1/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** Memory allocation functions used throughout sqlite.
14*/
15#include "sqliteInt.h"
16#include <stdarg.h>
17
18/*
19** Attempt to release up to n bytes of non-essential memory currently
20** held by SQLite. An example of non-essential memory is memory used to
21** cache database pages that are not currently in use.
22*/
23int sqlite3_release_memory(int n){
24#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n);
26#else
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30 UNUSED_PARAMETER(n);
31 return 0;
32#endif
33}
34
35/*
36** Default value of the hard heap limit. 0 means "no limit".
37*/
38#ifndef SQLITE_MAX_MEMORY
39# define SQLITE_MAX_MEMORY 0
40#endif
41
42/*
43** State information local to the memory allocation subsystem.
44*/
45static SQLITE_WSD struct Mem0Global {
46 sqlite3_mutex *mutex; /* Mutex to serialize access */
47 sqlite3_int64 alarmThreshold; /* The soft heap limit */
48 sqlite3_int64 hardLimit; /* The hard upper bound on memory */
49
50 /*
51 ** True if heap is nearly "full" where "full" is defined by the
52 ** sqlite3_soft_heap_limit() setting.
53 */
54 int nearlyFull;
55} mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
56
57#define mem0 GLOBAL(struct Mem0Global, mem0)
58
59/*
60** Return the memory allocator mutex. sqlite3_status() needs it.
61*/
62sqlite3_mutex *sqlite3MallocMutex(void){
63 return mem0.mutex;
64}
65
66#ifndef SQLITE_OMIT_DEPRECATED
67/*
68** Deprecated external interface. It used to set an alarm callback
69** that was invoked when memory usage grew too large. Now it is a
70** no-op.
71*/
72int sqlite3_memory_alarm(
73 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
74 void *pArg,
75 sqlite3_int64 iThreshold
76){
77 (void)xCallback;
78 (void)pArg;
79 (void)iThreshold;
80 return SQLITE_OK;
81}
82#endif
83
84/*
85** Set the soft heap-size limit for the library. An argument of
86** zero disables the limit. A negative argument is a no-op used to
87** obtain the return value.
88**
89** The return value is the value of the heap limit just before this
90** interface was called.
91**
92** If the hard heap limit is enabled, then the soft heap limit cannot
93** be disabled nor raised above the hard heap limit.
94*/
95sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
96 sqlite3_int64 priorLimit;
97 sqlite3_int64 excess;
98 sqlite3_int64 nUsed;
99#ifndef SQLITE_OMIT_AUTOINIT
100 int rc = sqlite3_initialize();
101 if( rc ) return -1;
102#endif
103 sqlite3_mutex_enter(mem0.mutex);
104 priorLimit = mem0.alarmThreshold;
105 if( n<0 ){
106 sqlite3_mutex_leave(mem0.mutex);
107 return priorLimit;
108 }
109 if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
110 n = mem0.hardLimit;
111 }
112 mem0.alarmThreshold = n;
113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114 AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
115 sqlite3_mutex_leave(mem0.mutex);
116 excess = sqlite3_memory_used() - n;
117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118 return priorLimit;
119}
120void sqlite3_soft_heap_limit(int n){
121 if( n<0 ) n = 0;
122 sqlite3_soft_heap_limit64(n);
123}
124
125/*
126** Set the hard heap-size limit for the library. An argument of zero
127** disables the hard heap limit. A negative argument is a no-op used
128** to obtain the return value without affecting the hard heap limit.
129**
130** The return value is the value of the hard heap limit just prior to
131** calling this interface.
132**
133** Setting the hard heap limit will also activate the soft heap limit
134** and constrain the soft heap limit to be no more than the hard heap
135** limit.
136*/
137sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
138 sqlite3_int64 priorLimit;
139#ifndef SQLITE_OMIT_AUTOINIT
140 int rc = sqlite3_initialize();
141 if( rc ) return -1;
142#endif
143 sqlite3_mutex_enter(mem0.mutex);
144 priorLimit = mem0.hardLimit;
145 if( n>=0 ){
146 mem0.hardLimit = n;
147 if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
148 mem0.alarmThreshold = n;
149 }
150 }
151 sqlite3_mutex_leave(mem0.mutex);
152 return priorLimit;
153}
154
155
156/*
157** Initialize the memory allocation subsystem.
158*/
159int sqlite3MallocInit(void){
160 int rc;
161 if( sqlite3GlobalConfig.m.xMalloc==0 ){
162 sqlite3MemSetDefault();
163 }
164 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
165 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
166 || sqlite3GlobalConfig.nPage<=0 ){
167 sqlite3GlobalConfig.pPage = 0;
168 sqlite3GlobalConfig.szPage = 0;
169 }
170 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
171 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
172 return rc;
173}
174
175/*
176** Return true if the heap is currently under memory pressure - in other
177** words if the amount of heap used is close to the limit set by
178** sqlite3_soft_heap_limit().
179*/
180int sqlite3HeapNearlyFull(void){
181 return AtomicLoad(&mem0.nearlyFull);
182}
183
184/*
185** Deinitialize the memory allocation subsystem.
186*/
187void sqlite3MallocEnd(void){
188 if( sqlite3GlobalConfig.m.xShutdown ){
189 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
190 }
191 memset(&mem0, 0, sizeof(mem0));
192}
193
194/*
195** Return the amount of memory currently checked out.
196*/
197sqlite3_int64 sqlite3_memory_used(void){
198 sqlite3_int64 res, mx;
199 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
200 return res;
201}
202
203/*
204** Return the maximum amount of memory that has ever been
205** checked out since either the beginning of this process
206** or since the most recent reset.
207*/
208sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
209 sqlite3_int64 res, mx;
210 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
211 return mx;
212}
213
214/*
215** Trigger the alarm
216*/
217static void sqlite3MallocAlarm(int nByte){
218 if( mem0.alarmThreshold<=0 ) return;
219 sqlite3_mutex_leave(mem0.mutex);
220 sqlite3_release_memory(nByte);
221 sqlite3_mutex_enter(mem0.mutex);
222}
223
224/*
225** Do a memory allocation with statistics and alarms. Assume the
226** lock is already held.
227*/
228static void mallocWithAlarm(int n, void **pp){
229 void *p;
230 int nFull;
231 assert( sqlite3_mutex_held(mem0.mutex) );
232 assert( n>0 );
233
234 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
235 ** implementation of malloc_good_size(), which must be called in debug
236 ** mode and specifically when the DMD "Dark Matter Detector" is enabled
237 ** or else a crash results. Hence, do not attempt to optimize out the
238 ** following xRoundup() call. */
239 nFull = sqlite3GlobalConfig.m.xRoundup(n);
240
241 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
242 if( mem0.alarmThreshold>0 ){
243 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
244 if( nUsed >= mem0.alarmThreshold - nFull ){
245 AtomicStore(&mem0.nearlyFull, 1);
246 sqlite3MallocAlarm(nFull);
247 if( mem0.hardLimit ){
248 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
249 if( nUsed >= mem0.hardLimit - nFull ){
250 *pp = 0;
251 return;
252 }
253 }
254 }else{
255 AtomicStore(&mem0.nearlyFull, 0);
256 }
257 }
258 p = sqlite3GlobalConfig.m.xMalloc(nFull);
259#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
260 if( p==0 && mem0.alarmThreshold>0 ){
261 sqlite3MallocAlarm(nFull);
262 p = sqlite3GlobalConfig.m.xMalloc(nFull);
263 }
264#endif
265 if( p ){
266 nFull = sqlite3MallocSize(p);
267 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
268 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
269 }
270 *pp = p;
271}
272
273/*
274** Maximum size of any single memory allocation.
275**
276** This is not a limit on the total amount of memory used. This is
277** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc().
278**
279** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391
280** This provides a 256-byte safety margin for defense against 32-bit
281** signed integer overflow bugs when computing memory allocation sizes.
282** Parnoid applications might want to reduce the maximum allocation size
283** further for an even larger safety margin. 0x3fffffff or 0x0fffffff
284** or even smaller would be reasonable upper bounds on the size of a memory
285** allocations for most applications.
286*/
287#ifndef SQLITE_MAX_ALLOCATION_SIZE
288# define SQLITE_MAX_ALLOCATION_SIZE 2147483391
289#endif
290#if SQLITE_MAX_ALLOCATION_SIZE>2147483391
291# error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391
292#endif
293
294/*
295** Allocate memory. This routine is like sqlite3_malloc() except that it
296** assumes the memory subsystem has already been initialized.
297*/
298void *sqlite3Malloc(u64 n){
299 void *p;
300 if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){
301 p = 0;
302 }else if( sqlite3GlobalConfig.bMemstat ){
303 sqlite3_mutex_enter(mem0.mutex);
304 mallocWithAlarm((int)n, &p);
305 sqlite3_mutex_leave(mem0.mutex);
306 }else{
307 p = sqlite3GlobalConfig.m.xMalloc((int)n);
308 }
309 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
310 return p;
311}
312
313/*
314** This version of the memory allocation is for use by the application.
315** First make sure the memory subsystem is initialized, then do the
316** allocation.
317*/
318void *sqlite3_malloc(int n){
319#ifndef SQLITE_OMIT_AUTOINIT
320 if( sqlite3_initialize() ) return 0;
321#endif
322 return n<=0 ? 0 : sqlite3Malloc(n);
323}
324void *sqlite3_malloc64(sqlite3_uint64 n){
325#ifndef SQLITE_OMIT_AUTOINIT
326 if( sqlite3_initialize() ) return 0;
327#endif
328 return sqlite3Malloc(n);
329}
330
331/*
332** TRUE if p is a lookaside memory allocation from db
333*/
334#ifndef SQLITE_OMIT_LOOKASIDE
335static int isLookaside(sqlite3 *db, const void *p){
336 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd);
337}
338#else
339#define isLookaside(A,B) 0
340#endif
341
342/*
343** Return the size of a memory allocation previously obtained from
344** sqlite3Malloc() or sqlite3_malloc().
345*/
346int sqlite3MallocSize(const void *p){
347 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
348 return sqlite3GlobalConfig.m.xSize((void*)p);
349}
350static int lookasideMallocSize(sqlite3 *db, const void *p){
351#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
352 return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
353#else
354 return db->lookaside.szTrue;
355#endif
356}
357int sqlite3DbMallocSize(sqlite3 *db, const void *p){
358 assert( p!=0 );
359#ifdef SQLITE_DEBUG
360 if( db==0 ){
361 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
362 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
363 }else if( !isLookaside(db,p) ){
364 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
365 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
366 }
367#endif
368 if( db ){
369 if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){
370#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
371 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
372 assert( sqlite3_mutex_held(db->mutex) );
373 return LOOKASIDE_SMALL;
374 }
375#endif
376 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
377 assert( sqlite3_mutex_held(db->mutex) );
378 return db->lookaside.szTrue;
379 }
380 }
381 }
382 return sqlite3GlobalConfig.m.xSize((void*)p);
383}
384sqlite3_uint64 sqlite3_msize(void *p){
385 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
386 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
387 return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
388}
389
390/*
391** Free memory previously obtained from sqlite3Malloc().
392*/
393void sqlite3_free(void *p){
394 if( p==0 ) return; /* IMP: R-49053-54554 */
395 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
396 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
397 if( sqlite3GlobalConfig.bMemstat ){
398 sqlite3_mutex_enter(mem0.mutex);
399 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
400 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
401 sqlite3GlobalConfig.m.xFree(p);
402 sqlite3_mutex_leave(mem0.mutex);
403 }else{
404 sqlite3GlobalConfig.m.xFree(p);
405 }
406}
407
408/*
409** Add the size of memory allocation "p" to the count in
410** *db->pnBytesFreed.
411*/
412static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
413 *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
414}
415
416/*
417** Free memory that might be associated with a particular database
418** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
419** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
420*/
421void sqlite3DbFreeNN(sqlite3 *db, void *p){
422 assert( db==0 || sqlite3_mutex_held(db->mutex) );
423 assert( p!=0 );
424 if( db ){
425 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
426#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
427 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
428 LookasideSlot *pBuf = (LookasideSlot*)p;
429 assert( db->pnBytesFreed==0 );
430#ifdef SQLITE_DEBUG
431 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
432#endif
433 pBuf->pNext = db->lookaside.pSmallFree;
434 db->lookaside.pSmallFree = pBuf;
435 return;
436 }
437#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
438 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
439 LookasideSlot *pBuf = (LookasideSlot*)p;
440 assert( db->pnBytesFreed==0 );
441#ifdef SQLITE_DEBUG
442 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
443#endif
444 pBuf->pNext = db->lookaside.pFree;
445 db->lookaside.pFree = pBuf;
446 return;
447 }
448 }
449 if( db->pnBytesFreed ){
450 measureAllocationSize(db, p);
451 return;
452 }
453 }
454 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
455 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
456 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
457 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
458 sqlite3_free(p);
459}
460void sqlite3DbNNFreeNN(sqlite3 *db, void *p){
461 assert( db!=0 );
462 assert( sqlite3_mutex_held(db->mutex) );
463 assert( p!=0 );
464 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
465#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
466 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
467 LookasideSlot *pBuf = (LookasideSlot*)p;
468 assert( db->pnBytesFreed==0 );
469#ifdef SQLITE_DEBUG
470 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
471#endif
472 pBuf->pNext = db->lookaside.pSmallFree;
473 db->lookaside.pSmallFree = pBuf;
474 return;
475 }
476#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
477 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
478 LookasideSlot *pBuf = (LookasideSlot*)p;
479 assert( db->pnBytesFreed==0 );
480#ifdef SQLITE_DEBUG
481 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
482#endif
483 pBuf->pNext = db->lookaside.pFree;
484 db->lookaside.pFree = pBuf;
485 return;
486 }
487 }
488 if( db->pnBytesFreed ){
489 measureAllocationSize(db, p);
490 return;
491 }
492 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
493 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
494 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
495 sqlite3_free(p);
496}
497void sqlite3DbFree(sqlite3 *db, void *p){
498 assert( db==0 || sqlite3_mutex_held(db->mutex) );
499 if( p ) sqlite3DbFreeNN(db, p);
500}
501
502/*
503** Change the size of an existing memory allocation
504*/
505void *sqlite3Realloc(void *pOld, u64 nBytes){
506 int nOld, nNew, nDiff;
507 void *pNew;
508 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
509 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
510 if( pOld==0 ){
511 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
512 }
513 if( nBytes==0 ){
514 sqlite3_free(pOld); /* IMP: R-26507-47431 */
515 return 0;
516 }
517 if( nBytes>=0x7fffff00 ){
518 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
519 return 0;
520 }
521 nOld = sqlite3MallocSize(pOld);
522 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
523 ** argument to xRealloc is always a value returned by a prior call to
524 ** xRoundup. */
525 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
526 if( nOld==nNew ){
527 pNew = pOld;
528 }else if( sqlite3GlobalConfig.bMemstat ){
529 sqlite3_int64 nUsed;
530 sqlite3_mutex_enter(mem0.mutex);
531 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
532 nDiff = nNew - nOld;
533 if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
534 mem0.alarmThreshold-nDiff ){
535 sqlite3MallocAlarm(nDiff);
536 if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
537 sqlite3_mutex_leave(mem0.mutex);
538 return 0;
539 }
540 }
541 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
542#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
543 if( pNew==0 && mem0.alarmThreshold>0 ){
544 sqlite3MallocAlarm((int)nBytes);
545 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
546 }
547#endif
548 if( pNew ){
549 nNew = sqlite3MallocSize(pNew);
550 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
551 }
552 sqlite3_mutex_leave(mem0.mutex);
553 }else{
554 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
555 }
556 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
557 return pNew;
558}
559
560/*
561** The public interface to sqlite3Realloc. Make sure that the memory
562** subsystem is initialized prior to invoking sqliteRealloc.
563*/
564void *sqlite3_realloc(void *pOld, int n){
565#ifndef SQLITE_OMIT_AUTOINIT
566 if( sqlite3_initialize() ) return 0;
567#endif
568 if( n<0 ) n = 0; /* IMP: R-26507-47431 */
569 return sqlite3Realloc(pOld, n);
570}
571void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
572#ifndef SQLITE_OMIT_AUTOINIT
573 if( sqlite3_initialize() ) return 0;
574#endif
575 return sqlite3Realloc(pOld, n);
576}
577
578
579/*
580** Allocate and zero memory.
581*/
582void *sqlite3MallocZero(u64 n){
583 void *p = sqlite3Malloc(n);
584 if( p ){
585 memset(p, 0, (size_t)n);
586 }
587 return p;
588}
589
590/*
591** Allocate and zero memory. If the allocation fails, make
592** the mallocFailed flag in the connection pointer.
593*/
594void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
595 void *p;
596 testcase( db==0 );
597 p = sqlite3DbMallocRaw(db, n);
598 if( p ) memset(p, 0, (size_t)n);
599 return p;
600}
601
602
603/* Finish the work of sqlite3DbMallocRawNN for the unusual and
604** slower case when the allocation cannot be fulfilled using lookaside.
605*/
606static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
607 void *p;
608 assert( db!=0 );
609 p = sqlite3Malloc(n);
610 if( !p ) sqlite3OomFault(db);
611 sqlite3MemdebugSetType(p,
612 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
613 return p;
614}
615
616/*
617** Allocate memory, either lookaside (if possible) or heap.
618** If the allocation fails, set the mallocFailed flag in
619** the connection pointer.
620**
621** If db!=0 and db->mallocFailed is true (indicating a prior malloc
622** failure on the same database connection) then always return 0.
623** Hence for a particular database connection, once malloc starts
624** failing, it fails consistently until mallocFailed is reset.
625** This is an important assumption. There are many places in the
626** code that do things like this:
627**
628** int *a = (int*)sqlite3DbMallocRaw(db, 100);
629** int *b = (int*)sqlite3DbMallocRaw(db, 200);
630** if( b ) a[10] = 9;
631**
632** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
633** that all prior mallocs (ex: "a") worked too.
634**
635** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
636** not a NULL pointer.
637*/
638void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
639 void *p;
640 if( db ) return sqlite3DbMallocRawNN(db, n);
641 p = sqlite3Malloc(n);
642 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
643 return p;
644}
645void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
646#ifndef SQLITE_OMIT_LOOKASIDE
647 LookasideSlot *pBuf;
648 assert( db!=0 );
649 assert( sqlite3_mutex_held(db->mutex) );
650 assert( db->pnBytesFreed==0 );
651 if( n>db->lookaside.sz ){
652 if( !db->lookaside.bDisable ){
653 db->lookaside.anStat[1]++;
654 }else if( db->mallocFailed ){
655 return 0;
656 }
657 return dbMallocRawFinish(db, n);
658 }
659#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
660 if( n<=LOOKASIDE_SMALL ){
661 if( (pBuf = db->lookaside.pSmallFree)!=0 ){
662 db->lookaside.pSmallFree = pBuf->pNext;
663 db->lookaside.anStat[0]++;
664 return (void*)pBuf;
665 }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
666 db->lookaside.pSmallInit = pBuf->pNext;
667 db->lookaside.anStat[0]++;
668 return (void*)pBuf;
669 }
670 }
671#endif
672 if( (pBuf = db->lookaside.pFree)!=0 ){
673 db->lookaside.pFree = pBuf->pNext;
674 db->lookaside.anStat[0]++;
675 return (void*)pBuf;
676 }else if( (pBuf = db->lookaside.pInit)!=0 ){
677 db->lookaside.pInit = pBuf->pNext;
678 db->lookaside.anStat[0]++;
679 return (void*)pBuf;
680 }else{
681 db->lookaside.anStat[2]++;
682 }
683#else
684 assert( db!=0 );
685 assert( sqlite3_mutex_held(db->mutex) );
686 assert( db->pnBytesFreed==0 );
687 if( db->mallocFailed ){
688 return 0;
689 }
690#endif
691 return dbMallocRawFinish(db, n);
692}
693
694/* Forward declaration */
695static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
696
697/*
698** Resize the block of memory pointed to by p to n bytes. If the
699** resize fails, set the mallocFailed flag in the connection object.
700*/
701void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
702 assert( db!=0 );
703 if( p==0 ) return sqlite3DbMallocRawNN(db, n);
704 assert( sqlite3_mutex_held(db->mutex) );
705 if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
706#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
707 if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
708 if( n<=LOOKASIDE_SMALL ) return p;
709 }else
710#endif
711 if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
712 if( n<=db->lookaside.szTrue ) return p;
713 }
714 }
715 return dbReallocFinish(db, p, n);
716}
717static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
718 void *pNew = 0;
719 assert( db!=0 );
720 assert( p!=0 );
721 if( db->mallocFailed==0 ){
722 if( isLookaside(db, p) ){
723 pNew = sqlite3DbMallocRawNN(db, n);
724 if( pNew ){
725 memcpy(pNew, p, lookasideMallocSize(db, p));
726 sqlite3DbFree(db, p);
727 }
728 }else{
729 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
730 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
731 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
732 pNew = sqlite3Realloc(p, n);
733 if( !pNew ){
734 sqlite3OomFault(db);
735 }
736 sqlite3MemdebugSetType(pNew,
737 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
738 }
739 }
740 return pNew;
741}
742
743/*
744** Attempt to reallocate p. If the reallocation fails, then free p
745** and set the mallocFailed flag in the database connection.
746*/
747void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
748 void *pNew;
749 pNew = sqlite3DbRealloc(db, p, n);
750 if( !pNew ){
751 sqlite3DbFree(db, p);
752 }
753 return pNew;
754}
755
756/*
757** Make a copy of a string in memory obtained from sqliteMalloc(). These
758** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
759** is because when memory debugging is turned on, these two functions are
760** called via macros that record the current file and line number in the
761** ThreadData structure.
762*/
763char *sqlite3DbStrDup(sqlite3 *db, const char *z){
764 char *zNew;
765 size_t n;
766 if( z==0 ){
767 return 0;
768 }
769 n = strlen(z) + 1;
770 zNew = sqlite3DbMallocRaw(db, n);
771 if( zNew ){
772 memcpy(zNew, z, n);
773 }
774 return zNew;
775}
776char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
777 char *zNew;
778 assert( db!=0 );
779 assert( z!=0 || n==0 );
780 assert( (n&0x7fffffff)==n );
781 zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
782 if( zNew ){
783 memcpy(zNew, z, (size_t)n);
784 zNew[n] = 0;
785 }
786 return zNew;
787}
788
789/*
790** The text between zStart and zEnd represents a phrase within a larger
791** SQL statement. Make a copy of this phrase in space obtained form
792** sqlite3DbMalloc(). Omit leading and trailing whitespace.
793*/
794char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
795 int n;
796 while( sqlite3Isspace(zStart[0]) ) zStart++;
797 n = (int)(zEnd - zStart);
798 while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
799 return sqlite3DbStrNDup(db, zStart, n);
800}
801
802/*
803** Free any prior content in *pz and replace it with a copy of zNew.
804*/
805void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
806 char *z = sqlite3DbStrDup(db, zNew);
807 sqlite3DbFree(db, *pz);
808 *pz = z;
809}
810
811/*
812** Call this routine to record the fact that an OOM (out-of-memory) error
813** has happened. This routine will set db->mallocFailed, and also
814** temporarily disable the lookaside memory allocator and interrupt
815** any running VDBEs.
816**
817** Always return a NULL pointer so that this routine can be invoked using
818**
819** return sqlite3OomFault(db);
820**
821** and thereby avoid unnecessary stack frame allocations for the overwhelmingly
822** common case where no OOM occurs.
823*/
824void *sqlite3OomFault(sqlite3 *db){
825 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
826 db->mallocFailed = 1;
827 if( db->nVdbeExec>0 ){
828 AtomicStore(&db->u1.isInterrupted, 1);
829 }
830 DisableLookaside;
831 if( db->pParse ){
832 Parse *pParse;
833 sqlite3ErrorMsg(db->pParse, "out of memory");
834 db->pParse->rc = SQLITE_NOMEM_BKPT;
835 for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){
836 pParse->nErr++;
837 pParse->rc = SQLITE_NOMEM;
838 }
839 }
840 }
841 return 0;
842}
843
844/*
845** This routine reactivates the memory allocator and clears the
846** db->mallocFailed flag as necessary.
847**
848** The memory allocator is not restarted if there are running
849** VDBEs.
850*/
851void sqlite3OomClear(sqlite3 *db){
852 if( db->mallocFailed && db->nVdbeExec==0 ){
853 db->mallocFailed = 0;
854 AtomicStore(&db->u1.isInterrupted, 0);
855 assert( db->lookaside.bDisable>0 );
856 EnableLookaside;
857 }
858}
859
860/*
861** Take actions at the end of an API call to deal with error codes.
862*/
863static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
864 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
865 sqlite3OomClear(db);
866 sqlite3Error(db, SQLITE_NOMEM);
867 return SQLITE_NOMEM_BKPT;
868 }
869 return rc & db->errMask;
870}
871
872/*
873** This function must be called before exiting any API function (i.e.
874** returning control to the user) that has called sqlite3_malloc or
875** sqlite3_realloc.
876**
877** The returned value is normally a copy of the second argument to this
878** function. However, if a malloc() failure has occurred since the previous
879** invocation SQLITE_NOMEM is returned instead.
880**
881** If an OOM as occurred, then the connection error-code (the value
882** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
883*/
884int sqlite3ApiExit(sqlite3* db, int rc){
885 /* If the db handle must hold the connection handle mutex here.
886 ** Otherwise the read (and possible write) of db->mallocFailed
887 ** is unsafe, as is the call to sqlite3Error().
888 */
889 assert( db!=0 );
890 assert( sqlite3_mutex_held(db->mutex) );
891 if( db->mallocFailed || rc ){
892 return apiHandleError(db, rc);
893 }
894 return rc & db->errMask;
895}
896