 ); |
| 7476 | freeSpace(pPg, (u16)(pFree - aData), szFree); |
| 7477 | } |
| 7478 | return nRet; |
| 7479 | } |
| 7480 | |
| 7481 | /* |
| 7482 | ** pCArray contains pointers to and sizes of all cells in the page being |
| 7483 | ** balanced. The current page, pPg, has pPg->nCell cells starting with |
| 7484 | ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells |
| 7485 | ** starting at apCell[iNew]. |
| 7486 | ** |
| 7487 | ** This routine makes the necessary adjustments to pPg so that it contains |
| 7488 | ** the correct cells after being balanced. |
| 7489 | ** |
| 7490 | ** The pPg->nFree field is invalid when this function returns. It is the |
| 7491 | ** responsibility of the caller to set it correctly. |
| 7492 | */ |
| 7493 | static int editPage( |
| 7494 | MemPage *pPg, /* Edit this page */ |
| 7495 | int iOld, /* Index of first cell currently on page */ |
| 7496 | int iNew, /* Index of new first cell on page */ |
| 7497 | int nNew, /* Final number of cells on page */ |
| 7498 | CellArray *pCArray /* Array of cells and sizes */ |
| 7499 | ){ |
| 7500 | u8 * const aData = pPg->aData; |
| 7501 | const int hdr = pPg->hdrOffset; |
| 7502 | u8 *pBegin = &pPg->aCellIdx[nNew * 2]; |
| 7503 | int nCell = pPg->nCell; /* Cells stored on pPg */ |
| 7504 | u8 *pData; |
| 7505 | u8 *pCellptr; |
| 7506 | int i; |
| 7507 | int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; |
| 7508 | int iNewEnd = iNew + nNew; |
| 7509 | |
| 7510 | #ifdef SQLITE_DEBUG |
| 7511 | u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
| 7512 | memcpy(pTmp, aData, pPg->pBt->usableSize); |
| 7513 | #endif |
| 7514 | |
| 7515 | /* Remove cells from the start and end of the page */ |
| 7516 | assert( nCell>=0 ); |
| 7517 | if( iOld<iNew ){ |
| 7518 | int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); |
| 7519 | if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; |
| 7520 | memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); |
| 7521 | nCell -= nShift; |
| 7522 | } |
| 7523 | if( iNewEnd < iOldEnd ){ |
| 7524 | int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); |
| 7525 | assert( nCell>=nTail ); |
| 7526 | nCell -= nTail; |
| 7527 | } |
| 7528 | |
| 7529 | pData = &aData[get2byteNotZero(&aData[hdr+5])]; |
| 7530 | if( pData<pBegin ) goto editpage_fail; |
| 7531 | if( pData>pPg->aDataEnd ) goto editpage_fail; |
| 7532 | |
| 7533 | /* Add cells to the start of the page */ |
| 7534 | if( iNew<iOld ){ |
| 7535 | int nAdd = MIN(nNew,iOld-iNew); |
| 7536 | assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); |
| 7537 | assert( nAdd>=0 ); |
| 7538 | pCellptr = pPg->aCellIdx; |
| 7539 | memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); |
| 7540 | if( pageInsertArray( |
| 7541 | pPg, pBegin, &pData, pCellptr, |
| 7542 | iNew, nAdd, pCArray |
| 7543 | ) ) goto editpage_fail; |
| 7544 | nCell += nAdd; |
| 7545 | } |
| 7546 | |
| 7547 | /* Add any overflow cells */ |
| 7548 | for(i=0; i<pPg->nOverflow; i++){ |
| 7549 | int iCell = (iOld + pPg->aiOvfl[i]) - iNew; |
| 7550 | if( iCell>=0 && iCell<nNew ){ |
| 7551 | pCellptr = &pPg->aCellIdx[iCell * 2]; |
| 7552 | if( nCell>iCell ){ |
| 7553 | memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); |
| 7554 | } |
| 7555 | nCell++; |
| 7556 | cachedCellSize(pCArray, iCell+iNew); |
| 7557 | if( pageInsertArray( |
| 7558 | pPg, pBegin, &pData, pCellptr, |
| 7559 | iCell+iNew, 1, pCArray |
| 7560 | ) ) goto editpage_fail; |
| 7561 | } |
| 7562 | } |
| 7563 | |
| 7564 | /* Append cells to the end of the page */ |
| 7565 | assert( nCell>=0 ); |
| 7566 | pCellptr = &pPg->aCellIdx[nCell*2]; |
| 7567 | if( pageInsertArray( |
| 7568 | pPg, pBegin, &pData, pCellptr, |
| 7569 | iNew+nCell, nNew-nCell, pCArray |
| 7570 | ) ) goto editpage_fail; |
| 7571 | |
| 7572 | pPg->nCell = nNew; |
| 7573 | pPg->nOverflow = 0; |
| 7574 | |
| 7575 | put2byte(&aData[hdr+3], pPg->nCell); |
| 7576 | put2byte(&aData[hdr+5], pData - aData); |
| 7577 | |
| 7578 | #ifdef SQLITE_DEBUG |
| 7579 | for(i=0; i<nNew && !CORRUPT_DB; i++){ |
| 7580 | u8 *pCell = pCArray->apCell[i+iNew]; |
| 7581 | int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); |
| 7582 | if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ |
| 7583 | pCell = &pTmp[pCell - aData]; |
| 7584 | } |
| 7585 | assert( 0==memcmp(pCell, &aData[iOff], |
| 7586 | pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); |
| 7587 | } |
| 7588 | #endif |
| 7589 | |
| 7590 | return SQLITE_OK; |
| 7591 | editpage_fail: |
| 7592 | /* Unable to edit this page. Rebuild it from scratch instead. */ |
| 7593 | populateCellCache(pCArray, iNew, nNew); |
| 7594 | return rebuildPage(pCArray, iNew, nNew, pPg); |
| 7595 | } |
| 7596 | |
| 7597 | |
| 7598 | #ifndef SQLITE_OMIT_QUICKBALANCE |
| 7599 | /* |
| 7600 | ** This version of balance() handles the common special case where |
| 7601 | ** a new entry is being inserted on the extreme right-end of the |
| 7602 | ** tree, in other words, when the new entry will become the largest |
| 7603 | ** entry in the tree. |
| 7604 | ** |
| 7605 | ** Instead of trying to balance the 3 right-most leaf pages, just add |
| 7606 | ** a new page to the right-hand side and put the one new entry in |
| 7607 | ** that page. This leaves the right side of the tree somewhat |
| 7608 | ** unbalanced. But odds are that we will be inserting new entries |
| 7609 | ** at the end soon afterwards so the nearly empty page will quickly |
| 7610 | ** fill up. On average. |
| 7611 | ** |
| 7612 | ** pPage is the leaf page which is the right-most page in the tree. |
| 7613 | ** pParent is its parent. pPage must have a single overflow entry |
| 7614 | ** which is also the right-most entry on the page. |
| 7615 | ** |
| 7616 | ** The pSpace buffer is used to store a temporary copy of the divider |
| 7617 | ** cell that will be inserted into pParent. Such a cell consists of a 4 |
| 7618 | ** byte page number followed by a variable length integer. In other |
| 7619 | ** words, at most 13 bytes. Hence the pSpace buffer must be at |
| 7620 | ** least 13 bytes in size. |
| 7621 | */ |
| 7622 | static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ |
| 7623 | BtShared *const pBt = pPage->pBt; /* B-Tree Database */ |
| 7624 | MemPage *pNew; /* Newly allocated page */ |
| 7625 | int rc; /* Return Code */ |
| 7626 | Pgno pgnoNew; /* Page number of pNew */ |
| 7627 | |
| 7628 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 7629 | assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 7630 | assert( pPage->nOverflow==1 ); |
| 7631 | |
| 7632 | if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ |
| 7633 | assert( pPage->nFree>=0 ); |
| 7634 | assert( pParent->nFree>=0 ); |
| 7635 | |
| 7636 | /* Allocate a new page. This page will become the right-sibling of |
| 7637 | ** pPage. Make the parent page writable, so that the new divider cell |
| 7638 | ** may be inserted. If both these operations are successful, proceed. |
| 7639 | */ |
| 7640 | rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
| 7641 | |
| 7642 | if( rc==SQLITE_OK ){ |
| 7643 | |
| 7644 | u8 *pOut = &pSpace[4]; |
| 7645 | u8 *pCell = pPage->apOvfl[0]; |
| 7646 | u16 szCell = pPage->xCellSize(pPage, pCell); |
| 7647 | u8 *pStop; |
| 7648 | CellArray b; |
| 7649 | |
| 7650 | assert( sqlite3PagerIswriteable(pNew->pDbPage) ); |
| 7651 | assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); |
| 7652 | zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); |
| 7653 | b.nCell = 1; |
| 7654 | b.pRef = pPage; |
| 7655 | b.apCell = &pCell; |
| 7656 | b.szCell = &szCell; |
| 7657 | b.apEnd[0] = pPage->aDataEnd; |
| 7658 | b.ixNx[0] = 2; |
| 7659 | rc = rebuildPage(&b, 0, 1, pNew); |
| 7660 | if( NEVER(rc) ){ |
| 7661 | releasePage(pNew); |
| 7662 | return rc; |
| 7663 | } |
| 7664 | pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; |
| 7665 | |
| 7666 | /* If this is an auto-vacuum database, update the pointer map |
| 7667 | ** with entries for the new page, and any pointer from the |
| 7668 | ** cell on the page to an overflow page. If either of these |
| 7669 | ** operations fails, the return code is set, but the contents |
| 7670 | ** of the parent page are still manipulated by thh code below. |
| 7671 | ** That is Ok, at this point the parent page is guaranteed to |
| 7672 | ** be marked as dirty. Returning an error code will cause a |
| 7673 | ** rollback, undoing any changes made to the parent page. |
| 7674 | */ |
| 7675 | if( ISAUTOVACUUM ){ |
| 7676 | ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); |
| 7677 | if( szCell>pNew->minLocal ){ |
| 7678 | ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); |
| 7679 | } |
| 7680 | } |
| 7681 | |
| 7682 | /* Create a divider cell to insert into pParent. The divider cell |
| 7683 | ** consists of a 4-byte page number (the page number of pPage) and |
| 7684 | ** a variable length key value (which must be the same value as the |
| 7685 | ** largest key on pPage). |
| 7686 | ** |
| 7687 | ** To find the largest key value on pPage, first find the right-most |
| 7688 | ** cell on pPage. The first two fields of this cell are the |
| 7689 | ** record-length (a variable length integer at most 32-bits in size) |
| 7690 | ** and the key value (a variable length integer, may have any value). |
| 7691 | ** The first of the while(...) loops below skips over the record-length |
| 7692 | ** field. The second while(...) loop copies the key value from the |
| 7693 | ** cell on pPage into the pSpace buffer. |
| 7694 | */ |
| 7695 | pCell = findCell(pPage, pPage->nCell-1); |
| 7696 | pStop = &pCell[9]; |
| 7697 | while( (*(pCell++)&0x80) && pCell<pStop ); |
| 7698 | pStop = &pCell[9]; |
| 7699 | while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); |
| 7700 | |
| 7701 | /* Insert the new divider cell into pParent. */ |
| 7702 | if( rc==SQLITE_OK ){ |
| 7703 | insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), |
| 7704 | 0, pPage->pgno, &rc); |
| 7705 | } |
| 7706 | |
| 7707 | /* Set the right-child pointer of pParent to point to the new page. */ |
| 7708 | put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
| 7709 | |
| 7710 | /* Release the reference to the new page. */ |
| 7711 | releasePage(pNew); |
| 7712 | } |
| 7713 | |
| 7714 | return rc; |
| 7715 | } |
| 7716 | #endif /* SQLITE_OMIT_QUICKBALANCE */ |
| 7717 | |
| 7718 | #if 0 |
| 7719 | /* |
| 7720 | ** This function does not contribute anything to the operation of SQLite. |
| 7721 | ** it is sometimes activated temporarily while debugging code responsible |
| 7722 | ** for setting pointer-map entries. |
| 7723 | */ |
| 7724 | static int ptrmapCheckPages(MemPage **apPage, int nPage){ |
| 7725 | int i, j; |
| 7726 | for(i=0; i<nPage; i++){ |
| 7727 | Pgno n; |
| 7728 | u8 e; |
| 7729 | MemPage *pPage = apPage[i]; |
| 7730 | BtShared *pBt = pPage->pBt; |
| 7731 | assert( pPage->isInit ); |
| 7732 | |
| 7733 | for(j=0; j<pPage->nCell; j++){ |
| 7734 | CellInfo info; |
| 7735 | u8 *z; |
| 7736 | |
| 7737 | z = findCell(pPage, j); |
| 7738 | pPage->xParseCell(pPage, z, &info); |
| 7739 | if( info.nLocal<info.nPayload ){ |
| 7740 | Pgno ovfl = get4byte(&z[info.nSize-4]); |
| 7741 | ptrmapGet(pBt, ovfl, &e, &n); |
| 7742 | assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); |
| 7743 | } |
| 7744 | if( !pPage->leaf ){ |
| 7745 | Pgno child = get4byte(z); |
| 7746 | ptrmapGet(pBt, child, &e, &n); |
| 7747 | assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| 7748 | } |
| 7749 | } |
| 7750 | if( !pPage->leaf ){ |
| 7751 | Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 7752 | ptrmapGet(pBt, child, &e, &n); |
| 7753 | assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| 7754 | } |
| 7755 | } |
| 7756 | return 1; |
| 7757 | } |
| 7758 | #endif |
| 7759 | |
| 7760 | /* |
| 7761 | ** This function is used to copy the contents of the b-tree node stored |
| 7762 | ** on page pFrom to page pTo. If page pFrom was not a leaf page, then |
| 7763 | ** the pointer-map entries for each child page are updated so that the |
| 7764 | ** parent page stored in the pointer map is page pTo. If pFrom contained |
| 7765 | ** any cells with overflow page pointers, then the corresponding pointer |
| 7766 | ** map entries are also updated so that the parent page is page pTo. |
| 7767 | ** |
| 7768 | ** If pFrom is currently carrying any overflow cells (entries in the |
| 7769 | ** MemPage.apOvfl[] array), they are not copied to pTo. |
| 7770 | ** |
| 7771 | ** Before returning, page pTo is reinitialized using btreeInitPage(). |
| 7772 | ** |
| 7773 | ** The performance of this function is not critical. It is only used by |
| 7774 | ** the balance_shallower() and balance_deeper() procedures, neither of |
| 7775 | ** which are called often under normal circumstances. |
| 7776 | */ |
| 7777 | static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ |
| 7778 | if( (*pRC)==SQLITE_OK ){ |
| 7779 | BtShared * const pBt = pFrom->pBt; |
| 7780 | u8 * const aFrom = pFrom->aData; |
| 7781 | u8 * const aTo = pTo->aData; |
| 7782 | int const iFromHdr = pFrom->hdrOffset; |
| 7783 | int const iToHdr = ((pTo->pgno==1) ? 100 : 0); |
| 7784 | int rc; |
| 7785 | int iData; |
| 7786 | |
| 7787 | |
| 7788 | assert( pFrom->isInit ); |
| 7789 | assert( pFrom->nFree>=iToHdr ); |
| 7790 | assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); |
| 7791 | |
| 7792 | /* Copy the b-tree node content from page pFrom to page pTo. */ |
| 7793 | iData = get2byte(&aFrom[iFromHdr+5]); |
| 7794 | memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); |
| 7795 | memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); |
| 7796 | |
| 7797 | /* Reinitialize page pTo so that the contents of the MemPage structure |
| 7798 | ** match the new data. The initialization of pTo can actually fail under |
| 7799 | ** fairly obscure circumstances, even though it is a copy of initialized |
| 7800 | ** page pFrom. |
| 7801 | */ |
| 7802 | pTo->isInit = 0; |
| 7803 | rc = btreeInitPage(pTo); |
| 7804 | if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); |
| 7805 | if( rc!=SQLITE_OK ){ |
| 7806 | *pRC = rc; |
| 7807 | return; |
| 7808 | } |
| 7809 | |
| 7810 | /* If this is an auto-vacuum database, update the pointer-map entries |
| 7811 | ** for any b-tree or overflow pages that pTo now contains the pointers to. |
| 7812 | */ |
| 7813 | if( ISAUTOVACUUM ){ |
| 7814 | *pRC = setChildPtrmaps(pTo); |
| 7815 | } |
| 7816 | } |
| 7817 | } |
| 7818 | |
| 7819 | /* |
| 7820 | ** This routine redistributes cells on the iParentIdx'th child of pParent |
| 7821 | ** (hereafter "the page") and up to 2 siblings so that all pages have about the |
| 7822 | ** same amount of free space. Usually a single sibling on either side of the |
| 7823 | ** page are used in the balancing, though both siblings might come from one |
| 7824 | ** side if the page is the first or last child of its parent. If the page |
| 7825 | ** has fewer than 2 siblings (something which can only happen if the page |
| 7826 | ** is a root page or a child of a root page) then all available siblings |
| 7827 | ** participate in the balancing. |
| 7828 | ** |
| 7829 | ** The number of siblings of the page might be increased or decreased by |
| 7830 | ** one or two in an effort to keep pages nearly full but not over full. |
| 7831 | ** |
| 7832 | ** Note that when this routine is called, some of the cells on the page |
| 7833 | ** might not actually be stored in MemPage.aData[]. This can happen |
| 7834 | ** if the page is overfull. This routine ensures that all cells allocated |
| 7835 | ** to the page and its siblings fit into MemPage.aData[] before returning. |
| 7836 | ** |
| 7837 | ** In the course of balancing the page and its siblings, cells may be |
| 7838 | ** inserted into or removed from the parent page (pParent). Doing so |
| 7839 | ** may cause the parent page to become overfull or underfull. If this |
| 7840 | ** happens, it is the responsibility of the caller to invoke the correct |
| 7841 | ** balancing routine to fix this problem (see the balance() routine). |
| 7842 | ** |
| 7843 | ** If this routine fails for any reason, it might leave the database |
| 7844 | ** in a corrupted state. So if this routine fails, the database should |
| 7845 | ** be rolled back. |
| 7846 | ** |
| 7847 | ** The third argument to this function, aOvflSpace, is a pointer to a |
| 7848 | ** buffer big enough to hold one page. If while inserting cells into the parent |
| 7849 | ** page (pParent) the parent page becomes overfull, this buffer is |
| 7850 | ** used to store the parent's overflow cells. Because this function inserts |
| 7851 | ** a maximum of four divider cells into the parent page, and the maximum |
| 7852 | ** size of a cell stored within an internal node is always less than 1/4 |
| 7853 | ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large |
| 7854 | ** enough for all overflow cells. |
| 7855 | ** |
| 7856 | ** If aOvflSpace is set to a null pointer, this function returns |
| 7857 | ** SQLITE_NOMEM. |
| 7858 | */ |
| 7859 | static int balance_nonroot( |
| 7860 | MemPage *pParent, /* Parent page of siblings being balanced */ |
| 7861 | int iParentIdx, /* Index of "the page" in pParent */ |
| 7862 | u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ |
| 7863 | int isRoot, /* True if pParent is a root-page */ |
| 7864 | int bBulk /* True if this call is part of a bulk load */ |
| 7865 | ){ |
| 7866 | BtShared *pBt; /* The whole database */ |
| 7867 | int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
| 7868 | int nNew = 0; /* Number of pages in apNew[] */ |
| 7869 | int nOld; /* Number of pages in apOld[] */ |
| 7870 | int i, j, k; /* Loop counters */ |
| 7871 | int nxDiv; /* Next divider slot in pParent->aCell[] */ |
| 7872 | int rc = SQLITE_OK; /* The return code */ |
| 7873 | u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
| 7874 | int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
| 7875 | int usableSpace; /* Bytes in pPage beyond the header */ |
| 7876 | int pageFlags; /* Value of pPage->aData[0] */ |
| 7877 | int iSpace1 = 0; /* First unused byte of aSpace1[] */ |
| 7878 | int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ |
| 7879 | int szScratch; /* Size of scratch memory requested */ |
| 7880 | MemPage *apOld[NB]; /* pPage and up to two siblings */ |
| 7881 | MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
| 7882 | u8 *pRight; /* Location in parent of right-sibling pointer */ |
| 7883 | u8 *apDiv[NB-1]; /* Divider cells in pParent */ |
| 7884 | int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ |
| 7885 | int cntOld[NB+2]; /* Old index in b.apCell[] */ |
| 7886 | int szNew[NB+2]; /* Combined size of cells placed on i-th page */ |
| 7887 | u8 *aSpace1; /* Space for copies of dividers cells */ |
| 7888 | Pgno pgno; /* Temp var to store a page number in */ |
| 7889 | u8 abDone[NB+2]; /* True after i'th new page is populated */ |
| 7890 | Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ |
| 7891 | CellArray b; /* Parsed information on cells being balanced */ |
| 7892 | |
| 7893 | memset(abDone, 0, sizeof(abDone)); |
| 7894 | memset(&b, 0, sizeof(b)); |
| 7895 | pBt = pParent->pBt; |
| 7896 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 7897 | assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 7898 | |
| 7899 | /* At this point pParent may have at most one overflow cell. And if |
| 7900 | ** this overflow cell is present, it must be the cell with |
| 7901 | ** index iParentIdx. This scenario comes about when this function |
| 7902 | ** is called (indirectly) from sqlite3BtreeDelete(). |
| 7903 | */ |
| 7904 | assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); |
| 7905 | assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); |
| 7906 | |
| 7907 | if( !aOvflSpace ){ |
| 7908 | return SQLITE_NOMEM_BKPT; |
| 7909 | } |
| 7910 | assert( pParent->nFree>=0 ); |
| 7911 | |
| 7912 | /* Find the sibling pages to balance. Also locate the cells in pParent |
| 7913 | ** that divide the siblings. An attempt is made to find NN siblings on |
| 7914 | ** either side of pPage. More siblings are taken from one side, however, |
| 7915 | ** if there are fewer than NN siblings on the other side. If pParent |
| 7916 | ** has NB or fewer children then all children of pParent are taken. |
| 7917 | ** |
| 7918 | ** This loop also drops the divider cells from the parent page. This |
| 7919 | ** way, the remainder of the function does not have to deal with any |
| 7920 | ** overflow cells in the parent page, since if any existed they will |
| 7921 | ** have already been removed. |
| 7922 | */ |
| 7923 | i = pParent->nOverflow + pParent->nCell; |
| 7924 | if( i<2 ){ |
| 7925 | nxDiv = 0; |
| 7926 | }else{ |
| 7927 | assert( bBulk==0 || bBulk==1 ); |
| 7928 | if( iParentIdx==0 ){ |
| 7929 | nxDiv = 0; |
| 7930 | }else if( iParentIdx==i ){ |
| 7931 | nxDiv = i-2+bBulk; |
| 7932 | }else{ |
| 7933 | nxDiv = iParentIdx-1; |
| 7934 | } |
| 7935 | i = 2-bBulk; |
| 7936 | } |
| 7937 | nOld = i+1; |
| 7938 | if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ |
| 7939 | pRight = &pParent->aData[pParent->hdrOffset+8]; |
| 7940 | }else{ |
| 7941 | pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| 7942 | } |
| 7943 | pgno = get4byte(pRight); |
| 7944 | while( 1 ){ |
| 7945 | if( rc==SQLITE_OK ){ |
| 7946 | rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); |
| 7947 | } |
| 7948 | if( rc ){ |
| 7949 | memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
| 7950 | goto balance_cleanup; |
| 7951 | } |
| 7952 | if( apOld[i]->nFree<0 ){ |
| 7953 | rc = btreeComputeFreeSpace(apOld[i]); |
| 7954 | if( rc ){ |
| 7955 | memset(apOld, 0, (i)*sizeof(MemPage*)); |
| 7956 | goto balance_cleanup; |
| 7957 | } |
| 7958 | } |
| 7959 | nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); |
| 7960 | if( (i--)==0 ) break; |
| 7961 | |
| 7962 | if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ |
| 7963 | apDiv[i] = pParent->apOvfl[0]; |
| 7964 | pgno = get4byte(apDiv[i]); |
| 7965 | szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
| 7966 | pParent->nOverflow = 0; |
| 7967 | }else{ |
| 7968 | apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| 7969 | pgno = get4byte(apDiv[i]); |
| 7970 | szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
| 7971 | |
| 7972 | /* Drop the cell from the parent page. apDiv[i] still points to |
| 7973 | ** the cell within the parent, even though it has been dropped. |
| 7974 | ** This is safe because dropping a cell only overwrites the first |
| 7975 | ** four bytes of it, and this function does not need the first |
| 7976 | ** four bytes of the divider cell. So the pointer is safe to use |
| 7977 | ** later on. |
| 7978 | ** |
| 7979 | ** But not if we are in secure-delete mode. In secure-delete mode, |
| 7980 | ** the dropCell() routine will overwrite the entire cell with zeroes. |
| 7981 | ** In this case, temporarily copy the cell into the aOvflSpace[] |
| 7982 | ** buffer. It will be copied out again as soon as the aSpace[] buffer |
| 7983 | ** is allocated. */ |
| 7984 | if( pBt->btsFlags & BTS_FAST_SECURE ){ |
| 7985 | int iOff; |
| 7986 | |
| 7987 | /* If the following if() condition is not true, the db is corrupted. |
| 7988 | ** The call to dropCell() below will detect this. */ |
| 7989 | iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); |
| 7990 | if( (iOff+szNew[i])<=(int)pBt->usableSize ){ |
| 7991 | memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); |
| 7992 | apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; |
| 7993 | } |
| 7994 | } |
| 7995 | dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); |
| 7996 | } |
| 7997 | } |
| 7998 | |
| 7999 | /* Make nMaxCells a multiple of 4 in order to preserve 8-byte |
| 8000 | ** alignment */ |
| 8001 | nMaxCells = (nMaxCells + 3)&~3; |
| 8002 | |
| 8003 | /* |
| 8004 | ** Allocate space for memory structures |
| 8005 | */ |
| 8006 | szScratch = |
| 8007 | nMaxCells*sizeof(u8*) /* b.apCell */ |
| 8008 | + nMaxCells*sizeof(u16) /* b.szCell */ |
| 8009 | + pBt->pageSize; /* aSpace1 */ |
| 8010 | |
| 8011 | assert( szScratch<=7*(int)pBt->pageSize ); |
| 8012 | b.apCell = sqlite3StackAllocRaw(0, szScratch ); |
| 8013 | if( b.apCell==0 ){ |
| 8014 | rc = SQLITE_NOMEM_BKPT; |
| 8015 | goto balance_cleanup; |
| 8016 | } |
| 8017 | b.szCell = (u16*)&b.apCell[nMaxCells]; |
| 8018 | aSpace1 = (u8*)&b.szCell[nMaxCells]; |
| 8019 | assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); |
| 8020 | |
| 8021 | /* |
| 8022 | ** Load pointers to all cells on sibling pages and the divider cells |
| 8023 | ** into the local b.apCell[] array. Make copies of the divider cells |
| 8024 | ** into space obtained from aSpace1[]. The divider cells have already |
| 8025 | ** been removed from pParent. |
| 8026 | ** |
| 8027 | ** If the siblings are on leaf pages, then the child pointers of the |
| 8028 | ** divider cells are stripped from the cells before they are copied |
| 8029 | ** into aSpace1[]. In this way, all cells in b.apCell[] are without |
| 8030 | ** child pointers. If siblings are not leaves, then all cell in |
| 8031 | ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] |
| 8032 | ** are alike. |
| 8033 | ** |
| 8034 | ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
| 8035 | ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
| 8036 | */ |
| 8037 | b.pRef = apOld[0]; |
| 8038 | leafCorrection = b.pRef->leaf*4; |
| 8039 | leafData = b.pRef->intKeyLeaf; |
| 8040 | for(i=0; i<nOld; i++){ |
| 8041 | MemPage *pOld = apOld[i]; |
| 8042 | int limit = pOld->nCell; |
| 8043 | u8 *aData = pOld->aData; |
| 8044 | u16 maskPage = pOld->maskPage; |
| 8045 | u8 *piCell = aData + pOld->cellOffset; |
| 8046 | u8 *piEnd; |
| 8047 | VVA_ONLY( int nCellAtStart = b.nCell; ) |
| 8048 | |
| 8049 | /* Verify that all sibling pages are of the same "type" (table-leaf, |
| 8050 | ** table-interior, index-leaf, or index-interior). |
| 8051 | */ |
| 8052 | if( pOld->aData[0]!=apOld[0]->aData[0] ){ |
| 8053 | rc = SQLITE_CORRUPT_BKPT; |
| 8054 | goto balance_cleanup; |
| 8055 | } |
| 8056 | |
| 8057 | /* Load b.apCell[] with pointers to all cells in pOld. If pOld |
| 8058 | ** contains overflow cells, include them in the b.apCell[] array |
| 8059 | ** in the correct spot. |
| 8060 | ** |
| 8061 | ** Note that when there are multiple overflow cells, it is always the |
| 8062 | ** case that they are sequential and adjacent. This invariant arises |
| 8063 | ** because multiple overflows can only occurs when inserting divider |
| 8064 | ** cells into a parent on a prior balance, and divider cells are always |
| 8065 | ** adjacent and are inserted in order. There is an assert() tagged |
| 8066 | ** with "NOTE 1" in the overflow cell insertion loop to prove this |
| 8067 | ** invariant. |
| 8068 | ** |
| 8069 | ** This must be done in advance. Once the balance starts, the cell |
| 8070 | ** offset section of the btree page will be overwritten and we will no |
| 8071 | ** long be able to find the cells if a pointer to each cell is not saved |
| 8072 | ** first. |
| 8073 | */ |
| 8074 | memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); |
| 8075 | if( pOld->nOverflow>0 ){ |
| 8076 | if( NEVER(limit<pOld->aiOvfl[0]) ){ |
| 8077 | rc = SQLITE_CORRUPT_BKPT; |
| 8078 | goto balance_cleanup; |
| 8079 | } |
| 8080 | limit = pOld->aiOvfl[0]; |
| 8081 | for(j=0; j<limit; j++){ |
| 8082 | b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
| 8083 | piCell += 2; |
| 8084 | b.nCell++; |
| 8085 | } |
| 8086 | for(k=0; k<pOld->nOverflow; k++){ |
| 8087 | assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ |
| 8088 | b.apCell[b.nCell] = pOld->apOvfl[k]; |
| 8089 | b.nCell++; |
| 8090 | } |
| 8091 | } |
| 8092 | piEnd = aData + pOld->cellOffset + 2*pOld->nCell; |
| 8093 | while( piCell<piEnd ){ |
| 8094 | assert( b.nCell<nMaxCells ); |
| 8095 | b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
| 8096 | piCell += 2; |
| 8097 | b.nCell++; |
| 8098 | } |
| 8099 | assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); |
| 8100 | |
| 8101 | cntOld[i] = b.nCell; |
| 8102 | if( i<nOld-1 && !leafData){ |
| 8103 | u16 sz = (u16)szNew[i]; |
| 8104 | u8 *pTemp; |
| 8105 | assert( b.nCell<nMaxCells ); |
| 8106 | b.szCell[b.nCell] = sz; |
| 8107 | pTemp = &aSpace1[iSpace1]; |
| 8108 | iSpace1 += sz; |
| 8109 | assert( sz<=pBt->maxLocal+23 ); |
| 8110 | assert( iSpace1 <= (int)pBt->pageSize ); |
| 8111 | memcpy(pTemp, apDiv[i], sz); |
| 8112 | b.apCell[b.nCell] = pTemp+leafCorrection; |
| 8113 | assert( leafCorrection==0 || leafCorrection==4 ); |
| 8114 | b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; |
| 8115 | if( !pOld->leaf ){ |
| 8116 | assert( leafCorrection==0 ); |
| 8117 | assert( pOld->hdrOffset==0 || CORRUPT_DB ); |
| 8118 | /* The right pointer of the child page pOld becomes the left |
| 8119 | ** pointer of the divider cell */ |
| 8120 | memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); |
| 8121 | }else{ |
| 8122 | assert( leafCorrection==4 ); |
| 8123 | while( b.szCell[b.nCell]<4 ){ |
| 8124 | /* Do not allow any cells smaller than 4 bytes. If a smaller cell |
| 8125 | ** does exist, pad it with 0x00 bytes. */ |
| 8126 | assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); |
| 8127 | assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); |
| 8128 | aSpace1[iSpace1++] = 0x00; |
| 8129 | b.szCell[b.nCell]++; |
| 8130 | } |
| 8131 | } |
| 8132 | b.nCell++; |
| 8133 | } |
| 8134 | } |
| 8135 | |
| 8136 | /* |
| 8137 | ** Figure out the number of pages needed to hold all b.nCell cells. |
| 8138 | ** Store this number in "k". Also compute szNew[] which is the total |
| 8139 | ** size of all cells on the i-th page and cntNew[] which is the index |
| 8140 | ** in b.apCell[] of the cell that divides page i from page i+1. |
| 8141 | ** cntNew[k] should equal b.nCell. |
| 8142 | ** |
| 8143 | ** Values computed by this block: |
| 8144 | ** |
| 8145 | ** k: The total number of sibling pages |
| 8146 | ** szNew[i]: Spaced used on the i-th sibling page. |
| 8147 | ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to |
| 8148 | ** the right of the i-th sibling page. |
| 8149 | ** usableSpace: Number of bytes of space available on each sibling. |
| 8150 | ** |
| 8151 | */ |
| 8152 | usableSpace = pBt->usableSize - 12 + leafCorrection; |
| 8153 | for(i=k=0; i<nOld; i++, k++){ |
| 8154 | MemPage *p = apOld[i]; |
| 8155 | b.apEnd[k] = p->aDataEnd; |
| 8156 | b.ixNx[k] = cntOld[i]; |
| 8157 | if( k && b.ixNx[k]==b.ixNx[k-1] ){ |
| 8158 | k--; /* Omit b.ixNx[] entry for child pages with no cells */ |
| 8159 | } |
| 8160 | if( !leafData ){ |
| 8161 | k++; |
| 8162 | b.apEnd[k] = pParent->aDataEnd; |
| 8163 | b.ixNx[k] = cntOld[i]+1; |
| 8164 | } |
| 8165 | assert( p->nFree>=0 ); |
| 8166 | szNew[i] = usableSpace - p->nFree; |
| 8167 | for(j=0; j<p->nOverflow; j++){ |
| 8168 | szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); |
| 8169 | } |
| 8170 | cntNew[i] = cntOld[i]; |
| 8171 | } |
| 8172 | k = nOld; |
| 8173 | for(i=0; i<k; i++){ |
| 8174 | int sz; |
| 8175 | while( szNew[i]>usableSpace ){ |
| 8176 | if( i+1>=k ){ |
| 8177 | k = i+2; |
| 8178 | if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } |
| 8179 | szNew[k-1] = 0; |
| 8180 | cntNew[k-1] = b.nCell; |
| 8181 | } |
| 8182 | sz = 2 + cachedCellSize(&b, cntNew[i]-1); |
| 8183 | szNew[i] -= sz; |
| 8184 | if( !leafData ){ |
| 8185 | if( cntNew[i]<b.nCell ){ |
| 8186 | sz = 2 + cachedCellSize(&b, cntNew[i]); |
| 8187 | }else{ |
| 8188 | sz = 0; |
| 8189 | } |
| 8190 | } |
| 8191 | szNew[i+1] += sz; |
| 8192 | cntNew[i]--; |
| 8193 | } |
| 8194 | while( cntNew[i]<b.nCell ){ |
| 8195 | sz = 2 + cachedCellSize(&b, cntNew[i]); |
| 8196 | if( szNew[i]+sz>usableSpace ) break; |
| 8197 | szNew[i] += sz; |
| 8198 | cntNew[i]++; |
| 8199 | if( !leafData ){ |
| 8200 | if( cntNew[i]<b.nCell ){ |
| 8201 | sz = 2 + cachedCellSize(&b, cntNew[i]); |
| 8202 | }else{ |
| 8203 | sz = 0; |
| 8204 | } |
| 8205 | } |
| 8206 | szNew[i+1] -= sz; |
| 8207 | } |
| 8208 | if( cntNew[i]>=b.nCell ){ |
| 8209 | k = i+1; |
| 8210 | }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ |
| 8211 | rc = SQLITE_CORRUPT_BKPT; |
| 8212 | goto balance_cleanup; |
| 8213 | } |
| 8214 | } |
| 8215 | |
| 8216 | /* |
| 8217 | ** The packing computed by the previous block is biased toward the siblings |
| 8218 | ** on the left side (siblings with smaller keys). The left siblings are |
| 8219 | ** always nearly full, while the right-most sibling might be nearly empty. |
| 8220 | ** The next block of code attempts to adjust the packing of siblings to |
| 8221 | ** get a better balance. |
| 8222 | ** |
| 8223 | ** This adjustment is more than an optimization. The packing above might |
| 8224 | ** be so out of balance as to be illegal. For example, the right-most |
| 8225 | ** sibling might be completely empty. This adjustment is not optional. |
| 8226 | */ |
| 8227 | for(i=k-1; i>0; i--){ |
| 8228 | int szRight = szNew[i]; /* Size of sibling on the right */ |
| 8229 | int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
| 8230 | int r; /* Index of right-most cell in left sibling */ |
| 8231 | int d; /* Index of first cell to the left of right sibling */ |
| 8232 | |
| 8233 | r = cntNew[i-1] - 1; |
| 8234 | d = r + 1 - leafData; |
| 8235 | (void)cachedCellSize(&b, d); |
| 8236 | do{ |
| 8237 | assert( d<nMaxCells ); |
| 8238 | assert( r<nMaxCells ); |
| 8239 | (void)cachedCellSize(&b, r); |
| 8240 | if( szRight!=0 |
| 8241 | && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ |
| 8242 | break; |
| 8243 | } |
| 8244 | szRight += b.szCell[d] + 2; |
| 8245 | szLeft -= b.szCell[r] + 2; |
| 8246 | cntNew[i-1] = r; |
| 8247 | r--; |
| 8248 | d--; |
| 8249 | }while( r>=0 ); |
| 8250 | szNew[i] = szRight; |
| 8251 | szNew[i-1] = szLeft; |
| 8252 | if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ |
| 8253 | rc = SQLITE_CORRUPT_BKPT; |
| 8254 | goto balance_cleanup; |
| 8255 | } |
| 8256 | } |
| 8257 | |
| 8258 | /* Sanity check: For a non-corrupt database file one of the follwing |
| 8259 | ** must be true: |
| 8260 | ** (1) We found one or more cells (cntNew[0])>0), or |
| 8261 | ** (2) pPage is a virtual root page. A virtual root page is when |
| 8262 | ** the real root page is page 1 and we are the only child of |
| 8263 | ** that page. |
| 8264 | */ |
| 8265 | assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); |
| 8266 | TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n" , |
| 8267 | apOld[0]->pgno, apOld[0]->nCell, |
| 8268 | nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, |
| 8269 | nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 |
| 8270 | )); |
| 8271 | |
| 8272 | /* |
| 8273 | ** Allocate k new pages. Reuse old pages where possible. |
| 8274 | */ |
| 8275 | pageFlags = apOld[0]->aData[0]; |
| 8276 | for(i=0; i<k; i++){ |
| 8277 | MemPage *pNew; |
| 8278 | if( i<nOld ){ |
| 8279 | pNew = apNew[i] = apOld[i]; |
| 8280 | apOld[i] = 0; |
| 8281 | rc = sqlite3PagerWrite(pNew->pDbPage); |
| 8282 | nNew++; |
| 8283 | if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) |
| 8284 | && rc==SQLITE_OK |
| 8285 | ){ |
| 8286 | rc = SQLITE_CORRUPT_BKPT; |
| 8287 | } |
| 8288 | if( rc ) goto balance_cleanup; |
| 8289 | }else{ |
| 8290 | assert( i>0 ); |
| 8291 | rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); |
| 8292 | if( rc ) goto balance_cleanup; |
| 8293 | zeroPage(pNew, pageFlags); |
| 8294 | apNew[i] = pNew; |
| 8295 | nNew++; |
| 8296 | cntOld[i] = b.nCell; |
| 8297 | |
| 8298 | /* Set the pointer-map entry for the new sibling page. */ |
| 8299 | if( ISAUTOVACUUM ){ |
| 8300 | ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); |
| 8301 | if( rc!=SQLITE_OK ){ |
| 8302 | goto balance_cleanup; |
| 8303 | } |
| 8304 | } |
| 8305 | } |
| 8306 | } |
| 8307 | |
| 8308 | /* |
| 8309 | ** Reassign page numbers so that the new pages are in ascending order. |
| 8310 | ** This helps to keep entries in the disk file in order so that a scan |
| 8311 | ** of the table is closer to a linear scan through the file. That in turn |
| 8312 | ** helps the operating system to deliver pages from the disk more rapidly. |
| 8313 | ** |
| 8314 | ** An O(N*N) sort algorithm is used, but since N is never more than NB+2 |
| 8315 | ** (5), that is not a performance concern. |
| 8316 | ** |
| 8317 | ** When NB==3, this one optimization makes the database about 25% faster |
| 8318 | ** for large insertions and deletions. |
| 8319 | */ |
| 8320 | for(i=0; i<nNew; i++){ |
| 8321 | aPgno[i] = apNew[i]->pgno; |
| 8322 | assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE ); |
| 8323 | assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY ); |
| 8324 | } |
| 8325 | for(i=0; i<nNew-1; i++){ |
| 8326 | int iB = i; |
| 8327 | for(j=i+1; j<nNew; j++){ |
| 8328 | if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j; |
| 8329 | } |
| 8330 | |
| 8331 | /* If apNew[i] has a page number that is bigger than any of the |
| 8332 | ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent |
| 8333 | ** entry that has the smallest page number (which we know to be |
| 8334 | ** entry apNew[iB]). |
| 8335 | */ |
| 8336 | if( iB!=i ){ |
| 8337 | Pgno pgnoA = apNew[i]->pgno; |
| 8338 | Pgno pgnoB = apNew[iB]->pgno; |
| 8339 | Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1; |
| 8340 | u16 fgA = apNew[i]->pDbPage->flags; |
| 8341 | u16 fgB = apNew[iB]->pDbPage->flags; |
| 8342 | sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB); |
| 8343 | sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA); |
| 8344 | sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB); |
| 8345 | apNew[i]->pgno = pgnoB; |
| 8346 | apNew[iB]->pgno = pgnoA; |
| 8347 | } |
| 8348 | } |
| 8349 | |
| 8350 | TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " |
| 8351 | "%d(%d nc=%d) %d(%d nc=%d)\n" , |
| 8352 | apNew[0]->pgno, szNew[0], cntNew[0], |
| 8353 | nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, |
| 8354 | nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, |
| 8355 | nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, |
| 8356 | nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, |
| 8357 | nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, |
| 8358 | nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, |
| 8359 | nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, |
| 8360 | nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 |
| 8361 | )); |
| 8362 | |
| 8363 | assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 8364 | assert( nNew>=1 && nNew<=ArraySize(apNew) ); |
| 8365 | assert( apNew[nNew-1]!=0 ); |
| 8366 | put4byte(pRight, apNew[nNew-1]->pgno); |
| 8367 | |
| 8368 | /* If the sibling pages are not leaves, ensure that the right-child pointer |
| 8369 | ** of the right-most new sibling page is set to the value that was |
| 8370 | ** originally in the same field of the right-most old sibling page. */ |
| 8371 | if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ |
| 8372 | MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; |
| 8373 | memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); |
| 8374 | } |
| 8375 | |
| 8376 | /* Make any required updates to pointer map entries associated with |
| 8377 | ** cells stored on sibling pages following the balance operation. Pointer |
| 8378 | ** map entries associated with divider cells are set by the insertCell() |
| 8379 | ** routine. The associated pointer map entries are: |
| 8380 | ** |
| 8381 | ** a) if the cell contains a reference to an overflow chain, the |
| 8382 | ** entry associated with the first page in the overflow chain, and |
| 8383 | ** |
| 8384 | ** b) if the sibling pages are not leaves, the child page associated |
| 8385 | ** with the cell. |
| 8386 | ** |
| 8387 | ** If the sibling pages are not leaves, then the pointer map entry |
| 8388 | ** associated with the right-child of each sibling may also need to be |
| 8389 | ** updated. This happens below, after the sibling pages have been |
| 8390 | ** populated, not here. |
| 8391 | */ |
| 8392 | if( ISAUTOVACUUM ){ |
| 8393 | MemPage *pOld; |
| 8394 | MemPage *pNew = pOld = apNew[0]; |
| 8395 | int cntOldNext = pNew->nCell + pNew->nOverflow; |
| 8396 | int iNew = 0; |
| 8397 | int iOld = 0; |
| 8398 | |
| 8399 | for(i=0; i<b.nCell; i++){ |
| 8400 | u8 *pCell = b.apCell[i]; |
| 8401 | while( i==cntOldNext ){ |
| 8402 | iOld++; |
| 8403 | assert( iOld<nNew || iOld<nOld ); |
| 8404 | assert( iOld>=0 && iOld<NB ); |
| 8405 | pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; |
| 8406 | cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; |
| 8407 | } |
| 8408 | if( i==cntNew[iNew] ){ |
| 8409 | pNew = apNew[++iNew]; |
| 8410 | if( !leafData ) continue; |
| 8411 | } |
| 8412 | |
| 8413 | /* Cell pCell is destined for new sibling page pNew. Originally, it |
| 8414 | ** was either part of sibling page iOld (possibly an overflow cell), |
| 8415 | ** or else the divider cell to the left of sibling page iOld. So, |
| 8416 | ** if sibling page iOld had the same page number as pNew, and if |
| 8417 | ** pCell really was a part of sibling page iOld (not a divider or |
| 8418 | ** overflow cell), we can skip updating the pointer map entries. */ |
| 8419 | if( iOld>=nNew |
| 8420 | || pNew->pgno!=aPgno[iOld] |
| 8421 | || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) |
| 8422 | ){ |
| 8423 | if( !leafCorrection ){ |
| 8424 | ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); |
| 8425 | } |
| 8426 | if( cachedCellSize(&b,i)>pNew->minLocal ){ |
| 8427 | ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); |
| 8428 | } |
| 8429 | if( rc ) goto balance_cleanup; |
| 8430 | } |
| 8431 | } |
| 8432 | } |
| 8433 | |
| 8434 | /* Insert new divider cells into pParent. */ |
| 8435 | for(i=0; i<nNew-1; i++){ |
| 8436 | u8 *pCell; |
| 8437 | u8 *pTemp; |
| 8438 | int sz; |
| 8439 | u8 *pSrcEnd; |
| 8440 | MemPage *pNew = apNew[i]; |
| 8441 | j = cntNew[i]; |
| 8442 | |
| 8443 | assert( j<nMaxCells ); |
| 8444 | assert( b.apCell[j]!=0 ); |
| 8445 | pCell = b.apCell[j]; |
| 8446 | sz = b.szCell[j] + leafCorrection; |
| 8447 | pTemp = &aOvflSpace[iOvflSpace]; |
| 8448 | if( !pNew->leaf ){ |
| 8449 | memcpy(&pNew->aData[8], pCell, 4); |
| 8450 | }else if( leafData ){ |
| 8451 | /* If the tree is a leaf-data tree, and the siblings are leaves, |
| 8452 | ** then there is no divider cell in b.apCell[]. Instead, the divider |
| 8453 | ** cell consists of the integer key for the right-most cell of |
| 8454 | ** the sibling-page assembled above only. |
| 8455 | */ |
| 8456 | CellInfo info; |
| 8457 | j--; |
| 8458 | pNew->xParseCell(pNew, b.apCell[j], &info); |
| 8459 | pCell = pTemp; |
| 8460 | sz = 4 + putVarint(&pCell[4], info.nKey); |
| 8461 | pTemp = 0; |
| 8462 | }else{ |
| 8463 | pCell -= 4; |
| 8464 | /* Obscure case for non-leaf-data trees: If the cell at pCell was |
| 8465 | ** previously stored on a leaf node, and its reported size was 4 |
| 8466 | ** bytes, then it may actually be smaller than this |
| 8467 | ** (see btreeParseCellPtr(), 4 bytes is the minimum size of |
| 8468 | ** any cell). But it is important to pass the correct size to |
| 8469 | ** insertCell(), so reparse the cell now. |
| 8470 | ** |
| 8471 | ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" |
| 8472 | ** and WITHOUT ROWID tables with exactly one column which is the |
| 8473 | ** primary key. |
| 8474 | */ |
| 8475 | if( b.szCell[j]==4 ){ |
| 8476 | assert(leafCorrection==4); |
| 8477 | sz = pParent->xCellSize(pParent, pCell); |
| 8478 | } |
| 8479 | } |
| 8480 | iOvflSpace += sz; |
| 8481 | assert( sz<=pBt->maxLocal+23 ); |
| 8482 | assert( iOvflSpace <= (int)pBt->pageSize ); |
| 8483 | for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){} |
| 8484 | pSrcEnd = b.apEnd[k]; |
| 8485 | if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ |
| 8486 | rc = SQLITE_CORRUPT_BKPT; |
| 8487 | goto balance_cleanup; |
| 8488 | } |
| 8489 | insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); |
| 8490 | if( rc!=SQLITE_OK ) goto balance_cleanup; |
| 8491 | assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 8492 | } |
| 8493 | |
| 8494 | /* Now update the actual sibling pages. The order in which they are updated |
| 8495 | ** is important, as this code needs to avoid disrupting any page from which |
| 8496 | ** cells may still to be read. In practice, this means: |
| 8497 | ** |
| 8498 | ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) |
| 8499 | ** then it is not safe to update page apNew[iPg] until after |
| 8500 | ** the left-hand sibling apNew[iPg-1] has been updated. |
| 8501 | ** |
| 8502 | ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) |
| 8503 | ** then it is not safe to update page apNew[iPg] until after |
| 8504 | ** the right-hand sibling apNew[iPg+1] has been updated. |
| 8505 | ** |
| 8506 | ** If neither of the above apply, the page is safe to update. |
| 8507 | ** |
| 8508 | ** The iPg value in the following loop starts at nNew-1 goes down |
| 8509 | ** to 0, then back up to nNew-1 again, thus making two passes over |
| 8510 | ** the pages. On the initial downward pass, only condition (1) above |
| 8511 | ** needs to be tested because (2) will always be true from the previous |
| 8512 | ** step. On the upward pass, both conditions are always true, so the |
| 8513 | ** upwards pass simply processes pages that were missed on the downward |
| 8514 | ** pass. |
| 8515 | */ |
| 8516 | for(i=1-nNew; i<nNew; i++){ |
| 8517 | int iPg = i<0 ? -i : i; |
| 8518 | assert( iPg>=0 && iPg<nNew ); |
| 8519 | if( abDone[iPg] ) continue; /* Skip pages already processed */ |
| 8520 | if( i>=0 /* On the upwards pass, or... */ |
| 8521 | || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ |
| 8522 | ){ |
| 8523 | int iNew; |
| 8524 | int iOld; |
| 8525 | int nNewCell; |
| 8526 | |
| 8527 | /* Verify condition (1): If cells are moving left, update iPg |
| 8528 | ** only after iPg-1 has already been updated. */ |
| 8529 | assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); |
| 8530 | |
| 8531 | /* Verify condition (2): If cells are moving right, update iPg |
| 8532 | ** only after iPg+1 has already been updated. */ |
| 8533 | assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); |
| 8534 | |
| 8535 | if( iPg==0 ){ |
| 8536 | iNew = iOld = 0; |
| 8537 | nNewCell = cntNew[0]; |
| 8538 | }else{ |
| 8539 | iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; |
| 8540 | iNew = cntNew[iPg-1] + !leafData; |
| 8541 | nNewCell = cntNew[iPg] - iNew; |
| 8542 | } |
| 8543 | |
| 8544 | rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); |
| 8545 | if( rc ) goto balance_cleanup; |
| 8546 | abDone[iPg]++; |
| 8547 | apNew[iPg]->nFree = usableSpace-szNew[iPg]; |
| 8548 | assert( apNew[iPg]->nOverflow==0 ); |
| 8549 | assert( apNew[iPg]->nCell==nNewCell ); |
| 8550 | } |
| 8551 | } |
| 8552 | |
| 8553 | /* All pages have been processed exactly once */ |
| 8554 | assert( memcmp(abDone, "\01\01\01\01\01" , nNew)==0 ); |
| 8555 | |
| 8556 | assert( nOld>0 ); |
| 8557 | assert( nNew>0 ); |
| 8558 | |
| 8559 | if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ |
| 8560 | /* The root page of the b-tree now contains no cells. The only sibling |
| 8561 | ** page is the right-child of the parent. Copy the contents of the |
| 8562 | ** child page into the parent, decreasing the overall height of the |
| 8563 | ** b-tree structure by one. This is described as the "balance-shallower" |
| 8564 | ** sub-algorithm in some documentation. |
| 8565 | ** |
| 8566 | ** If this is an auto-vacuum database, the call to copyNodeContent() |
| 8567 | ** sets all pointer-map entries corresponding to database image pages |
| 8568 | ** for which the pointer is stored within the content being copied. |
| 8569 | ** |
| 8570 | ** It is critical that the child page be defragmented before being |
| 8571 | ** copied into the parent, because if the parent is page 1 then it will |
| 8572 | ** by smaller than the child due to the database header, and so all the |
| 8573 | ** free space needs to be up front. |
| 8574 | */ |
| 8575 | assert( nNew==1 || CORRUPT_DB ); |
| 8576 | rc = defragmentPage(apNew[0], -1); |
| 8577 | testcase( rc!=SQLITE_OK ); |
| 8578 | assert( apNew[0]->nFree == |
| 8579 | (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset |
| 8580 | - apNew[0]->nCell*2) |
| 8581 | || rc!=SQLITE_OK |
| 8582 | ); |
| 8583 | copyNodeContent(apNew[0], pParent, &rc); |
| 8584 | freePage(apNew[0], &rc); |
| 8585 | }else if( ISAUTOVACUUM && !leafCorrection ){ |
| 8586 | /* Fix the pointer map entries associated with the right-child of each |
| 8587 | ** sibling page. All other pointer map entries have already been taken |
| 8588 | ** care of. */ |
| 8589 | for(i=0; i<nNew; i++){ |
| 8590 | u32 key = get4byte(&apNew[i]->aData[8]); |
| 8591 | ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); |
| 8592 | } |
| 8593 | } |
| 8594 | |
| 8595 | assert( pParent->isInit ); |
| 8596 | TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n" , |
| 8597 | nOld, nNew, b.nCell)); |
| 8598 | |
| 8599 | /* Free any old pages that were not reused as new pages. |
| 8600 | */ |
| 8601 | for(i=nNew; i<nOld; i++){ |
| 8602 | freePage(apOld[i], &rc); |
| 8603 | } |
| 8604 | |
| 8605 | #if 0 |
| 8606 | if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ |
| 8607 | /* The ptrmapCheckPages() contains assert() statements that verify that |
| 8608 | ** all pointer map pages are set correctly. This is helpful while |
| 8609 | ** debugging. This is usually disabled because a corrupt database may |
| 8610 | ** cause an assert() statement to fail. */ |
| 8611 | ptrmapCheckPages(apNew, nNew); |
| 8612 | ptrmapCheckPages(&pParent, 1); |
| 8613 | } |
| 8614 | #endif |
| 8615 | |
| 8616 | /* |
| 8617 | ** Cleanup before returning. |
| 8618 | */ |
| 8619 | balance_cleanup: |
| 8620 | sqlite3StackFree(0, b.apCell); |
| 8621 | for(i=0; i<nOld; i++){ |
| 8622 | releasePage(apOld[i]); |
| 8623 | } |
| 8624 | for(i=0; i<nNew; i++){ |
| 8625 | releasePage(apNew[i]); |
| 8626 | } |
| 8627 | |
| 8628 | return rc; |
| 8629 | } |
| 8630 | |
| 8631 | |
| 8632 | /* |
| 8633 | ** This function is called when the root page of a b-tree structure is |
| 8634 | ** overfull (has one or more overflow pages). |
| 8635 | ** |
| 8636 | ** A new child page is allocated and the contents of the current root |
| 8637 | ** page, including overflow cells, are copied into the child. The root |
| 8638 | ** page is then overwritten to make it an empty page with the right-child |
| 8639 | ** pointer pointing to the new page. |
| 8640 | ** |
| 8641 | ** Before returning, all pointer-map entries corresponding to pages |
| 8642 | ** that the new child-page now contains pointers to are updated. The |
| 8643 | ** entry corresponding to the new right-child pointer of the root |
| 8644 | ** page is also updated. |
| 8645 | ** |
| 8646 | ** If successful, *ppChild is set to contain a reference to the child |
| 8647 | ** page and SQLITE_OK is returned. In this case the caller is required |
| 8648 | ** to call releasePage() on *ppChild exactly once. If an error occurs, |
| 8649 | ** an error code is returned and *ppChild is set to 0. |
| 8650 | */ |
| 8651 | static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ |
| 8652 | int rc; /* Return value from subprocedures */ |
| 8653 | MemPage *pChild = 0; /* Pointer to a new child page */ |
| 8654 | Pgno pgnoChild = 0; /* Page number of the new child page */ |
| 8655 | BtShared *pBt = pRoot->pBt; /* The BTree */ |
| 8656 | |
| 8657 | assert( pRoot->nOverflow>0 ); |
| 8658 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 8659 | |
| 8660 | /* Make pRoot, the root page of the b-tree, writable. Allocate a new |
| 8661 | ** page that will become the new right-child of pPage. Copy the contents |
| 8662 | ** of the node stored on pRoot into the new child page. |
| 8663 | */ |
| 8664 | rc = sqlite3PagerWrite(pRoot->pDbPage); |
| 8665 | if( rc==SQLITE_OK ){ |
| 8666 | rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); |
| 8667 | copyNodeContent(pRoot, pChild, &rc); |
| 8668 | if( ISAUTOVACUUM ){ |
| 8669 | ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); |
| 8670 | } |
| 8671 | } |
| 8672 | if( rc ){ |
| 8673 | *ppChild = 0; |
| 8674 | releasePage(pChild); |
| 8675 | return rc; |
| 8676 | } |
| 8677 | assert( sqlite3PagerIswriteable(pChild->pDbPage) ); |
| 8678 | assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| 8679 | assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); |
| 8680 | |
| 8681 | TRACE(("BALANCE: copy root %d into %d\n" , pRoot->pgno, pChild->pgno)); |
| 8682 | |
| 8683 | /* Copy the overflow cells from pRoot to pChild */ |
| 8684 | memcpy(pChild->aiOvfl, pRoot->aiOvfl, |
| 8685 | pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); |
| 8686 | memcpy(pChild->apOvfl, pRoot->apOvfl, |
| 8687 | pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); |
| 8688 | pChild->nOverflow = pRoot->nOverflow; |
| 8689 | |
| 8690 | /* Zero the contents of pRoot. Then install pChild as the right-child. */ |
| 8691 | zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); |
| 8692 | put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); |
| 8693 | |
| 8694 | *ppChild = pChild; |
| 8695 | return SQLITE_OK; |
| 8696 | } |
| 8697 | |
| 8698 | /* |
| 8699 | ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid |
| 8700 | ** on the same B-tree as pCur. |
| 8701 | ** |
| 8702 | ** This can occur if a database is corrupt with two or more SQL tables |
| 8703 | ** pointing to the same b-tree. If an insert occurs on one SQL table |
| 8704 | ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL |
| 8705 | ** table linked to the same b-tree. If the secondary insert causes a |
| 8706 | ** rebalance, that can change content out from under the cursor on the |
| 8707 | ** first SQL table, violating invariants on the first insert. |
| 8708 | */ |
| 8709 | static int anotherValidCursor(BtCursor *pCur){ |
| 8710 | BtCursor *pOther; |
| 8711 | for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ |
| 8712 | if( pOther!=pCur |
| 8713 | && pOther->eState==CURSOR_VALID |
| 8714 | && pOther->pPage==pCur->pPage |
| 8715 | ){ |
| 8716 | return SQLITE_CORRUPT_BKPT; |
| 8717 | } |
| 8718 | } |
| 8719 | return SQLITE_OK; |
| 8720 | } |
| 8721 | |
| 8722 | /* |
| 8723 | ** The page that pCur currently points to has just been modified in |
| 8724 | ** some way. This function figures out if this modification means the |
| 8725 | ** tree needs to be balanced, and if so calls the appropriate balancing |
| 8726 | ** routine. Balancing routines are: |
| 8727 | ** |
| 8728 | ** balance_quick() |
| 8729 | ** balance_deeper() |
| 8730 | ** balance_nonroot() |
| 8731 | */ |
| 8732 | static int balance(BtCursor *pCur){ |
| 8733 | int rc = SQLITE_OK; |
| 8734 | u8 aBalanceQuickSpace[13]; |
| 8735 | u8 *pFree = 0; |
| 8736 | |
| 8737 | VVA_ONLY( int balance_quick_called = 0 ); |
| 8738 | VVA_ONLY( int balance_deeper_called = 0 ); |
| 8739 | |
| 8740 | do { |
| 8741 | int iPage; |
| 8742 | MemPage *pPage = pCur->pPage; |
| 8743 | |
| 8744 | if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; |
| 8745 | if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ |
| 8746 | /* No rebalance required as long as: |
| 8747 | ** (1) There are no overflow cells |
| 8748 | ** (2) The amount of free space on the page is less than 2/3rds of |
| 8749 | ** the total usable space on the page. */ |
| 8750 | break; |
| 8751 | }else if( (iPage = pCur->iPage)==0 ){ |
| 8752 | if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ |
| 8753 | /* The root page of the b-tree is overfull. In this case call the |
| 8754 | ** balance_deeper() function to create a new child for the root-page |
| 8755 | ** and copy the current contents of the root-page to it. The |
| 8756 | ** next iteration of the do-loop will balance the child page. |
| 8757 | */ |
| 8758 | assert( balance_deeper_called==0 ); |
| 8759 | VVA_ONLY( balance_deeper_called++ ); |
| 8760 | rc = balance_deeper(pPage, &pCur->apPage[1]); |
| 8761 | if( rc==SQLITE_OK ){ |
| 8762 | pCur->iPage = 1; |
| 8763 | pCur->ix = 0; |
| 8764 | pCur->aiIdx[0] = 0; |
| 8765 | pCur->apPage[0] = pPage; |
| 8766 | pCur->pPage = pCur->apPage[1]; |
| 8767 | assert( pCur->pPage->nOverflow ); |
| 8768 | } |
| 8769 | }else{ |
| 8770 | break; |
| 8771 | } |
| 8772 | }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){ |
| 8773 | /* The page being written is not a root page, and there is currently |
| 8774 | ** more than one reference to it. This only happens if the page is one |
| 8775 | ** of its own ancestor pages. Corruption. */ |
| 8776 | rc = SQLITE_CORRUPT_BKPT; |
| 8777 | }else{ |
| 8778 | MemPage * const pParent = pCur->apPage[iPage-1]; |
| 8779 | int const iIdx = pCur->aiIdx[iPage-1]; |
| 8780 | |
| 8781 | rc = sqlite3PagerWrite(pParent->pDbPage); |
| 8782 | if( rc==SQLITE_OK && pParent->nFree<0 ){ |
| 8783 | rc = btreeComputeFreeSpace(pParent); |
| 8784 | } |
| 8785 | if( rc==SQLITE_OK ){ |
| 8786 | #ifndef SQLITE_OMIT_QUICKBALANCE |
| 8787 | if( pPage->intKeyLeaf |
| 8788 | && pPage->nOverflow==1 |
| 8789 | && pPage->aiOvfl[0]==pPage->nCell |
| 8790 | && pParent->pgno!=1 |
| 8791 | && pParent->nCell==iIdx |
| 8792 | ){ |
| 8793 | /* Call balance_quick() to create a new sibling of pPage on which |
| 8794 | ** to store the overflow cell. balance_quick() inserts a new cell |
| 8795 | ** into pParent, which may cause pParent overflow. If this |
| 8796 | ** happens, the next iteration of the do-loop will balance pParent |
| 8797 | ** use either balance_nonroot() or balance_deeper(). Until this |
| 8798 | ** happens, the overflow cell is stored in the aBalanceQuickSpace[] |
| 8799 | ** buffer. |
| 8800 | ** |
| 8801 | ** The purpose of the following assert() is to check that only a |
| 8802 | ** single call to balance_quick() is made for each call to this |
| 8803 | ** function. If this were not verified, a subtle bug involving reuse |
| 8804 | ** of the aBalanceQuickSpace[] might sneak in. |
| 8805 | */ |
| 8806 | assert( balance_quick_called==0 ); |
| 8807 | VVA_ONLY( balance_quick_called++ ); |
| 8808 | rc = balance_quick(pParent, pPage, aBalanceQuickSpace); |
| 8809 | }else |
| 8810 | #endif |
| 8811 | { |
| 8812 | /* In this case, call balance_nonroot() to redistribute cells |
| 8813 | ** between pPage and up to 2 of its sibling pages. This involves |
| 8814 | ** modifying the contents of pParent, which may cause pParent to |
| 8815 | ** become overfull or underfull. The next iteration of the do-loop |
| 8816 | ** will balance the parent page to correct this. |
| 8817 | ** |
| 8818 | ** If the parent page becomes overfull, the overflow cell or cells |
| 8819 | ** are stored in the pSpace buffer allocated immediately below. |
| 8820 | ** A subsequent iteration of the do-loop will deal with this by |
| 8821 | ** calling balance_nonroot() (balance_deeper() may be called first, |
| 8822 | ** but it doesn't deal with overflow cells - just moves them to a |
| 8823 | ** different page). Once this subsequent call to balance_nonroot() |
| 8824 | ** has completed, it is safe to release the pSpace buffer used by |
| 8825 | ** the previous call, as the overflow cell data will have been |
| 8826 | ** copied either into the body of a database page or into the new |
| 8827 | ** pSpace buffer passed to the latter call to balance_nonroot(). |
| 8828 | */ |
| 8829 | u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); |
| 8830 | rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, |
| 8831 | pCur->hints&BTREE_BULKLOAD); |
| 8832 | if( pFree ){ |
| 8833 | /* If pFree is not NULL, it points to the pSpace buffer used |
| 8834 | ** by a previous call to balance_nonroot(). Its contents are |
| 8835 | ** now stored either on real database pages or within the |
| 8836 | ** new pSpace buffer, so it may be safely freed here. */ |
| 8837 | sqlite3PageFree(pFree); |
| 8838 | } |
| 8839 | |
| 8840 | /* The pSpace buffer will be freed after the next call to |
| 8841 | ** balance_nonroot(), or just before this function returns, whichever |
| 8842 | ** comes first. */ |
| 8843 | pFree = pSpace; |
| 8844 | } |
| 8845 | } |
| 8846 | |
| 8847 | pPage->nOverflow = 0; |
| 8848 | |
| 8849 | /* The next iteration of the do-loop balances the parent page. */ |
| 8850 | releasePage(pPage); |
| 8851 | pCur->iPage--; |
| 8852 | assert( pCur->iPage>=0 ); |
| 8853 | pCur->pPage = pCur->apPage[pCur->iPage]; |
| 8854 | } |
| 8855 | }while( rc==SQLITE_OK ); |
| 8856 | |
| 8857 | if( pFree ){ |
| 8858 | sqlite3PageFree(pFree); |
| 8859 | } |
| 8860 | return rc; |
| 8861 | } |
| 8862 | |
| 8863 | /* Overwrite content from pX into pDest. Only do the write if the |
| 8864 | ** content is different from what is already there. |
| 8865 | */ |
| 8866 | static int btreeOverwriteContent( |
| 8867 | MemPage *pPage, /* MemPage on which writing will occur */ |
| 8868 | u8 *pDest, /* Pointer to the place to start writing */ |
| 8869 | const BtreePayload *pX, /* Source of data to write */ |
| 8870 | int iOffset, /* Offset of first byte to write */ |
| 8871 | int iAmt /* Number of bytes to be written */ |
| 8872 | ){ |
| 8873 | int nData = pX->nData - iOffset; |
| 8874 | if( nData<=0 ){ |
| 8875 | /* Overwritting with zeros */ |
| 8876 | int i; |
| 8877 | for(i=0; i<iAmt && pDest[i]==0; i++){} |
| 8878 | if( i<iAmt ){ |
| 8879 | int rc = sqlite3PagerWrite(pPage->pDbPage); |
| 8880 | if( rc ) return rc; |
| 8881 | memset(pDest + i, 0, iAmt - i); |
| 8882 | } |
| 8883 | }else{ |
| 8884 | if( nData<iAmt ){ |
| 8885 | /* Mixed read data and zeros at the end. Make a recursive call |
| 8886 | ** to write the zeros then fall through to write the real data */ |
| 8887 | int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, |
| 8888 | iAmt-nData); |
| 8889 | if( rc ) return rc; |
| 8890 | iAmt = nData; |
| 8891 | } |
| 8892 | if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ |
| 8893 | int rc = sqlite3PagerWrite(pPage->pDbPage); |
| 8894 | if( rc ) return rc; |
| 8895 | /* In a corrupt database, it is possible for the source and destination |
| 8896 | ** buffers to overlap. This is harmless since the database is already |
| 8897 | ** corrupt but it does cause valgrind and ASAN warnings. So use |
| 8898 | ** memmove(). */ |
| 8899 | memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); |
| 8900 | } |
| 8901 | } |
| 8902 | return SQLITE_OK; |
| 8903 | } |
| 8904 | |
| 8905 | /* |
| 8906 | ** Overwrite the cell that cursor pCur is pointing to with fresh content |
| 8907 | ** contained in pX. |
| 8908 | */ |
| 8909 | static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ |
| 8910 | int iOffset; /* Next byte of pX->pData to write */ |
| 8911 | int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ |
| 8912 | int rc; /* Return code */ |
| 8913 | MemPage *pPage = pCur->pPage; /* Page being written */ |
| 8914 | BtShared *pBt; /* Btree */ |
| 8915 | Pgno ovflPgno; /* Next overflow page to write */ |
| 8916 | u32 ovflPageSize; /* Size to write on overflow page */ |
| 8917 | |
| 8918 | if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd |
| 8919 | || pCur->info.pPayload < pPage->aData + pPage->cellOffset |
| 8920 | ){ |
| 8921 | return SQLITE_CORRUPT_BKPT; |
| 8922 | } |
| 8923 | /* Overwrite the local portion first */ |
| 8924 | rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, |
| 8925 | 0, pCur->info.nLocal); |
| 8926 | if( rc ) return rc; |
| 8927 | if( pCur->info.nLocal==nTotal ) return SQLITE_OK; |
| 8928 | |
| 8929 | /* Now overwrite the overflow pages */ |
| 8930 | iOffset = pCur->info.nLocal; |
| 8931 | assert( nTotal>=0 ); |
| 8932 | assert( iOffset>=0 ); |
| 8933 | ovflPgno = get4byte(pCur->info.pPayload + iOffset); |
| 8934 | pBt = pPage->pBt; |
| 8935 | ovflPageSize = pBt->usableSize - 4; |
| 8936 | do{ |
| 8937 | rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); |
| 8938 | if( rc ) return rc; |
| 8939 | if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ |
| 8940 | rc = SQLITE_CORRUPT_BKPT; |
| 8941 | }else{ |
| 8942 | if( iOffset+ovflPageSize<(u32)nTotal ){ |
| 8943 | ovflPgno = get4byte(pPage->aData); |
| 8944 | }else{ |
| 8945 | ovflPageSize = nTotal - iOffset; |
| 8946 | } |
| 8947 | rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, |
| 8948 | iOffset, ovflPageSize); |
| 8949 | } |
| 8950 | sqlite3PagerUnref(pPage->pDbPage); |
| 8951 | if( rc ) return rc; |
| 8952 | iOffset += ovflPageSize; |
| 8953 | }while( iOffset<nTotal ); |
| 8954 | return SQLITE_OK; |
| 8955 | } |
| 8956 | |
| 8957 | |
| 8958 | /* |
| 8959 | ** Insert a new record into the BTree. The content of the new record |
| 8960 | ** is described by the pX object. The pCur cursor is used only to |
| 8961 | ** define what table the record should be inserted into, and is left |
| 8962 | ** pointing at a random location. |
| 8963 | ** |
| 8964 | ** For a table btree (used for rowid tables), only the pX.nKey value of |
| 8965 | ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the |
| 8966 | ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields |
| 8967 | ** hold the content of the row. |
| 8968 | ** |
| 8969 | ** For an index btree (used for indexes and WITHOUT ROWID tables), the |
| 8970 | ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The |
| 8971 | ** pX.pData,nData,nZero fields must be zero. |
| 8972 | ** |
| 8973 | ** If the seekResult parameter is non-zero, then a successful call to |
| 8974 | ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already |
| 8975 | ** been performed. In other words, if seekResult!=0 then the cursor |
| 8976 | ** is currently pointing to a cell that will be adjacent to the cell |
| 8977 | ** to be inserted. If seekResult<0 then pCur points to a cell that is |
| 8978 | ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell |
| 8979 | ** that is larger than (pKey,nKey). |
| 8980 | ** |
| 8981 | ** If seekResult==0, that means pCur is pointing at some unknown location. |
| 8982 | ** In that case, this routine must seek the cursor to the correct insertion |
| 8983 | ** point for (pKey,nKey) before doing the insertion. For index btrees, |
| 8984 | ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked |
| 8985 | ** key values and pX->aMem can be used instead of pX->pKey to avoid having |
| 8986 | ** to decode the key. |
| 8987 | */ |
| 8988 | int sqlite3BtreeInsert( |
| 8989 | BtCursor *pCur, /* Insert data into the table of this cursor */ |
| 8990 | const BtreePayload *pX, /* Content of the row to be inserted */ |
| 8991 | int flags, /* True if this is likely an append */ |
| 8992 | int seekResult /* Result of prior IndexMoveto() call */ |
| 8993 | ){ |
| 8994 | int rc; |
| 8995 | int loc = seekResult; /* -1: before desired location +1: after */ |
| 8996 | int szNew = 0; |
| 8997 | int idx; |
| 8998 | MemPage *pPage; |
| 8999 | Btree *p = pCur->pBtree; |
| 9000 | BtShared *pBt = p->pBt; |
| 9001 | unsigned char *oldCell; |
| 9002 | unsigned char *newCell = 0; |
| 9003 | |
| 9004 | assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); |
| 9005 | assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); |
| 9006 | |
| 9007 | /* Save the positions of any other cursors open on this table. |
| 9008 | ** |
| 9009 | ** In some cases, the call to btreeMoveto() below is a no-op. For |
| 9010 | ** example, when inserting data into a table with auto-generated integer |
| 9011 | ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the |
| 9012 | ** integer key to use. It then calls this function to actually insert the |
| 9013 | ** data into the intkey B-Tree. In this case btreeMoveto() recognizes |
| 9014 | ** that the cursor is already where it needs to be and returns without |
| 9015 | ** doing any work. To avoid thwarting these optimizations, it is important |
| 9016 | ** not to clear the cursor here. |
| 9017 | */ |
| 9018 | if( pCur->curFlags & BTCF_Multiple ){ |
| 9019 | rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| 9020 | if( rc ) return rc; |
| 9021 | if( loc && pCur->iPage<0 ){ |
| 9022 | /* This can only happen if the schema is corrupt such that there is more |
| 9023 | ** than one table or index with the same root page as used by the cursor. |
| 9024 | ** Which can only happen if the SQLITE_NoSchemaError flag was set when |
| 9025 | ** the schema was loaded. This cannot be asserted though, as a user might |
| 9026 | ** set the flag, load the schema, and then unset the flag. */ |
| 9027 | return SQLITE_CORRUPT_BKPT; |
| 9028 | } |
| 9029 | } |
| 9030 | |
| 9031 | /* Ensure that the cursor is not in the CURSOR_FAULT state and that it |
| 9032 | ** points to a valid cell. |
| 9033 | */ |
| 9034 | if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| 9035 | testcase( pCur->eState==CURSOR_REQUIRESEEK ); |
| 9036 | testcase( pCur->eState==CURSOR_FAULT ); |
| 9037 | rc = moveToRoot(pCur); |
| 9038 | if( rc && rc!=SQLITE_EMPTY ) return rc; |
| 9039 | } |
| 9040 | |
| 9041 | assert( cursorOwnsBtShared(pCur) ); |
| 9042 | assert( (pCur->curFlags & BTCF_WriteFlag)!=0 |
| 9043 | && pBt->inTransaction==TRANS_WRITE |
| 9044 | && (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 9045 | assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| 9046 | |
| 9047 | /* Assert that the caller has been consistent. If this cursor was opened |
| 9048 | ** expecting an index b-tree, then the caller should be inserting blob |
| 9049 | ** keys with no associated data. If the cursor was opened expecting an |
| 9050 | ** intkey table, the caller should be inserting integer keys with a |
| 9051 | ** blob of associated data. */ |
| 9052 | assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); |
| 9053 | |
| 9054 | if( pCur->pKeyInfo==0 ){ |
| 9055 | assert( pX->pKey==0 ); |
| 9056 | /* If this is an insert into a table b-tree, invalidate any incrblob |
| 9057 | ** cursors open on the row being replaced */ |
| 9058 | if( p->hasIncrblobCur ){ |
| 9059 | invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); |
| 9060 | } |
| 9061 | |
| 9062 | /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing |
| 9063 | ** to a row with the same key as the new entry being inserted. |
| 9064 | */ |
| 9065 | #ifdef SQLITE_DEBUG |
| 9066 | if( flags & BTREE_SAVEPOSITION ){ |
| 9067 | assert( pCur->curFlags & BTCF_ValidNKey ); |
| 9068 | assert( pX->nKey==pCur->info.nKey ); |
| 9069 | assert( loc==0 ); |
| 9070 | } |
| 9071 | #endif |
| 9072 | |
| 9073 | /* On the other hand, BTREE_SAVEPOSITION==0 does not imply |
| 9074 | ** that the cursor is not pointing to a row to be overwritten. |
| 9075 | ** So do a complete check. |
| 9076 | */ |
| 9077 | if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ |
| 9078 | /* The cursor is pointing to the entry that is to be |
| 9079 | ** overwritten */ |
| 9080 | assert( pX->nData>=0 && pX->nZero>=0 ); |
| 9081 | if( pCur->info.nSize!=0 |
| 9082 | && pCur->info.nPayload==(u32)pX->nData+pX->nZero |
| 9083 | ){ |
| 9084 | /* New entry is the same size as the old. Do an overwrite */ |
| 9085 | return btreeOverwriteCell(pCur, pX); |
| 9086 | } |
| 9087 | assert( loc==0 ); |
| 9088 | }else if( loc==0 ){ |
| 9089 | /* The cursor is *not* pointing to the cell to be overwritten, nor |
| 9090 | ** to an adjacent cell. Move the cursor so that it is pointing either |
| 9091 | ** to the cell to be overwritten or an adjacent cell. |
| 9092 | */ |
| 9093 | rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, |
| 9094 | (flags & BTREE_APPEND)!=0, &loc); |
| 9095 | if( rc ) return rc; |
| 9096 | } |
| 9097 | }else{ |
| 9098 | /* This is an index or a WITHOUT ROWID table */ |
| 9099 | |
| 9100 | /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing |
| 9101 | ** to a row with the same key as the new entry being inserted. |
| 9102 | */ |
| 9103 | assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); |
| 9104 | |
| 9105 | /* If the cursor is not already pointing either to the cell to be |
| 9106 | ** overwritten, or if a new cell is being inserted, if the cursor is |
| 9107 | ** not pointing to an immediately adjacent cell, then move the cursor |
| 9108 | ** so that it does. |
| 9109 | */ |
| 9110 | if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ |
| 9111 | if( pX->nMem ){ |
| 9112 | UnpackedRecord r; |
| 9113 | r.pKeyInfo = pCur->pKeyInfo; |
| 9114 | r.aMem = pX->aMem; |
| 9115 | r.nField = pX->nMem; |
| 9116 | r.default_rc = 0; |
| 9117 | r.eqSeen = 0; |
| 9118 | rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); |
| 9119 | }else{ |
| 9120 | rc = btreeMoveto(pCur, pX->pKey, pX->nKey, |
| 9121 | (flags & BTREE_APPEND)!=0, &loc); |
| 9122 | } |
| 9123 | if( rc ) return rc; |
| 9124 | } |
| 9125 | |
| 9126 | /* If the cursor is currently pointing to an entry to be overwritten |
| 9127 | ** and the new content is the same as as the old, then use the |
| 9128 | ** overwrite optimization. |
| 9129 | */ |
| 9130 | if( loc==0 ){ |
| 9131 | getCellInfo(pCur); |
| 9132 | if( pCur->info.nKey==pX->nKey ){ |
| 9133 | BtreePayload x2; |
| 9134 | x2.pData = pX->pKey; |
| 9135 | x2.nData = pX->nKey; |
| 9136 | x2.nZero = 0; |
| 9137 | return btreeOverwriteCell(pCur, &x2); |
| 9138 | } |
| 9139 | } |
| 9140 | } |
| 9141 | assert( pCur->eState==CURSOR_VALID |
| 9142 | || (pCur->eState==CURSOR_INVALID && loc) ); |
| 9143 | |
| 9144 | pPage = pCur->pPage; |
| 9145 | assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); |
| 9146 | assert( pPage->leaf || !pPage->intKey ); |
| 9147 | if( pPage->nFree<0 ){ |
| 9148 | if( NEVER(pCur->eState>CURSOR_INVALID) ){ |
| 9149 | /* ^^^^^--- due to the moveToRoot() call above */ |
| 9150 | rc = SQLITE_CORRUPT_BKPT; |
| 9151 | }else{ |
| 9152 | rc = btreeComputeFreeSpace(pPage); |
| 9153 | } |
| 9154 | if( rc ) return rc; |
| 9155 | } |
| 9156 | |
| 9157 | TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n" , |
| 9158 | pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, |
| 9159 | loc==0 ? "overwrite" : "new entry" )); |
| 9160 | assert( pPage->isInit || CORRUPT_DB ); |
| 9161 | newCell = pBt->pTmpSpace; |
| 9162 | assert( newCell!=0 ); |
| 9163 | if( flags & BTREE_PREFORMAT ){ |
| 9164 | rc = SQLITE_OK; |
| 9165 | szNew = pBt->nPreformatSize; |
| 9166 | if( szNew<4 ) szNew = 4; |
| 9167 | if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ |
| 9168 | CellInfo info; |
| 9169 | pPage->xParseCell(pPage, newCell, &info); |
| 9170 | if( info.nPayload!=info.nLocal ){ |
| 9171 | Pgno ovfl = get4byte(&newCell[szNew-4]); |
| 9172 | ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); |
| 9173 | } |
| 9174 | } |
| 9175 | }else{ |
| 9176 | rc = fillInCell(pPage, newCell, pX, &szNew); |
| 9177 | } |
| 9178 | if( rc ) goto end_insert; |
| 9179 | assert( szNew==pPage->xCellSize(pPage, newCell) ); |
| 9180 | assert( szNew <= MX_CELL_SIZE(pBt) ); |
| 9181 | idx = pCur->ix; |
| 9182 | if( loc==0 ){ |
| 9183 | CellInfo info; |
| 9184 | assert( idx>=0 ); |
| 9185 | if( idx>=pPage->nCell ){ |
| 9186 | return SQLITE_CORRUPT_BKPT; |
| 9187 | } |
| 9188 | rc = sqlite3PagerWrite(pPage->pDbPage); |
| 9189 | if( rc ){ |
| 9190 | goto end_insert; |
| 9191 | } |
| 9192 | oldCell = findCell(pPage, idx); |
| 9193 | if( !pPage->leaf ){ |
| 9194 | memcpy(newCell, oldCell, 4); |
| 9195 | } |
| 9196 | BTREE_CLEAR_CELL(rc, pPage, oldCell, info); |
| 9197 | testcase( pCur->curFlags & BTCF_ValidOvfl ); |
| 9198 | invalidateOverflowCache(pCur); |
| 9199 | if( info.nSize==szNew && info.nLocal==info.nPayload |
| 9200 | && (!ISAUTOVACUUM || szNew<pPage->minLocal) |
| 9201 | ){ |
| 9202 | /* Overwrite the old cell with the new if they are the same size. |
| 9203 | ** We could also try to do this if the old cell is smaller, then add |
| 9204 | ** the leftover space to the free list. But experiments show that |
| 9205 | ** doing that is no faster then skipping this optimization and just |
| 9206 | ** calling dropCell() and insertCell(). |
| 9207 | ** |
| 9208 | ** This optimization cannot be used on an autovacuum database if the |
| 9209 | ** new entry uses overflow pages, as the insertCell() call below is |
| 9210 | ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ |
| 9211 | assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ |
| 9212 | if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ |
| 9213 | return SQLITE_CORRUPT_BKPT; |
| 9214 | } |
| 9215 | if( oldCell+szNew > pPage->aDataEnd ){ |
| 9216 | return SQLITE_CORRUPT_BKPT; |
| 9217 | } |
| 9218 | memcpy(oldCell, newCell, szNew); |
| 9219 | return SQLITE_OK; |
| 9220 | } |
| 9221 | dropCell(pPage, idx, info.nSize, &rc); |
| 9222 | if( rc ) goto end_insert; |
| 9223 | }else if( loc<0 && pPage->nCell>0 ){ |
| 9224 | assert( pPage->leaf ); |
| 9225 | idx = ++pCur->ix; |
| 9226 | pCur->curFlags &= ~BTCF_ValidNKey; |
| 9227 | }else{ |
| 9228 | assert( pPage->leaf ); |
| 9229 | } |
| 9230 | insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); |
| 9231 | assert( pPage->nOverflow==0 || rc==SQLITE_OK ); |
| 9232 | assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); |
| 9233 | |
| 9234 | /* If no error has occurred and pPage has an overflow cell, call balance() |
| 9235 | ** to redistribute the cells within the tree. Since balance() may move |
| 9236 | ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey |
| 9237 | ** variables. |
| 9238 | ** |
| 9239 | ** Previous versions of SQLite called moveToRoot() to move the cursor |
| 9240 | ** back to the root page as balance() used to invalidate the contents |
| 9241 | ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, |
| 9242 | ** set the cursor state to "invalid". This makes common insert operations |
| 9243 | ** slightly faster. |
| 9244 | ** |
| 9245 | ** There is a subtle but important optimization here too. When inserting |
| 9246 | ** multiple records into an intkey b-tree using a single cursor (as can |
| 9247 | ** happen while processing an "INSERT INTO ... SELECT" statement), it |
| 9248 | ** is advantageous to leave the cursor pointing to the last entry in |
| 9249 | ** the b-tree if possible. If the cursor is left pointing to the last |
| 9250 | ** entry in the table, and the next row inserted has an integer key |
| 9251 | ** larger than the largest existing key, it is possible to insert the |
| 9252 | ** row without seeking the cursor. This can be a big performance boost. |
| 9253 | */ |
| 9254 | pCur->info.nSize = 0; |
| 9255 | if( pPage->nOverflow ){ |
| 9256 | assert( rc==SQLITE_OK ); |
| 9257 | pCur->curFlags &= ~(BTCF_ValidNKey); |
| 9258 | rc = balance(pCur); |
| 9259 | |
| 9260 | /* Must make sure nOverflow is reset to zero even if the balance() |
| 9261 | ** fails. Internal data structure corruption will result otherwise. |
| 9262 | ** Also, set the cursor state to invalid. This stops saveCursorPosition() |
| 9263 | ** from trying to save the current position of the cursor. */ |
| 9264 | pCur->pPage->nOverflow = 0; |
| 9265 | pCur->eState = CURSOR_INVALID; |
| 9266 | if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ |
| 9267 | btreeReleaseAllCursorPages(pCur); |
| 9268 | if( pCur->pKeyInfo ){ |
| 9269 | assert( pCur->pKey==0 ); |
| 9270 | pCur->pKey = sqlite3Malloc( pX->nKey ); |
| 9271 | if( pCur->pKey==0 ){ |
| 9272 | rc = SQLITE_NOMEM; |
| 9273 | }else{ |
| 9274 | memcpy(pCur->pKey, pX->pKey, pX->nKey); |
| 9275 | } |
| 9276 | } |
| 9277 | pCur->eState = CURSOR_REQUIRESEEK; |
| 9278 | pCur->nKey = pX->nKey; |
| 9279 | } |
| 9280 | } |
| 9281 | assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); |
| 9282 | |
| 9283 | end_insert: |
| 9284 | return rc; |
| 9285 | } |
| 9286 | |
| 9287 | /* |
| 9288 | ** This function is used as part of copying the current row from cursor |
| 9289 | ** pSrc into cursor pDest. If the cursors are open on intkey tables, then |
| 9290 | ** parameter iKey is used as the rowid value when the record is copied |
| 9291 | ** into pDest. Otherwise, the record is copied verbatim. |
| 9292 | ** |
| 9293 | ** This function does not actually write the new value to cursor pDest. |
| 9294 | ** Instead, it creates and populates any required overflow pages and |
| 9295 | ** writes the data for the new cell into the BtShared.pTmpSpace buffer |
| 9296 | ** for the destination database. The size of the cell, in bytes, is left |
| 9297 | ** in BtShared.nPreformatSize. The caller completes the insertion by |
| 9298 | ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. |
| 9299 | ** |
| 9300 | ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. |
| 9301 | */ |
| 9302 | int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ |
| 9303 | int rc = SQLITE_OK; |
| 9304 | BtShared *pBt = pDest->pBt; |
| 9305 | u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ |
| 9306 | const u8 *aIn; /* Pointer to next input buffer */ |
| 9307 | u32 nIn; /* Size of input buffer aIn[] */ |
| 9308 | u32 nRem; /* Bytes of data still to copy */ |
| 9309 | |
| 9310 | getCellInfo(pSrc); |
| 9311 | if( pSrc->info.nPayload<0x80 ){ |
| 9312 | *(aOut++) = pSrc->info.nPayload; |
| 9313 | }else{ |
| 9314 | aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); |
| 9315 | } |
| 9316 | if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); |
| 9317 | nIn = pSrc->info.nLocal; |
| 9318 | aIn = pSrc->info.pPayload; |
| 9319 | if( aIn+nIn>pSrc->pPage->aDataEnd ){ |
| 9320 | return SQLITE_CORRUPT_BKPT; |
| 9321 | } |
| 9322 | nRem = pSrc->info.nPayload; |
| 9323 | if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ |
| 9324 | memcpy(aOut, aIn, nIn); |
| 9325 | pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); |
| 9326 | }else{ |
| 9327 | Pager * = pSrc->pBt->pPager; |
| 9328 | u8 *pPgnoOut = 0; |
| 9329 | Pgno ovflIn = 0; |
| 9330 | DbPage *pPageIn = 0; |
| 9331 | MemPage *pPageOut = 0; |
| 9332 | u32 nOut; /* Size of output buffer aOut[] */ |
| 9333 | |
| 9334 | nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); |
| 9335 | pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); |
| 9336 | if( nOut<pSrc->info.nPayload ){ |
| 9337 | pPgnoOut = &aOut[nOut]; |
| 9338 | pBt->nPreformatSize += 4; |
| 9339 | } |
| 9340 | |
| 9341 | if( nRem>nIn ){ |
| 9342 | if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ |
| 9343 | return SQLITE_CORRUPT_BKPT; |
| 9344 | } |
| 9345 | ovflIn = get4byte(&pSrc->info.pPayload[nIn]); |
| 9346 | } |
| 9347 | |
| 9348 | do { |
| 9349 | nRem -= nOut; |
| 9350 | do{ |
| 9351 | assert( nOut>0 ); |
| 9352 | if( nIn>0 ){ |
| 9353 | int nCopy = MIN(nOut, nIn); |
| 9354 | memcpy(aOut, aIn, nCopy); |
| 9355 | nOut -= nCopy; |
| 9356 | nIn -= nCopy; |
| 9357 | aOut += nCopy; |
| 9358 | aIn += nCopy; |
| 9359 | } |
| 9360 | if( nOut>0 ){ |
| 9361 | sqlite3PagerUnref(pPageIn); |
| 9362 | pPageIn = 0; |
| 9363 | rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); |
| 9364 | if( rc==SQLITE_OK ){ |
| 9365 | aIn = (const u8*)sqlite3PagerGetData(pPageIn); |
| 9366 | ovflIn = get4byte(aIn); |
| 9367 | aIn += 4; |
| 9368 | nIn = pSrc->pBt->usableSize - 4; |
| 9369 | } |
| 9370 | } |
| 9371 | }while( rc==SQLITE_OK && nOut>0 ); |
| 9372 | |
| 9373 | if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ |
| 9374 | Pgno pgnoNew; |
| 9375 | MemPage *pNew = 0; |
| 9376 | rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
| 9377 | put4byte(pPgnoOut, pgnoNew); |
| 9378 | if( ISAUTOVACUUM && pPageOut ){ |
| 9379 | ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); |
| 9380 | } |
| 9381 | releasePage(pPageOut); |
| 9382 | pPageOut = pNew; |
| 9383 | if( pPageOut ){ |
| 9384 | pPgnoOut = pPageOut->aData; |
| 9385 | put4byte(pPgnoOut, 0); |
| 9386 | aOut = &pPgnoOut[4]; |
| 9387 | nOut = MIN(pBt->usableSize - 4, nRem); |
| 9388 | } |
| 9389 | } |
| 9390 | }while( nRem>0 && rc==SQLITE_OK ); |
| 9391 | |
| 9392 | releasePage(pPageOut); |
| 9393 | sqlite3PagerUnref(pPageIn); |
| 9394 | } |
| 9395 | |
| 9396 | return rc; |
| 9397 | } |
| 9398 | |
| 9399 | /* |
| 9400 | ** Delete the entry that the cursor is pointing to. |
| 9401 | ** |
| 9402 | ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then |
| 9403 | ** the cursor is left pointing at an arbitrary location after the delete. |
| 9404 | ** But if that bit is set, then the cursor is left in a state such that |
| 9405 | ** the next call to BtreeNext() or BtreePrev() moves it to the same row |
| 9406 | ** as it would have been on if the call to BtreeDelete() had been omitted. |
| 9407 | ** |
| 9408 | ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes |
| 9409 | ** associated with a single table entry and its indexes. Only one of those |
| 9410 | ** deletes is considered the "primary" delete. The primary delete occurs |
| 9411 | ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete |
| 9412 | ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. |
| 9413 | ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, |
| 9414 | ** but which might be used by alternative storage engines. |
| 9415 | */ |
| 9416 | int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ |
| 9417 | Btree *p = pCur->pBtree; |
| 9418 | BtShared *pBt = p->pBt; |
| 9419 | int rc; /* Return code */ |
| 9420 | MemPage *pPage; /* Page to delete cell from */ |
| 9421 | unsigned char *pCell; /* Pointer to cell to delete */ |
| 9422 | int iCellIdx; /* Index of cell to delete */ |
| 9423 | int iCellDepth; /* Depth of node containing pCell */ |
| 9424 | CellInfo info; /* Size of the cell being deleted */ |
| 9425 | u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ |
| 9426 | |
| 9427 | assert( cursorOwnsBtShared(pCur) ); |
| 9428 | assert( pBt->inTransaction==TRANS_WRITE ); |
| 9429 | assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 9430 | assert( pCur->curFlags & BTCF_WriteFlag ); |
| 9431 | assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| 9432 | assert( !hasReadConflicts(p, pCur->pgnoRoot) ); |
| 9433 | assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); |
| 9434 | if( pCur->eState!=CURSOR_VALID ){ |
| 9435 | if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| 9436 | rc = btreeRestoreCursorPosition(pCur); |
| 9437 | assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); |
| 9438 | if( rc || pCur->eState!=CURSOR_VALID ) return rc; |
| 9439 | }else{ |
| 9440 | return SQLITE_CORRUPT_BKPT; |
| 9441 | } |
| 9442 | } |
| 9443 | assert( pCur->eState==CURSOR_VALID ); |
| 9444 | |
| 9445 | iCellDepth = pCur->iPage; |
| 9446 | iCellIdx = pCur->ix; |
| 9447 | pPage = pCur->pPage; |
| 9448 | if( pPage->nCell<=iCellIdx ){ |
| 9449 | return SQLITE_CORRUPT_BKPT; |
| 9450 | } |
| 9451 | pCell = findCell(pPage, iCellIdx); |
| 9452 | if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ |
| 9453 | return SQLITE_CORRUPT_BKPT; |
| 9454 | } |
| 9455 | |
| 9456 | /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must |
| 9457 | ** be preserved following this delete operation. If the current delete |
| 9458 | ** will cause a b-tree rebalance, then this is done by saving the cursor |
| 9459 | ** key and leaving the cursor in CURSOR_REQUIRESEEK state before |
| 9460 | ** returning. |
| 9461 | ** |
| 9462 | ** If the current delete will not cause a rebalance, then the cursor |
| 9463 | ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately |
| 9464 | ** before or after the deleted entry. |
| 9465 | ** |
| 9466 | ** The bPreserve value records which path is required: |
| 9467 | ** |
| 9468 | ** bPreserve==0 Not necessary to save the cursor position |
| 9469 | ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position |
| 9470 | ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. |
| 9471 | */ |
| 9472 | bPreserve = (flags & BTREE_SAVEPOSITION)!=0; |
| 9473 | if( bPreserve ){ |
| 9474 | if( !pPage->leaf |
| 9475 | || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > |
| 9476 | (int)(pBt->usableSize*2/3) |
| 9477 | || pPage->nCell==1 /* See dbfuzz001.test for a test case */ |
| 9478 | ){ |
| 9479 | /* A b-tree rebalance will be required after deleting this entry. |
| 9480 | ** Save the cursor key. */ |
| 9481 | rc = saveCursorKey(pCur); |
| 9482 | if( rc ) return rc; |
| 9483 | }else{ |
| 9484 | bPreserve = 2; |
| 9485 | } |
| 9486 | } |
| 9487 | |
| 9488 | /* If the page containing the entry to delete is not a leaf page, move |
| 9489 | ** the cursor to the largest entry in the tree that is smaller than |
| 9490 | ** the entry being deleted. This cell will replace the cell being deleted |
| 9491 | ** from the internal node. The 'previous' entry is used for this instead |
| 9492 | ** of the 'next' entry, as the previous entry is always a part of the |
| 9493 | ** sub-tree headed by the child page of the cell being deleted. This makes |
| 9494 | ** balancing the tree following the delete operation easier. */ |
| 9495 | if( !pPage->leaf ){ |
| 9496 | rc = sqlite3BtreePrevious(pCur, 0); |
| 9497 | assert( rc!=SQLITE_DONE ); |
| 9498 | if( rc ) return rc; |
| 9499 | } |
| 9500 | |
| 9501 | /* Save the positions of any other cursors open on this table before |
| 9502 | ** making any modifications. */ |
| 9503 | if( pCur->curFlags & BTCF_Multiple ){ |
| 9504 | rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| 9505 | if( rc ) return rc; |
| 9506 | } |
| 9507 | |
| 9508 | /* If this is a delete operation to remove a row from a table b-tree, |
| 9509 | ** invalidate any incrblob cursors open on the row being deleted. */ |
| 9510 | if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ |
| 9511 | invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); |
| 9512 | } |
| 9513 | |
| 9514 | /* Make the page containing the entry to be deleted writable. Then free any |
| 9515 | ** overflow pages associated with the entry and finally remove the cell |
| 9516 | ** itself from within the page. */ |
| 9517 | rc = sqlite3PagerWrite(pPage->pDbPage); |
| 9518 | if( rc ) return rc; |
| 9519 | BTREE_CLEAR_CELL(rc, pPage, pCell, info); |
| 9520 | dropCell(pPage, iCellIdx, info.nSize, &rc); |
| 9521 | if( rc ) return rc; |
| 9522 | |
| 9523 | /* If the cell deleted was not located on a leaf page, then the cursor |
| 9524 | ** is currently pointing to the largest entry in the sub-tree headed |
| 9525 | ** by the child-page of the cell that was just deleted from an internal |
| 9526 | ** node. The cell from the leaf node needs to be moved to the internal |
| 9527 | ** node to replace the deleted cell. */ |
| 9528 | if( !pPage->leaf ){ |
| 9529 | MemPage *pLeaf = pCur->pPage; |
| 9530 | int nCell; |
| 9531 | Pgno n; |
| 9532 | unsigned char *pTmp; |
| 9533 | |
| 9534 | if( pLeaf->nFree<0 ){ |
| 9535 | rc = btreeComputeFreeSpace(pLeaf); |
| 9536 | if( rc ) return rc; |
| 9537 | } |
| 9538 | if( iCellDepth<pCur->iPage-1 ){ |
| 9539 | n = pCur->apPage[iCellDepth+1]->pgno; |
| 9540 | }else{ |
| 9541 | n = pCur->pPage->pgno; |
| 9542 | } |
| 9543 | pCell = findCell(pLeaf, pLeaf->nCell-1); |
| 9544 | if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; |
| 9545 | nCell = pLeaf->xCellSize(pLeaf, pCell); |
| 9546 | assert( MX_CELL_SIZE(pBt) >= nCell ); |
| 9547 | pTmp = pBt->pTmpSpace; |
| 9548 | assert( pTmp!=0 ); |
| 9549 | rc = sqlite3PagerWrite(pLeaf->pDbPage); |
| 9550 | if( rc==SQLITE_OK ){ |
| 9551 | insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); |
| 9552 | } |
| 9553 | dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); |
| 9554 | if( rc ) return rc; |
| 9555 | } |
| 9556 | |
| 9557 | /* Balance the tree. If the entry deleted was located on a leaf page, |
| 9558 | ** then the cursor still points to that page. In this case the first |
| 9559 | ** call to balance() repairs the tree, and the if(...) condition is |
| 9560 | ** never true. |
| 9561 | ** |
| 9562 | ** Otherwise, if the entry deleted was on an internal node page, then |
| 9563 | ** pCur is pointing to the leaf page from which a cell was removed to |
| 9564 | ** replace the cell deleted from the internal node. This is slightly |
| 9565 | ** tricky as the leaf node may be underfull, and the internal node may |
| 9566 | ** be either under or overfull. In this case run the balancing algorithm |
| 9567 | ** on the leaf node first. If the balance proceeds far enough up the |
| 9568 | ** tree that we can be sure that any problem in the internal node has |
| 9569 | ** been corrected, so be it. Otherwise, after balancing the leaf node, |
| 9570 | ** walk the cursor up the tree to the internal node and balance it as |
| 9571 | ** well. */ |
| 9572 | assert( pCur->pPage->nOverflow==0 ); |
| 9573 | assert( pCur->pPage->nFree>=0 ); |
| 9574 | if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ |
| 9575 | /* Optimization: If the free space is less than 2/3rds of the page, |
| 9576 | ** then balance() will always be a no-op. No need to invoke it. */ |
| 9577 | rc = SQLITE_OK; |
| 9578 | }else{ |
| 9579 | rc = balance(pCur); |
| 9580 | } |
| 9581 | if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ |
| 9582 | releasePageNotNull(pCur->pPage); |
| 9583 | pCur->iPage--; |
| 9584 | while( pCur->iPage>iCellDepth ){ |
| 9585 | releasePage(pCur->apPage[pCur->iPage--]); |
| 9586 | } |
| 9587 | pCur->pPage = pCur->apPage[pCur->iPage]; |
| 9588 | rc = balance(pCur); |
| 9589 | } |
| 9590 | |
| 9591 | if( rc==SQLITE_OK ){ |
| 9592 | if( bPreserve>1 ){ |
| 9593 | assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); |
| 9594 | assert( pPage==pCur->pPage || CORRUPT_DB ); |
| 9595 | assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); |
| 9596 | pCur->eState = CURSOR_SKIPNEXT; |
| 9597 | if( iCellIdx>=pPage->nCell ){ |
| 9598 | pCur->skipNext = -1; |
| 9599 | pCur->ix = pPage->nCell-1; |
| 9600 | }else{ |
| 9601 | pCur->skipNext = 1; |
| 9602 | } |
| 9603 | }else{ |
| 9604 | rc = moveToRoot(pCur); |
| 9605 | if( bPreserve ){ |
| 9606 | btreeReleaseAllCursorPages(pCur); |
| 9607 | pCur->eState = CURSOR_REQUIRESEEK; |
| 9608 | } |
| 9609 | if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; |
| 9610 | } |
| 9611 | } |
| 9612 | return rc; |
| 9613 | } |
| 9614 | |
| 9615 | /* |
| 9616 | ** Create a new BTree table. Write into *piTable the page |
| 9617 | ** number for the root page of the new table. |
| 9618 | ** |
| 9619 | ** The type of type is determined by the flags parameter. Only the |
| 9620 | ** following values of flags are currently in use. Other values for |
| 9621 | ** flags might not work: |
| 9622 | ** |
| 9623 | ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
| 9624 | ** BTREE_ZERODATA Used for SQL indices |
| 9625 | */ |
| 9626 | static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ |
| 9627 | BtShared *pBt = p->pBt; |
| 9628 | MemPage *pRoot; |
| 9629 | Pgno pgnoRoot; |
| 9630 | int rc; |
| 9631 | int ptfFlags; /* Page-type flage for the root page of new table */ |
| 9632 | |
| 9633 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 9634 | assert( pBt->inTransaction==TRANS_WRITE ); |
| 9635 | assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 9636 | |
| 9637 | #ifdef SQLITE_OMIT_AUTOVACUUM |
| 9638 | rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| 9639 | if( rc ){ |
| 9640 | return rc; |
| 9641 | } |
| 9642 | #else |
| 9643 | if( pBt->autoVacuum ){ |
| 9644 | Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
| 9645 | MemPage *pPageMove; /* The page to move to. */ |
| 9646 | |
| 9647 | /* Creating a new table may probably require moving an existing database |
| 9648 | ** to make room for the new tables root page. In case this page turns |
| 9649 | ** out to be an overflow page, delete all overflow page-map caches |
| 9650 | ** held by open cursors. |
| 9651 | */ |
| 9652 | invalidateAllOverflowCache(pBt); |
| 9653 | |
| 9654 | /* Read the value of meta[3] from the database to determine where the |
| 9655 | ** root page of the new table should go. meta[3] is the largest root-page |
| 9656 | ** created so far, so the new root-page is (meta[3]+1). |
| 9657 | */ |
| 9658 | sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); |
| 9659 | if( pgnoRoot>btreePagecount(pBt) ){ |
| 9660 | return SQLITE_CORRUPT_BKPT; |
| 9661 | } |
| 9662 | pgnoRoot++; |
| 9663 | |
| 9664 | /* The new root-page may not be allocated on a pointer-map page, or the |
| 9665 | ** PENDING_BYTE page. |
| 9666 | */ |
| 9667 | while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
| 9668 | pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
| 9669 | pgnoRoot++; |
| 9670 | } |
| 9671 | assert( pgnoRoot>=3 ); |
| 9672 | |
| 9673 | /* Allocate a page. The page that currently resides at pgnoRoot will |
| 9674 | ** be moved to the allocated page (unless the allocated page happens |
| 9675 | ** to reside at pgnoRoot). |
| 9676 | */ |
| 9677 | rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); |
| 9678 | if( rc!=SQLITE_OK ){ |
| 9679 | return rc; |
| 9680 | } |
| 9681 | |
| 9682 | if( pgnoMove!=pgnoRoot ){ |
| 9683 | /* pgnoRoot is the page that will be used for the root-page of |
| 9684 | ** the new table (assuming an error did not occur). But we were |
| 9685 | ** allocated pgnoMove. If required (i.e. if it was not allocated |
| 9686 | ** by extending the file), the current page at position pgnoMove |
| 9687 | ** is already journaled. |
| 9688 | */ |
| 9689 | u8 eType = 0; |
| 9690 | Pgno iPtrPage = 0; |
| 9691 | |
| 9692 | /* Save the positions of any open cursors. This is required in |
| 9693 | ** case they are holding a reference to an xFetch reference |
| 9694 | ** corresponding to page pgnoRoot. */ |
| 9695 | rc = saveAllCursors(pBt, 0, 0); |
| 9696 | releasePage(pPageMove); |
| 9697 | if( rc!=SQLITE_OK ){ |
| 9698 | return rc; |
| 9699 | } |
| 9700 | |
| 9701 | /* Move the page currently at pgnoRoot to pgnoMove. */ |
| 9702 | rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| 9703 | if( rc!=SQLITE_OK ){ |
| 9704 | return rc; |
| 9705 | } |
| 9706 | rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
| 9707 | if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
| 9708 | rc = SQLITE_CORRUPT_BKPT; |
| 9709 | } |
| 9710 | if( rc!=SQLITE_OK ){ |
| 9711 | releasePage(pRoot); |
| 9712 | return rc; |
| 9713 | } |
| 9714 | assert( eType!=PTRMAP_ROOTPAGE ); |
| 9715 | assert( eType!=PTRMAP_FREEPAGE ); |
| 9716 | rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); |
| 9717 | releasePage(pRoot); |
| 9718 | |
| 9719 | /* Obtain the page at pgnoRoot */ |
| 9720 | if( rc!=SQLITE_OK ){ |
| 9721 | return rc; |
| 9722 | } |
| 9723 | rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| 9724 | if( rc!=SQLITE_OK ){ |
| 9725 | return rc; |
| 9726 | } |
| 9727 | rc = sqlite3PagerWrite(pRoot->pDbPage); |
| 9728 | if( rc!=SQLITE_OK ){ |
| 9729 | releasePage(pRoot); |
| 9730 | return rc; |
| 9731 | } |
| 9732 | }else{ |
| 9733 | pRoot = pPageMove; |
| 9734 | } |
| 9735 | |
| 9736 | /* Update the pointer-map and meta-data with the new root-page number. */ |
| 9737 | ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); |
| 9738 | if( rc ){ |
| 9739 | releasePage(pRoot); |
| 9740 | return rc; |
| 9741 | } |
| 9742 | |
| 9743 | /* When the new root page was allocated, page 1 was made writable in |
| 9744 | ** order either to increase the database filesize, or to decrement the |
| 9745 | ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. |
| 9746 | */ |
| 9747 | assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); |
| 9748 | rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
| 9749 | if( NEVER(rc) ){ |
| 9750 | releasePage(pRoot); |
| 9751 | return rc; |
| 9752 | } |
| 9753 | |
| 9754 | }else{ |
| 9755 | rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| 9756 | if( rc ) return rc; |
| 9757 | } |
| 9758 | #endif |
| 9759 | assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| 9760 | if( createTabFlags & BTREE_INTKEY ){ |
| 9761 | ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; |
| 9762 | }else{ |
| 9763 | ptfFlags = PTF_ZERODATA | PTF_LEAF; |
| 9764 | } |
| 9765 | zeroPage(pRoot, ptfFlags); |
| 9766 | sqlite3PagerUnref(pRoot->pDbPage); |
| 9767 | assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); |
| 9768 | *piTable = pgnoRoot; |
| 9769 | return SQLITE_OK; |
| 9770 | } |
| 9771 | int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ |
| 9772 | int rc; |
| 9773 | sqlite3BtreeEnter(p); |
| 9774 | rc = btreeCreateTable(p, piTable, flags); |
| 9775 | sqlite3BtreeLeave(p); |
| 9776 | return rc; |
| 9777 | } |
| 9778 | |
| 9779 | /* |
| 9780 | ** Erase the given database page and all its children. Return |
| 9781 | ** the page to the freelist. |
| 9782 | */ |
| 9783 | static int clearDatabasePage( |
| 9784 | BtShared *pBt, /* The BTree that contains the table */ |
| 9785 | Pgno pgno, /* Page number to clear */ |
| 9786 | int freePageFlag, /* Deallocate page if true */ |
| 9787 | i64 *pnChange /* Add number of Cells freed to this counter */ |
| 9788 | ){ |
| 9789 | MemPage *pPage; |
| 9790 | int rc; |
| 9791 | unsigned char *pCell; |
| 9792 | int i; |
| 9793 | int hdr; |
| 9794 | CellInfo info; |
| 9795 | |
| 9796 | assert( sqlite3_mutex_held(pBt->mutex) ); |
| 9797 | if( pgno>btreePagecount(pBt) ){ |
| 9798 | return SQLITE_CORRUPT_BKPT; |
| 9799 | } |
| 9800 | rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); |
| 9801 | if( rc ) return rc; |
| 9802 | if( (pBt->openFlags & BTREE_SINGLE)==0 |
| 9803 | && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) |
| 9804 | ){ |
| 9805 | rc = SQLITE_CORRUPT_BKPT; |
| 9806 | goto cleardatabasepage_out; |
| 9807 | } |
| 9808 | hdr = pPage->hdrOffset; |
| 9809 | for(i=0; i<pPage->nCell; i++){ |
| 9810 | pCell = findCell(pPage, i); |
| 9811 | if( !pPage->leaf ){ |
| 9812 | rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); |
| 9813 | if( rc ) goto cleardatabasepage_out; |
| 9814 | } |
| 9815 | BTREE_CLEAR_CELL(rc, pPage, pCell, info); |
| 9816 | if( rc ) goto cleardatabasepage_out; |
| 9817 | } |
| 9818 | if( !pPage->leaf ){ |
| 9819 | rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); |
| 9820 | if( rc ) goto cleardatabasepage_out; |
| 9821 | if( pPage->intKey ) pnChange = 0; |
| 9822 | } |
| 9823 | if( pnChange ){ |
| 9824 | testcase( !pPage->intKey ); |
| 9825 | *pnChange += pPage->nCell; |
| 9826 | } |
| 9827 | if( freePageFlag ){ |
| 9828 | freePage(pPage, &rc); |
| 9829 | }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ |
| 9830 | zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); |
| 9831 | } |
| 9832 | |
| 9833 | cleardatabasepage_out: |
| 9834 | releasePage(pPage); |
| 9835 | return rc; |
| 9836 | } |
| 9837 | |
| 9838 | /* |
| 9839 | ** Delete all information from a single table in the database. iTable is |
| 9840 | ** the page number of the root of the table. After this routine returns, |
| 9841 | ** the root page is empty, but still exists. |
| 9842 | ** |
| 9843 | ** This routine will fail with SQLITE_LOCKED if there are any open |
| 9844 | ** read cursors on the table. Open write cursors are moved to the |
| 9845 | ** root of the table. |
| 9846 | ** |
| 9847 | ** If pnChange is not NULL, then the integer value pointed to by pnChange |
| 9848 | ** is incremented by the number of entries in the table. |
| 9849 | */ |
| 9850 | int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ |
| 9851 | int rc; |
| 9852 | BtShared *pBt = p->pBt; |
| 9853 | sqlite3BtreeEnter(p); |
| 9854 | assert( p->inTrans==TRANS_WRITE ); |
| 9855 | |
| 9856 | rc = saveAllCursors(pBt, (Pgno)iTable, 0); |
| 9857 | |
| 9858 | if( SQLITE_OK==rc ){ |
| 9859 | /* Invalidate all incrblob cursors open on table iTable (assuming iTable |
| 9860 | ** is the root of a table b-tree - if it is not, the following call is |
| 9861 | ** a no-op). */ |
| 9862 | if( p->hasIncrblobCur ){ |
| 9863 | invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); |
| 9864 | } |
| 9865 | rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); |
| 9866 | } |
| 9867 | sqlite3BtreeLeave(p); |
| 9868 | return rc; |
| 9869 | } |
| 9870 | |
| 9871 | /* |
| 9872 | ** Delete all information from the single table that pCur is open on. |
| 9873 | ** |
| 9874 | ** This routine only work for pCur on an ephemeral table. |
| 9875 | */ |
| 9876 | int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ |
| 9877 | return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); |
| 9878 | } |
| 9879 | |
| 9880 | /* |
| 9881 | ** Erase all information in a table and add the root of the table to |
| 9882 | ** the freelist. Except, the root of the principle table (the one on |
| 9883 | ** page 1) is never added to the freelist. |
| 9884 | ** |
| 9885 | ** This routine will fail with SQLITE_LOCKED if there are any open |
| 9886 | ** cursors on the table. |
| 9887 | ** |
| 9888 | ** If AUTOVACUUM is enabled and the page at iTable is not the last |
| 9889 | ** root page in the database file, then the last root page |
| 9890 | ** in the database file is moved into the slot formerly occupied by |
| 9891 | ** iTable and that last slot formerly occupied by the last root page |
| 9892 | ** is added to the freelist instead of iTable. In this say, all |
| 9893 | ** root pages are kept at the beginning of the database file, which |
| 9894 | ** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
| 9895 | ** page number that used to be the last root page in the file before |
| 9896 | ** the move. If no page gets moved, *piMoved is set to 0. |
| 9897 | ** The last root page is recorded in meta[3] and the value of |
| 9898 | ** meta[3] is updated by this procedure. |
| 9899 | */ |
| 9900 | static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ |
| 9901 | int rc; |
| 9902 | MemPage *pPage = 0; |
| 9903 | BtShared *pBt = p->pBt; |
| 9904 | |
| 9905 | assert( sqlite3BtreeHoldsMutex(p) ); |
| 9906 | assert( p->inTrans==TRANS_WRITE ); |
| 9907 | assert( iTable>=2 ); |
| 9908 | if( iTable>btreePagecount(pBt) ){ |
| 9909 | return SQLITE_CORRUPT_BKPT; |
| 9910 | } |
| 9911 | |
| 9912 | rc = sqlite3BtreeClearTable(p, iTable, 0); |
| 9913 | if( rc ) return rc; |
| 9914 | rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); |
| 9915 | if( NEVER(rc) ){ |
| 9916 | releasePage(pPage); |
| 9917 | return rc; |
| 9918 | } |
| 9919 | |
| 9920 | *piMoved = 0; |
| 9921 | |
| 9922 | #ifdef SQLITE_OMIT_AUTOVACUUM |
| 9923 | freePage(pPage, &rc); |
| 9924 | releasePage(pPage); |
| 9925 | #else |
| 9926 | if( pBt->autoVacuum ){ |
| 9927 | Pgno maxRootPgno; |
| 9928 | sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); |
| 9929 | |
| 9930 | if( iTable==maxRootPgno ){ |
| 9931 | /* If the table being dropped is the table with the largest root-page |
| 9932 | ** number in the database, put the root page on the free list. |
| 9933 | */ |
| 9934 | freePage(pPage, &rc); |
| 9935 | releasePage(pPage); |
| 9936 | if( rc!=SQLITE_OK ){ |
| 9937 | return rc; |
| 9938 | } |
| 9939 | }else{ |
| 9940 | /* The table being dropped does not have the largest root-page |
| 9941 | ** number in the database. So move the page that does into the |
| 9942 | ** gap left by the deleted root-page. |
| 9943 | */ |
| 9944 | MemPage *pMove; |
| 9945 | releasePage(pPage); |
| 9946 | rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| 9947 | if( rc!=SQLITE_OK ){ |
| 9948 | return rc; |
| 9949 | } |
| 9950 | rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); |
| 9951 | releasePage(pMove); |
| 9952 | if( rc!=SQLITE_OK ){ |
| 9953 | return rc; |
| 9954 | } |
| 9955 | pMove = 0; |
| 9956 | rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| 9957 | freePage(pMove, &rc); |
| 9958 | releasePage(pMove); |
| 9959 | if( rc!=SQLITE_OK ){ |
| 9960 | return rc; |
| 9961 | } |
| 9962 | *piMoved = maxRootPgno; |
| 9963 | } |
| 9964 | |
| 9965 | /* Set the new 'max-root-page' value in the database header. This |
| 9966 | ** is the old value less one, less one more if that happens to |
| 9967 | ** be a root-page number, less one again if that is the |
| 9968 | ** PENDING_BYTE_PAGE. |
| 9969 | */ |
| 9970 | maxRootPgno--; |
| 9971 | while( maxRootPgno==PENDING_BYTE_PAGE(pBt) |
| 9972 | || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ |
| 9973 | maxRootPgno--; |
| 9974 | } |
| 9975 | assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 9976 | |
| 9977 | rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
| 9978 | }else{ |
| 9979 | freePage(pPage, &rc); |
| 9980 | releasePage(pPage); |
| 9981 | } |
| 9982 | #endif |
| 9983 | return rc; |
| 9984 | } |
| 9985 | int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
| 9986 | int rc; |
| 9987 | sqlite3BtreeEnter(p); |
| 9988 | rc = btreeDropTable(p, iTable, piMoved); |
| 9989 | sqlite3BtreeLeave(p); |
| 9990 | return rc; |
| 9991 | } |
| 9992 | |
| 9993 | |
| 9994 | /* |
| 9995 | ** This function may only be called if the b-tree connection already |
| 9996 | ** has a read or write transaction open on the database. |
| 9997 | ** |
| 9998 | ** Read the meta-information out of a database file. Meta[0] |
| 9999 | ** is the number of free pages currently in the database. Meta[1] |
| 10000 | ** through meta[15] are available for use by higher layers. Meta[0] |
| 10001 | ** is read-only, the others are read/write. |
| 10002 | ** |
| 10003 | ** The schema layer numbers meta values differently. At the schema |
| 10004 | ** layer (and the SetCookie and ReadCookie opcodes) the number of |
| 10005 | ** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
| 10006 | ** |
| 10007 | ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead |
| 10008 | ** of reading the value out of the header, it instead loads the "DataVersion" |
| 10009 | ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the |
| 10010 | ** database file. It is a number computed by the pager. But its access |
| 10011 | ** pattern is the same as header meta values, and so it is convenient to |
| 10012 | ** read it from this routine. |
| 10013 | */ |
| 10014 | void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
| 10015 | BtShared *pBt = p->pBt; |
| 10016 | |
| 10017 | sqlite3BtreeEnter(p); |
| 10018 | assert( p->inTrans>TRANS_NONE ); |
| 10019 | assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); |
| 10020 | assert( pBt->pPage1 ); |
| 10021 | assert( idx>=0 && idx<=15 ); |
| 10022 | |
| 10023 | if( idx==BTREE_DATA_VERSION ){ |
| 10024 | *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; |
| 10025 | }else{ |
| 10026 | *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); |
| 10027 | } |
| 10028 | |
| 10029 | /* If auto-vacuum is disabled in this build and this is an auto-vacuum |
| 10030 | ** database, mark the database as read-only. */ |
| 10031 | #ifdef SQLITE_OMIT_AUTOVACUUM |
| 10032 | if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ |
| 10033 | pBt->btsFlags |= BTS_READ_ONLY; |
| 10034 | } |
| 10035 | #endif |
| 10036 | |
| 10037 | sqlite3BtreeLeave(p); |
| 10038 | } |
| 10039 | |
| 10040 | /* |
| 10041 | ** Write meta-information back into the database. Meta[0] is |
| 10042 | ** read-only and may not be written. |
| 10043 | */ |
| 10044 | int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
| 10045 | BtShared *pBt = p->pBt; |
| 10046 | unsigned char *pP1; |
| 10047 | int rc; |
| 10048 | assert( idx>=1 && idx<=15 ); |
| 10049 | sqlite3BtreeEnter(p); |
| 10050 | assert( p->inTrans==TRANS_WRITE ); |
| 10051 | assert( pBt->pPage1!=0 ); |
| 10052 | pP1 = pBt->pPage1->aData; |
| 10053 | rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 10054 | if( rc==SQLITE_OK ){ |
| 10055 | put4byte(&pP1[36 + idx*4], iMeta); |
| 10056 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10057 | if( idx==BTREE_INCR_VACUUM ){ |
| 10058 | assert( pBt->autoVacuum || iMeta==0 ); |
| 10059 | assert( iMeta==0 || iMeta==1 ); |
| 10060 | pBt->incrVacuum = (u8)iMeta; |
| 10061 | } |
| 10062 | #endif |
| 10063 | } |
| 10064 | sqlite3BtreeLeave(p); |
| 10065 | return rc; |
| 10066 | } |
| 10067 | |
| 10068 | /* |
| 10069 | ** The first argument, pCur, is a cursor opened on some b-tree. Count the |
| 10070 | ** number of entries in the b-tree and write the result to *pnEntry. |
| 10071 | ** |
| 10072 | ** SQLITE_OK is returned if the operation is successfully executed. |
| 10073 | ** Otherwise, if an error is encountered (i.e. an IO error or database |
| 10074 | ** corruption) an SQLite error code is returned. |
| 10075 | */ |
| 10076 | int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ |
| 10077 | i64 nEntry = 0; /* Value to return in *pnEntry */ |
| 10078 | int rc; /* Return code */ |
| 10079 | |
| 10080 | rc = moveToRoot(pCur); |
| 10081 | if( rc==SQLITE_EMPTY ){ |
| 10082 | *pnEntry = 0; |
| 10083 | return SQLITE_OK; |
| 10084 | } |
| 10085 | |
| 10086 | /* Unless an error occurs, the following loop runs one iteration for each |
| 10087 | ** page in the B-Tree structure (not including overflow pages). |
| 10088 | */ |
| 10089 | while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ |
| 10090 | int iIdx; /* Index of child node in parent */ |
| 10091 | MemPage *pPage; /* Current page of the b-tree */ |
| 10092 | |
| 10093 | /* If this is a leaf page or the tree is not an int-key tree, then |
| 10094 | ** this page contains countable entries. Increment the entry counter |
| 10095 | ** accordingly. |
| 10096 | */ |
| 10097 | pPage = pCur->pPage; |
| 10098 | if( pPage->leaf || !pPage->intKey ){ |
| 10099 | nEntry += pPage->nCell; |
| 10100 | } |
| 10101 | |
| 10102 | /* pPage is a leaf node. This loop navigates the cursor so that it |
| 10103 | ** points to the first interior cell that it points to the parent of |
| 10104 | ** the next page in the tree that has not yet been visited. The |
| 10105 | ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell |
| 10106 | ** of the page, or to the number of cells in the page if the next page |
| 10107 | ** to visit is the right-child of its parent. |
| 10108 | ** |
| 10109 | ** If all pages in the tree have been visited, return SQLITE_OK to the |
| 10110 | ** caller. |
| 10111 | */ |
| 10112 | if( pPage->leaf ){ |
| 10113 | do { |
| 10114 | if( pCur->iPage==0 ){ |
| 10115 | /* All pages of the b-tree have been visited. Return successfully. */ |
| 10116 | *pnEntry = nEntry; |
| 10117 | return moveToRoot(pCur); |
| 10118 | } |
| 10119 | moveToParent(pCur); |
| 10120 | }while ( pCur->ix>=pCur->pPage->nCell ); |
| 10121 | |
| 10122 | pCur->ix++; |
| 10123 | pPage = pCur->pPage; |
| 10124 | } |
| 10125 | |
| 10126 | /* Descend to the child node of the cell that the cursor currently |
| 10127 | ** points at. This is the right-child if (iIdx==pPage->nCell). |
| 10128 | */ |
| 10129 | iIdx = pCur->ix; |
| 10130 | if( iIdx==pPage->nCell ){ |
| 10131 | rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| 10132 | }else{ |
| 10133 | rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); |
| 10134 | } |
| 10135 | } |
| 10136 | |
| 10137 | /* An error has occurred. Return an error code. */ |
| 10138 | return rc; |
| 10139 | } |
| 10140 | |
| 10141 | /* |
| 10142 | ** Return the pager associated with a BTree. This routine is used for |
| 10143 | ** testing and debugging only. |
| 10144 | */ |
| 10145 | Pager *(Btree *p){ |
| 10146 | return p->pBt->pPager; |
| 10147 | } |
| 10148 | |
| 10149 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 10150 | /* |
| 10151 | ** Append a message to the error message string. |
| 10152 | */ |
| 10153 | static void checkAppendMsg( |
| 10154 | IntegrityCk *pCheck, |
| 10155 | const char *zFormat, |
| 10156 | ... |
| 10157 | ){ |
| 10158 | va_list ap; |
| 10159 | if( !pCheck->mxErr ) return; |
| 10160 | pCheck->mxErr--; |
| 10161 | pCheck->nErr++; |
| 10162 | va_start(ap, zFormat); |
| 10163 | if( pCheck->errMsg.nChar ){ |
| 10164 | sqlite3_str_append(&pCheck->errMsg, "\n" , 1); |
| 10165 | } |
| 10166 | if( pCheck->zPfx ){ |
| 10167 | sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); |
| 10168 | } |
| 10169 | sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); |
| 10170 | va_end(ap); |
| 10171 | if( pCheck->errMsg.accError==SQLITE_NOMEM ){ |
| 10172 | pCheck->bOomFault = 1; |
| 10173 | } |
| 10174 | } |
| 10175 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 10176 | |
| 10177 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 10178 | |
| 10179 | /* |
| 10180 | ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that |
| 10181 | ** corresponds to page iPg is already set. |
| 10182 | */ |
| 10183 | static int (IntegrityCk *pCheck, Pgno iPg){ |
| 10184 | assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| 10185 | return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); |
| 10186 | } |
| 10187 | |
| 10188 | /* |
| 10189 | ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. |
| 10190 | */ |
| 10191 | static void (IntegrityCk *pCheck, Pgno iPg){ |
| 10192 | assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| 10193 | pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); |
| 10194 | } |
| 10195 | |
| 10196 | |
| 10197 | /* |
| 10198 | ** Add 1 to the reference count for page iPage. If this is the second |
| 10199 | ** reference to the page, add an error message to pCheck->zErrMsg. |
| 10200 | ** Return 1 if there are 2 or more references to the page and 0 if |
| 10201 | ** if this is the first reference to the page. |
| 10202 | ** |
| 10203 | ** Also check that the page number is in bounds. |
| 10204 | */ |
| 10205 | static int checkRef(IntegrityCk *pCheck, Pgno iPage){ |
| 10206 | if( iPage>pCheck->nPage || iPage==0 ){ |
| 10207 | checkAppendMsg(pCheck, "invalid page number %d" , iPage); |
| 10208 | return 1; |
| 10209 | } |
| 10210 | if( getPageReferenced(pCheck, iPage) ){ |
| 10211 | checkAppendMsg(pCheck, "2nd reference to page %d" , iPage); |
| 10212 | return 1; |
| 10213 | } |
| 10214 | if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; |
| 10215 | setPageReferenced(pCheck, iPage); |
| 10216 | return 0; |
| 10217 | } |
| 10218 | |
| 10219 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10220 | /* |
| 10221 | ** Check that the entry in the pointer-map for page iChild maps to |
| 10222 | ** page iParent, pointer type ptrType. If not, append an error message |
| 10223 | ** to pCheck. |
| 10224 | */ |
| 10225 | static void checkPtrmap( |
| 10226 | IntegrityCk *pCheck, /* Integrity check context */ |
| 10227 | Pgno iChild, /* Child page number */ |
| 10228 | u8 eType, /* Expected pointer map type */ |
| 10229 | Pgno iParent /* Expected pointer map parent page number */ |
| 10230 | ){ |
| 10231 | int rc; |
| 10232 | u8 ePtrmapType; |
| 10233 | Pgno iPtrmapParent; |
| 10234 | |
| 10235 | rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
| 10236 | if( rc!=SQLITE_OK ){ |
| 10237 | if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; |
| 10238 | checkAppendMsg(pCheck, "Failed to read ptrmap key=%d" , iChild); |
| 10239 | return; |
| 10240 | } |
| 10241 | |
| 10242 | if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
| 10243 | checkAppendMsg(pCheck, |
| 10244 | "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)" , |
| 10245 | iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
| 10246 | } |
| 10247 | } |
| 10248 | #endif |
| 10249 | |
| 10250 | /* |
| 10251 | ** Check the integrity of the freelist or of an overflow page list. |
| 10252 | ** Verify that the number of pages on the list is N. |
| 10253 | */ |
| 10254 | static void checkList( |
| 10255 | IntegrityCk *pCheck, /* Integrity checking context */ |
| 10256 | int isFreeList, /* True for a freelist. False for overflow page list */ |
| 10257 | Pgno iPage, /* Page number for first page in the list */ |
| 10258 | u32 N /* Expected number of pages in the list */ |
| 10259 | ){ |
| 10260 | int i; |
| 10261 | u32 expected = N; |
| 10262 | int nErrAtStart = pCheck->nErr; |
| 10263 | while( iPage!=0 && pCheck->mxErr ){ |
| 10264 | DbPage *pOvflPage; |
| 10265 | unsigned char *pOvflData; |
| 10266 | if( checkRef(pCheck, iPage) ) break; |
| 10267 | N--; |
| 10268 | if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ |
| 10269 | checkAppendMsg(pCheck, "failed to get page %d" , iPage); |
| 10270 | break; |
| 10271 | } |
| 10272 | pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); |
| 10273 | if( isFreeList ){ |
| 10274 | u32 n = (u32)get4byte(&pOvflData[4]); |
| 10275 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10276 | if( pCheck->pBt->autoVacuum ){ |
| 10277 | checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); |
| 10278 | } |
| 10279 | #endif |
| 10280 | if( n>pCheck->pBt->usableSize/4-2 ){ |
| 10281 | checkAppendMsg(pCheck, |
| 10282 | "freelist leaf count too big on page %d" , iPage); |
| 10283 | N--; |
| 10284 | }else{ |
| 10285 | for(i=0; i<(int)n; i++){ |
| 10286 | Pgno iFreePage = get4byte(&pOvflData[8+i*4]); |
| 10287 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10288 | if( pCheck->pBt->autoVacuum ){ |
| 10289 | checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); |
| 10290 | } |
| 10291 | #endif |
| 10292 | checkRef(pCheck, iFreePage); |
| 10293 | } |
| 10294 | N -= n; |
| 10295 | } |
| 10296 | } |
| 10297 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10298 | else{ |
| 10299 | /* If this database supports auto-vacuum and iPage is not the last |
| 10300 | ** page in this overflow list, check that the pointer-map entry for |
| 10301 | ** the following page matches iPage. |
| 10302 | */ |
| 10303 | if( pCheck->pBt->autoVacuum && N>0 ){ |
| 10304 | i = get4byte(pOvflData); |
| 10305 | checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); |
| 10306 | } |
| 10307 | } |
| 10308 | #endif |
| 10309 | iPage = get4byte(pOvflData); |
| 10310 | sqlite3PagerUnref(pOvflPage); |
| 10311 | } |
| 10312 | if( N && nErrAtStart==pCheck->nErr ){ |
| 10313 | checkAppendMsg(pCheck, |
| 10314 | "%s is %d but should be %d" , |
| 10315 | isFreeList ? "size" : "overflow list length" , |
| 10316 | expected-N, expected); |
| 10317 | } |
| 10318 | } |
| 10319 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 10320 | |
| 10321 | /* |
| 10322 | ** An implementation of a min-heap. |
| 10323 | ** |
| 10324 | ** aHeap[0] is the number of elements on the heap. aHeap[1] is the |
| 10325 | ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] |
| 10326 | ** and aHeap[N*2+1]. |
| 10327 | ** |
| 10328 | ** The heap property is this: Every node is less than or equal to both |
| 10329 | ** of its daughter nodes. A consequence of the heap property is that the |
| 10330 | ** root node aHeap[1] is always the minimum value currently in the heap. |
| 10331 | ** |
| 10332 | ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto |
| 10333 | ** the heap, preserving the heap property. The btreeHeapPull() routine |
| 10334 | ** removes the root element from the heap (the minimum value in the heap) |
| 10335 | ** and then moves other nodes around as necessary to preserve the heap |
| 10336 | ** property. |
| 10337 | ** |
| 10338 | ** This heap is used for cell overlap and coverage testing. Each u32 |
| 10339 | ** entry represents the span of a cell or freeblock on a btree page. |
| 10340 | ** The upper 16 bits are the index of the first byte of a range and the |
| 10341 | ** lower 16 bits are the index of the last byte of that range. |
| 10342 | */ |
| 10343 | static void btreeHeapInsert(u32 *aHeap, u32 x){ |
| 10344 | u32 j, i = ++aHeap[0]; |
| 10345 | aHeap[i] = x; |
| 10346 | while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ |
| 10347 | x = aHeap[j]; |
| 10348 | aHeap[j] = aHeap[i]; |
| 10349 | aHeap[i] = x; |
| 10350 | i = j; |
| 10351 | } |
| 10352 | } |
| 10353 | static int btreeHeapPull(u32 *aHeap, u32 *pOut){ |
| 10354 | u32 j, i, x; |
| 10355 | if( (x = aHeap[0])==0 ) return 0; |
| 10356 | *pOut = aHeap[1]; |
| 10357 | aHeap[1] = aHeap[x]; |
| 10358 | aHeap[x] = 0xffffffff; |
| 10359 | aHeap[0]--; |
| 10360 | i = 1; |
| 10361 | while( (j = i*2)<=aHeap[0] ){ |
| 10362 | if( aHeap[j]>aHeap[j+1] ) j++; |
| 10363 | if( aHeap[i]<aHeap[j] ) break; |
| 10364 | x = aHeap[i]; |
| 10365 | aHeap[i] = aHeap[j]; |
| 10366 | aHeap[j] = x; |
| 10367 | i = j; |
| 10368 | } |
| 10369 | return 1; |
| 10370 | } |
| 10371 | |
| 10372 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 10373 | /* |
| 10374 | ** Do various sanity checks on a single page of a tree. Return |
| 10375 | ** the tree depth. Root pages return 0. Parents of root pages |
| 10376 | ** return 1, and so forth. |
| 10377 | ** |
| 10378 | ** These checks are done: |
| 10379 | ** |
| 10380 | ** 1. Make sure that cells and freeblocks do not overlap |
| 10381 | ** but combine to completely cover the page. |
| 10382 | ** 2. Make sure integer cell keys are in order. |
| 10383 | ** 3. Check the integrity of overflow pages. |
| 10384 | ** 4. Recursively call checkTreePage on all children. |
| 10385 | ** 5. Verify that the depth of all children is the same. |
| 10386 | */ |
| 10387 | static int checkTreePage( |
| 10388 | IntegrityCk *pCheck, /* Context for the sanity check */ |
| 10389 | Pgno iPage, /* Page number of the page to check */ |
| 10390 | i64 *piMinKey, /* Write minimum integer primary key here */ |
| 10391 | i64 maxKey /* Error if integer primary key greater than this */ |
| 10392 | ){ |
| 10393 | MemPage *pPage = 0; /* The page being analyzed */ |
| 10394 | int i; /* Loop counter */ |
| 10395 | int rc; /* Result code from subroutine call */ |
| 10396 | int depth = -1, d2; /* Depth of a subtree */ |
| 10397 | int pgno; /* Page number */ |
| 10398 | int nFrag; /* Number of fragmented bytes on the page */ |
| 10399 | int hdr; /* Offset to the page header */ |
| 10400 | int cellStart; /* Offset to the start of the cell pointer array */ |
| 10401 | int nCell; /* Number of cells */ |
| 10402 | int doCoverageCheck = 1; /* True if cell coverage checking should be done */ |
| 10403 | int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey |
| 10404 | ** False if IPK must be strictly less than maxKey */ |
| 10405 | u8 *data; /* Page content */ |
| 10406 | u8 *pCell; /* Cell content */ |
| 10407 | u8 *pCellIdx; /* Next element of the cell pointer array */ |
| 10408 | BtShared *pBt; /* The BtShared object that owns pPage */ |
| 10409 | u32 pc; /* Address of a cell */ |
| 10410 | u32 usableSize; /* Usable size of the page */ |
| 10411 | u32 contentOffset; /* Offset to the start of the cell content area */ |
| 10412 | u32 *heap = 0; /* Min-heap used for checking cell coverage */ |
| 10413 | u32 x, prev = 0; /* Next and previous entry on the min-heap */ |
| 10414 | const char *saved_zPfx = pCheck->zPfx; |
| 10415 | int saved_v1 = pCheck->v1; |
| 10416 | int saved_v2 = pCheck->v2; |
| 10417 | u8 savedIsInit = 0; |
| 10418 | |
| 10419 | /* Check that the page exists |
| 10420 | */ |
| 10421 | pBt = pCheck->pBt; |
| 10422 | usableSize = pBt->usableSize; |
| 10423 | if( iPage==0 ) return 0; |
| 10424 | if( checkRef(pCheck, iPage) ) return 0; |
| 10425 | pCheck->zPfx = "Page %u: " ; |
| 10426 | pCheck->v1 = iPage; |
| 10427 | if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ |
| 10428 | checkAppendMsg(pCheck, |
| 10429 | "unable to get the page. error code=%d" , rc); |
| 10430 | goto end_of_check; |
| 10431 | } |
| 10432 | |
| 10433 | /* Clear MemPage.isInit to make sure the corruption detection code in |
| 10434 | ** btreeInitPage() is executed. */ |
| 10435 | savedIsInit = pPage->isInit; |
| 10436 | pPage->isInit = 0; |
| 10437 | if( (rc = btreeInitPage(pPage))!=0 ){ |
| 10438 | assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ |
| 10439 | checkAppendMsg(pCheck, |
| 10440 | "btreeInitPage() returns error code %d" , rc); |
| 10441 | goto end_of_check; |
| 10442 | } |
| 10443 | if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ |
| 10444 | assert( rc==SQLITE_CORRUPT ); |
| 10445 | checkAppendMsg(pCheck, "free space corruption" , rc); |
| 10446 | goto end_of_check; |
| 10447 | } |
| 10448 | data = pPage->aData; |
| 10449 | hdr = pPage->hdrOffset; |
| 10450 | |
| 10451 | /* Set up for cell analysis */ |
| 10452 | pCheck->zPfx = "On tree page %u cell %d: " ; |
| 10453 | contentOffset = get2byteNotZero(&data[hdr+5]); |
| 10454 | assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ |
| 10455 | |
| 10456 | /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
| 10457 | ** number of cells on the page. */ |
| 10458 | nCell = get2byte(&data[hdr+3]); |
| 10459 | assert( pPage->nCell==nCell ); |
| 10460 | |
| 10461 | /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page |
| 10462 | ** immediately follows the b-tree page header. */ |
| 10463 | cellStart = hdr + 12 - 4*pPage->leaf; |
| 10464 | assert( pPage->aCellIdx==&data[cellStart] ); |
| 10465 | pCellIdx = &data[cellStart + 2*(nCell-1)]; |
| 10466 | |
| 10467 | if( !pPage->leaf ){ |
| 10468 | /* Analyze the right-child page of internal pages */ |
| 10469 | pgno = get4byte(&data[hdr+8]); |
| 10470 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10471 | if( pBt->autoVacuum ){ |
| 10472 | pCheck->zPfx = "On page %u at right child: " ; |
| 10473 | checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| 10474 | } |
| 10475 | #endif |
| 10476 | depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
| 10477 | keyCanBeEqual = 0; |
| 10478 | }else{ |
| 10479 | /* For leaf pages, the coverage check will occur in the same loop |
| 10480 | ** as the other cell checks, so initialize the heap. */ |
| 10481 | heap = pCheck->heap; |
| 10482 | heap[0] = 0; |
| 10483 | } |
| 10484 | |
| 10485 | /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte |
| 10486 | ** integer offsets to the cell contents. */ |
| 10487 | for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ |
| 10488 | CellInfo info; |
| 10489 | |
| 10490 | /* Check cell size */ |
| 10491 | pCheck->v2 = i; |
| 10492 | assert( pCellIdx==&data[cellStart + i*2] ); |
| 10493 | pc = get2byteAligned(pCellIdx); |
| 10494 | pCellIdx -= 2; |
| 10495 | if( pc<contentOffset || pc>usableSize-4 ){ |
| 10496 | checkAppendMsg(pCheck, "Offset %d out of range %d..%d" , |
| 10497 | pc, contentOffset, usableSize-4); |
| 10498 | doCoverageCheck = 0; |
| 10499 | continue; |
| 10500 | } |
| 10501 | pCell = &data[pc]; |
| 10502 | pPage->xParseCell(pPage, pCell, &info); |
| 10503 | if( pc+info.nSize>usableSize ){ |
| 10504 | checkAppendMsg(pCheck, "Extends off end of page" ); |
| 10505 | doCoverageCheck = 0; |
| 10506 | continue; |
| 10507 | } |
| 10508 | |
| 10509 | /* Check for integer primary key out of range */ |
| 10510 | if( pPage->intKey ){ |
| 10511 | if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ |
| 10512 | checkAppendMsg(pCheck, "Rowid %lld out of order" , info.nKey); |
| 10513 | } |
| 10514 | maxKey = info.nKey; |
| 10515 | keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ |
| 10516 | } |
| 10517 | |
| 10518 | /* Check the content overflow list */ |
| 10519 | if( info.nPayload>info.nLocal ){ |
| 10520 | u32 nPage; /* Number of pages on the overflow chain */ |
| 10521 | Pgno pgnoOvfl; /* First page of the overflow chain */ |
| 10522 | assert( pc + info.nSize - 4 <= usableSize ); |
| 10523 | nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); |
| 10524 | pgnoOvfl = get4byte(&pCell[info.nSize - 4]); |
| 10525 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10526 | if( pBt->autoVacuum ){ |
| 10527 | checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); |
| 10528 | } |
| 10529 | #endif |
| 10530 | checkList(pCheck, 0, pgnoOvfl, nPage); |
| 10531 | } |
| 10532 | |
| 10533 | if( !pPage->leaf ){ |
| 10534 | /* Check sanity of left child page for internal pages */ |
| 10535 | pgno = get4byte(pCell); |
| 10536 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10537 | if( pBt->autoVacuum ){ |
| 10538 | checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| 10539 | } |
| 10540 | #endif |
| 10541 | d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
| 10542 | keyCanBeEqual = 0; |
| 10543 | if( d2!=depth ){ |
| 10544 | checkAppendMsg(pCheck, "Child page depth differs" ); |
| 10545 | depth = d2; |
| 10546 | } |
| 10547 | }else{ |
| 10548 | /* Populate the coverage-checking heap for leaf pages */ |
| 10549 | btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); |
| 10550 | } |
| 10551 | } |
| 10552 | *piMinKey = maxKey; |
| 10553 | |
| 10554 | /* Check for complete coverage of the page |
| 10555 | */ |
| 10556 | pCheck->zPfx = 0; |
| 10557 | if( doCoverageCheck && pCheck->mxErr>0 ){ |
| 10558 | /* For leaf pages, the min-heap has already been initialized and the |
| 10559 | ** cells have already been inserted. But for internal pages, that has |
| 10560 | ** not yet been done, so do it now */ |
| 10561 | if( !pPage->leaf ){ |
| 10562 | heap = pCheck->heap; |
| 10563 | heap[0] = 0; |
| 10564 | for(i=nCell-1; i>=0; i--){ |
| 10565 | u32 size; |
| 10566 | pc = get2byteAligned(&data[cellStart+i*2]); |
| 10567 | size = pPage->xCellSize(pPage, &data[pc]); |
| 10568 | btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); |
| 10569 | } |
| 10570 | } |
| 10571 | /* Add the freeblocks to the min-heap |
| 10572 | ** |
| 10573 | ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header |
| 10574 | ** is the offset of the first freeblock, or zero if there are no |
| 10575 | ** freeblocks on the page. |
| 10576 | */ |
| 10577 | i = get2byte(&data[hdr+1]); |
| 10578 | while( i>0 ){ |
| 10579 | int size, j; |
| 10580 | assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ |
| 10581 | size = get2byte(&data[i+2]); |
| 10582 | assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ |
| 10583 | btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); |
| 10584 | /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a |
| 10585 | ** big-endian integer which is the offset in the b-tree page of the next |
| 10586 | ** freeblock in the chain, or zero if the freeblock is the last on the |
| 10587 | ** chain. */ |
| 10588 | j = get2byte(&data[i]); |
| 10589 | /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of |
| 10590 | ** increasing offset. */ |
| 10591 | assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ |
| 10592 | assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ |
| 10593 | i = j; |
| 10594 | } |
| 10595 | /* Analyze the min-heap looking for overlap between cells and/or |
| 10596 | ** freeblocks, and counting the number of untracked bytes in nFrag. |
| 10597 | ** |
| 10598 | ** Each min-heap entry is of the form: (start_address<<16)|end_address. |
| 10599 | ** There is an implied first entry the covers the page header, the cell |
| 10600 | ** pointer index, and the gap between the cell pointer index and the start |
| 10601 | ** of cell content. |
| 10602 | ** |
| 10603 | ** The loop below pulls entries from the min-heap in order and compares |
| 10604 | ** the start_address against the previous end_address. If there is an |
| 10605 | ** overlap, that means bytes are used multiple times. If there is a gap, |
| 10606 | ** that gap is added to the fragmentation count. |
| 10607 | */ |
| 10608 | nFrag = 0; |
| 10609 | prev = contentOffset - 1; /* Implied first min-heap entry */ |
| 10610 | while( btreeHeapPull(heap,&x) ){ |
| 10611 | if( (prev&0xffff)>=(x>>16) ){ |
| 10612 | checkAppendMsg(pCheck, |
| 10613 | "Multiple uses for byte %u of page %u" , x>>16, iPage); |
| 10614 | break; |
| 10615 | }else{ |
| 10616 | nFrag += (x>>16) - (prev&0xffff) - 1; |
| 10617 | prev = x; |
| 10618 | } |
| 10619 | } |
| 10620 | nFrag += usableSize - (prev&0xffff) - 1; |
| 10621 | /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments |
| 10622 | ** is stored in the fifth field of the b-tree page header. |
| 10623 | ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the |
| 10624 | ** number of fragmented free bytes within the cell content area. |
| 10625 | */ |
| 10626 | if( heap[0]==0 && nFrag!=data[hdr+7] ){ |
| 10627 | checkAppendMsg(pCheck, |
| 10628 | "Fragmentation of %d bytes reported as %d on page %u" , |
| 10629 | nFrag, data[hdr+7], iPage); |
| 10630 | } |
| 10631 | } |
| 10632 | |
| 10633 | end_of_check: |
| 10634 | if( !doCoverageCheck ) pPage->isInit = savedIsInit; |
| 10635 | releasePage(pPage); |
| 10636 | pCheck->zPfx = saved_zPfx; |
| 10637 | pCheck->v1 = saved_v1; |
| 10638 | pCheck->v2 = saved_v2; |
| 10639 | return depth+1; |
| 10640 | } |
| 10641 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 10642 | |
| 10643 | #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 10644 | /* |
| 10645 | ** This routine does a complete check of the given BTree file. aRoot[] is |
| 10646 | ** an array of pages numbers were each page number is the root page of |
| 10647 | ** a table. nRoot is the number of entries in aRoot. |
| 10648 | ** |
| 10649 | ** A read-only or read-write transaction must be opened before calling |
| 10650 | ** this function. |
| 10651 | ** |
| 10652 | ** Write the number of error seen in *pnErr. Except for some memory |
| 10653 | ** allocation errors, an error message held in memory obtained from |
| 10654 | ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is |
| 10655 | ** returned. If a memory allocation error occurs, NULL is returned. |
| 10656 | ** |
| 10657 | ** If the first entry in aRoot[] is 0, that indicates that the list of |
| 10658 | ** root pages is incomplete. This is a "partial integrity-check". This |
| 10659 | ** happens when performing an integrity check on a single table. The |
| 10660 | ** zero is skipped, of course. But in addition, the freelist checks |
| 10661 | ** and the checks to make sure every page is referenced are also skipped, |
| 10662 | ** since obviously it is not possible to know which pages are covered by |
| 10663 | ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist |
| 10664 | ** checks are still performed. |
| 10665 | */ |
| 10666 | char *sqlite3BtreeIntegrityCheck( |
| 10667 | sqlite3 *db, /* Database connection that is running the check */ |
| 10668 | Btree *p, /* The btree to be checked */ |
| 10669 | Pgno *aRoot, /* An array of root pages numbers for individual trees */ |
| 10670 | int nRoot, /* Number of entries in aRoot[] */ |
| 10671 | int mxErr, /* Stop reporting errors after this many */ |
| 10672 | int *pnErr /* Write number of errors seen to this variable */ |
| 10673 | ){ |
| 10674 | Pgno i; |
| 10675 | IntegrityCk sCheck; |
| 10676 | BtShared *pBt = p->pBt; |
| 10677 | u64 savedDbFlags = pBt->db->flags; |
| 10678 | char zErr[100]; |
| 10679 | int bPartial = 0; /* True if not checking all btrees */ |
| 10680 | int bCkFreelist = 1; /* True to scan the freelist */ |
| 10681 | VVA_ONLY( int nRef ); |
| 10682 | assert( nRoot>0 ); |
| 10683 | |
| 10684 | /* aRoot[0]==0 means this is a partial check */ |
| 10685 | if( aRoot[0]==0 ){ |
| 10686 | assert( nRoot>1 ); |
| 10687 | bPartial = 1; |
| 10688 | if( aRoot[1]!=1 ) bCkFreelist = 0; |
| 10689 | } |
| 10690 | |
| 10691 | sqlite3BtreeEnter(p); |
| 10692 | assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); |
| 10693 | VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); |
| 10694 | assert( nRef>=0 ); |
| 10695 | sCheck.db = db; |
| 10696 | sCheck.pBt = pBt; |
| 10697 | sCheck.pPager = pBt->pPager; |
| 10698 | sCheck.nPage = btreePagecount(sCheck.pBt); |
| 10699 | sCheck.mxErr = mxErr; |
| 10700 | sCheck.nErr = 0; |
| 10701 | sCheck.bOomFault = 0; |
| 10702 | sCheck.zPfx = 0; |
| 10703 | sCheck.v1 = 0; |
| 10704 | sCheck.v2 = 0; |
| 10705 | sCheck.aPgRef = 0; |
| 10706 | sCheck.heap = 0; |
| 10707 | sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); |
| 10708 | sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; |
| 10709 | if( sCheck.nPage==0 ){ |
| 10710 | goto integrity_ck_cleanup; |
| 10711 | } |
| 10712 | |
| 10713 | sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); |
| 10714 | if( !sCheck.aPgRef ){ |
| 10715 | sCheck.bOomFault = 1; |
| 10716 | goto integrity_ck_cleanup; |
| 10717 | } |
| 10718 | sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); |
| 10719 | if( sCheck.heap==0 ){ |
| 10720 | sCheck.bOomFault = 1; |
| 10721 | goto integrity_ck_cleanup; |
| 10722 | } |
| 10723 | |
| 10724 | i = PENDING_BYTE_PAGE(pBt); |
| 10725 | if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); |
| 10726 | |
| 10727 | /* Check the integrity of the freelist |
| 10728 | */ |
| 10729 | if( bCkFreelist ){ |
| 10730 | sCheck.zPfx = "Main freelist: " ; |
| 10731 | checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
| 10732 | get4byte(&pBt->pPage1->aData[36])); |
| 10733 | sCheck.zPfx = 0; |
| 10734 | } |
| 10735 | |
| 10736 | /* Check all the tables. |
| 10737 | */ |
| 10738 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10739 | if( !bPartial ){ |
| 10740 | if( pBt->autoVacuum ){ |
| 10741 | Pgno mx = 0; |
| 10742 | Pgno mxInHdr; |
| 10743 | for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; |
| 10744 | mxInHdr = get4byte(&pBt->pPage1->aData[52]); |
| 10745 | if( mx!=mxInHdr ){ |
| 10746 | checkAppendMsg(&sCheck, |
| 10747 | "max rootpage (%d) disagrees with header (%d)" , |
| 10748 | mx, mxInHdr |
| 10749 | ); |
| 10750 | } |
| 10751 | }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ |
| 10752 | checkAppendMsg(&sCheck, |
| 10753 | "incremental_vacuum enabled with a max rootpage of zero" |
| 10754 | ); |
| 10755 | } |
| 10756 | } |
| 10757 | #endif |
| 10758 | testcase( pBt->db->flags & SQLITE_CellSizeCk ); |
| 10759 | pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; |
| 10760 | for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ |
| 10761 | i64 notUsed; |
| 10762 | if( aRoot[i]==0 ) continue; |
| 10763 | #ifndef SQLITE_OMIT_AUTOVACUUM |
| 10764 | if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ |
| 10765 | checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); |
| 10766 | } |
| 10767 | #endif |
| 10768 | checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); |
| 10769 | } |
| 10770 | pBt->db->flags = savedDbFlags; |
| 10771 | |
| 10772 | /* Make sure every page in the file is referenced |
| 10773 | */ |
| 10774 | if( !bPartial ){ |
| 10775 | for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ |
| 10776 | #ifdef SQLITE_OMIT_AUTOVACUUM |
| 10777 | if( getPageReferenced(&sCheck, i)==0 ){ |
| 10778 | checkAppendMsg(&sCheck, "Page %d is never used" , i); |
| 10779 | } |
| 10780 | #else |
| 10781 | /* If the database supports auto-vacuum, make sure no tables contain |
| 10782 | ** references to pointer-map pages. |
| 10783 | */ |
| 10784 | if( getPageReferenced(&sCheck, i)==0 && |
| 10785 | (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
| 10786 | checkAppendMsg(&sCheck, "Page %d is never used" , i); |
| 10787 | } |
| 10788 | if( getPageReferenced(&sCheck, i)!=0 && |
| 10789 | (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
| 10790 | checkAppendMsg(&sCheck, "Pointer map page %d is referenced" , i); |
| 10791 | } |
| 10792 | #endif |
| 10793 | } |
| 10794 | } |
| 10795 | |
| 10796 | /* Clean up and report errors. |
| 10797 | */ |
| 10798 | integrity_ck_cleanup: |
| 10799 | sqlite3PageFree(sCheck.heap); |
| 10800 | sqlite3_free(sCheck.aPgRef); |
| 10801 | if( sCheck.bOomFault ){ |
| 10802 | sqlite3_str_reset(&sCheck.errMsg); |
| 10803 | sCheck.nErr++; |
| 10804 | } |
| 10805 | *pnErr = sCheck.nErr; |
| 10806 | if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); |
| 10807 | /* Make sure this analysis did not leave any unref() pages. */ |
| 10808 | assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); |
| 10809 | sqlite3BtreeLeave(p); |
| 10810 | return sqlite3StrAccumFinish(&sCheck.errMsg); |
| 10811 | } |
| 10812 | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 10813 | |
| 10814 | /* |
| 10815 | ** Return the full pathname of the underlying database file. Return |
| 10816 | ** an empty string if the database is in-memory or a TEMP database. |
| 10817 | ** |
| 10818 | ** The pager filename is invariant as long as the pager is |
| 10819 | ** open so it is safe to access without the BtShared mutex. |
| 10820 | */ |
| 10821 | const char *sqlite3BtreeGetFilename(Btree *p){ |
| 10822 | assert( p->pBt->pPager!=0 ); |
| 10823 | return sqlite3PagerFilename(p->pBt->pPager, 1); |
| 10824 | } |
| 10825 | |
| 10826 | /* |
| 10827 | ** Return the pathname of the journal file for this database. The return |
| 10828 | ** value of this routine is the same regardless of whether the journal file |
| 10829 | ** has been created or not. |
| 10830 | ** |
| 10831 | ** The pager journal filename is invariant as long as the pager is |
| 10832 | ** open so it is safe to access without the BtShared mutex. |
| 10833 | */ |
| 10834 | const char *sqlite3BtreeGetJournalname(Btree *p){ |
| 10835 | assert( p->pBt->pPager!=0 ); |
| 10836 | return sqlite3PagerJournalname(p->pBt->pPager); |
| 10837 | } |
| 10838 | |
| 10839 | /* |
| 10840 | ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE |
| 10841 | ** to describe the current transaction state of Btree p. |
| 10842 | */ |
| 10843 | int sqlite3BtreeTxnState(Btree *p){ |
| 10844 | assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); |
| 10845 | return p ? p->inTrans : 0; |
| 10846 | } |
| 10847 | |
| 10848 | #ifndef SQLITE_OMIT_WAL |
| 10849 | /* |
| 10850 | ** Run a checkpoint on the Btree passed as the first argument. |
| 10851 | ** |
| 10852 | ** Return SQLITE_LOCKED if this or any other connection has an open |
| 10853 | ** transaction on the shared-cache the argument Btree is connected to. |
| 10854 | ** |
| 10855 | ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. |
| 10856 | */ |
| 10857 | int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ |
| 10858 | int rc = SQLITE_OK; |
| 10859 | if( p ){ |
| 10860 | BtShared *pBt = p->pBt; |
| 10861 | sqlite3BtreeEnter(p); |
| 10862 | if( pBt->inTransaction!=TRANS_NONE ){ |
| 10863 | rc = SQLITE_LOCKED; |
| 10864 | }else{ |
| 10865 | rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); |
| 10866 | } |
| 10867 | sqlite3BtreeLeave(p); |
| 10868 | } |
| 10869 | return rc; |
| 10870 | } |
| 10871 | #endif |
| 10872 | |
| 10873 | /* |
| 10874 | ** Return true if there is currently a backup running on Btree p. |
| 10875 | */ |
| 10876 | int sqlite3BtreeIsInBackup(Btree *p){ |
| 10877 | assert( p ); |
| 10878 | assert( sqlite3_mutex_held(p->db->mutex) ); |
| 10879 | return p->nBackup!=0; |
| 10880 | } |
| 10881 | |
| 10882 | /* |
| 10883 | ** This function returns a pointer to a blob of memory associated with |
| 10884 | ** a single shared-btree. The memory is used by client code for its own |
| 10885 | ** purposes (for example, to store a high-level schema associated with |
| 10886 | ** the shared-btree). The btree layer manages reference counting issues. |
| 10887 | ** |
| 10888 | ** The first time this is called on a shared-btree, nBytes bytes of memory |
| 10889 | ** are allocated, zeroed, and returned to the caller. For each subsequent |
| 10890 | ** call the nBytes parameter is ignored and a pointer to the same blob |
| 10891 | ** of memory returned. |
| 10892 | ** |
| 10893 | ** If the nBytes parameter is 0 and the blob of memory has not yet been |
| 10894 | ** allocated, a null pointer is returned. If the blob has already been |
| 10895 | ** allocated, it is returned as normal. |
| 10896 | ** |
| 10897 | ** Just before the shared-btree is closed, the function passed as the |
| 10898 | ** xFree argument when the memory allocation was made is invoked on the |
| 10899 | ** blob of allocated memory. The xFree function should not call sqlite3_free() |
| 10900 | ** on the memory, the btree layer does that. |
| 10901 | */ |
| 10902 | void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
| 10903 | BtShared *pBt = p->pBt; |
| 10904 | sqlite3BtreeEnter(p); |
| 10905 | if( !pBt->pSchema && nBytes ){ |
| 10906 | pBt->pSchema = sqlite3DbMallocZero(0, nBytes); |
| 10907 | pBt->xFreeSchema = xFree; |
| 10908 | } |
| 10909 | sqlite3BtreeLeave(p); |
| 10910 | return pBt->pSchema; |
| 10911 | } |
| 10912 | |
| 10913 | /* |
| 10914 | ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared |
| 10915 | ** btree as the argument handle holds an exclusive lock on the |
| 10916 | ** sqlite_schema table. Otherwise SQLITE_OK. |
| 10917 | */ |
| 10918 | int sqlite3BtreeSchemaLocked(Btree *p){ |
| 10919 | int rc; |
| 10920 | assert( sqlite3_mutex_held(p->db->mutex) ); |
| 10921 | sqlite3BtreeEnter(p); |
| 10922 | rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); |
| 10923 | assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); |
| 10924 | sqlite3BtreeLeave(p); |
| 10925 | return rc; |
| 10926 | } |
| 10927 | |
| 10928 | |
| 10929 | #ifndef SQLITE_OMIT_SHARED_CACHE |
| 10930 | /* |
| 10931 | ** Obtain a lock on the table whose root page is iTab. The |
| 10932 | ** lock is a write lock if isWritelock is true or a read lock |
| 10933 | ** if it is false. |
| 10934 | */ |
| 10935 | int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
| 10936 | int rc = SQLITE_OK; |
| 10937 | assert( p->inTrans!=TRANS_NONE ); |
| 10938 | if( p->sharable ){ |
| 10939 | u8 lockType = READ_LOCK + isWriteLock; |
| 10940 | assert( READ_LOCK+1==WRITE_LOCK ); |
| 10941 | assert( isWriteLock==0 || isWriteLock==1 ); |
| 10942 | |
| 10943 | sqlite3BtreeEnter(p); |
| 10944 | rc = querySharedCacheTableLock(p, iTab, lockType); |
| 10945 | if( rc==SQLITE_OK ){ |
| 10946 | rc = setSharedCacheTableLock(p, iTab, lockType); |
| 10947 | } |
| 10948 | sqlite3BtreeLeave(p); |
| 10949 | } |
| 10950 | return rc; |
| 10951 | } |
| 10952 | #endif |
| 10953 | |
| 10954 | #ifndef SQLITE_OMIT_INCRBLOB |
| 10955 | /* |
| 10956 | ** Argument pCsr must be a cursor opened for writing on an |
| 10957 | ** INTKEY table currently pointing at a valid table entry. |
| 10958 | ** This function modifies the data stored as part of that entry. |
| 10959 | ** |
| 10960 | ** Only the data content may only be modified, it is not possible to |
| 10961 | ** change the length of the data stored. If this function is called with |
| 10962 | ** parameters that attempt to write past the end of the existing data, |
| 10963 | ** no modifications are made and SQLITE_CORRUPT is returned. |
| 10964 | */ |
| 10965 | int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ |
| 10966 | int rc; |
| 10967 | assert( cursorOwnsBtShared(pCsr) ); |
| 10968 | assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); |
| 10969 | assert( pCsr->curFlags & BTCF_Incrblob ); |
| 10970 | |
| 10971 | rc = restoreCursorPosition(pCsr); |
| 10972 | if( rc!=SQLITE_OK ){ |
| 10973 | return rc; |
| 10974 | } |
| 10975 | assert( pCsr->eState!=CURSOR_REQUIRESEEK ); |
| 10976 | if( pCsr->eState!=CURSOR_VALID ){ |
| 10977 | return SQLITE_ABORT; |
| 10978 | } |
| 10979 | |
| 10980 | /* Save the positions of all other cursors open on this table. This is |
| 10981 | ** required in case any of them are holding references to an xFetch |
| 10982 | ** version of the b-tree page modified by the accessPayload call below. |
| 10983 | ** |
| 10984 | ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() |
| 10985 | ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence |
| 10986 | ** saveAllCursors can only return SQLITE_OK. |
| 10987 | */ |
| 10988 | VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); |
| 10989 | assert( rc==SQLITE_OK ); |
| 10990 | |
| 10991 | /* Check some assumptions: |
| 10992 | ** (a) the cursor is open for writing, |
| 10993 | ** (b) there is a read/write transaction open, |
| 10994 | ** (c) the connection holds a write-lock on the table (if required), |
| 10995 | ** (d) there are no conflicting read-locks, and |
| 10996 | ** (e) the cursor points at a valid row of an intKey table. |
| 10997 | */ |
| 10998 | if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ |
| 10999 | return SQLITE_READONLY; |
| 11000 | } |
| 11001 | assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 |
| 11002 | && pCsr->pBt->inTransaction==TRANS_WRITE ); |
| 11003 | assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); |
| 11004 | assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); |
| 11005 | assert( pCsr->pPage->intKey ); |
| 11006 | |
| 11007 | return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); |
| 11008 | } |
| 11009 | |
| 11010 | /* |
| 11011 | ** Mark this cursor as an incremental blob cursor. |
| 11012 | */ |
| 11013 | void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ |
| 11014 | pCur->curFlags |= BTCF_Incrblob; |
| 11015 | pCur->pBtree->hasIncrblobCur = 1; |
| 11016 | } |
| 11017 | #endif |
| 11018 | |
| 11019 | /* |
| 11020 | ** Set both the "read version" (single byte at byte offset 18) and |
| 11021 | ** "write version" (single byte at byte offset 19) fields in the database |
| 11022 | ** header to iVersion. |
| 11023 | */ |
| 11024 | int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ |
| 11025 | BtShared *pBt = pBtree->pBt; |
| 11026 | int rc; /* Return code */ |
| 11027 | |
| 11028 | assert( iVersion==1 || iVersion==2 ); |
| 11029 | |
| 11030 | /* If setting the version fields to 1, do not automatically open the |
| 11031 | ** WAL connection, even if the version fields are currently set to 2. |
| 11032 | */ |
| 11033 | pBt->btsFlags &= ~BTS_NO_WAL; |
| 11034 | if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; |
| 11035 | |
| 11036 | rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); |
| 11037 | if( rc==SQLITE_OK ){ |
| 11038 | u8 *aData = pBt->pPage1->aData; |
| 11039 | if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ |
| 11040 | rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); |
| 11041 | if( rc==SQLITE_OK ){ |
| 11042 | rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 11043 | if( rc==SQLITE_OK ){ |
| 11044 | aData[18] = (u8)iVersion; |
| 11045 | aData[19] = (u8)iVersion; |
| 11046 | } |
| 11047 | } |
| 11048 | } |
| 11049 | } |
| 11050 | |
| 11051 | pBt->btsFlags &= ~BTS_NO_WAL; |
| 11052 | return rc; |
| 11053 | } |
| 11054 | |
| 11055 | /* |
| 11056 | ** Return true if the cursor has a hint specified. This routine is |
| 11057 | ** only used from within assert() statements |
| 11058 | */ |
| 11059 | int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ |
| 11060 | return (pCsr->hints & mask)!=0; |
| 11061 | } |
| 11062 | |
| 11063 | /* |
| 11064 | ** Return true if the given Btree is read-only. |
| 11065 | */ |
| 11066 | int sqlite3BtreeIsReadonly(Btree *p){ |
| 11067 | return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; |
| 11068 | } |
| 11069 | |
| 11070 | /* |
| 11071 | ** Return the size of the header added to each page by this module. |
| 11072 | */ |
| 11073 | int (void){ return ROUND8(sizeof(MemPage)); } |
| 11074 | |
| 11075 | /* |
| 11076 | ** If no transaction is active and the database is not a temp-db, clear |
| 11077 | ** the in-memory pager cache. |
| 11078 | */ |
| 11079 | void sqlite3BtreeClearCache(Btree *p){ |
| 11080 | BtShared *pBt = p->pBt; |
| 11081 | if( pBt->inTransaction==TRANS_NONE ){ |
| 11082 | sqlite3PagerClearCache(pBt->pPager); |
| 11083 | } |
| 11084 | } |
| 11085 | |
| 11086 | #if !defined(SQLITE_OMIT_SHARED_CACHE) |
| 11087 | /* |
| 11088 | ** Return true if the Btree passed as the only argument is sharable. |
| 11089 | */ |
| 11090 | int sqlite3BtreeSharable(Btree *p){ |
| 11091 | return p->sharable; |
| 11092 | } |
| 11093 | |
| 11094 | /* |
| 11095 | ** Return the number of connections to the BtShared object accessed by |
| 11096 | ** the Btree handle passed as the only argument. For private caches |
| 11097 | ** this is always 1. For shared caches it may be 1 or greater. |
| 11098 | */ |
| 11099 | int sqlite3BtreeConnectionCount(Btree *p){ |
| 11100 | testcase( p->sharable ); |
| 11101 | return p->pBt->nRef; |
| 11102 | } |
| 11103 | #endif |
| 11104 | |