1/*
2** 2004 May 22
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11******************************************************************************
12**
13** This file contains code that is specific to Windows.
14*/
15#include "sqliteInt.h"
16#if SQLITE_OS_WIN /* This file is used for Windows only */
17
18/*
19** Include code that is common to all os_*.c files
20*/
21#include "os_common.h"
22
23/*
24** Include the header file for the Windows VFS.
25*/
26#include "os_win.h"
27
28/*
29** Compiling and using WAL mode requires several APIs that are only
30** available in Windows platforms based on the NT kernel.
31*/
32#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
33# error "WAL mode requires support from the Windows NT kernel, compile\
34 with SQLITE_OMIT_WAL."
35#endif
36
37#if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0
38# error "Memory mapped files require support from the Windows NT kernel,\
39 compile with SQLITE_MAX_MMAP_SIZE=0."
40#endif
41
42/*
43** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
44** based on the sub-platform)?
45*/
46#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
47# define SQLITE_WIN32_HAS_ANSI
48#endif
49
50/*
51** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions
52** based on the sub-platform)?
53*/
54#if (SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT) && \
55 !defined(SQLITE_WIN32_NO_WIDE)
56# define SQLITE_WIN32_HAS_WIDE
57#endif
58
59/*
60** Make sure at least one set of Win32 APIs is available.
61*/
62#if !defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_WIN32_HAS_WIDE)
63# error "At least one of SQLITE_WIN32_HAS_ANSI and SQLITE_WIN32_HAS_WIDE\
64 must be defined."
65#endif
66
67/*
68** Define the required Windows SDK version constants if they are not
69** already available.
70*/
71#ifndef NTDDI_WIN8
72# define NTDDI_WIN8 0x06020000
73#endif
74
75#ifndef NTDDI_WINBLUE
76# define NTDDI_WINBLUE 0x06030000
77#endif
78
79#ifndef NTDDI_WINTHRESHOLD
80# define NTDDI_WINTHRESHOLD 0x06040000
81#endif
82
83/*
84** Check to see if the GetVersionEx[AW] functions are deprecated on the
85** target system. GetVersionEx was first deprecated in Win8.1.
86*/
87#ifndef SQLITE_WIN32_GETVERSIONEX
88# if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE
89# define SQLITE_WIN32_GETVERSIONEX 0 /* GetVersionEx() is deprecated */
90# else
91# define SQLITE_WIN32_GETVERSIONEX 1 /* GetVersionEx() is current */
92# endif
93#endif
94
95/*
96** Check to see if the CreateFileMappingA function is supported on the
97** target system. It is unavailable when using "mincore.lib" on Win10.
98** When compiling for Windows 10, always assume "mincore.lib" is in use.
99*/
100#ifndef SQLITE_WIN32_CREATEFILEMAPPINGA
101# if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINTHRESHOLD
102# define SQLITE_WIN32_CREATEFILEMAPPINGA 0
103# else
104# define SQLITE_WIN32_CREATEFILEMAPPINGA 1
105# endif
106#endif
107
108/*
109** This constant should already be defined (in the "WinDef.h" SDK file).
110*/
111#ifndef MAX_PATH
112# define MAX_PATH (260)
113#endif
114
115/*
116** Maximum pathname length (in chars) for Win32. This should normally be
117** MAX_PATH.
118*/
119#ifndef SQLITE_WIN32_MAX_PATH_CHARS
120# define SQLITE_WIN32_MAX_PATH_CHARS (MAX_PATH)
121#endif
122
123/*
124** This constant should already be defined (in the "WinNT.h" SDK file).
125*/
126#ifndef UNICODE_STRING_MAX_CHARS
127# define UNICODE_STRING_MAX_CHARS (32767)
128#endif
129
130/*
131** Maximum pathname length (in chars) for WinNT. This should normally be
132** UNICODE_STRING_MAX_CHARS.
133*/
134#ifndef SQLITE_WINNT_MAX_PATH_CHARS
135# define SQLITE_WINNT_MAX_PATH_CHARS (UNICODE_STRING_MAX_CHARS)
136#endif
137
138/*
139** Maximum pathname length (in bytes) for Win32. The MAX_PATH macro is in
140** characters, so we allocate 4 bytes per character assuming worst-case of
141** 4-bytes-per-character for UTF8.
142*/
143#ifndef SQLITE_WIN32_MAX_PATH_BYTES
144# define SQLITE_WIN32_MAX_PATH_BYTES (SQLITE_WIN32_MAX_PATH_CHARS*4)
145#endif
146
147/*
148** Maximum pathname length (in bytes) for WinNT. This should normally be
149** UNICODE_STRING_MAX_CHARS * sizeof(WCHAR).
150*/
151#ifndef SQLITE_WINNT_MAX_PATH_BYTES
152# define SQLITE_WINNT_MAX_PATH_BYTES \
153 (sizeof(WCHAR) * SQLITE_WINNT_MAX_PATH_CHARS)
154#endif
155
156/*
157** Maximum error message length (in chars) for WinRT.
158*/
159#ifndef SQLITE_WIN32_MAX_ERRMSG_CHARS
160# define SQLITE_WIN32_MAX_ERRMSG_CHARS (1024)
161#endif
162
163/*
164** Returns non-zero if the character should be treated as a directory
165** separator.
166*/
167#ifndef winIsDirSep
168# define winIsDirSep(a) (((a) == '/') || ((a) == '\\'))
169#endif
170
171/*
172** This macro is used when a local variable is set to a value that is
173** [sometimes] not used by the code (e.g. via conditional compilation).
174*/
175#ifndef UNUSED_VARIABLE_VALUE
176# define UNUSED_VARIABLE_VALUE(x) (void)(x)
177#endif
178
179/*
180** Returns the character that should be used as the directory separator.
181*/
182#ifndef winGetDirSep
183# define winGetDirSep() '\\'
184#endif
185
186/*
187** Do we need to manually define the Win32 file mapping APIs for use with WAL
188** mode or memory mapped files (e.g. these APIs are available in the Windows
189** CE SDK; however, they are not present in the header file)?
190*/
191#if SQLITE_WIN32_FILEMAPPING_API && \
192 (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
193/*
194** Two of the file mapping APIs are different under WinRT. Figure out which
195** set we need.
196*/
197#if SQLITE_OS_WINRT
198WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
199 LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);
200
201WINBASEAPI LPVOID WINAPI MapViewOfFileFromApp(HANDLE, ULONG, ULONG64, SIZE_T);
202#else
203#if defined(SQLITE_WIN32_HAS_ANSI)
204WINBASEAPI HANDLE WINAPI CreateFileMappingA(HANDLE, LPSECURITY_ATTRIBUTES, \
205 DWORD, DWORD, DWORD, LPCSTR);
206#endif /* defined(SQLITE_WIN32_HAS_ANSI) */
207
208#if defined(SQLITE_WIN32_HAS_WIDE)
209WINBASEAPI HANDLE WINAPI CreateFileMappingW(HANDLE, LPSECURITY_ATTRIBUTES, \
210 DWORD, DWORD, DWORD, LPCWSTR);
211#endif /* defined(SQLITE_WIN32_HAS_WIDE) */
212
213WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
214#endif /* SQLITE_OS_WINRT */
215
216/*
217** These file mapping APIs are common to both Win32 and WinRT.
218*/
219
220WINBASEAPI BOOL WINAPI FlushViewOfFile(LPCVOID, SIZE_T);
221WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
222#endif /* SQLITE_WIN32_FILEMAPPING_API */
223
224/*
225** Some Microsoft compilers lack this definition.
226*/
227#ifndef INVALID_FILE_ATTRIBUTES
228# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
229#endif
230
231#ifndef FILE_FLAG_MASK
232# define FILE_FLAG_MASK (0xFF3C0000)
233#endif
234
235#ifndef FILE_ATTRIBUTE_MASK
236# define FILE_ATTRIBUTE_MASK (0x0003FFF7)
237#endif
238
239#ifndef SQLITE_OMIT_WAL
240/* Forward references to structures used for WAL */
241typedef struct winShm winShm; /* A connection to shared-memory */
242typedef struct winShmNode winShmNode; /* A region of shared-memory */
243#endif
244
245/*
246** WinCE lacks native support for file locking so we have to fake it
247** with some code of our own.
248*/
249#if SQLITE_OS_WINCE
250typedef struct winceLock {
251 int nReaders; /* Number of reader locks obtained */
252 BOOL bPending; /* Indicates a pending lock has been obtained */
253 BOOL bReserved; /* Indicates a reserved lock has been obtained */
254 BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
255} winceLock;
256#endif
257
258/*
259** The winFile structure is a subclass of sqlite3_file* specific to the win32
260** portability layer.
261*/
262typedef struct winFile winFile;
263struct winFile {
264 const sqlite3_io_methods *pMethod; /*** Must be first ***/
265 sqlite3_vfs *pVfs; /* The VFS used to open this file */
266 HANDLE h; /* Handle for accessing the file */
267 u8 locktype; /* Type of lock currently held on this file */
268 short sharedLockByte; /* Randomly chosen byte used as a shared lock */
269 u8 ctrlFlags; /* Flags. See WINFILE_* below */
270 DWORD lastErrno; /* The Windows errno from the last I/O error */
271#ifndef SQLITE_OMIT_WAL
272 winShm *pShm; /* Instance of shared memory on this file */
273#endif
274 const char *zPath; /* Full pathname of this file */
275 int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */
276#if SQLITE_OS_WINCE
277 LPWSTR zDeleteOnClose; /* Name of file to delete when closing */
278 HANDLE hMutex; /* Mutex used to control access to shared lock */
279 HANDLE hShared; /* Shared memory segment used for locking */
280 winceLock local; /* Locks obtained by this instance of winFile */
281 winceLock *shared; /* Global shared lock memory for the file */
282#endif
283#if SQLITE_MAX_MMAP_SIZE>0
284 int nFetchOut; /* Number of outstanding xFetch references */
285 HANDLE hMap; /* Handle for accessing memory mapping */
286 void *pMapRegion; /* Area memory mapped */
287 sqlite3_int64 mmapSize; /* Size of mapped region */
288 sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */
289#endif
290};
291
292/*
293** The winVfsAppData structure is used for the pAppData member for all of the
294** Win32 VFS variants.
295*/
296typedef struct winVfsAppData winVfsAppData;
297struct winVfsAppData {
298 const sqlite3_io_methods *pMethod; /* The file I/O methods to use. */
299 void *pAppData; /* The extra pAppData, if any. */
300 BOOL bNoLock; /* Non-zero if locking is disabled. */
301};
302
303/*
304** Allowed values for winFile.ctrlFlags
305*/
306#define WINFILE_RDONLY 0x02 /* Connection is read only */
307#define WINFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
308#define WINFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
309
310/*
311 * The size of the buffer used by sqlite3_win32_write_debug().
312 */
313#ifndef SQLITE_WIN32_DBG_BUF_SIZE
314# define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD)))
315#endif
316
317/*
318 * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
319 * various Win32 API heap functions instead of our own.
320 */
321#ifdef SQLITE_WIN32_MALLOC
322
323/*
324 * If this is non-zero, an isolated heap will be created by the native Win32
325 * allocator subsystem; otherwise, the default process heap will be used. This
326 * setting has no effect when compiling for WinRT. By default, this is enabled
327 * and an isolated heap will be created to store all allocated data.
328 *
329 ******************************************************************************
330 * WARNING: It is important to note that when this setting is non-zero and the
331 * winMemShutdown function is called (e.g. by the sqlite3_shutdown
332 * function), all data that was allocated using the isolated heap will
333 * be freed immediately and any attempt to access any of that freed
334 * data will almost certainly result in an immediate access violation.
335 ******************************************************************************
336 */
337#ifndef SQLITE_WIN32_HEAP_CREATE
338# define SQLITE_WIN32_HEAP_CREATE (TRUE)
339#endif
340
341/*
342 * This is the maximum possible initial size of the Win32-specific heap, in
343 * bytes.
344 */
345#ifndef SQLITE_WIN32_HEAP_MAX_INIT_SIZE
346# define SQLITE_WIN32_HEAP_MAX_INIT_SIZE (4294967295U)
347#endif
348
349/*
350 * This is the extra space for the initial size of the Win32-specific heap,
351 * in bytes. This value may be zero.
352 */
353#ifndef SQLITE_WIN32_HEAP_INIT_EXTRA
354# define SQLITE_WIN32_HEAP_INIT_EXTRA (4194304)
355#endif
356
357/*
358 * Calculate the maximum legal cache size, in pages, based on the maximum
359 * possible initial heap size and the default page size, setting aside the
360 * needed extra space.
361 */
362#ifndef SQLITE_WIN32_MAX_CACHE_SIZE
363# define SQLITE_WIN32_MAX_CACHE_SIZE (((SQLITE_WIN32_HEAP_MAX_INIT_SIZE) - \
364 (SQLITE_WIN32_HEAP_INIT_EXTRA)) / \
365 (SQLITE_DEFAULT_PAGE_SIZE))
366#endif
367
368/*
369 * This is cache size used in the calculation of the initial size of the
370 * Win32-specific heap. It cannot be negative.
371 */
372#ifndef SQLITE_WIN32_CACHE_SIZE
373# if SQLITE_DEFAULT_CACHE_SIZE>=0
374# define SQLITE_WIN32_CACHE_SIZE (SQLITE_DEFAULT_CACHE_SIZE)
375# else
376# define SQLITE_WIN32_CACHE_SIZE (-(SQLITE_DEFAULT_CACHE_SIZE))
377# endif
378#endif
379
380/*
381 * Make sure that the calculated cache size, in pages, cannot cause the
382 * initial size of the Win32-specific heap to exceed the maximum amount
383 * of memory that can be specified in the call to HeapCreate.
384 */
385#if SQLITE_WIN32_CACHE_SIZE>SQLITE_WIN32_MAX_CACHE_SIZE
386# undef SQLITE_WIN32_CACHE_SIZE
387# define SQLITE_WIN32_CACHE_SIZE (2000)
388#endif
389
390/*
391 * The initial size of the Win32-specific heap. This value may be zero.
392 */
393#ifndef SQLITE_WIN32_HEAP_INIT_SIZE
394# define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_WIN32_CACHE_SIZE) * \
395 (SQLITE_DEFAULT_PAGE_SIZE) + \
396 (SQLITE_WIN32_HEAP_INIT_EXTRA))
397#endif
398
399/*
400 * The maximum size of the Win32-specific heap. This value may be zero.
401 */
402#ifndef SQLITE_WIN32_HEAP_MAX_SIZE
403# define SQLITE_WIN32_HEAP_MAX_SIZE (0)
404#endif
405
406/*
407 * The extra flags to use in calls to the Win32 heap APIs. This value may be
408 * zero for the default behavior.
409 */
410#ifndef SQLITE_WIN32_HEAP_FLAGS
411# define SQLITE_WIN32_HEAP_FLAGS (0)
412#endif
413
414
415/*
416** The winMemData structure stores information required by the Win32-specific
417** sqlite3_mem_methods implementation.
418*/
419typedef struct winMemData winMemData;
420struct winMemData {
421#ifndef NDEBUG
422 u32 magic1; /* Magic number to detect structure corruption. */
423#endif
424 HANDLE hHeap; /* The handle to our heap. */
425 BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */
426#ifndef NDEBUG
427 u32 magic2; /* Magic number to detect structure corruption. */
428#endif
429};
430
431#ifndef NDEBUG
432#define WINMEM_MAGIC1 0x42b2830b
433#define WINMEM_MAGIC2 0xbd4d7cf4
434#endif
435
436static struct winMemData win_mem_data = {
437#ifndef NDEBUG
438 WINMEM_MAGIC1,
439#endif
440 NULL, FALSE
441#ifndef NDEBUG
442 ,WINMEM_MAGIC2
443#endif
444};
445
446#ifndef NDEBUG
447#define winMemAssertMagic1() assert( win_mem_data.magic1==WINMEM_MAGIC1 )
448#define winMemAssertMagic2() assert( win_mem_data.magic2==WINMEM_MAGIC2 )
449#define winMemAssertMagic() winMemAssertMagic1(); winMemAssertMagic2();
450#else
451#define winMemAssertMagic()
452#endif
453
454#define winMemGetDataPtr() &win_mem_data
455#define winMemGetHeap() win_mem_data.hHeap
456#define winMemGetOwned() win_mem_data.bOwned
457
458static void *winMemMalloc(int nBytes);
459static void winMemFree(void *pPrior);
460static void *winMemRealloc(void *pPrior, int nBytes);
461static int winMemSize(void *p);
462static int winMemRoundup(int n);
463static int winMemInit(void *pAppData);
464static void winMemShutdown(void *pAppData);
465
466const sqlite3_mem_methods *sqlite3MemGetWin32(void);
467#endif /* SQLITE_WIN32_MALLOC */
468
469/*
470** The following variable is (normally) set once and never changes
471** thereafter. It records whether the operating system is Win9x
472** or WinNT.
473**
474** 0: Operating system unknown.
475** 1: Operating system is Win9x.
476** 2: Operating system is WinNT.
477**
478** In order to facilitate testing on a WinNT system, the test fixture
479** can manually set this value to 1 to emulate Win98 behavior.
480*/
481#ifdef SQLITE_TEST
482LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0;
483#else
484static LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0;
485#endif
486
487#ifndef SYSCALL
488# define SYSCALL sqlite3_syscall_ptr
489#endif
490
491/*
492** This function is not available on Windows CE or WinRT.
493 */
494
495#if SQLITE_OS_WINCE || SQLITE_OS_WINRT
496# define osAreFileApisANSI() 1
497#endif
498
499/*
500** Many system calls are accessed through pointer-to-functions so that
501** they may be overridden at runtime to facilitate fault injection during
502** testing and sandboxing. The following array holds the names and pointers
503** to all overrideable system calls.
504*/
505static struct win_syscall {
506 const char *zName; /* Name of the system call */
507 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
508 sqlite3_syscall_ptr pDefault; /* Default value */
509} aSyscall[] = {
510#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
511 { "AreFileApisANSI", (SYSCALL)AreFileApisANSI, 0 },
512#else
513 { "AreFileApisANSI", (SYSCALL)0, 0 },
514#endif
515
516#ifndef osAreFileApisANSI
517#define osAreFileApisANSI ((BOOL(WINAPI*)(VOID))aSyscall[0].pCurrent)
518#endif
519
520#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
521 { "CharLowerW", (SYSCALL)CharLowerW, 0 },
522#else
523 { "CharLowerW", (SYSCALL)0, 0 },
524#endif
525
526#define osCharLowerW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[1].pCurrent)
527
528#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
529 { "CharUpperW", (SYSCALL)CharUpperW, 0 },
530#else
531 { "CharUpperW", (SYSCALL)0, 0 },
532#endif
533
534#define osCharUpperW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[2].pCurrent)
535
536 { "CloseHandle", (SYSCALL)CloseHandle, 0 },
537
538#define osCloseHandle ((BOOL(WINAPI*)(HANDLE))aSyscall[3].pCurrent)
539
540#if defined(SQLITE_WIN32_HAS_ANSI)
541 { "CreateFileA", (SYSCALL)CreateFileA, 0 },
542#else
543 { "CreateFileA", (SYSCALL)0, 0 },
544#endif
545
546#define osCreateFileA ((HANDLE(WINAPI*)(LPCSTR,DWORD,DWORD, \
547 LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[4].pCurrent)
548
549#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
550 { "CreateFileW", (SYSCALL)CreateFileW, 0 },
551#else
552 { "CreateFileW", (SYSCALL)0, 0 },
553#endif
554
555#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
556 LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)
557
558#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
559 (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) && \
560 SQLITE_WIN32_CREATEFILEMAPPINGA
561 { "CreateFileMappingA", (SYSCALL)CreateFileMappingA, 0 },
562#else
563 { "CreateFileMappingA", (SYSCALL)0, 0 },
564#endif
565
566#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
567 DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)
568
569#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
570 (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
571 { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 },
572#else
573 { "CreateFileMappingW", (SYSCALL)0, 0 },
574#endif
575
576#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
577 DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)
578
579#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
580 { "CreateMutexW", (SYSCALL)CreateMutexW, 0 },
581#else
582 { "CreateMutexW", (SYSCALL)0, 0 },
583#endif
584
585#define osCreateMutexW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,BOOL, \
586 LPCWSTR))aSyscall[8].pCurrent)
587
588#if defined(SQLITE_WIN32_HAS_ANSI)
589 { "DeleteFileA", (SYSCALL)DeleteFileA, 0 },
590#else
591 { "DeleteFileA", (SYSCALL)0, 0 },
592#endif
593
594#define osDeleteFileA ((BOOL(WINAPI*)(LPCSTR))aSyscall[9].pCurrent)
595
596#if defined(SQLITE_WIN32_HAS_WIDE)
597 { "DeleteFileW", (SYSCALL)DeleteFileW, 0 },
598#else
599 { "DeleteFileW", (SYSCALL)0, 0 },
600#endif
601
602#define osDeleteFileW ((BOOL(WINAPI*)(LPCWSTR))aSyscall[10].pCurrent)
603
604#if SQLITE_OS_WINCE
605 { "FileTimeToLocalFileTime", (SYSCALL)FileTimeToLocalFileTime, 0 },
606#else
607 { "FileTimeToLocalFileTime", (SYSCALL)0, 0 },
608#endif
609
610#define osFileTimeToLocalFileTime ((BOOL(WINAPI*)(CONST FILETIME*, \
611 LPFILETIME))aSyscall[11].pCurrent)
612
613#if SQLITE_OS_WINCE
614 { "FileTimeToSystemTime", (SYSCALL)FileTimeToSystemTime, 0 },
615#else
616 { "FileTimeToSystemTime", (SYSCALL)0, 0 },
617#endif
618
619#define osFileTimeToSystemTime ((BOOL(WINAPI*)(CONST FILETIME*, \
620 LPSYSTEMTIME))aSyscall[12].pCurrent)
621
622 { "FlushFileBuffers", (SYSCALL)FlushFileBuffers, 0 },
623
624#define osFlushFileBuffers ((BOOL(WINAPI*)(HANDLE))aSyscall[13].pCurrent)
625
626#if defined(SQLITE_WIN32_HAS_ANSI)
627 { "FormatMessageA", (SYSCALL)FormatMessageA, 0 },
628#else
629 { "FormatMessageA", (SYSCALL)0, 0 },
630#endif
631
632#define osFormatMessageA ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPSTR, \
633 DWORD,va_list*))aSyscall[14].pCurrent)
634
635#if defined(SQLITE_WIN32_HAS_WIDE)
636 { "FormatMessageW", (SYSCALL)FormatMessageW, 0 },
637#else
638 { "FormatMessageW", (SYSCALL)0, 0 },
639#endif
640
641#define osFormatMessageW ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPWSTR, \
642 DWORD,va_list*))aSyscall[15].pCurrent)
643
644#if !defined(SQLITE_OMIT_LOAD_EXTENSION)
645 { "FreeLibrary", (SYSCALL)FreeLibrary, 0 },
646#else
647 { "FreeLibrary", (SYSCALL)0, 0 },
648#endif
649
650#define osFreeLibrary ((BOOL(WINAPI*)(HMODULE))aSyscall[16].pCurrent)
651
652 { "GetCurrentProcessId", (SYSCALL)GetCurrentProcessId, 0 },
653
654#define osGetCurrentProcessId ((DWORD(WINAPI*)(VOID))aSyscall[17].pCurrent)
655
656#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
657 { "GetDiskFreeSpaceA", (SYSCALL)GetDiskFreeSpaceA, 0 },
658#else
659 { "GetDiskFreeSpaceA", (SYSCALL)0, 0 },
660#endif
661
662#define osGetDiskFreeSpaceA ((BOOL(WINAPI*)(LPCSTR,LPDWORD,LPDWORD,LPDWORD, \
663 LPDWORD))aSyscall[18].pCurrent)
664
665#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
666 { "GetDiskFreeSpaceW", (SYSCALL)GetDiskFreeSpaceW, 0 },
667#else
668 { "GetDiskFreeSpaceW", (SYSCALL)0, 0 },
669#endif
670
671#define osGetDiskFreeSpaceW ((BOOL(WINAPI*)(LPCWSTR,LPDWORD,LPDWORD,LPDWORD, \
672 LPDWORD))aSyscall[19].pCurrent)
673
674#if defined(SQLITE_WIN32_HAS_ANSI)
675 { "GetFileAttributesA", (SYSCALL)GetFileAttributesA, 0 },
676#else
677 { "GetFileAttributesA", (SYSCALL)0, 0 },
678#endif
679
680#define osGetFileAttributesA ((DWORD(WINAPI*)(LPCSTR))aSyscall[20].pCurrent)
681
682#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
683 { "GetFileAttributesW", (SYSCALL)GetFileAttributesW, 0 },
684#else
685 { "GetFileAttributesW", (SYSCALL)0, 0 },
686#endif
687
688#define osGetFileAttributesW ((DWORD(WINAPI*)(LPCWSTR))aSyscall[21].pCurrent)
689
690#if defined(SQLITE_WIN32_HAS_WIDE)
691 { "GetFileAttributesExW", (SYSCALL)GetFileAttributesExW, 0 },
692#else
693 { "GetFileAttributesExW", (SYSCALL)0, 0 },
694#endif
695
696#define osGetFileAttributesExW ((BOOL(WINAPI*)(LPCWSTR,GET_FILEEX_INFO_LEVELS, \
697 LPVOID))aSyscall[22].pCurrent)
698
699#if !SQLITE_OS_WINRT
700 { "GetFileSize", (SYSCALL)GetFileSize, 0 },
701#else
702 { "GetFileSize", (SYSCALL)0, 0 },
703#endif
704
705#define osGetFileSize ((DWORD(WINAPI*)(HANDLE,LPDWORD))aSyscall[23].pCurrent)
706
707#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
708 { "GetFullPathNameA", (SYSCALL)GetFullPathNameA, 0 },
709#else
710 { "GetFullPathNameA", (SYSCALL)0, 0 },
711#endif
712
713#define osGetFullPathNameA ((DWORD(WINAPI*)(LPCSTR,DWORD,LPSTR, \
714 LPSTR*))aSyscall[24].pCurrent)
715
716#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
717 { "GetFullPathNameW", (SYSCALL)GetFullPathNameW, 0 },
718#else
719 { "GetFullPathNameW", (SYSCALL)0, 0 },
720#endif
721
722#define osGetFullPathNameW ((DWORD(WINAPI*)(LPCWSTR,DWORD,LPWSTR, \
723 LPWSTR*))aSyscall[25].pCurrent)
724
725 { "GetLastError", (SYSCALL)GetLastError, 0 },
726
727#define osGetLastError ((DWORD(WINAPI*)(VOID))aSyscall[26].pCurrent)
728
729#if !defined(SQLITE_OMIT_LOAD_EXTENSION)
730#if SQLITE_OS_WINCE
731 /* The GetProcAddressA() routine is only available on Windows CE. */
732 { "GetProcAddressA", (SYSCALL)GetProcAddressA, 0 },
733#else
734 /* All other Windows platforms expect GetProcAddress() to take
735 ** an ANSI string regardless of the _UNICODE setting */
736 { "GetProcAddressA", (SYSCALL)GetProcAddress, 0 },
737#endif
738#else
739 { "GetProcAddressA", (SYSCALL)0, 0 },
740#endif
741
742#define osGetProcAddressA ((FARPROC(WINAPI*)(HMODULE, \
743 LPCSTR))aSyscall[27].pCurrent)
744
745#if !SQLITE_OS_WINRT
746 { "GetSystemInfo", (SYSCALL)GetSystemInfo, 0 },
747#else
748 { "GetSystemInfo", (SYSCALL)0, 0 },
749#endif
750
751#define osGetSystemInfo ((VOID(WINAPI*)(LPSYSTEM_INFO))aSyscall[28].pCurrent)
752
753 { "GetSystemTime", (SYSCALL)GetSystemTime, 0 },
754
755#define osGetSystemTime ((VOID(WINAPI*)(LPSYSTEMTIME))aSyscall[29].pCurrent)
756
757#if !SQLITE_OS_WINCE
758 { "GetSystemTimeAsFileTime", (SYSCALL)GetSystemTimeAsFileTime, 0 },
759#else
760 { "GetSystemTimeAsFileTime", (SYSCALL)0, 0 },
761#endif
762
763#define osGetSystemTimeAsFileTime ((VOID(WINAPI*)( \
764 LPFILETIME))aSyscall[30].pCurrent)
765
766#if defined(SQLITE_WIN32_HAS_ANSI)
767 { "GetTempPathA", (SYSCALL)GetTempPathA, 0 },
768#else
769 { "GetTempPathA", (SYSCALL)0, 0 },
770#endif
771
772#define osGetTempPathA ((DWORD(WINAPI*)(DWORD,LPSTR))aSyscall[31].pCurrent)
773
774#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
775 { "GetTempPathW", (SYSCALL)GetTempPathW, 0 },
776#else
777 { "GetTempPathW", (SYSCALL)0, 0 },
778#endif
779
780#define osGetTempPathW ((DWORD(WINAPI*)(DWORD,LPWSTR))aSyscall[32].pCurrent)
781
782#if !SQLITE_OS_WINRT
783 { "GetTickCount", (SYSCALL)GetTickCount, 0 },
784#else
785 { "GetTickCount", (SYSCALL)0, 0 },
786#endif
787
788#define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent)
789
790#if defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_GETVERSIONEX
791 { "GetVersionExA", (SYSCALL)GetVersionExA, 0 },
792#else
793 { "GetVersionExA", (SYSCALL)0, 0 },
794#endif
795
796#define osGetVersionExA ((BOOL(WINAPI*)( \
797 LPOSVERSIONINFOA))aSyscall[34].pCurrent)
798
799#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
800 SQLITE_WIN32_GETVERSIONEX
801 { "GetVersionExW", (SYSCALL)GetVersionExW, 0 },
802#else
803 { "GetVersionExW", (SYSCALL)0, 0 },
804#endif
805
806#define osGetVersionExW ((BOOL(WINAPI*)( \
807 LPOSVERSIONINFOW))aSyscall[35].pCurrent)
808
809 { "HeapAlloc", (SYSCALL)HeapAlloc, 0 },
810
811#define osHeapAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD, \
812 SIZE_T))aSyscall[36].pCurrent)
813
814#if !SQLITE_OS_WINRT
815 { "HeapCreate", (SYSCALL)HeapCreate, 0 },
816#else
817 { "HeapCreate", (SYSCALL)0, 0 },
818#endif
819
820#define osHeapCreate ((HANDLE(WINAPI*)(DWORD,SIZE_T, \
821 SIZE_T))aSyscall[37].pCurrent)
822
823#if !SQLITE_OS_WINRT
824 { "HeapDestroy", (SYSCALL)HeapDestroy, 0 },
825#else
826 { "HeapDestroy", (SYSCALL)0, 0 },
827#endif
828
829#define osHeapDestroy ((BOOL(WINAPI*)(HANDLE))aSyscall[38].pCurrent)
830
831 { "HeapFree", (SYSCALL)HeapFree, 0 },
832
833#define osHeapFree ((BOOL(WINAPI*)(HANDLE,DWORD,LPVOID))aSyscall[39].pCurrent)
834
835 { "HeapReAlloc", (SYSCALL)HeapReAlloc, 0 },
836
837#define osHeapReAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD,LPVOID, \
838 SIZE_T))aSyscall[40].pCurrent)
839
840 { "HeapSize", (SYSCALL)HeapSize, 0 },
841
842#define osHeapSize ((SIZE_T(WINAPI*)(HANDLE,DWORD, \
843 LPCVOID))aSyscall[41].pCurrent)
844
845#if !SQLITE_OS_WINRT
846 { "HeapValidate", (SYSCALL)HeapValidate, 0 },
847#else
848 { "HeapValidate", (SYSCALL)0, 0 },
849#endif
850
851#define osHeapValidate ((BOOL(WINAPI*)(HANDLE,DWORD, \
852 LPCVOID))aSyscall[42].pCurrent)
853
854#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
855 { "HeapCompact", (SYSCALL)HeapCompact, 0 },
856#else
857 { "HeapCompact", (SYSCALL)0, 0 },
858#endif
859
860#define osHeapCompact ((UINT(WINAPI*)(HANDLE,DWORD))aSyscall[43].pCurrent)
861
862#if defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
863 { "LoadLibraryA", (SYSCALL)LoadLibraryA, 0 },
864#else
865 { "LoadLibraryA", (SYSCALL)0, 0 },
866#endif
867
868#define osLoadLibraryA ((HMODULE(WINAPI*)(LPCSTR))aSyscall[44].pCurrent)
869
870#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
871 !defined(SQLITE_OMIT_LOAD_EXTENSION)
872 { "LoadLibraryW", (SYSCALL)LoadLibraryW, 0 },
873#else
874 { "LoadLibraryW", (SYSCALL)0, 0 },
875#endif
876
877#define osLoadLibraryW ((HMODULE(WINAPI*)(LPCWSTR))aSyscall[45].pCurrent)
878
879#if !SQLITE_OS_WINRT
880 { "LocalFree", (SYSCALL)LocalFree, 0 },
881#else
882 { "LocalFree", (SYSCALL)0, 0 },
883#endif
884
885#define osLocalFree ((HLOCAL(WINAPI*)(HLOCAL))aSyscall[46].pCurrent)
886
887#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
888 { "LockFile", (SYSCALL)LockFile, 0 },
889#else
890 { "LockFile", (SYSCALL)0, 0 },
891#endif
892
893#ifndef osLockFile
894#define osLockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
895 DWORD))aSyscall[47].pCurrent)
896#endif
897
898#if !SQLITE_OS_WINCE
899 { "LockFileEx", (SYSCALL)LockFileEx, 0 },
900#else
901 { "LockFileEx", (SYSCALL)0, 0 },
902#endif
903
904#ifndef osLockFileEx
905#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
906 LPOVERLAPPED))aSyscall[48].pCurrent)
907#endif
908
909#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \
910 (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
911 { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 },
912#else
913 { "MapViewOfFile", (SYSCALL)0, 0 },
914#endif
915
916#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
917 SIZE_T))aSyscall[49].pCurrent)
918
919 { "MultiByteToWideChar", (SYSCALL)MultiByteToWideChar, 0 },
920
921#define osMultiByteToWideChar ((int(WINAPI*)(UINT,DWORD,LPCSTR,int,LPWSTR, \
922 int))aSyscall[50].pCurrent)
923
924 { "QueryPerformanceCounter", (SYSCALL)QueryPerformanceCounter, 0 },
925
926#define osQueryPerformanceCounter ((BOOL(WINAPI*)( \
927 LARGE_INTEGER*))aSyscall[51].pCurrent)
928
929 { "ReadFile", (SYSCALL)ReadFile, 0 },
930
931#define osReadFile ((BOOL(WINAPI*)(HANDLE,LPVOID,DWORD,LPDWORD, \
932 LPOVERLAPPED))aSyscall[52].pCurrent)
933
934 { "SetEndOfFile", (SYSCALL)SetEndOfFile, 0 },
935
936#define osSetEndOfFile ((BOOL(WINAPI*)(HANDLE))aSyscall[53].pCurrent)
937
938#if !SQLITE_OS_WINRT
939 { "SetFilePointer", (SYSCALL)SetFilePointer, 0 },
940#else
941 { "SetFilePointer", (SYSCALL)0, 0 },
942#endif
943
944#define osSetFilePointer ((DWORD(WINAPI*)(HANDLE,LONG,PLONG, \
945 DWORD))aSyscall[54].pCurrent)
946
947#if !SQLITE_OS_WINRT
948 { "Sleep", (SYSCALL)Sleep, 0 },
949#else
950 { "Sleep", (SYSCALL)0, 0 },
951#endif
952
953#define osSleep ((VOID(WINAPI*)(DWORD))aSyscall[55].pCurrent)
954
955 { "SystemTimeToFileTime", (SYSCALL)SystemTimeToFileTime, 0 },
956
957#define osSystemTimeToFileTime ((BOOL(WINAPI*)(CONST SYSTEMTIME*, \
958 LPFILETIME))aSyscall[56].pCurrent)
959
960#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
961 { "UnlockFile", (SYSCALL)UnlockFile, 0 },
962#else
963 { "UnlockFile", (SYSCALL)0, 0 },
964#endif
965
966#ifndef osUnlockFile
967#define osUnlockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
968 DWORD))aSyscall[57].pCurrent)
969#endif
970
971#if !SQLITE_OS_WINCE
972 { "UnlockFileEx", (SYSCALL)UnlockFileEx, 0 },
973#else
974 { "UnlockFileEx", (SYSCALL)0, 0 },
975#endif
976
977#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
978 LPOVERLAPPED))aSyscall[58].pCurrent)
979
980#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
981 { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 },
982#else
983 { "UnmapViewOfFile", (SYSCALL)0, 0 },
984#endif
985
986#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)
987
988 { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 },
989
990#define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \
991 LPCSTR,LPBOOL))aSyscall[60].pCurrent)
992
993 { "WriteFile", (SYSCALL)WriteFile, 0 },
994
995#define osWriteFile ((BOOL(WINAPI*)(HANDLE,LPCVOID,DWORD,LPDWORD, \
996 LPOVERLAPPED))aSyscall[61].pCurrent)
997
998#if SQLITE_OS_WINRT
999 { "CreateEventExW", (SYSCALL)CreateEventExW, 0 },
1000#else
1001 { "CreateEventExW", (SYSCALL)0, 0 },
1002#endif
1003
1004#define osCreateEventExW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,LPCWSTR, \
1005 DWORD,DWORD))aSyscall[62].pCurrent)
1006
1007#if !SQLITE_OS_WINRT
1008 { "WaitForSingleObject", (SYSCALL)WaitForSingleObject, 0 },
1009#else
1010 { "WaitForSingleObject", (SYSCALL)0, 0 },
1011#endif
1012
1013#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
1014 DWORD))aSyscall[63].pCurrent)
1015
1016#if !SQLITE_OS_WINCE
1017 { "WaitForSingleObjectEx", (SYSCALL)WaitForSingleObjectEx, 0 },
1018#else
1019 { "WaitForSingleObjectEx", (SYSCALL)0, 0 },
1020#endif
1021
1022#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
1023 BOOL))aSyscall[64].pCurrent)
1024
1025#if SQLITE_OS_WINRT
1026 { "SetFilePointerEx", (SYSCALL)SetFilePointerEx, 0 },
1027#else
1028 { "SetFilePointerEx", (SYSCALL)0, 0 },
1029#endif
1030
1031#define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \
1032 PLARGE_INTEGER,DWORD))aSyscall[65].pCurrent)
1033
1034#if SQLITE_OS_WINRT
1035 { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 },
1036#else
1037 { "GetFileInformationByHandleEx", (SYSCALL)0, 0 },
1038#endif
1039
1040#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
1041 FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)
1042
1043#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
1044 { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 },
1045#else
1046 { "MapViewOfFileFromApp", (SYSCALL)0, 0 },
1047#endif
1048
1049#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
1050 SIZE_T))aSyscall[67].pCurrent)
1051
1052#if SQLITE_OS_WINRT
1053 { "CreateFile2", (SYSCALL)CreateFile2, 0 },
1054#else
1055 { "CreateFile2", (SYSCALL)0, 0 },
1056#endif
1057
1058#define osCreateFile2 ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD,DWORD, \
1059 LPCREATEFILE2_EXTENDED_PARAMETERS))aSyscall[68].pCurrent)
1060
1061#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_LOAD_EXTENSION)
1062 { "LoadPackagedLibrary", (SYSCALL)LoadPackagedLibrary, 0 },
1063#else
1064 { "LoadPackagedLibrary", (SYSCALL)0, 0 },
1065#endif
1066
1067#define osLoadPackagedLibrary ((HMODULE(WINAPI*)(LPCWSTR, \
1068 DWORD))aSyscall[69].pCurrent)
1069
1070#if SQLITE_OS_WINRT
1071 { "GetTickCount64", (SYSCALL)GetTickCount64, 0 },
1072#else
1073 { "GetTickCount64", (SYSCALL)0, 0 },
1074#endif
1075
1076#define osGetTickCount64 ((ULONGLONG(WINAPI*)(VOID))aSyscall[70].pCurrent)
1077
1078#if SQLITE_OS_WINRT
1079 { "GetNativeSystemInfo", (SYSCALL)GetNativeSystemInfo, 0 },
1080#else
1081 { "GetNativeSystemInfo", (SYSCALL)0, 0 },
1082#endif
1083
1084#define osGetNativeSystemInfo ((VOID(WINAPI*)( \
1085 LPSYSTEM_INFO))aSyscall[71].pCurrent)
1086
1087#if defined(SQLITE_WIN32_HAS_ANSI)
1088 { "OutputDebugStringA", (SYSCALL)OutputDebugStringA, 0 },
1089#else
1090 { "OutputDebugStringA", (SYSCALL)0, 0 },
1091#endif
1092
1093#define osOutputDebugStringA ((VOID(WINAPI*)(LPCSTR))aSyscall[72].pCurrent)
1094
1095#if defined(SQLITE_WIN32_HAS_WIDE)
1096 { "OutputDebugStringW", (SYSCALL)OutputDebugStringW, 0 },
1097#else
1098 { "OutputDebugStringW", (SYSCALL)0, 0 },
1099#endif
1100
1101#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)
1102
1103 { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 },
1104
1105#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)
1106
1107#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
1108 { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
1109#else
1110 { "CreateFileMappingFromApp", (SYSCALL)0, 0 },
1111#endif
1112
1113#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
1114 LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)
1115
1116/*
1117** NOTE: On some sub-platforms, the InterlockedCompareExchange "function"
1118** is really just a macro that uses a compiler intrinsic (e.g. x64).
1119** So do not try to make this is into a redefinable interface.
1120*/
1121#if defined(InterlockedCompareExchange)
1122 { "InterlockedCompareExchange", (SYSCALL)0, 0 },
1123
1124#define osInterlockedCompareExchange InterlockedCompareExchange
1125#else
1126 { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 },
1127
1128#define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG \
1129 SQLITE_WIN32_VOLATILE*, LONG,LONG))aSyscall[76].pCurrent)
1130#endif /* defined(InterlockedCompareExchange) */
1131
1132#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
1133 { "UuidCreate", (SYSCALL)UuidCreate, 0 },
1134#else
1135 { "UuidCreate", (SYSCALL)0, 0 },
1136#endif
1137
1138#define osUuidCreate ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[77].pCurrent)
1139
1140#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
1141 { "UuidCreateSequential", (SYSCALL)UuidCreateSequential, 0 },
1142#else
1143 { "UuidCreateSequential", (SYSCALL)0, 0 },
1144#endif
1145
1146#define osUuidCreateSequential \
1147 ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent)
1148
1149#if !defined(SQLITE_NO_SYNC) && SQLITE_MAX_MMAP_SIZE>0
1150 { "FlushViewOfFile", (SYSCALL)FlushViewOfFile, 0 },
1151#else
1152 { "FlushViewOfFile", (SYSCALL)0, 0 },
1153#endif
1154
1155#define osFlushViewOfFile \
1156 ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent)
1157
1158}; /* End of the overrideable system calls */
1159
1160/*
1161** This is the xSetSystemCall() method of sqlite3_vfs for all of the
1162** "win32" VFSes. Return SQLITE_OK opon successfully updating the
1163** system call pointer, or SQLITE_NOTFOUND if there is no configurable
1164** system call named zName.
1165*/
1166static int winSetSystemCall(
1167 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
1168 const char *zName, /* Name of system call to override */
1169 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
1170){
1171 unsigned int i;
1172 int rc = SQLITE_NOTFOUND;
1173
1174 UNUSED_PARAMETER(pNotUsed);
1175 if( zName==0 ){
1176 /* If no zName is given, restore all system calls to their default
1177 ** settings and return NULL
1178 */
1179 rc = SQLITE_OK;
1180 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
1181 if( aSyscall[i].pDefault ){
1182 aSyscall[i].pCurrent = aSyscall[i].pDefault;
1183 }
1184 }
1185 }else{
1186 /* If zName is specified, operate on only the one system call
1187 ** specified.
1188 */
1189 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
1190 if( strcmp(zName, aSyscall[i].zName)==0 ){
1191 if( aSyscall[i].pDefault==0 ){
1192 aSyscall[i].pDefault = aSyscall[i].pCurrent;
1193 }
1194 rc = SQLITE_OK;
1195 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
1196 aSyscall[i].pCurrent = pNewFunc;
1197 break;
1198 }
1199 }
1200 }
1201 return rc;
1202}
1203
1204/*
1205** Return the value of a system call. Return NULL if zName is not a
1206** recognized system call name. NULL is also returned if the system call
1207** is currently undefined.
1208*/
1209static sqlite3_syscall_ptr winGetSystemCall(
1210 sqlite3_vfs *pNotUsed,
1211 const char *zName
1212){
1213 unsigned int i;
1214
1215 UNUSED_PARAMETER(pNotUsed);
1216 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
1217 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
1218 }
1219 return 0;
1220}
1221
1222/*
1223** Return the name of the first system call after zName. If zName==NULL
1224** then return the name of the first system call. Return NULL if zName
1225** is the last system call or if zName is not the name of a valid
1226** system call.
1227*/
1228static const char *winNextSystemCall(sqlite3_vfs *p, const char *zName){
1229 int i = -1;
1230
1231 UNUSED_PARAMETER(p);
1232 if( zName ){
1233 for(i=0; i<ArraySize(aSyscall)-1; i++){
1234 if( strcmp(zName, aSyscall[i].zName)==0 ) break;
1235 }
1236 }
1237 for(i++; i<ArraySize(aSyscall); i++){
1238 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
1239 }
1240 return 0;
1241}
1242
1243#ifdef SQLITE_WIN32_MALLOC
1244/*
1245** If a Win32 native heap has been configured, this function will attempt to
1246** compact it. Upon success, SQLITE_OK will be returned. Upon failure, one
1247** of SQLITE_NOMEM, SQLITE_ERROR, or SQLITE_NOTFOUND will be returned. The
1248** "pnLargest" argument, if non-zero, will be used to return the size of the
1249** largest committed free block in the heap, in bytes.
1250*/
1251int sqlite3_win32_compact_heap(LPUINT pnLargest){
1252 int rc = SQLITE_OK;
1253 UINT nLargest = 0;
1254 HANDLE hHeap;
1255
1256 winMemAssertMagic();
1257 hHeap = winMemGetHeap();
1258 assert( hHeap!=0 );
1259 assert( hHeap!=INVALID_HANDLE_VALUE );
1260#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
1261 assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
1262#endif
1263#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
1264 if( (nLargest=osHeapCompact(hHeap, SQLITE_WIN32_HEAP_FLAGS))==0 ){
1265 DWORD lastErrno = osGetLastError();
1266 if( lastErrno==NO_ERROR ){
1267 sqlite3_log(SQLITE_NOMEM, "failed to HeapCompact (no space), heap=%p",
1268 (void*)hHeap);
1269 rc = SQLITE_NOMEM_BKPT;
1270 }else{
1271 sqlite3_log(SQLITE_ERROR, "failed to HeapCompact (%lu), heap=%p",
1272 osGetLastError(), (void*)hHeap);
1273 rc = SQLITE_ERROR;
1274 }
1275 }
1276#else
1277 sqlite3_log(SQLITE_NOTFOUND, "failed to HeapCompact, heap=%p",
1278 (void*)hHeap);
1279 rc = SQLITE_NOTFOUND;
1280#endif
1281 if( pnLargest ) *pnLargest = nLargest;
1282 return rc;
1283}
1284
1285/*
1286** If a Win32 native heap has been configured, this function will attempt to
1287** destroy and recreate it. If the Win32 native heap is not isolated and/or
1288** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
1289** be returned and no changes will be made to the Win32 native heap.
1290*/
1291int sqlite3_win32_reset_heap(){
1292 int rc;
1293 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */
1294 MUTEX_LOGIC( sqlite3_mutex *pMem; ) /* The memsys static mutex */
1295 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
1296 MUTEX_LOGIC( pMem = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); )
1297 sqlite3_mutex_enter(pMainMtx);
1298 sqlite3_mutex_enter(pMem);
1299 winMemAssertMagic();
1300 if( winMemGetHeap()!=NULL && winMemGetOwned() && sqlite3_memory_used()==0 ){
1301 /*
1302 ** At this point, there should be no outstanding memory allocations on
1303 ** the heap. Also, since both the main and memsys locks are currently
1304 ** being held by us, no other function (i.e. from another thread) should
1305 ** be able to even access the heap. Attempt to destroy and recreate our
1306 ** isolated Win32 native heap now.
1307 */
1308 assert( winMemGetHeap()!=NULL );
1309 assert( winMemGetOwned() );
1310 assert( sqlite3_memory_used()==0 );
1311 winMemShutdown(winMemGetDataPtr());
1312 assert( winMemGetHeap()==NULL );
1313 assert( !winMemGetOwned() );
1314 assert( sqlite3_memory_used()==0 );
1315 rc = winMemInit(winMemGetDataPtr());
1316 assert( rc!=SQLITE_OK || winMemGetHeap()!=NULL );
1317 assert( rc!=SQLITE_OK || winMemGetOwned() );
1318 assert( rc!=SQLITE_OK || sqlite3_memory_used()==0 );
1319 }else{
1320 /*
1321 ** The Win32 native heap cannot be modified because it may be in use.
1322 */
1323 rc = SQLITE_BUSY;
1324 }
1325 sqlite3_mutex_leave(pMem);
1326 sqlite3_mutex_leave(pMainMtx);
1327 return rc;
1328}
1329#endif /* SQLITE_WIN32_MALLOC */
1330
1331/*
1332** This function outputs the specified (ANSI) string to the Win32 debugger
1333** (if available).
1334*/
1335
1336void sqlite3_win32_write_debug(const char *zBuf, int nBuf){
1337 char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
1338 int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
1339 if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
1340 assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
1341#ifdef SQLITE_ENABLE_API_ARMOR
1342 if( !zBuf ){
1343 (void)SQLITE_MISUSE_BKPT;
1344 return;
1345 }
1346#endif
1347#if defined(SQLITE_WIN32_HAS_ANSI)
1348 if( nMin>0 ){
1349 memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
1350 memcpy(zDbgBuf, zBuf, nMin);
1351 osOutputDebugStringA(zDbgBuf);
1352 }else{
1353 osOutputDebugStringA(zBuf);
1354 }
1355#elif defined(SQLITE_WIN32_HAS_WIDE)
1356 memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
1357 if ( osMultiByteToWideChar(
1358 osAreFileApisANSI() ? CP_ACP : CP_OEMCP, 0, zBuf,
1359 nMin, (LPWSTR)zDbgBuf, SQLITE_WIN32_DBG_BUF_SIZE/sizeof(WCHAR))<=0 ){
1360 return;
1361 }
1362 osOutputDebugStringW((LPCWSTR)zDbgBuf);
1363#else
1364 if( nMin>0 ){
1365 memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
1366 memcpy(zDbgBuf, zBuf, nMin);
1367 fprintf(stderr, "%s", zDbgBuf);
1368 }else{
1369 fprintf(stderr, "%s", zBuf);
1370 }
1371#endif
1372}
1373
1374/*
1375** The following routine suspends the current thread for at least ms
1376** milliseconds. This is equivalent to the Win32 Sleep() interface.
1377*/
1378#if SQLITE_OS_WINRT
1379static HANDLE sleepObj = NULL;
1380#endif
1381
1382void sqlite3_win32_sleep(DWORD milliseconds){
1383#if SQLITE_OS_WINRT
1384 if ( sleepObj==NULL ){
1385 sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET,
1386 SYNCHRONIZE);
1387 }
1388 assert( sleepObj!=NULL );
1389 osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
1390#else
1391 osSleep(milliseconds);
1392#endif
1393}
1394
1395#if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
1396 SQLITE_THREADSAFE>0
1397DWORD sqlite3Win32Wait(HANDLE hObject){
1398 DWORD rc;
1399 while( (rc = osWaitForSingleObjectEx(hObject, INFINITE,
1400 TRUE))==WAIT_IO_COMPLETION ){}
1401 return rc;
1402}
1403#endif
1404
1405/*
1406** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
1407** or WinCE. Return false (zero) for Win95, Win98, or WinME.
1408**
1409** Here is an interesting observation: Win95, Win98, and WinME lack
1410** the LockFileEx() API. But we can still statically link against that
1411** API as long as we don't call it when running Win95/98/ME. A call to
1412** this routine is used to determine if the host is Win95/98/ME or
1413** WinNT/2K/XP so that we will know whether or not we can safely call
1414** the LockFileEx() API.
1415*/
1416
1417#if !SQLITE_WIN32_GETVERSIONEX
1418# define osIsNT() (1)
1419#elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
1420# define osIsNT() (1)
1421#elif !defined(SQLITE_WIN32_HAS_WIDE)
1422# define osIsNT() (0)
1423#else
1424# define osIsNT() ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
1425#endif
1426
1427/*
1428** This function determines if the machine is running a version of Windows
1429** based on the NT kernel.
1430*/
1431int sqlite3_win32_is_nt(void){
1432#if SQLITE_OS_WINRT
1433 /*
1434 ** NOTE: The WinRT sub-platform is always assumed to be based on the NT
1435 ** kernel.
1436 */
1437 return 1;
1438#elif SQLITE_WIN32_GETVERSIONEX
1439 if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){
1440#if defined(SQLITE_WIN32_HAS_ANSI)
1441 OSVERSIONINFOA sInfo;
1442 sInfo.dwOSVersionInfoSize = sizeof(sInfo);
1443 osGetVersionExA(&sInfo);
1444 osInterlockedCompareExchange(&sqlite3_os_type,
1445 (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
1446#elif defined(SQLITE_WIN32_HAS_WIDE)
1447 OSVERSIONINFOW sInfo;
1448 sInfo.dwOSVersionInfoSize = sizeof(sInfo);
1449 osGetVersionExW(&sInfo);
1450 osInterlockedCompareExchange(&sqlite3_os_type,
1451 (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
1452#endif
1453 }
1454 return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2;
1455#elif SQLITE_TEST
1456 return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2;
1457#else
1458 /*
1459 ** NOTE: All sub-platforms where the GetVersionEx[AW] functions are
1460 ** deprecated are always assumed to be based on the NT kernel.
1461 */
1462 return 1;
1463#endif
1464}
1465
1466#ifdef SQLITE_WIN32_MALLOC
1467/*
1468** Allocate nBytes of memory.
1469*/
1470static void *winMemMalloc(int nBytes){
1471 HANDLE hHeap;
1472 void *p;
1473
1474 winMemAssertMagic();
1475 hHeap = winMemGetHeap();
1476 assert( hHeap!=0 );
1477 assert( hHeap!=INVALID_HANDLE_VALUE );
1478#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
1479 assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
1480#endif
1481 assert( nBytes>=0 );
1482 p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
1483 if( !p ){
1484 sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%lu), heap=%p",
1485 nBytes, osGetLastError(), (void*)hHeap);
1486 }
1487 return p;
1488}
1489
1490/*
1491** Free memory.
1492*/
1493static void winMemFree(void *pPrior){
1494 HANDLE hHeap;
1495
1496 winMemAssertMagic();
1497 hHeap = winMemGetHeap();
1498 assert( hHeap!=0 );
1499 assert( hHeap!=INVALID_HANDLE_VALUE );
1500#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
1501 assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
1502#endif
1503 if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */
1504 if( !osHeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){
1505 sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%lu), heap=%p",
1506 pPrior, osGetLastError(), (void*)hHeap);
1507 }
1508}
1509
1510/*
1511** Change the size of an existing memory allocation
1512*/
1513static void *winMemRealloc(void *pPrior, int nBytes){
1514 HANDLE hHeap;
1515 void *p;
1516
1517 winMemAssertMagic();
1518 hHeap = winMemGetHeap();
1519 assert( hHeap!=0 );
1520 assert( hHeap!=INVALID_HANDLE_VALUE );
1521#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
1522 assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
1523#endif
1524 assert( nBytes>=0 );
1525 if( !pPrior ){
1526 p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
1527 }else{
1528 p = osHeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes);
1529 }
1530 if( !p ){
1531 sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%lu), heap=%p",
1532 pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, osGetLastError(),
1533 (void*)hHeap);
1534 }
1535 return p;
1536}
1537
1538/*
1539** Return the size of an outstanding allocation, in bytes.
1540*/
1541static int winMemSize(void *p){
1542 HANDLE hHeap;
1543 SIZE_T n;
1544
1545 winMemAssertMagic();
1546 hHeap = winMemGetHeap();
1547 assert( hHeap!=0 );
1548 assert( hHeap!=INVALID_HANDLE_VALUE );
1549#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
1550 assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, p) );
1551#endif
1552 if( !p ) return 0;
1553 n = osHeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p);
1554 if( n==(SIZE_T)-1 ){
1555 sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%lu), heap=%p",
1556 p, osGetLastError(), (void*)hHeap);
1557 return 0;
1558 }
1559 return (int)n;
1560}
1561
1562/*
1563** Round up a request size to the next valid allocation size.
1564*/
1565static int winMemRoundup(int n){
1566 return n;
1567}
1568
1569/*
1570** Initialize this module.
1571*/
1572static int winMemInit(void *pAppData){
1573 winMemData *pWinMemData = (winMemData *)pAppData;
1574
1575 if( !pWinMemData ) return SQLITE_ERROR;
1576 assert( pWinMemData->magic1==WINMEM_MAGIC1 );
1577 assert( pWinMemData->magic2==WINMEM_MAGIC2 );
1578
1579#if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE
1580 if( !pWinMemData->hHeap ){
1581 DWORD dwInitialSize = SQLITE_WIN32_HEAP_INIT_SIZE;
1582 DWORD dwMaximumSize = (DWORD)sqlite3GlobalConfig.nHeap;
1583 if( dwMaximumSize==0 ){
1584 dwMaximumSize = SQLITE_WIN32_HEAP_MAX_SIZE;
1585 }else if( dwInitialSize>dwMaximumSize ){
1586 dwInitialSize = dwMaximumSize;
1587 }
1588 pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS,
1589 dwInitialSize, dwMaximumSize);
1590 if( !pWinMemData->hHeap ){
1591 sqlite3_log(SQLITE_NOMEM,
1592 "failed to HeapCreate (%lu), flags=%u, initSize=%lu, maxSize=%lu",
1593 osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, dwInitialSize,
1594 dwMaximumSize);
1595 return SQLITE_NOMEM_BKPT;
1596 }
1597 pWinMemData->bOwned = TRUE;
1598 assert( pWinMemData->bOwned );
1599 }
1600#else
1601 pWinMemData->hHeap = osGetProcessHeap();
1602 if( !pWinMemData->hHeap ){
1603 sqlite3_log(SQLITE_NOMEM,
1604 "failed to GetProcessHeap (%lu)", osGetLastError());
1605 return SQLITE_NOMEM_BKPT;
1606 }
1607 pWinMemData->bOwned = FALSE;
1608 assert( !pWinMemData->bOwned );
1609#endif
1610 assert( pWinMemData->hHeap!=0 );
1611 assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
1612#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
1613 assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
1614#endif
1615 return SQLITE_OK;
1616}
1617
1618/*
1619** Deinitialize this module.
1620*/
1621static void winMemShutdown(void *pAppData){
1622 winMemData *pWinMemData = (winMemData *)pAppData;
1623
1624 if( !pWinMemData ) return;
1625 assert( pWinMemData->magic1==WINMEM_MAGIC1 );
1626 assert( pWinMemData->magic2==WINMEM_MAGIC2 );
1627
1628 if( pWinMemData->hHeap ){
1629 assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
1630#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
1631 assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
1632#endif
1633 if( pWinMemData->bOwned ){
1634 if( !osHeapDestroy(pWinMemData->hHeap) ){
1635 sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%lu), heap=%p",
1636 osGetLastError(), (void*)pWinMemData->hHeap);
1637 }
1638 pWinMemData->bOwned = FALSE;
1639 }
1640 pWinMemData->hHeap = NULL;
1641 }
1642}
1643
1644/*
1645** Populate the low-level memory allocation function pointers in
1646** sqlite3GlobalConfig.m with pointers to the routines in this file. The
1647** arguments specify the block of memory to manage.
1648**
1649** This routine is only called by sqlite3_config(), and therefore
1650** is not required to be threadsafe (it is not).
1651*/
1652const sqlite3_mem_methods *sqlite3MemGetWin32(void){
1653 static const sqlite3_mem_methods winMemMethods = {
1654 winMemMalloc,
1655 winMemFree,
1656 winMemRealloc,
1657 winMemSize,
1658 winMemRoundup,
1659 winMemInit,
1660 winMemShutdown,
1661 &win_mem_data
1662 };
1663 return &winMemMethods;
1664}
1665
1666void sqlite3MemSetDefault(void){
1667 sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32());
1668}
1669#endif /* SQLITE_WIN32_MALLOC */
1670
1671/*
1672** Convert a UTF-8 string to Microsoft Unicode.
1673**
1674** Space to hold the returned string is obtained from sqlite3_malloc().
1675*/
1676static LPWSTR winUtf8ToUnicode(const char *zText){
1677 int nChar;
1678 LPWSTR zWideText;
1679
1680 nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, NULL, 0);
1681 if( nChar==0 ){
1682 return 0;
1683 }
1684 zWideText = sqlite3MallocZero( nChar*sizeof(WCHAR) );
1685 if( zWideText==0 ){
1686 return 0;
1687 }
1688 nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, zWideText,
1689 nChar);
1690 if( nChar==0 ){
1691 sqlite3_free(zWideText);
1692 zWideText = 0;
1693 }
1694 return zWideText;
1695}
1696
1697/*
1698** Convert a Microsoft Unicode string to UTF-8.
1699**
1700** Space to hold the returned string is obtained from sqlite3_malloc().
1701*/
1702static char *winUnicodeToUtf8(LPCWSTR zWideText){
1703 int nByte;
1704 char *zText;
1705
1706 nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, 0, 0, 0, 0);
1707 if( nByte == 0 ){
1708 return 0;
1709 }
1710 zText = sqlite3MallocZero( nByte );
1711 if( zText==0 ){
1712 return 0;
1713 }
1714 nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, zText, nByte,
1715 0, 0);
1716 if( nByte == 0 ){
1717 sqlite3_free(zText);
1718 zText = 0;
1719 }
1720 return zText;
1721}
1722
1723/*
1724** Convert an ANSI string to Microsoft Unicode, using the ANSI or OEM
1725** code page.
1726**
1727** Space to hold the returned string is obtained from sqlite3_malloc().
1728*/
1729static LPWSTR winMbcsToUnicode(const char *zText, int useAnsi){
1730 int nByte;
1731 LPWSTR zMbcsText;
1732 int codepage = useAnsi ? CP_ACP : CP_OEMCP;
1733
1734 nByte = osMultiByteToWideChar(codepage, 0, zText, -1, NULL,
1735 0)*sizeof(WCHAR);
1736 if( nByte==0 ){
1737 return 0;
1738 }
1739 zMbcsText = sqlite3MallocZero( nByte*sizeof(WCHAR) );
1740 if( zMbcsText==0 ){
1741 return 0;
1742 }
1743 nByte = osMultiByteToWideChar(codepage, 0, zText, -1, zMbcsText,
1744 nByte);
1745 if( nByte==0 ){
1746 sqlite3_free(zMbcsText);
1747 zMbcsText = 0;
1748 }
1749 return zMbcsText;
1750}
1751
1752/*
1753** Convert a Microsoft Unicode string to a multi-byte character string,
1754** using the ANSI or OEM code page.
1755**
1756** Space to hold the returned string is obtained from sqlite3_malloc().
1757*/
1758static char *winUnicodeToMbcs(LPCWSTR zWideText, int useAnsi){
1759 int nByte;
1760 char *zText;
1761 int codepage = useAnsi ? CP_ACP : CP_OEMCP;
1762
1763 nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, 0, 0, 0, 0);
1764 if( nByte == 0 ){
1765 return 0;
1766 }
1767 zText = sqlite3MallocZero( nByte );
1768 if( zText==0 ){
1769 return 0;
1770 }
1771 nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, zText,
1772 nByte, 0, 0);
1773 if( nByte == 0 ){
1774 sqlite3_free(zText);
1775 zText = 0;
1776 }
1777 return zText;
1778}
1779
1780/*
1781** Convert a multi-byte character string to UTF-8.
1782**
1783** Space to hold the returned string is obtained from sqlite3_malloc().
1784*/
1785static char *winMbcsToUtf8(const char *zText, int useAnsi){
1786 char *zTextUtf8;
1787 LPWSTR zTmpWide;
1788
1789 zTmpWide = winMbcsToUnicode(zText, useAnsi);
1790 if( zTmpWide==0 ){
1791 return 0;
1792 }
1793 zTextUtf8 = winUnicodeToUtf8(zTmpWide);
1794 sqlite3_free(zTmpWide);
1795 return zTextUtf8;
1796}
1797
1798/*
1799** Convert a UTF-8 string to a multi-byte character string.
1800**
1801** Space to hold the returned string is obtained from sqlite3_malloc().
1802*/
1803static char *winUtf8ToMbcs(const char *zText, int useAnsi){
1804 char *zTextMbcs;
1805 LPWSTR zTmpWide;
1806
1807 zTmpWide = winUtf8ToUnicode(zText);
1808 if( zTmpWide==0 ){
1809 return 0;
1810 }
1811 zTextMbcs = winUnicodeToMbcs(zTmpWide, useAnsi);
1812 sqlite3_free(zTmpWide);
1813 return zTextMbcs;
1814}
1815
1816/*
1817** This is a public wrapper for the winUtf8ToUnicode() function.
1818*/
1819LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText){
1820#ifdef SQLITE_ENABLE_API_ARMOR
1821 if( !zText ){
1822 (void)SQLITE_MISUSE_BKPT;
1823 return 0;
1824 }
1825#endif
1826#ifndef SQLITE_OMIT_AUTOINIT
1827 if( sqlite3_initialize() ) return 0;
1828#endif
1829 return winUtf8ToUnicode(zText);
1830}
1831
1832/*
1833** This is a public wrapper for the winUnicodeToUtf8() function.
1834*/
1835char *sqlite3_win32_unicode_to_utf8(LPCWSTR zWideText){
1836#ifdef SQLITE_ENABLE_API_ARMOR
1837 if( !zWideText ){
1838 (void)SQLITE_MISUSE_BKPT;
1839 return 0;
1840 }
1841#endif
1842#ifndef SQLITE_OMIT_AUTOINIT
1843 if( sqlite3_initialize() ) return 0;
1844#endif
1845 return winUnicodeToUtf8(zWideText);
1846}
1847
1848/*
1849** This is a public wrapper for the winMbcsToUtf8() function.
1850*/
1851char *sqlite3_win32_mbcs_to_utf8(const char *zText){
1852#ifdef SQLITE_ENABLE_API_ARMOR
1853 if( !zText ){
1854 (void)SQLITE_MISUSE_BKPT;
1855 return 0;
1856 }
1857#endif
1858#ifndef SQLITE_OMIT_AUTOINIT
1859 if( sqlite3_initialize() ) return 0;
1860#endif
1861 return winMbcsToUtf8(zText, osAreFileApisANSI());
1862}
1863
1864/*
1865** This is a public wrapper for the winMbcsToUtf8() function.
1866*/
1867char *sqlite3_win32_mbcs_to_utf8_v2(const char *zText, int useAnsi){
1868#ifdef SQLITE_ENABLE_API_ARMOR
1869 if( !zText ){
1870 (void)SQLITE_MISUSE_BKPT;
1871 return 0;
1872 }
1873#endif
1874#ifndef SQLITE_OMIT_AUTOINIT
1875 if( sqlite3_initialize() ) return 0;
1876#endif
1877 return winMbcsToUtf8(zText, useAnsi);
1878}
1879
1880/*
1881** This is a public wrapper for the winUtf8ToMbcs() function.
1882*/
1883char *sqlite3_win32_utf8_to_mbcs(const char *zText){
1884#ifdef SQLITE_ENABLE_API_ARMOR
1885 if( !zText ){
1886 (void)SQLITE_MISUSE_BKPT;
1887 return 0;
1888 }
1889#endif
1890#ifndef SQLITE_OMIT_AUTOINIT
1891 if( sqlite3_initialize() ) return 0;
1892#endif
1893 return winUtf8ToMbcs(zText, osAreFileApisANSI());
1894}
1895
1896/*
1897** This is a public wrapper for the winUtf8ToMbcs() function.
1898*/
1899char *sqlite3_win32_utf8_to_mbcs_v2(const char *zText, int useAnsi){
1900#ifdef SQLITE_ENABLE_API_ARMOR
1901 if( !zText ){
1902 (void)SQLITE_MISUSE_BKPT;
1903 return 0;
1904 }
1905#endif
1906#ifndef SQLITE_OMIT_AUTOINIT
1907 if( sqlite3_initialize() ) return 0;
1908#endif
1909 return winUtf8ToMbcs(zText, useAnsi);
1910}
1911
1912/*
1913** This function is the same as sqlite3_win32_set_directory (below); however,
1914** it accepts a UTF-8 string.
1915*/
1916int sqlite3_win32_set_directory8(
1917 unsigned long type, /* Identifier for directory being set or reset */
1918 const char *zValue /* New value for directory being set or reset */
1919){
1920 char **ppDirectory = 0;
1921 int rc;
1922#ifndef SQLITE_OMIT_AUTOINIT
1923 rc = sqlite3_initialize();
1924 if( rc ) return rc;
1925#endif
1926 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
1927 if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
1928 ppDirectory = &sqlite3_data_directory;
1929 }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
1930 ppDirectory = &sqlite3_temp_directory;
1931 }
1932 assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
1933 || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
1934 );
1935 assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
1936 if( ppDirectory ){
1937 char *zCopy = 0;
1938 if( zValue && zValue[0] ){
1939 zCopy = sqlite3_mprintf("%s", zValue);
1940 if ( zCopy==0 ){
1941 rc = SQLITE_NOMEM_BKPT;
1942 goto set_directory8_done;
1943 }
1944 }
1945 sqlite3_free(*ppDirectory);
1946 *ppDirectory = zCopy;
1947 rc = SQLITE_OK;
1948 }else{
1949 rc = SQLITE_ERROR;
1950 }
1951set_directory8_done:
1952 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
1953 return rc;
1954}
1955
1956/*
1957** This function is the same as sqlite3_win32_set_directory (below); however,
1958** it accepts a UTF-16 string.
1959*/
1960int sqlite3_win32_set_directory16(
1961 unsigned long type, /* Identifier for directory being set or reset */
1962 const void *zValue /* New value for directory being set or reset */
1963){
1964 int rc;
1965 char *zUtf8 = 0;
1966 if( zValue ){
1967 zUtf8 = sqlite3_win32_unicode_to_utf8(zValue);
1968 if( zUtf8==0 ) return SQLITE_NOMEM_BKPT;
1969 }
1970 rc = sqlite3_win32_set_directory8(type, zUtf8);
1971 if( zUtf8 ) sqlite3_free(zUtf8);
1972 return rc;
1973}
1974
1975/*
1976** This function sets the data directory or the temporary directory based on
1977** the provided arguments. The type argument must be 1 in order to set the
1978** data directory or 2 in order to set the temporary directory. The zValue
1979** argument is the name of the directory to use. The return value will be
1980** SQLITE_OK if successful.
1981*/
1982int sqlite3_win32_set_directory(
1983 unsigned long type, /* Identifier for directory being set or reset */
1984 void *zValue /* New value for directory being set or reset */
1985){
1986 return sqlite3_win32_set_directory16(type, zValue);
1987}
1988
1989/*
1990** The return value of winGetLastErrorMsg
1991** is zero if the error message fits in the buffer, or non-zero
1992** otherwise (if the message was truncated).
1993*/
1994static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
1995 /* FormatMessage returns 0 on failure. Otherwise it
1996 ** returns the number of TCHARs written to the output
1997 ** buffer, excluding the terminating null char.
1998 */
1999 DWORD dwLen = 0;
2000 char *zOut = 0;
2001
2002 if( osIsNT() ){
2003#if SQLITE_OS_WINRT
2004 WCHAR zTempWide[SQLITE_WIN32_MAX_ERRMSG_CHARS+1];
2005 dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
2006 FORMAT_MESSAGE_IGNORE_INSERTS,
2007 NULL,
2008 lastErrno,
2009 0,
2010 zTempWide,
2011 SQLITE_WIN32_MAX_ERRMSG_CHARS,
2012 0);
2013#else
2014 LPWSTR zTempWide = NULL;
2015 dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
2016 FORMAT_MESSAGE_FROM_SYSTEM |
2017 FORMAT_MESSAGE_IGNORE_INSERTS,
2018 NULL,
2019 lastErrno,
2020 0,
2021 (LPWSTR) &zTempWide,
2022 0,
2023 0);
2024#endif
2025 if( dwLen > 0 ){
2026 /* allocate a buffer and convert to UTF8 */
2027 sqlite3BeginBenignMalloc();
2028 zOut = winUnicodeToUtf8(zTempWide);
2029 sqlite3EndBenignMalloc();
2030#if !SQLITE_OS_WINRT
2031 /* free the system buffer allocated by FormatMessage */
2032 osLocalFree(zTempWide);
2033#endif
2034 }
2035 }
2036#ifdef SQLITE_WIN32_HAS_ANSI
2037 else{
2038 char *zTemp = NULL;
2039 dwLen = osFormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
2040 FORMAT_MESSAGE_FROM_SYSTEM |
2041 FORMAT_MESSAGE_IGNORE_INSERTS,
2042 NULL,
2043 lastErrno,
2044 0,
2045 (LPSTR) &zTemp,
2046 0,
2047 0);
2048 if( dwLen > 0 ){
2049 /* allocate a buffer and convert to UTF8 */
2050 sqlite3BeginBenignMalloc();
2051 zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI());
2052 sqlite3EndBenignMalloc();
2053 /* free the system buffer allocated by FormatMessage */
2054 osLocalFree(zTemp);
2055 }
2056 }
2057#endif
2058 if( 0 == dwLen ){
2059 sqlite3_snprintf(nBuf, zBuf, "OsError 0x%lx (%lu)", lastErrno, lastErrno);
2060 }else{
2061 /* copy a maximum of nBuf chars to output buffer */
2062 sqlite3_snprintf(nBuf, zBuf, "%s", zOut);
2063 /* free the UTF8 buffer */
2064 sqlite3_free(zOut);
2065 }
2066 return 0;
2067}
2068
2069/*
2070**
2071** This function - winLogErrorAtLine() - is only ever called via the macro
2072** winLogError().
2073**
2074** This routine is invoked after an error occurs in an OS function.
2075** It logs a message using sqlite3_log() containing the current value of
2076** error code and, if possible, the human-readable equivalent from
2077** FormatMessage.
2078**
2079** The first argument passed to the macro should be the error code that
2080** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
2081** The two subsequent arguments should be the name of the OS function that
2082** failed and the associated file-system path, if any.
2083*/
2084#define winLogError(a,b,c,d) winLogErrorAtLine(a,b,c,d,__LINE__)
2085static int winLogErrorAtLine(
2086 int errcode, /* SQLite error code */
2087 DWORD lastErrno, /* Win32 last error */
2088 const char *zFunc, /* Name of OS function that failed */
2089 const char *zPath, /* File path associated with error */
2090 int iLine /* Source line number where error occurred */
2091){
2092 char zMsg[500]; /* Human readable error text */
2093 int i; /* Loop counter */
2094
2095 zMsg[0] = 0;
2096 winGetLastErrorMsg(lastErrno, sizeof(zMsg), zMsg);
2097 assert( errcode!=SQLITE_OK );
2098 if( zPath==0 ) zPath = "";
2099 for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){}
2100 zMsg[i] = 0;
2101 sqlite3_log(errcode,
2102 "os_win.c:%d: (%lu) %s(%s) - %s",
2103 iLine, lastErrno, zFunc, zPath, zMsg
2104 );
2105
2106 return errcode;
2107}
2108
2109/*
2110** The number of times that a ReadFile(), WriteFile(), and DeleteFile()
2111** will be retried following a locking error - probably caused by
2112** antivirus software. Also the initial delay before the first retry.
2113** The delay increases linearly with each retry.
2114*/
2115#ifndef SQLITE_WIN32_IOERR_RETRY
2116# define SQLITE_WIN32_IOERR_RETRY 10
2117#endif
2118#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
2119# define SQLITE_WIN32_IOERR_RETRY_DELAY 25
2120#endif
2121static int winIoerrRetry = SQLITE_WIN32_IOERR_RETRY;
2122static int winIoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;
2123
2124/*
2125** The "winIoerrCanRetry1" macro is used to determine if a particular I/O
2126** error code obtained via GetLastError() is eligible to be retried. It
2127** must accept the error code DWORD as its only argument and should return
2128** non-zero if the error code is transient in nature and the operation
2129** responsible for generating the original error might succeed upon being
2130** retried. The argument to this macro should be a variable.
2131**
2132** Additionally, a macro named "winIoerrCanRetry2" may be defined. If it
2133** is defined, it will be consulted only when the macro "winIoerrCanRetry1"
2134** returns zero. The "winIoerrCanRetry2" macro is completely optional and
2135** may be used to include additional error codes in the set that should
2136** result in the failing I/O operation being retried by the caller. If
2137** defined, the "winIoerrCanRetry2" macro must exhibit external semantics
2138** identical to those of the "winIoerrCanRetry1" macro.
2139*/
2140#if !defined(winIoerrCanRetry1)
2141#define winIoerrCanRetry1(a) (((a)==ERROR_ACCESS_DENIED) || \
2142 ((a)==ERROR_SHARING_VIOLATION) || \
2143 ((a)==ERROR_LOCK_VIOLATION) || \
2144 ((a)==ERROR_DEV_NOT_EXIST) || \
2145 ((a)==ERROR_NETNAME_DELETED) || \
2146 ((a)==ERROR_SEM_TIMEOUT) || \
2147 ((a)==ERROR_NETWORK_UNREACHABLE))
2148#endif
2149
2150/*
2151** If a ReadFile() or WriteFile() error occurs, invoke this routine
2152** to see if it should be retried. Return TRUE to retry. Return FALSE
2153** to give up with an error.
2154*/
2155static int winRetryIoerr(int *pnRetry, DWORD *pError){
2156 DWORD e = osGetLastError();
2157 if( *pnRetry>=winIoerrRetry ){
2158 if( pError ){
2159 *pError = e;
2160 }
2161 return 0;
2162 }
2163 if( winIoerrCanRetry1(e) ){
2164 sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
2165 ++*pnRetry;
2166 return 1;
2167 }
2168#if defined(winIoerrCanRetry2)
2169 else if( winIoerrCanRetry2(e) ){
2170 sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
2171 ++*pnRetry;
2172 return 1;
2173 }
2174#endif
2175 if( pError ){
2176 *pError = e;
2177 }
2178 return 0;
2179}
2180
2181/*
2182** Log a I/O error retry episode.
2183*/
2184static void winLogIoerr(int nRetry, int lineno){
2185 if( nRetry ){
2186 sqlite3_log(SQLITE_NOTICE,
2187 "delayed %dms for lock/sharing conflict at line %d",
2188 winIoerrRetryDelay*nRetry*(nRetry+1)/2, lineno
2189 );
2190 }
2191}
2192
2193/*
2194** This #if does not rely on the SQLITE_OS_WINCE define because the
2195** corresponding section in "date.c" cannot use it.
2196*/
2197#if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
2198 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
2199/*
2200** The MSVC CRT on Windows CE may not have a localtime() function.
2201** So define a substitute.
2202*/
2203# include <time.h>
2204struct tm *__cdecl localtime(const time_t *t)
2205{
2206 static struct tm y;
2207 FILETIME uTm, lTm;
2208 SYSTEMTIME pTm;
2209 sqlite3_int64 t64;
2210 t64 = *t;
2211 t64 = (t64 + 11644473600)*10000000;
2212 uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
2213 uTm.dwHighDateTime= (DWORD)(t64 >> 32);
2214 osFileTimeToLocalFileTime(&uTm,&lTm);
2215 osFileTimeToSystemTime(&lTm,&pTm);
2216 y.tm_year = pTm.wYear - 1900;
2217 y.tm_mon = pTm.wMonth - 1;
2218 y.tm_wday = pTm.wDayOfWeek;
2219 y.tm_mday = pTm.wDay;
2220 y.tm_hour = pTm.wHour;
2221 y.tm_min = pTm.wMinute;
2222 y.tm_sec = pTm.wSecond;
2223 return &y;
2224}
2225#endif
2226
2227#if SQLITE_OS_WINCE
2228/*************************************************************************
2229** This section contains code for WinCE only.
2230*/
2231#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
2232
2233/*
2234** Acquire a lock on the handle h
2235*/
2236static void winceMutexAcquire(HANDLE h){
2237 DWORD dwErr;
2238 do {
2239 dwErr = osWaitForSingleObject(h, INFINITE);
2240 } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
2241}
2242/*
2243** Release a lock acquired by winceMutexAcquire()
2244*/
2245#define winceMutexRelease(h) ReleaseMutex(h)
2246
2247/*
2248** Create the mutex and shared memory used for locking in the file
2249** descriptor pFile
2250*/
2251static int winceCreateLock(const char *zFilename, winFile *pFile){
2252 LPWSTR zTok;
2253 LPWSTR zName;
2254 DWORD lastErrno;
2255 BOOL bLogged = FALSE;
2256 BOOL bInit = TRUE;
2257
2258 zName = winUtf8ToUnicode(zFilename);
2259 if( zName==0 ){
2260 /* out of memory */
2261 return SQLITE_IOERR_NOMEM_BKPT;
2262 }
2263
2264 /* Initialize the local lockdata */
2265 memset(&pFile->local, 0, sizeof(pFile->local));
2266
2267 /* Replace the backslashes from the filename and lowercase it
2268 ** to derive a mutex name. */
2269 zTok = osCharLowerW(zName);
2270 for (;*zTok;zTok++){
2271 if (*zTok == '\\') *zTok = '_';
2272 }
2273
2274 /* Create/open the named mutex */
2275 pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
2276 if (!pFile->hMutex){
2277 pFile->lastErrno = osGetLastError();
2278 sqlite3_free(zName);
2279 return winLogError(SQLITE_IOERR, pFile->lastErrno,
2280 "winceCreateLock1", zFilename);
2281 }
2282
2283 /* Acquire the mutex before continuing */
2284 winceMutexAcquire(pFile->hMutex);
2285
2286 /* Since the names of named mutexes, semaphores, file mappings etc are
2287 ** case-sensitive, take advantage of that by uppercasing the mutex name
2288 ** and using that as the shared filemapping name.
2289 */
2290 osCharUpperW(zName);
2291 pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
2292 PAGE_READWRITE, 0, sizeof(winceLock),
2293 zName);
2294
2295 /* Set a flag that indicates we're the first to create the memory so it
2296 ** must be zero-initialized */
2297 lastErrno = osGetLastError();
2298 if (lastErrno == ERROR_ALREADY_EXISTS){
2299 bInit = FALSE;
2300 }
2301
2302 sqlite3_free(zName);
2303
2304 /* If we succeeded in making the shared memory handle, map it. */
2305 if( pFile->hShared ){
2306 pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared,
2307 FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
2308 /* If mapping failed, close the shared memory handle and erase it */
2309 if( !pFile->shared ){
2310 pFile->lastErrno = osGetLastError();
2311 winLogError(SQLITE_IOERR, pFile->lastErrno,
2312 "winceCreateLock2", zFilename);
2313 bLogged = TRUE;
2314 osCloseHandle(pFile->hShared);
2315 pFile->hShared = NULL;
2316 }
2317 }
2318
2319 /* If shared memory could not be created, then close the mutex and fail */
2320 if( pFile->hShared==NULL ){
2321 if( !bLogged ){
2322 pFile->lastErrno = lastErrno;
2323 winLogError(SQLITE_IOERR, pFile->lastErrno,
2324 "winceCreateLock3", zFilename);
2325 bLogged = TRUE;
2326 }
2327 winceMutexRelease(pFile->hMutex);
2328 osCloseHandle(pFile->hMutex);
2329 pFile->hMutex = NULL;
2330 return SQLITE_IOERR;
2331 }
2332
2333 /* Initialize the shared memory if we're supposed to */
2334 if( bInit ){
2335 memset(pFile->shared, 0, sizeof(winceLock));
2336 }
2337
2338 winceMutexRelease(pFile->hMutex);
2339 return SQLITE_OK;
2340}
2341
2342/*
2343** Destroy the part of winFile that deals with wince locks
2344*/
2345static void winceDestroyLock(winFile *pFile){
2346 if (pFile->hMutex){
2347 /* Acquire the mutex */
2348 winceMutexAcquire(pFile->hMutex);
2349
2350 /* The following blocks should probably assert in debug mode, but they
2351 are to cleanup in case any locks remained open */
2352 if (pFile->local.nReaders){
2353 pFile->shared->nReaders --;
2354 }
2355 if (pFile->local.bReserved){
2356 pFile->shared->bReserved = FALSE;
2357 }
2358 if (pFile->local.bPending){
2359 pFile->shared->bPending = FALSE;
2360 }
2361 if (pFile->local.bExclusive){
2362 pFile->shared->bExclusive = FALSE;
2363 }
2364
2365 /* De-reference and close our copy of the shared memory handle */
2366 osUnmapViewOfFile(pFile->shared);
2367 osCloseHandle(pFile->hShared);
2368
2369 /* Done with the mutex */
2370 winceMutexRelease(pFile->hMutex);
2371 osCloseHandle(pFile->hMutex);
2372 pFile->hMutex = NULL;
2373 }
2374}
2375
2376/*
2377** An implementation of the LockFile() API of Windows for CE
2378*/
2379static BOOL winceLockFile(
2380 LPHANDLE phFile,
2381 DWORD dwFileOffsetLow,
2382 DWORD dwFileOffsetHigh,
2383 DWORD nNumberOfBytesToLockLow,
2384 DWORD nNumberOfBytesToLockHigh
2385){
2386 winFile *pFile = HANDLE_TO_WINFILE(phFile);
2387 BOOL bReturn = FALSE;
2388
2389 UNUSED_PARAMETER(dwFileOffsetHigh);
2390 UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
2391
2392 if (!pFile->hMutex) return TRUE;
2393 winceMutexAcquire(pFile->hMutex);
2394
2395 /* Wanting an exclusive lock? */
2396 if (dwFileOffsetLow == (DWORD)SHARED_FIRST
2397 && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
2398 if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
2399 pFile->shared->bExclusive = TRUE;
2400 pFile->local.bExclusive = TRUE;
2401 bReturn = TRUE;
2402 }
2403 }
2404
2405 /* Want a read-only lock? */
2406 else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
2407 nNumberOfBytesToLockLow == 1){
2408 if (pFile->shared->bExclusive == 0){
2409 pFile->local.nReaders ++;
2410 if (pFile->local.nReaders == 1){
2411 pFile->shared->nReaders ++;
2412 }
2413 bReturn = TRUE;
2414 }
2415 }
2416
2417 /* Want a pending lock? */
2418 else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
2419 && nNumberOfBytesToLockLow == 1){
2420 /* If no pending lock has been acquired, then acquire it */
2421 if (pFile->shared->bPending == 0) {
2422 pFile->shared->bPending = TRUE;
2423 pFile->local.bPending = TRUE;
2424 bReturn = TRUE;
2425 }
2426 }
2427
2428 /* Want a reserved lock? */
2429 else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
2430 && nNumberOfBytesToLockLow == 1){
2431 if (pFile->shared->bReserved == 0) {
2432 pFile->shared->bReserved = TRUE;
2433 pFile->local.bReserved = TRUE;
2434 bReturn = TRUE;
2435 }
2436 }
2437
2438 winceMutexRelease(pFile->hMutex);
2439 return bReturn;
2440}
2441
2442/*
2443** An implementation of the UnlockFile API of Windows for CE
2444*/
2445static BOOL winceUnlockFile(
2446 LPHANDLE phFile,
2447 DWORD dwFileOffsetLow,
2448 DWORD dwFileOffsetHigh,
2449 DWORD nNumberOfBytesToUnlockLow,
2450 DWORD nNumberOfBytesToUnlockHigh
2451){
2452 winFile *pFile = HANDLE_TO_WINFILE(phFile);
2453 BOOL bReturn = FALSE;
2454
2455 UNUSED_PARAMETER(dwFileOffsetHigh);
2456 UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
2457
2458 if (!pFile->hMutex) return TRUE;
2459 winceMutexAcquire(pFile->hMutex);
2460
2461 /* Releasing a reader lock or an exclusive lock */
2462 if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
2463 /* Did we have an exclusive lock? */
2464 if (pFile->local.bExclusive){
2465 assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
2466 pFile->local.bExclusive = FALSE;
2467 pFile->shared->bExclusive = FALSE;
2468 bReturn = TRUE;
2469 }
2470
2471 /* Did we just have a reader lock? */
2472 else if (pFile->local.nReaders){
2473 assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE
2474 || nNumberOfBytesToUnlockLow == 1);
2475 pFile->local.nReaders --;
2476 if (pFile->local.nReaders == 0)
2477 {
2478 pFile->shared->nReaders --;
2479 }
2480 bReturn = TRUE;
2481 }
2482 }
2483
2484 /* Releasing a pending lock */
2485 else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
2486 && nNumberOfBytesToUnlockLow == 1){
2487 if (pFile->local.bPending){
2488 pFile->local.bPending = FALSE;
2489 pFile->shared->bPending = FALSE;
2490 bReturn = TRUE;
2491 }
2492 }
2493 /* Releasing a reserved lock */
2494 else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
2495 && nNumberOfBytesToUnlockLow == 1){
2496 if (pFile->local.bReserved) {
2497 pFile->local.bReserved = FALSE;
2498 pFile->shared->bReserved = FALSE;
2499 bReturn = TRUE;
2500 }
2501 }
2502
2503 winceMutexRelease(pFile->hMutex);
2504 return bReturn;
2505}
2506/*
2507** End of the special code for wince
2508*****************************************************************************/
2509#endif /* SQLITE_OS_WINCE */
2510
2511/*
2512** Lock a file region.
2513*/
2514static BOOL winLockFile(
2515 LPHANDLE phFile,
2516 DWORD flags,
2517 DWORD offsetLow,
2518 DWORD offsetHigh,
2519 DWORD numBytesLow,
2520 DWORD numBytesHigh
2521){
2522#if SQLITE_OS_WINCE
2523 /*
2524 ** NOTE: Windows CE is handled differently here due its lack of the Win32
2525 ** API LockFile.
2526 */
2527 return winceLockFile(phFile, offsetLow, offsetHigh,
2528 numBytesLow, numBytesHigh);
2529#else
2530 if( osIsNT() ){
2531 OVERLAPPED ovlp;
2532 memset(&ovlp, 0, sizeof(OVERLAPPED));
2533 ovlp.Offset = offsetLow;
2534 ovlp.OffsetHigh = offsetHigh;
2535 return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp);
2536 }else{
2537 return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
2538 numBytesHigh);
2539 }
2540#endif
2541}
2542
2543/*
2544** Unlock a file region.
2545 */
2546static BOOL winUnlockFile(
2547 LPHANDLE phFile,
2548 DWORD offsetLow,
2549 DWORD offsetHigh,
2550 DWORD numBytesLow,
2551 DWORD numBytesHigh
2552){
2553#if SQLITE_OS_WINCE
2554 /*
2555 ** NOTE: Windows CE is handled differently here due its lack of the Win32
2556 ** API UnlockFile.
2557 */
2558 return winceUnlockFile(phFile, offsetLow, offsetHigh,
2559 numBytesLow, numBytesHigh);
2560#else
2561 if( osIsNT() ){
2562 OVERLAPPED ovlp;
2563 memset(&ovlp, 0, sizeof(OVERLAPPED));
2564 ovlp.Offset = offsetLow;
2565 ovlp.OffsetHigh = offsetHigh;
2566 return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp);
2567 }else{
2568 return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
2569 numBytesHigh);
2570 }
2571#endif
2572}
2573
2574/*****************************************************************************
2575** The next group of routines implement the I/O methods specified
2576** by the sqlite3_io_methods object.
2577******************************************************************************/
2578
2579/*
2580** Some Microsoft compilers lack this definition.
2581*/
2582#ifndef INVALID_SET_FILE_POINTER
2583# define INVALID_SET_FILE_POINTER ((DWORD)-1)
2584#endif
2585
2586/*
2587** Move the current position of the file handle passed as the first
2588** argument to offset iOffset within the file. If successful, return 0.
2589** Otherwise, set pFile->lastErrno and return non-zero.
2590*/
2591static int winSeekFile(winFile *pFile, sqlite3_int64 iOffset){
2592#if !SQLITE_OS_WINRT
2593 LONG upperBits; /* Most sig. 32 bits of new offset */
2594 LONG lowerBits; /* Least sig. 32 bits of new offset */
2595 DWORD dwRet; /* Value returned by SetFilePointer() */
2596 DWORD lastErrno; /* Value returned by GetLastError() */
2597
2598 OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset));
2599
2600 upperBits = (LONG)((iOffset>>32) & 0x7fffffff);
2601 lowerBits = (LONG)(iOffset & 0xffffffff);
2602
2603 /* API oddity: If successful, SetFilePointer() returns a dword
2604 ** containing the lower 32-bits of the new file-offset. Or, if it fails,
2605 ** it returns INVALID_SET_FILE_POINTER. However according to MSDN,
2606 ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine
2607 ** whether an error has actually occurred, it is also necessary to call
2608 ** GetLastError().
2609 */
2610 dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
2611
2612 if( (dwRet==INVALID_SET_FILE_POINTER
2613 && ((lastErrno = osGetLastError())!=NO_ERROR)) ){
2614 pFile->lastErrno = lastErrno;
2615 winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
2616 "winSeekFile", pFile->zPath);
2617 OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
2618 return 1;
2619 }
2620
2621 OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
2622 return 0;
2623#else
2624 /*
2625 ** Same as above, except that this implementation works for WinRT.
2626 */
2627
2628 LARGE_INTEGER x; /* The new offset */
2629 BOOL bRet; /* Value returned by SetFilePointerEx() */
2630
2631 x.QuadPart = iOffset;
2632 bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN);
2633
2634 if(!bRet){
2635 pFile->lastErrno = osGetLastError();
2636 winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
2637 "winSeekFile", pFile->zPath);
2638 OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
2639 return 1;
2640 }
2641
2642 OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
2643 return 0;
2644#endif
2645}
2646
2647#if SQLITE_MAX_MMAP_SIZE>0
2648/* Forward references to VFS helper methods used for memory mapped files */
2649static int winMapfile(winFile*, sqlite3_int64);
2650static int winUnmapfile(winFile*);
2651#endif
2652
2653/*
2654** Close a file.
2655**
2656** It is reported that an attempt to close a handle might sometimes
2657** fail. This is a very unreasonable result, but Windows is notorious
2658** for being unreasonable so I do not doubt that it might happen. If
2659** the close fails, we pause for 100 milliseconds and try again. As
2660** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
2661** giving up and returning an error.
2662*/
2663#define MX_CLOSE_ATTEMPT 3
2664static int winClose(sqlite3_file *id){
2665 int rc, cnt = 0;
2666 winFile *pFile = (winFile*)id;
2667
2668 assert( id!=0 );
2669#ifndef SQLITE_OMIT_WAL
2670 assert( pFile->pShm==0 );
2671#endif
2672 assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
2673 OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p\n",
2674 osGetCurrentProcessId(), pFile, pFile->h));
2675
2676#if SQLITE_MAX_MMAP_SIZE>0
2677 winUnmapfile(pFile);
2678#endif
2679
2680 do{
2681 rc = osCloseHandle(pFile->h);
2682 /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
2683 }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
2684#if SQLITE_OS_WINCE
2685#define WINCE_DELETION_ATTEMPTS 3
2686 {
2687 winVfsAppData *pAppData = (winVfsAppData*)pFile->pVfs->pAppData;
2688 if( pAppData==NULL || !pAppData->bNoLock ){
2689 winceDestroyLock(pFile);
2690 }
2691 }
2692 if( pFile->zDeleteOnClose ){
2693 int cnt = 0;
2694 while(
2695 osDeleteFileW(pFile->zDeleteOnClose)==0
2696 && osGetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
2697 && cnt++ < WINCE_DELETION_ATTEMPTS
2698 ){
2699 sqlite3_win32_sleep(100); /* Wait a little before trying again */
2700 }
2701 sqlite3_free(pFile->zDeleteOnClose);
2702 }
2703#endif
2704 if( rc ){
2705 pFile->h = NULL;
2706 }
2707 OpenCounter(-1);
2708 OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p, rc=%s\n",
2709 osGetCurrentProcessId(), pFile, pFile->h, rc ? "ok" : "failed"));
2710 return rc ? SQLITE_OK
2711 : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(),
2712 "winClose", pFile->zPath);
2713}
2714
2715/*
2716** Read data from a file into a buffer. Return SQLITE_OK if all
2717** bytes were read successfully and SQLITE_IOERR if anything goes
2718** wrong.
2719*/
2720static int winRead(
2721 sqlite3_file *id, /* File to read from */
2722 void *pBuf, /* Write content into this buffer */
2723 int amt, /* Number of bytes to read */
2724 sqlite3_int64 offset /* Begin reading at this offset */
2725){
2726#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
2727 OVERLAPPED overlapped; /* The offset for ReadFile. */
2728#endif
2729 winFile *pFile = (winFile*)id; /* file handle */
2730 DWORD nRead; /* Number of bytes actually read from file */
2731 int nRetry = 0; /* Number of retrys */
2732
2733 assert( id!=0 );
2734 assert( amt>0 );
2735 assert( offset>=0 );
2736 SimulateIOError(return SQLITE_IOERR_READ);
2737 OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
2738 "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
2739 pFile->h, pBuf, amt, offset, pFile->locktype));
2740
2741#if SQLITE_MAX_MMAP_SIZE>0
2742 /* Deal with as much of this read request as possible by transfering
2743 ** data from the memory mapping using memcpy(). */
2744 if( offset<pFile->mmapSize ){
2745 if( offset+amt <= pFile->mmapSize ){
2746 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
2747 OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
2748 osGetCurrentProcessId(), pFile, pFile->h));
2749 return SQLITE_OK;
2750 }else{
2751 int nCopy = (int)(pFile->mmapSize - offset);
2752 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
2753 pBuf = &((u8 *)pBuf)[nCopy];
2754 amt -= nCopy;
2755 offset += nCopy;
2756 }
2757 }
2758#endif
2759
2760#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
2761 if( winSeekFile(pFile, offset) ){
2762 OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
2763 osGetCurrentProcessId(), pFile, pFile->h));
2764 return SQLITE_FULL;
2765 }
2766 while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
2767#else
2768 memset(&overlapped, 0, sizeof(OVERLAPPED));
2769 overlapped.Offset = (LONG)(offset & 0xffffffff);
2770 overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
2771 while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
2772 osGetLastError()!=ERROR_HANDLE_EOF ){
2773#endif
2774 DWORD lastErrno;
2775 if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
2776 pFile->lastErrno = lastErrno;
2777 OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_READ\n",
2778 osGetCurrentProcessId(), pFile, pFile->h));
2779 return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
2780 "winRead", pFile->zPath);
2781 }
2782 winLogIoerr(nRetry, __LINE__);
2783 if( nRead<(DWORD)amt ){
2784 /* Unread parts of the buffer must be zero-filled */
2785 memset(&((char*)pBuf)[nRead], 0, amt-nRead);
2786 OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_SHORT_READ\n",
2787 osGetCurrentProcessId(), pFile, pFile->h));
2788 return SQLITE_IOERR_SHORT_READ;
2789 }
2790
2791 OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
2792 osGetCurrentProcessId(), pFile, pFile->h));
2793 return SQLITE_OK;
2794}
2795
2796/*
2797** Write data from a buffer into a file. Return SQLITE_OK on success
2798** or some other error code on failure.
2799*/
2800static int winWrite(
2801 sqlite3_file *id, /* File to write into */
2802 const void *pBuf, /* The bytes to be written */
2803 int amt, /* Number of bytes to write */
2804 sqlite3_int64 offset /* Offset into the file to begin writing at */
2805){
2806 int rc = 0; /* True if error has occurred, else false */
2807 winFile *pFile = (winFile*)id; /* File handle */
2808 int nRetry = 0; /* Number of retries */
2809
2810 assert( amt>0 );
2811 assert( pFile );
2812 SimulateIOError(return SQLITE_IOERR_WRITE);
2813 SimulateDiskfullError(return SQLITE_FULL);
2814
2815 OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
2816 "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
2817 pFile->h, pBuf, amt, offset, pFile->locktype));
2818
2819#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
2820 /* Deal with as much of this write request as possible by transfering
2821 ** data from the memory mapping using memcpy(). */
2822 if( offset<pFile->mmapSize ){
2823 if( offset+amt <= pFile->mmapSize ){
2824 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
2825 OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
2826 osGetCurrentProcessId(), pFile, pFile->h));
2827 return SQLITE_OK;
2828 }else{
2829 int nCopy = (int)(pFile->mmapSize - offset);
2830 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
2831 pBuf = &((u8 *)pBuf)[nCopy];
2832 amt -= nCopy;
2833 offset += nCopy;
2834 }
2835 }
2836#endif
2837
2838#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
2839 rc = winSeekFile(pFile, offset);
2840 if( rc==0 ){
2841#else
2842 {
2843#endif
2844#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
2845 OVERLAPPED overlapped; /* The offset for WriteFile. */
2846#endif
2847 u8 *aRem = (u8 *)pBuf; /* Data yet to be written */
2848 int nRem = amt; /* Number of bytes yet to be written */
2849 DWORD nWrite; /* Bytes written by each WriteFile() call */
2850 DWORD lastErrno = NO_ERROR; /* Value returned by GetLastError() */
2851
2852#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
2853 memset(&overlapped, 0, sizeof(OVERLAPPED));
2854 overlapped.Offset = (LONG)(offset & 0xffffffff);
2855 overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
2856#endif
2857
2858 while( nRem>0 ){
2859#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
2860 if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
2861#else
2862 if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
2863#endif
2864 if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
2865 break;
2866 }
2867 assert( nWrite==0 || nWrite<=(DWORD)nRem );
2868 if( nWrite==0 || nWrite>(DWORD)nRem ){
2869 lastErrno = osGetLastError();
2870 break;
2871 }
2872#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
2873 offset += nWrite;
2874 overlapped.Offset = (LONG)(offset & 0xffffffff);
2875 overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
2876#endif
2877 aRem += nWrite;
2878 nRem -= nWrite;
2879 }
2880 if( nRem>0 ){
2881 pFile->lastErrno = lastErrno;
2882 rc = 1;
2883 }
2884 }
2885
2886 if( rc ){
2887 if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
2888 || ( pFile->lastErrno==ERROR_DISK_FULL )){
2889 OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
2890 osGetCurrentProcessId(), pFile, pFile->h));
2891 return winLogError(SQLITE_FULL, pFile->lastErrno,
2892 "winWrite1", pFile->zPath);
2893 }
2894 OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_WRITE\n",
2895 osGetCurrentProcessId(), pFile, pFile->h));
2896 return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
2897 "winWrite2", pFile->zPath);
2898 }else{
2899 winLogIoerr(nRetry, __LINE__);
2900 }
2901 OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
2902 osGetCurrentProcessId(), pFile, pFile->h));
2903 return SQLITE_OK;
2904}
2905
2906/*
2907** Truncate an open file to a specified size
2908*/
2909static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
2910 winFile *pFile = (winFile*)id; /* File handle object */
2911 int rc = SQLITE_OK; /* Return code for this function */
2912 DWORD lastErrno;
2913#if SQLITE_MAX_MMAP_SIZE>0
2914 sqlite3_int64 oldMmapSize;
2915 if( pFile->nFetchOut>0 ){
2916 /* File truncation is a no-op if there are outstanding memory mapped
2917 ** pages. This is because truncating the file means temporarily unmapping
2918 ** the file, and that might delete memory out from under existing cursors.
2919 **
2920 ** This can result in incremental vacuum not truncating the file,
2921 ** if there is an active read cursor when the incremental vacuum occurs.
2922 ** No real harm comes of this - the database file is not corrupted,
2923 ** though some folks might complain that the file is bigger than it
2924 ** needs to be.
2925 **
2926 ** The only feasible work-around is to defer the truncation until after
2927 ** all references to memory-mapped content are closed. That is doable,
2928 ** but involves adding a few branches in the common write code path which
2929 ** could slow down normal operations slightly. Hence, we have decided for
2930 ** now to simply make trancations a no-op if there are pending reads. We
2931 ** can maybe revisit this decision in the future.
2932 */
2933 return SQLITE_OK;
2934 }
2935#endif
2936
2937 assert( pFile );
2938 SimulateIOError(return SQLITE_IOERR_TRUNCATE);
2939 OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n",
2940 osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype));
2941
2942 /* If the user has configured a chunk-size for this file, truncate the
2943 ** file so that it consists of an integer number of chunks (i.e. the
2944 ** actual file size after the operation may be larger than the requested
2945 ** size).
2946 */
2947 if( pFile->szChunk>0 ){
2948 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
2949 }
2950
2951#if SQLITE_MAX_MMAP_SIZE>0
2952 if( pFile->pMapRegion ){
2953 oldMmapSize = pFile->mmapSize;
2954 }else{
2955 oldMmapSize = 0;
2956 }
2957 winUnmapfile(pFile);
2958#endif
2959
2960 /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
2961 if( winSeekFile(pFile, nByte) ){
2962 rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
2963 "winTruncate1", pFile->zPath);
2964 }else if( 0==osSetEndOfFile(pFile->h) &&
2965 ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){
2966 pFile->lastErrno = lastErrno;
2967 rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
2968 "winTruncate2", pFile->zPath);
2969 }
2970
2971#if SQLITE_MAX_MMAP_SIZE>0
2972 if( rc==SQLITE_OK && oldMmapSize>0 ){
2973 if( oldMmapSize>nByte ){
2974 winMapfile(pFile, -1);
2975 }else{
2976 winMapfile(pFile, oldMmapSize);
2977 }
2978 }
2979#endif
2980
2981 OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, rc=%s\n",
2982 osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc)));
2983 return rc;
2984}
2985
2986#ifdef SQLITE_TEST
2987/*
2988** Count the number of fullsyncs and normal syncs. This is used to test
2989** that syncs and fullsyncs are occuring at the right times.
2990*/
2991int sqlite3_sync_count = 0;
2992int sqlite3_fullsync_count = 0;
2993#endif
2994
2995/*
2996** Make sure all writes to a particular file are committed to disk.
2997*/
2998static int winSync(sqlite3_file *id, int flags){
2999#ifndef SQLITE_NO_SYNC
3000 /*
3001 ** Used only when SQLITE_NO_SYNC is not defined.
3002 */
3003 BOOL rc;
3004#endif
3005#if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \
3006 defined(SQLITE_HAVE_OS_TRACE)
3007 /*
3008 ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or
3009 ** OSTRACE() macros.
3010 */
3011 winFile *pFile = (winFile*)id;
3012#else
3013 UNUSED_PARAMETER(id);
3014#endif
3015
3016 assert( pFile );
3017 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3018 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3019 || (flags&0x0F)==SQLITE_SYNC_FULL
3020 );
3021
3022 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3023 ** line is to test that doing so does not cause any problems.
3024 */
3025 SimulateDiskfullError( return SQLITE_FULL );
3026
3027 OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, flags=%x, lock=%d\n",
3028 osGetCurrentProcessId(), pFile, pFile->h, flags,
3029 pFile->locktype));
3030
3031#ifndef SQLITE_TEST
3032 UNUSED_PARAMETER(flags);
3033#else
3034 if( (flags&0x0F)==SQLITE_SYNC_FULL ){
3035 sqlite3_fullsync_count++;
3036 }
3037 sqlite3_sync_count++;
3038#endif
3039
3040 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3041 ** no-op
3042 */
3043#ifdef SQLITE_NO_SYNC
3044 OSTRACE(("SYNC-NOP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
3045 osGetCurrentProcessId(), pFile, pFile->h));
3046 return SQLITE_OK;
3047#else
3048#if SQLITE_MAX_MMAP_SIZE>0
3049 if( pFile->pMapRegion ){
3050 if( osFlushViewOfFile(pFile->pMapRegion, 0) ){
3051 OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
3052 "rc=SQLITE_OK\n", osGetCurrentProcessId(),
3053 pFile, pFile->pMapRegion));
3054 }else{
3055 pFile->lastErrno = osGetLastError();
3056 OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
3057 "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(),
3058 pFile, pFile->pMapRegion));
3059 return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
3060 "winSync1", pFile->zPath);
3061 }
3062 }
3063#endif
3064 rc = osFlushFileBuffers(pFile->h);
3065 SimulateIOError( rc=FALSE );
3066 if( rc ){
3067 OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
3068 osGetCurrentProcessId(), pFile, pFile->h));
3069 return SQLITE_OK;
3070 }else{
3071 pFile->lastErrno = osGetLastError();
3072 OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_FSYNC\n",
3073 osGetCurrentProcessId(), pFile, pFile->h));
3074 return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
3075 "winSync2", pFile->zPath);
3076 }
3077#endif
3078}
3079
3080/*
3081** Determine the current size of a file in bytes
3082*/
3083static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
3084 winFile *pFile = (winFile*)id;
3085 int rc = SQLITE_OK;
3086
3087 assert( id!=0 );
3088 assert( pSize!=0 );
3089 SimulateIOError(return SQLITE_IOERR_FSTAT);
3090 OSTRACE(("SIZE file=%p, pSize=%p\n", pFile->h, pSize));
3091
3092#if SQLITE_OS_WINRT
3093 {
3094 FILE_STANDARD_INFO info;
3095 if( osGetFileInformationByHandleEx(pFile->h, FileStandardInfo,
3096 &info, sizeof(info)) ){
3097 *pSize = info.EndOfFile.QuadPart;
3098 }else{
3099 pFile->lastErrno = osGetLastError();
3100 rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
3101 "winFileSize", pFile->zPath);
3102 }
3103 }
3104#else
3105 {
3106 DWORD upperBits;
3107 DWORD lowerBits;
3108 DWORD lastErrno;
3109
3110 lowerBits = osGetFileSize(pFile->h, &upperBits);
3111 *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
3112 if( (lowerBits == INVALID_FILE_SIZE)
3113 && ((lastErrno = osGetLastError())!=NO_ERROR) ){
3114 pFile->lastErrno = lastErrno;
3115 rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
3116 "winFileSize", pFile->zPath);
3117 }
3118 }
3119#endif
3120 OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n",
3121 pFile->h, pSize, *pSize, sqlite3ErrName(rc)));
3122 return rc;
3123}
3124
3125/*
3126** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
3127*/
3128#ifndef LOCKFILE_FAIL_IMMEDIATELY
3129# define LOCKFILE_FAIL_IMMEDIATELY 1
3130#endif
3131
3132#ifndef LOCKFILE_EXCLUSIVE_LOCK
3133# define LOCKFILE_EXCLUSIVE_LOCK 2
3134#endif
3135
3136/*
3137** Historically, SQLite has used both the LockFile and LockFileEx functions.
3138** When the LockFile function was used, it was always expected to fail
3139** immediately if the lock could not be obtained. Also, it always expected to
3140** obtain an exclusive lock. These flags are used with the LockFileEx function
3141** and reflect those expectations; therefore, they should not be changed.
3142*/
3143#ifndef SQLITE_LOCKFILE_FLAGS
3144# define SQLITE_LOCKFILE_FLAGS (LOCKFILE_FAIL_IMMEDIATELY | \
3145 LOCKFILE_EXCLUSIVE_LOCK)
3146#endif
3147
3148/*
3149** Currently, SQLite never calls the LockFileEx function without wanting the
3150** call to fail immediately if the lock cannot be obtained.
3151*/
3152#ifndef SQLITE_LOCKFILEEX_FLAGS
3153# define SQLITE_LOCKFILEEX_FLAGS (LOCKFILE_FAIL_IMMEDIATELY)
3154#endif
3155
3156/*
3157** Acquire a reader lock.
3158** Different API routines are called depending on whether or not this
3159** is Win9x or WinNT.
3160*/
3161static int winGetReadLock(winFile *pFile){
3162 int res;
3163 OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
3164 if( osIsNT() ){
3165#if SQLITE_OS_WINCE
3166 /*
3167 ** NOTE: Windows CE is handled differently here due its lack of the Win32
3168 ** API LockFileEx.
3169 */
3170 res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0);
3171#else
3172 res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS, SHARED_FIRST, 0,
3173 SHARED_SIZE, 0);
3174#endif
3175 }
3176#ifdef SQLITE_WIN32_HAS_ANSI
3177 else{
3178 int lk;
3179 sqlite3_randomness(sizeof(lk), &lk);
3180 pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
3181 res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
3182 SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
3183 }
3184#endif
3185 if( res == 0 ){
3186 pFile->lastErrno = osGetLastError();
3187 /* No need to log a failure to lock */
3188 }
3189 OSTRACE(("READ-LOCK file=%p, result=%d\n", pFile->h, res));
3190 return res;
3191}
3192
3193/*
3194** Undo a readlock
3195*/
3196static int winUnlockReadLock(winFile *pFile){
3197 int res;
3198 DWORD lastErrno;
3199 OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
3200 if( osIsNT() ){
3201 res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
3202 }
3203#ifdef SQLITE_WIN32_HAS_ANSI
3204 else{
3205 res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
3206 }
3207#endif
3208 if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){
3209 pFile->lastErrno = lastErrno;
3210 winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno,
3211 "winUnlockReadLock", pFile->zPath);
3212 }
3213 OSTRACE(("READ-UNLOCK file=%p, result=%d\n", pFile->h, res));
3214 return res;
3215}
3216
3217/*
3218** Lock the file with the lock specified by parameter locktype - one
3219** of the following:
3220**
3221** (1) SHARED_LOCK
3222** (2) RESERVED_LOCK
3223** (3) PENDING_LOCK
3224** (4) EXCLUSIVE_LOCK
3225**
3226** Sometimes when requesting one lock state, additional lock states
3227** are inserted in between. The locking might fail on one of the later
3228** transitions leaving the lock state different from what it started but
3229** still short of its goal. The following chart shows the allowed
3230** transitions and the inserted intermediate states:
3231**
3232** UNLOCKED -> SHARED
3233** SHARED -> RESERVED
3234** SHARED -> (PENDING) -> EXCLUSIVE
3235** RESERVED -> (PENDING) -> EXCLUSIVE
3236** PENDING -> EXCLUSIVE
3237**
3238** This routine will only increase a lock. The winUnlock() routine
3239** erases all locks at once and returns us immediately to locking level 0.
3240** It is not possible to lower the locking level one step at a time. You
3241** must go straight to locking level 0.
3242*/
3243static int winLock(sqlite3_file *id, int locktype){
3244 int rc = SQLITE_OK; /* Return code from subroutines */
3245 int res = 1; /* Result of a Windows lock call */
3246 int newLocktype; /* Set pFile->locktype to this value before exiting */
3247 int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
3248 winFile *pFile = (winFile*)id;
3249 DWORD lastErrno = NO_ERROR;
3250
3251 assert( id!=0 );
3252 OSTRACE(("LOCK file=%p, oldLock=%d(%d), newLock=%d\n",
3253 pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
3254
3255 /* If there is already a lock of this type or more restrictive on the
3256 ** OsFile, do nothing. Don't use the end_lock: exit path, as
3257 ** sqlite3OsEnterMutex() hasn't been called yet.
3258 */
3259 if( pFile->locktype>=locktype ){
3260 OSTRACE(("LOCK-HELD file=%p, rc=SQLITE_OK\n", pFile->h));
3261 return SQLITE_OK;
3262 }
3263
3264 /* Do not allow any kind of write-lock on a read-only database
3265 */
3266 if( (pFile->ctrlFlags & WINFILE_RDONLY)!=0 && locktype>=RESERVED_LOCK ){
3267 return SQLITE_IOERR_LOCK;
3268 }
3269
3270 /* Make sure the locking sequence is correct
3271 */
3272 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
3273 assert( locktype!=PENDING_LOCK );
3274 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
3275
3276 /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
3277 ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
3278 ** the PENDING_LOCK byte is temporary.
3279 */
3280 newLocktype = pFile->locktype;
3281 if( pFile->locktype==NO_LOCK
3282 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<=RESERVED_LOCK)
3283 ){
3284 int cnt = 3;
3285 while( cnt-->0 && (res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
3286 PENDING_BYTE, 0, 1, 0))==0 ){
3287 /* Try 3 times to get the pending lock. This is needed to work
3288 ** around problems caused by indexing and/or anti-virus software on
3289 ** Windows systems.
3290 ** If you are using this code as a model for alternative VFSes, do not
3291 ** copy this retry logic. It is a hack intended for Windows only.
3292 */
3293 lastErrno = osGetLastError();
3294 OSTRACE(("LOCK-PENDING-FAIL file=%p, count=%d, result=%d\n",
3295 pFile->h, cnt, res));
3296 if( lastErrno==ERROR_INVALID_HANDLE ){
3297 pFile->lastErrno = lastErrno;
3298 rc = SQLITE_IOERR_LOCK;
3299 OSTRACE(("LOCK-FAIL file=%p, count=%d, rc=%s\n",
3300 pFile->h, cnt, sqlite3ErrName(rc)));
3301 return rc;
3302 }
3303 if( cnt ) sqlite3_win32_sleep(1);
3304 }
3305 gotPendingLock = res;
3306 if( !res ){
3307 lastErrno = osGetLastError();
3308 }
3309 }
3310
3311 /* Acquire a shared lock
3312 */
3313 if( locktype==SHARED_LOCK && res ){
3314 assert( pFile->locktype==NO_LOCK );
3315 res = winGetReadLock(pFile);
3316 if( res ){
3317 newLocktype = SHARED_LOCK;
3318 }else{
3319 lastErrno = osGetLastError();
3320 }
3321 }
3322
3323 /* Acquire a RESERVED lock
3324 */
3325 if( locktype==RESERVED_LOCK && res ){
3326 assert( pFile->locktype==SHARED_LOCK );
3327 res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0);
3328 if( res ){
3329 newLocktype = RESERVED_LOCK;
3330 }else{
3331 lastErrno = osGetLastError();
3332 }
3333 }
3334
3335 /* Acquire a PENDING lock
3336 */
3337 if( locktype==EXCLUSIVE_LOCK && res ){
3338 newLocktype = PENDING_LOCK;
3339 gotPendingLock = 0;
3340 }
3341
3342 /* Acquire an EXCLUSIVE lock
3343 */
3344 if( locktype==EXCLUSIVE_LOCK && res ){
3345 assert( pFile->locktype>=SHARED_LOCK );
3346 res = winUnlockReadLock(pFile);
3347 res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0,
3348 SHARED_SIZE, 0);
3349 if( res ){
3350 newLocktype = EXCLUSIVE_LOCK;
3351 }else{
3352 lastErrno = osGetLastError();
3353 winGetReadLock(pFile);
3354 }
3355 }
3356
3357 /* If we are holding a PENDING lock that ought to be released, then
3358 ** release it now.
3359 */
3360 if( gotPendingLock && locktype==SHARED_LOCK ){
3361 winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
3362 }
3363
3364 /* Update the state of the lock has held in the file descriptor then
3365 ** return the appropriate result code.
3366 */
3367 if( res ){
3368 rc = SQLITE_OK;
3369 }else{
3370 pFile->lastErrno = lastErrno;
3371 rc = SQLITE_BUSY;
3372 OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n",
3373 pFile->h, locktype, newLocktype));
3374 }
3375 pFile->locktype = (u8)newLocktype;
3376 OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n",
3377 pFile->h, pFile->locktype, sqlite3ErrName(rc)));
3378 return rc;
3379}
3380
3381/*
3382** This routine checks if there is a RESERVED lock held on the specified
3383** file by this or any other process. If such a lock is held, return
3384** non-zero, otherwise zero.
3385*/
3386static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
3387 int res;
3388 winFile *pFile = (winFile*)id;
3389
3390 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
3391 OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut));
3392
3393 assert( id!=0 );
3394 if( pFile->locktype>=RESERVED_LOCK ){
3395 res = 1;
3396 OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res));
3397 }else{
3398 res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE,0,1,0);
3399 if( res ){
3400 winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
3401 }
3402 res = !res;
3403 OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res));
3404 }
3405 *pResOut = res;
3406 OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
3407 pFile->h, pResOut, *pResOut));
3408 return SQLITE_OK;
3409}
3410
3411/*
3412** Lower the locking level on file descriptor id to locktype. locktype
3413** must be either NO_LOCK or SHARED_LOCK.
3414**
3415** If the locking level of the file descriptor is already at or below
3416** the requested locking level, this routine is a no-op.
3417**
3418** It is not possible for this routine to fail if the second argument
3419** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
3420** might return SQLITE_IOERR;
3421*/
3422static int winUnlock(sqlite3_file *id, int locktype){
3423 int type;
3424 winFile *pFile = (winFile*)id;
3425 int rc = SQLITE_OK;
3426 assert( pFile!=0 );
3427 assert( locktype<=SHARED_LOCK );
3428 OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n",
3429 pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
3430 type = pFile->locktype;
3431 if( type>=EXCLUSIVE_LOCK ){
3432 winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
3433 if( locktype==SHARED_LOCK && !winGetReadLock(pFile) ){
3434 /* This should never happen. We should always be able to
3435 ** reacquire the read lock */
3436 rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(),
3437 "winUnlock", pFile->zPath);
3438 }
3439 }
3440 if( type>=RESERVED_LOCK ){
3441 winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
3442 }
3443 if( locktype==NO_LOCK && type>=SHARED_LOCK ){
3444 winUnlockReadLock(pFile);
3445 }
3446 if( type>=PENDING_LOCK ){
3447 winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
3448 }
3449 pFile->locktype = (u8)locktype;
3450 OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
3451 pFile->h, pFile->locktype, sqlite3ErrName(rc)));
3452 return rc;
3453}
3454
3455/******************************************************************************
3456****************************** No-op Locking **********************************
3457**
3458** Of the various locking implementations available, this is by far the
3459** simplest: locking is ignored. No attempt is made to lock the database
3460** file for reading or writing.
3461**
3462** This locking mode is appropriate for use on read-only databases
3463** (ex: databases that are burned into CD-ROM, for example.) It can
3464** also be used if the application employs some external mechanism to
3465** prevent simultaneous access of the same database by two or more
3466** database connections. But there is a serious risk of database
3467** corruption if this locking mode is used in situations where multiple
3468** database connections are accessing the same database file at the same
3469** time and one or more of those connections are writing.
3470*/
3471
3472static int winNolockLock(sqlite3_file *id, int locktype){
3473 UNUSED_PARAMETER(id);
3474 UNUSED_PARAMETER(locktype);
3475 return SQLITE_OK;
3476}
3477
3478static int winNolockCheckReservedLock(sqlite3_file *id, int *pResOut){
3479 UNUSED_PARAMETER(id);
3480 UNUSED_PARAMETER(pResOut);
3481 return SQLITE_OK;
3482}
3483
3484static int winNolockUnlock(sqlite3_file *id, int locktype){
3485 UNUSED_PARAMETER(id);
3486 UNUSED_PARAMETER(locktype);
3487 return SQLITE_OK;
3488}
3489
3490/******************* End of the no-op lock implementation *********************
3491******************************************************************************/
3492
3493/*
3494** If *pArg is initially negative then this is a query. Set *pArg to
3495** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3496**
3497** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
3498*/
3499static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){
3500 if( *pArg<0 ){
3501 *pArg = (pFile->ctrlFlags & mask)!=0;
3502 }else if( (*pArg)==0 ){
3503 pFile->ctrlFlags &= ~mask;
3504 }else{
3505 pFile->ctrlFlags |= mask;
3506 }
3507}
3508
3509/* Forward references to VFS helper methods used for temporary files */
3510static int winGetTempname(sqlite3_vfs *, char **);
3511static int winIsDir(const void *);
3512static BOOL winIsLongPathPrefix(const char *);
3513static BOOL winIsDriveLetterAndColon(const char *);
3514
3515/*
3516** Control and query of the open file handle.
3517*/
3518static int winFileControl(sqlite3_file *id, int op, void *pArg){
3519 winFile *pFile = (winFile*)id;
3520 OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg));
3521 switch( op ){
3522 case SQLITE_FCNTL_LOCKSTATE: {
3523 *(int*)pArg = pFile->locktype;
3524 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3525 return SQLITE_OK;
3526 }
3527 case SQLITE_FCNTL_LAST_ERRNO: {
3528 *(int*)pArg = (int)pFile->lastErrno;
3529 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3530 return SQLITE_OK;
3531 }
3532 case SQLITE_FCNTL_CHUNK_SIZE: {
3533 pFile->szChunk = *(int *)pArg;
3534 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3535 return SQLITE_OK;
3536 }
3537 case SQLITE_FCNTL_SIZE_HINT: {
3538 if( pFile->szChunk>0 ){
3539 sqlite3_int64 oldSz;
3540 int rc = winFileSize(id, &oldSz);
3541 if( rc==SQLITE_OK ){
3542 sqlite3_int64 newSz = *(sqlite3_int64*)pArg;
3543 if( newSz>oldSz ){
3544 SimulateIOErrorBenign(1);
3545 rc = winTruncate(id, newSz);
3546 SimulateIOErrorBenign(0);
3547 }
3548 }
3549 OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
3550 return rc;
3551 }
3552 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3553 return SQLITE_OK;
3554 }
3555 case SQLITE_FCNTL_PERSIST_WAL: {
3556 winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg);
3557 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3558 return SQLITE_OK;
3559 }
3560 case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
3561 winModeBit(pFile, WINFILE_PSOW, (int*)pArg);
3562 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3563 return SQLITE_OK;
3564 }
3565 case SQLITE_FCNTL_VFSNAME: {
3566 *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
3567 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3568 return SQLITE_OK;
3569 }
3570 case SQLITE_FCNTL_WIN32_AV_RETRY: {
3571 int *a = (int*)pArg;
3572 if( a[0]>0 ){
3573 winIoerrRetry = a[0];
3574 }else{
3575 a[0] = winIoerrRetry;
3576 }
3577 if( a[1]>0 ){
3578 winIoerrRetryDelay = a[1];
3579 }else{
3580 a[1] = winIoerrRetryDelay;
3581 }
3582 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3583 return SQLITE_OK;
3584 }
3585 case SQLITE_FCNTL_WIN32_GET_HANDLE: {
3586 LPHANDLE phFile = (LPHANDLE)pArg;
3587 *phFile = pFile->h;
3588 OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
3589 return SQLITE_OK;
3590 }
3591#ifdef SQLITE_TEST
3592 case SQLITE_FCNTL_WIN32_SET_HANDLE: {
3593 LPHANDLE phFile = (LPHANDLE)pArg;
3594 HANDLE hOldFile = pFile->h;
3595 pFile->h = *phFile;
3596 *phFile = hOldFile;
3597 OSTRACE(("FCNTL oldFile=%p, newFile=%p, rc=SQLITE_OK\n",
3598 hOldFile, pFile->h));
3599 return SQLITE_OK;
3600 }
3601#endif
3602 case SQLITE_FCNTL_TEMPFILENAME: {
3603 char *zTFile = 0;
3604 int rc = winGetTempname(pFile->pVfs, &zTFile);
3605 if( rc==SQLITE_OK ){
3606 *(char**)pArg = zTFile;
3607 }
3608 OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
3609 return rc;
3610 }
3611#if SQLITE_MAX_MMAP_SIZE>0
3612 case SQLITE_FCNTL_MMAP_SIZE: {
3613 i64 newLimit = *(i64*)pArg;
3614 int rc = SQLITE_OK;
3615 if( newLimit>sqlite3GlobalConfig.mxMmap ){
3616 newLimit = sqlite3GlobalConfig.mxMmap;
3617 }
3618
3619 /* The value of newLimit may be eventually cast to (SIZE_T) and passed
3620 ** to MapViewOfFile(). Restrict its value to 2GB if (SIZE_T) is not at
3621 ** least a 64-bit type. */
3622 if( newLimit>0 && sizeof(SIZE_T)<8 ){
3623 newLimit = (newLimit & 0x7FFFFFFF);
3624 }
3625
3626 *(i64*)pArg = pFile->mmapSizeMax;
3627 if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
3628 pFile->mmapSizeMax = newLimit;
3629 if( pFile->mmapSize>0 ){
3630 winUnmapfile(pFile);
3631 rc = winMapfile(pFile, -1);
3632 }
3633 }
3634 OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
3635 return rc;
3636 }
3637#endif
3638 }
3639 OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h));
3640 return SQLITE_NOTFOUND;
3641}
3642
3643/*
3644** Return the sector size in bytes of the underlying block device for
3645** the specified file. This is almost always 512 bytes, but may be
3646** larger for some devices.
3647**
3648** SQLite code assumes this function cannot fail. It also assumes that
3649** if two files are created in the same file-system directory (i.e.
3650** a database and its journal file) that the sector size will be the
3651** same for both.
3652*/
3653static int winSectorSize(sqlite3_file *id){
3654 (void)id;
3655 return SQLITE_DEFAULT_SECTOR_SIZE;
3656}
3657
3658/*
3659** Return a vector of device characteristics.
3660*/
3661static int winDeviceCharacteristics(sqlite3_file *id){
3662 winFile *p = (winFile*)id;
3663 return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN |
3664 ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0);
3665}
3666
3667/*
3668** Windows will only let you create file view mappings
3669** on allocation size granularity boundaries.
3670** During sqlite3_os_init() we do a GetSystemInfo()
3671** to get the granularity size.
3672*/
3673static SYSTEM_INFO winSysInfo;
3674
3675#ifndef SQLITE_OMIT_WAL
3676
3677/*
3678** Helper functions to obtain and relinquish the global mutex. The
3679** global mutex is used to protect the winLockInfo objects used by
3680** this file, all of which may be shared by multiple threads.
3681**
3682** Function winShmMutexHeld() is used to assert() that the global mutex
3683** is held when required. This function is only used as part of assert()
3684** statements. e.g.
3685**
3686** winShmEnterMutex()
3687** assert( winShmMutexHeld() );
3688** winShmLeaveMutex()
3689*/
3690static sqlite3_mutex *winBigLock = 0;
3691static void winShmEnterMutex(void){
3692 sqlite3_mutex_enter(winBigLock);
3693}
3694static void winShmLeaveMutex(void){
3695 sqlite3_mutex_leave(winBigLock);
3696}
3697#ifndef NDEBUG
3698static int winShmMutexHeld(void) {
3699 return sqlite3_mutex_held(winBigLock);
3700}
3701#endif
3702
3703/*
3704** Object used to represent a single file opened and mmapped to provide
3705** shared memory. When multiple threads all reference the same
3706** log-summary, each thread has its own winFile object, but they all
3707** point to a single instance of this object. In other words, each
3708** log-summary is opened only once per process.
3709**
3710** winShmMutexHeld() must be true when creating or destroying
3711** this object or while reading or writing the following fields:
3712**
3713** nRef
3714** pNext
3715**
3716** The following fields are read-only after the object is created:
3717**
3718** fid
3719** zFilename
3720**
3721** Either winShmNode.mutex must be held or winShmNode.nRef==0 and
3722** winShmMutexHeld() is true when reading or writing any other field
3723** in this structure.
3724**
3725*/
3726struct winShmNode {
3727 sqlite3_mutex *mutex; /* Mutex to access this object */
3728 char *zFilename; /* Name of the file */
3729 winFile hFile; /* File handle from winOpen */
3730
3731 int szRegion; /* Size of shared-memory regions */
3732 int nRegion; /* Size of array apRegion */
3733 u8 isReadonly; /* True if read-only */
3734 u8 isUnlocked; /* True if no DMS lock held */
3735
3736 struct ShmRegion {
3737 HANDLE hMap; /* File handle from CreateFileMapping */
3738 void *pMap;
3739 } *aRegion;
3740 DWORD lastErrno; /* The Windows errno from the last I/O error */
3741
3742 int nRef; /* Number of winShm objects pointing to this */
3743 winShm *pFirst; /* All winShm objects pointing to this */
3744 winShmNode *pNext; /* Next in list of all winShmNode objects */
3745#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3746 u8 nextShmId; /* Next available winShm.id value */
3747#endif
3748};
3749
3750/*
3751** A global array of all winShmNode objects.
3752**
3753** The winShmMutexHeld() must be true while reading or writing this list.
3754*/
3755static winShmNode *winShmNodeList = 0;
3756
3757/*
3758** Structure used internally by this VFS to record the state of an
3759** open shared memory connection.
3760**
3761** The following fields are initialized when this object is created and
3762** are read-only thereafter:
3763**
3764** winShm.pShmNode
3765** winShm.id
3766**
3767** All other fields are read/write. The winShm.pShmNode->mutex must be held
3768** while accessing any read/write fields.
3769*/
3770struct winShm {
3771 winShmNode *pShmNode; /* The underlying winShmNode object */
3772 winShm *pNext; /* Next winShm with the same winShmNode */
3773 u8 hasMutex; /* True if holding the winShmNode mutex */
3774 u16 sharedMask; /* Mask of shared locks held */
3775 u16 exclMask; /* Mask of exclusive locks held */
3776#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3777 u8 id; /* Id of this connection with its winShmNode */
3778#endif
3779};
3780
3781/*
3782** Constants used for locking
3783*/
3784#define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
3785#define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
3786
3787/*
3788** Apply advisory locks for all n bytes beginning at ofst.
3789*/
3790#define WINSHM_UNLCK 1
3791#define WINSHM_RDLCK 2
3792#define WINSHM_WRLCK 3
3793static int winShmSystemLock(
3794 winShmNode *pFile, /* Apply locks to this open shared-memory segment */
3795 int lockType, /* WINSHM_UNLCK, WINSHM_RDLCK, or WINSHM_WRLCK */
3796 int ofst, /* Offset to first byte to be locked/unlocked */
3797 int nByte /* Number of bytes to lock or unlock */
3798){
3799 int rc = 0; /* Result code form Lock/UnlockFileEx() */
3800
3801 /* Access to the winShmNode object is serialized by the caller */
3802 assert( pFile->nRef==0 || sqlite3_mutex_held(pFile->mutex) );
3803
3804 OSTRACE(("SHM-LOCK file=%p, lock=%d, offset=%d, size=%d\n",
3805 pFile->hFile.h, lockType, ofst, nByte));
3806
3807 /* Release/Acquire the system-level lock */
3808 if( lockType==WINSHM_UNLCK ){
3809 rc = winUnlockFile(&pFile->hFile.h, ofst, 0, nByte, 0);
3810 }else{
3811 /* Initialize the locking parameters */
3812 DWORD dwFlags = LOCKFILE_FAIL_IMMEDIATELY;
3813 if( lockType == WINSHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK;
3814 rc = winLockFile(&pFile->hFile.h, dwFlags, ofst, 0, nByte, 0);
3815 }
3816
3817 if( rc!= 0 ){
3818 rc = SQLITE_OK;
3819 }else{
3820 pFile->lastErrno = osGetLastError();
3821 rc = SQLITE_BUSY;
3822 }
3823
3824 OSTRACE(("SHM-LOCK file=%p, func=%s, errno=%lu, rc=%s\n",
3825 pFile->hFile.h, (lockType == WINSHM_UNLCK) ? "winUnlockFile" :
3826 "winLockFile", pFile->lastErrno, sqlite3ErrName(rc)));
3827
3828 return rc;
3829}
3830
3831/* Forward references to VFS methods */
3832static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*);
3833static int winDelete(sqlite3_vfs *,const char*,int);
3834
3835/*
3836** Purge the winShmNodeList list of all entries with winShmNode.nRef==0.
3837**
3838** This is not a VFS shared-memory method; it is a utility function called
3839** by VFS shared-memory methods.
3840*/
3841static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){
3842 winShmNode **pp;
3843 winShmNode *p;
3844 assert( winShmMutexHeld() );
3845 OSTRACE(("SHM-PURGE pid=%lu, deleteFlag=%d\n",
3846 osGetCurrentProcessId(), deleteFlag));
3847 pp = &winShmNodeList;
3848 while( (p = *pp)!=0 ){
3849 if( p->nRef==0 ){
3850 int i;
3851 if( p->mutex ){ sqlite3_mutex_free(p->mutex); }
3852 for(i=0; i<p->nRegion; i++){
3853 BOOL bRc = osUnmapViewOfFile(p->aRegion[i].pMap);
3854 OSTRACE(("SHM-PURGE-UNMAP pid=%lu, region=%d, rc=%s\n",
3855 osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
3856 UNUSED_VARIABLE_VALUE(bRc);
3857 bRc = osCloseHandle(p->aRegion[i].hMap);
3858 OSTRACE(("SHM-PURGE-CLOSE pid=%lu, region=%d, rc=%s\n",
3859 osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
3860 UNUSED_VARIABLE_VALUE(bRc);
3861 }
3862 if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){
3863 SimulateIOErrorBenign(1);
3864 winClose((sqlite3_file *)&p->hFile);
3865 SimulateIOErrorBenign(0);
3866 }
3867 if( deleteFlag ){
3868 SimulateIOErrorBenign(1);
3869 sqlite3BeginBenignMalloc();
3870 winDelete(pVfs, p->zFilename, 0);
3871 sqlite3EndBenignMalloc();
3872 SimulateIOErrorBenign(0);
3873 }
3874 *pp = p->pNext;
3875 sqlite3_free(p->aRegion);
3876 sqlite3_free(p);
3877 }else{
3878 pp = &p->pNext;
3879 }
3880 }
3881}
3882
3883/*
3884** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
3885** take it now. Return SQLITE_OK if successful, or an SQLite error
3886** code otherwise.
3887**
3888** If the DMS cannot be locked because this is a readonly_shm=1
3889** connection and no other process already holds a lock, return
3890** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
3891*/
3892static int winLockSharedMemory(winShmNode *pShmNode){
3893 int rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, WIN_SHM_DMS, 1);
3894
3895 if( rc==SQLITE_OK ){
3896 if( pShmNode->isReadonly ){
3897 pShmNode->isUnlocked = 1;
3898 winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
3899 return SQLITE_READONLY_CANTINIT;
3900 }else if( winTruncate((sqlite3_file*)&pShmNode->hFile, 0) ){
3901 winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
3902 return winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(),
3903 "winLockSharedMemory", pShmNode->zFilename);
3904 }
3905 }
3906
3907 if( rc==SQLITE_OK ){
3908 winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
3909 }
3910
3911 return winShmSystemLock(pShmNode, WINSHM_RDLCK, WIN_SHM_DMS, 1);
3912}
3913
3914/*
3915** Open the shared-memory area associated with database file pDbFd.
3916**
3917** When opening a new shared-memory file, if no other instances of that
3918** file are currently open, in this process or in other processes, then
3919** the file must be truncated to zero length or have its header cleared.
3920*/
3921static int winOpenSharedMemory(winFile *pDbFd){
3922 struct winShm *p; /* The connection to be opened */
3923 winShmNode *pShmNode = 0; /* The underlying mmapped file */
3924 int rc = SQLITE_OK; /* Result code */
3925 winShmNode *pNew; /* Newly allocated winShmNode */
3926 int nName; /* Size of zName in bytes */
3927
3928 assert( pDbFd->pShm==0 ); /* Not previously opened */
3929
3930 /* Allocate space for the new sqlite3_shm object. Also speculatively
3931 ** allocate space for a new winShmNode and filename.
3932 */
3933 p = sqlite3MallocZero( sizeof(*p) );
3934 if( p==0 ) return SQLITE_IOERR_NOMEM_BKPT;
3935 nName = sqlite3Strlen30(pDbFd->zPath);
3936 pNew = sqlite3MallocZero( sizeof(*pShmNode) + nName + 17 );
3937 if( pNew==0 ){
3938 sqlite3_free(p);
3939 return SQLITE_IOERR_NOMEM_BKPT;
3940 }
3941 pNew->zFilename = (char*)&pNew[1];
3942 sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath);
3943 sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename);
3944
3945 /* Look to see if there is an existing winShmNode that can be used.
3946 ** If no matching winShmNode currently exists, create a new one.
3947 */
3948 winShmEnterMutex();
3949 for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){
3950 /* TBD need to come up with better match here. Perhaps
3951 ** use FILE_ID_BOTH_DIR_INFO Structure.
3952 */
3953 if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break;
3954 }
3955 if( pShmNode ){
3956 sqlite3_free(pNew);
3957 }else{
3958 int inFlags = SQLITE_OPEN_WAL;
3959 int outFlags = 0;
3960
3961 pShmNode = pNew;
3962 pNew = 0;
3963 ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE;
3964 pShmNode->pNext = winShmNodeList;
3965 winShmNodeList = pShmNode;
3966
3967 if( sqlite3GlobalConfig.bCoreMutex ){
3968 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
3969 if( pShmNode->mutex==0 ){
3970 rc = SQLITE_IOERR_NOMEM_BKPT;
3971 goto shm_open_err;
3972 }
3973 }
3974
3975 if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
3976 inFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE;
3977 }else{
3978 inFlags |= SQLITE_OPEN_READONLY;
3979 }
3980 rc = winOpen(pDbFd->pVfs, pShmNode->zFilename,
3981 (sqlite3_file*)&pShmNode->hFile,
3982 inFlags, &outFlags);
3983 if( rc!=SQLITE_OK ){
3984 rc = winLogError(rc, osGetLastError(), "winOpenShm",
3985 pShmNode->zFilename);
3986 goto shm_open_err;
3987 }
3988 if( outFlags==SQLITE_OPEN_READONLY ) pShmNode->isReadonly = 1;
3989
3990 rc = winLockSharedMemory(pShmNode);
3991 if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
3992 }
3993
3994 /* Make the new connection a child of the winShmNode */
3995 p->pShmNode = pShmNode;
3996#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3997 p->id = pShmNode->nextShmId++;
3998#endif
3999 pShmNode->nRef++;
4000 pDbFd->pShm = p;
4001 winShmLeaveMutex();
4002
4003 /* The reference count on pShmNode has already been incremented under
4004 ** the cover of the winShmEnterMutex() mutex and the pointer from the
4005 ** new (struct winShm) object to the pShmNode has been set. All that is
4006 ** left to do is to link the new object into the linked list starting
4007 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
4008 ** mutex.
4009 */
4010 sqlite3_mutex_enter(pShmNode->mutex);
4011 p->pNext = pShmNode->pFirst;
4012 pShmNode->pFirst = p;
4013 sqlite3_mutex_leave(pShmNode->mutex);
4014 return rc;
4015
4016 /* Jump here on any error */
4017shm_open_err:
4018 winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
4019 winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */
4020 sqlite3_free(p);
4021 sqlite3_free(pNew);
4022 winShmLeaveMutex();
4023 return rc;
4024}
4025
4026/*
4027** Close a connection to shared-memory. Delete the underlying
4028** storage if deleteFlag is true.
4029*/
4030static int winShmUnmap(
4031 sqlite3_file *fd, /* Database holding shared memory */
4032 int deleteFlag /* Delete after closing if true */
4033){
4034 winFile *pDbFd; /* Database holding shared-memory */
4035 winShm *p; /* The connection to be closed */
4036 winShmNode *pShmNode; /* The underlying shared-memory file */
4037 winShm **pp; /* For looping over sibling connections */
4038
4039 pDbFd = (winFile*)fd;
4040 p = pDbFd->pShm;
4041 if( p==0 ) return SQLITE_OK;
4042 pShmNode = p->pShmNode;
4043
4044 /* Remove connection p from the set of connections associated
4045 ** with pShmNode */
4046 sqlite3_mutex_enter(pShmNode->mutex);
4047 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4048 *pp = p->pNext;
4049
4050 /* Free the connection p */
4051 sqlite3_free(p);
4052 pDbFd->pShm = 0;
4053 sqlite3_mutex_leave(pShmNode->mutex);
4054
4055 /* If pShmNode->nRef has reached 0, then close the underlying
4056 ** shared-memory file, too */
4057 winShmEnterMutex();
4058 assert( pShmNode->nRef>0 );
4059 pShmNode->nRef--;
4060 if( pShmNode->nRef==0 ){
4061 winShmPurge(pDbFd->pVfs, deleteFlag);
4062 }
4063 winShmLeaveMutex();
4064
4065 return SQLITE_OK;
4066}
4067
4068/*
4069** Change the lock state for a shared-memory segment.
4070*/
4071static int winShmLock(
4072 sqlite3_file *fd, /* Database file holding the shared memory */
4073 int ofst, /* First lock to acquire or release */
4074 int n, /* Number of locks to acquire or release */
4075 int flags /* What to do with the lock */
4076){
4077 winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */
4078 winShm *p = pDbFd->pShm; /* The shared memory being locked */
4079 winShm *pX; /* For looping over all siblings */
4080 winShmNode *pShmNode;
4081 int rc = SQLITE_OK; /* Result code */
4082 u16 mask; /* Mask of locks to take or release */
4083
4084 if( p==0 ) return SQLITE_IOERR_SHMLOCK;
4085 pShmNode = p->pShmNode;
4086 if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK;
4087
4088 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4089 assert( n>=1 );
4090 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4091 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4092 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4093 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4094 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4095
4096 mask = (u16)((1U<<(ofst+n)) - (1U<<ofst));
4097 assert( n>1 || mask==(1<<ofst) );
4098 sqlite3_mutex_enter(pShmNode->mutex);
4099 if( flags & SQLITE_SHM_UNLOCK ){
4100 u16 allMask = 0; /* Mask of locks held by siblings */
4101
4102 /* See if any siblings hold this same lock */
4103 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4104 if( pX==p ) continue;
4105 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4106 allMask |= pX->sharedMask;
4107 }
4108
4109 /* Unlock the system-level locks */
4110 if( (mask & allMask)==0 ){
4111 rc = winShmSystemLock(pShmNode, WINSHM_UNLCK, ofst+WIN_SHM_BASE, n);
4112 }else{
4113 rc = SQLITE_OK;
4114 }
4115
4116 /* Undo the local locks */
4117 if( rc==SQLITE_OK ){
4118 p->exclMask &= ~mask;
4119 p->sharedMask &= ~mask;
4120 }
4121 }else if( flags & SQLITE_SHM_SHARED ){
4122 u16 allShared = 0; /* Union of locks held by connections other than "p" */
4123
4124 /* Find out which shared locks are already held by sibling connections.
4125 ** If any sibling already holds an exclusive lock, go ahead and return
4126 ** SQLITE_BUSY.
4127 */
4128 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4129 if( (pX->exclMask & mask)!=0 ){
4130 rc = SQLITE_BUSY;
4131 break;
4132 }
4133 allShared |= pX->sharedMask;
4134 }
4135
4136 /* Get shared locks at the system level, if necessary */
4137 if( rc==SQLITE_OK ){
4138 if( (allShared & mask)==0 ){
4139 rc = winShmSystemLock(pShmNode, WINSHM_RDLCK, ofst+WIN_SHM_BASE, n);
4140 }else{
4141 rc = SQLITE_OK;
4142 }
4143 }
4144
4145 /* Get the local shared locks */
4146 if( rc==SQLITE_OK ){
4147 p->sharedMask |= mask;
4148 }
4149 }else{
4150 /* Make sure no sibling connections hold locks that will block this
4151 ** lock. If any do, return SQLITE_BUSY right away.
4152 */
4153 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4154 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4155 rc = SQLITE_BUSY;
4156 break;
4157 }
4158 }
4159
4160 /* Get the exclusive locks at the system level. Then if successful
4161 ** also mark the local connection as being locked.
4162 */
4163 if( rc==SQLITE_OK ){
4164 rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, ofst+WIN_SHM_BASE, n);
4165 if( rc==SQLITE_OK ){
4166 assert( (p->sharedMask & mask)==0 );
4167 p->exclMask |= mask;
4168 }
4169 }
4170 }
4171 sqlite3_mutex_leave(pShmNode->mutex);
4172 OSTRACE(("SHM-LOCK pid=%lu, id=%d, sharedMask=%03x, exclMask=%03x, rc=%s\n",
4173 osGetCurrentProcessId(), p->id, p->sharedMask, p->exclMask,
4174 sqlite3ErrName(rc)));
4175 return rc;
4176}
4177
4178/*
4179** Implement a memory barrier or memory fence on shared memory.
4180**
4181** All loads and stores begun before the barrier must complete before
4182** any load or store begun after the barrier.
4183*/
4184static void winShmBarrier(
4185 sqlite3_file *fd /* Database holding the shared memory */
4186){
4187 UNUSED_PARAMETER(fd);
4188 sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
4189 winShmEnterMutex(); /* Also mutex, for redundancy */
4190 winShmLeaveMutex();
4191}
4192
4193/*
4194** This function is called to obtain a pointer to region iRegion of the
4195** shared-memory associated with the database file fd. Shared-memory regions
4196** are numbered starting from zero. Each shared-memory region is szRegion
4197** bytes in size.
4198**
4199** If an error occurs, an error code is returned and *pp is set to NULL.
4200**
4201** Otherwise, if the isWrite parameter is 0 and the requested shared-memory
4202** region has not been allocated (by any client, including one running in a
4203** separate process), then *pp is set to NULL and SQLITE_OK returned. If
4204** isWrite is non-zero and the requested shared-memory region has not yet
4205** been allocated, it is allocated by this function.
4206**
4207** If the shared-memory region has already been allocated or is allocated by
4208** this call as described above, then it is mapped into this processes
4209** address space (if it is not already), *pp is set to point to the mapped
4210** memory and SQLITE_OK returned.
4211*/
4212static int winShmMap(
4213 sqlite3_file *fd, /* Handle open on database file */
4214 int iRegion, /* Region to retrieve */
4215 int szRegion, /* Size of regions */
4216 int isWrite, /* True to extend file if necessary */
4217 void volatile **pp /* OUT: Mapped memory */
4218){
4219 winFile *pDbFd = (winFile*)fd;
4220 winShm *pShm = pDbFd->pShm;
4221 winShmNode *pShmNode;
4222 DWORD protect = PAGE_READWRITE;
4223 DWORD flags = FILE_MAP_WRITE | FILE_MAP_READ;
4224 int rc = SQLITE_OK;
4225
4226 if( !pShm ){
4227 rc = winOpenSharedMemory(pDbFd);
4228 if( rc!=SQLITE_OK ) return rc;
4229 pShm = pDbFd->pShm;
4230 assert( pShm!=0 );
4231 }
4232 pShmNode = pShm->pShmNode;
4233
4234 sqlite3_mutex_enter(pShmNode->mutex);
4235 if( pShmNode->isUnlocked ){
4236 rc = winLockSharedMemory(pShmNode);
4237 if( rc!=SQLITE_OK ) goto shmpage_out;
4238 pShmNode->isUnlocked = 0;
4239 }
4240 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
4241
4242 if( pShmNode->nRegion<=iRegion ){
4243 struct ShmRegion *apNew; /* New aRegion[] array */
4244 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
4245 sqlite3_int64 sz; /* Current size of wal-index file */
4246
4247 pShmNode->szRegion = szRegion;
4248
4249 /* The requested region is not mapped into this processes address space.
4250 ** Check to see if it has been allocated (i.e. if the wal-index file is
4251 ** large enough to contain the requested region).
4252 */
4253 rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
4254 if( rc!=SQLITE_OK ){
4255 rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
4256 "winShmMap1", pDbFd->zPath);
4257 goto shmpage_out;
4258 }
4259
4260 if( sz<nByte ){
4261 /* The requested memory region does not exist. If isWrite is set to
4262 ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
4263 **
4264 ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
4265 ** the requested memory region.
4266 */
4267 if( !isWrite ) goto shmpage_out;
4268 rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
4269 if( rc!=SQLITE_OK ){
4270 rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
4271 "winShmMap2", pDbFd->zPath);
4272 goto shmpage_out;
4273 }
4274 }
4275
4276 /* Map the requested memory region into this processes address space. */
4277 apNew = (struct ShmRegion *)sqlite3_realloc64(
4278 pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])
4279 );
4280 if( !apNew ){
4281 rc = SQLITE_IOERR_NOMEM_BKPT;
4282 goto shmpage_out;
4283 }
4284 pShmNode->aRegion = apNew;
4285
4286 if( pShmNode->isReadonly ){
4287 protect = PAGE_READONLY;
4288 flags = FILE_MAP_READ;
4289 }
4290
4291 while( pShmNode->nRegion<=iRegion ){
4292 HANDLE hMap = NULL; /* file-mapping handle */
4293 void *pMap = 0; /* Mapped memory region */
4294
4295#if SQLITE_OS_WINRT
4296 hMap = osCreateFileMappingFromApp(pShmNode->hFile.h,
4297 NULL, protect, nByte, NULL
4298 );
4299#elif defined(SQLITE_WIN32_HAS_WIDE)
4300 hMap = osCreateFileMappingW(pShmNode->hFile.h,
4301 NULL, protect, 0, nByte, NULL
4302 );
4303#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
4304 hMap = osCreateFileMappingA(pShmNode->hFile.h,
4305 NULL, protect, 0, nByte, NULL
4306 );
4307#endif
4308 OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n",
4309 osGetCurrentProcessId(), pShmNode->nRegion, nByte,
4310 hMap ? "ok" : "failed"));
4311 if( hMap ){
4312 int iOffset = pShmNode->nRegion*szRegion;
4313 int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
4314#if SQLITE_OS_WINRT
4315 pMap = osMapViewOfFileFromApp(hMap, flags,
4316 iOffset - iOffsetShift, szRegion + iOffsetShift
4317 );
4318#else
4319 pMap = osMapViewOfFile(hMap, flags,
4320 0, iOffset - iOffsetShift, szRegion + iOffsetShift
4321 );
4322#endif
4323 OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n",
4324 osGetCurrentProcessId(), pShmNode->nRegion, iOffset,
4325 szRegion, pMap ? "ok" : "failed"));
4326 }
4327 if( !pMap ){
4328 pShmNode->lastErrno = osGetLastError();
4329 rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno,
4330 "winShmMap3", pDbFd->zPath);
4331 if( hMap ) osCloseHandle(hMap);
4332 goto shmpage_out;
4333 }
4334
4335 pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
4336 pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
4337 pShmNode->nRegion++;
4338 }
4339 }
4340
4341shmpage_out:
4342 if( pShmNode->nRegion>iRegion ){
4343 int iOffset = iRegion*szRegion;
4344 int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
4345 char *p = (char *)pShmNode->aRegion[iRegion].pMap;
4346 *pp = (void *)&p[iOffsetShift];
4347 }else{
4348 *pp = 0;
4349 }
4350 if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
4351 sqlite3_mutex_leave(pShmNode->mutex);
4352 return rc;
4353}
4354
4355#else
4356# define winShmMap 0
4357# define winShmLock 0
4358# define winShmBarrier 0
4359# define winShmUnmap 0
4360#endif /* #ifndef SQLITE_OMIT_WAL */
4361
4362/*
4363** Cleans up the mapped region of the specified file, if any.
4364*/
4365#if SQLITE_MAX_MMAP_SIZE>0
4366static int winUnmapfile(winFile *pFile){
4367 assert( pFile!=0 );
4368 OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, "
4369 "mmapSize=%lld, mmapSizeMax=%lld\n",
4370 osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion,
4371 pFile->mmapSize, pFile->mmapSizeMax));
4372 if( pFile->pMapRegion ){
4373 if( !osUnmapViewOfFile(pFile->pMapRegion) ){
4374 pFile->lastErrno = osGetLastError();
4375 OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
4376 "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
4377 pFile->pMapRegion));
4378 return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
4379 "winUnmapfile1", pFile->zPath);
4380 }
4381 pFile->pMapRegion = 0;
4382 pFile->mmapSize = 0;
4383 }
4384 if( pFile->hMap!=NULL ){
4385 if( !osCloseHandle(pFile->hMap) ){
4386 pFile->lastErrno = osGetLastError();
4387 OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
4388 osGetCurrentProcessId(), pFile, pFile->hMap));
4389 return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
4390 "winUnmapfile2", pFile->zPath);
4391 }
4392 pFile->hMap = NULL;
4393 }
4394 OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
4395 osGetCurrentProcessId(), pFile));
4396 return SQLITE_OK;
4397}
4398
4399/*
4400** Memory map or remap the file opened by file-descriptor pFd (if the file
4401** is already mapped, the existing mapping is replaced by the new). Or, if
4402** there already exists a mapping for this file, and there are still
4403** outstanding xFetch() references to it, this function is a no-op.
4404**
4405** If parameter nByte is non-negative, then it is the requested size of
4406** the mapping to create. Otherwise, if nByte is less than zero, then the
4407** requested size is the size of the file on disk. The actual size of the
4408** created mapping is either the requested size or the value configured
4409** using SQLITE_FCNTL_MMAP_SIZE, whichever is smaller.
4410**
4411** SQLITE_OK is returned if no error occurs (even if the mapping is not
4412** recreated as a result of outstanding references) or an SQLite error
4413** code otherwise.
4414*/
4415static int winMapfile(winFile *pFd, sqlite3_int64 nByte){
4416 sqlite3_int64 nMap = nByte;
4417 int rc;
4418
4419 assert( nMap>=0 || pFd->nFetchOut==0 );
4420 OSTRACE(("MAP-FILE pid=%lu, pFile=%p, size=%lld\n",
4421 osGetCurrentProcessId(), pFd, nByte));
4422
4423 if( pFd->nFetchOut>0 ) return SQLITE_OK;
4424
4425 if( nMap<0 ){
4426 rc = winFileSize((sqlite3_file*)pFd, &nMap);
4427 if( rc ){
4428 OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_IOERR_FSTAT\n",
4429 osGetCurrentProcessId(), pFd));
4430 return SQLITE_IOERR_FSTAT;
4431 }
4432 }
4433 if( nMap>pFd->mmapSizeMax ){
4434 nMap = pFd->mmapSizeMax;
4435 }
4436 nMap &= ~(sqlite3_int64)(winSysInfo.dwPageSize - 1);
4437
4438 if( nMap==0 && pFd->mmapSize>0 ){
4439 winUnmapfile(pFd);
4440 }
4441 if( nMap!=pFd->mmapSize ){
4442 void *pNew = 0;
4443 DWORD protect = PAGE_READONLY;
4444 DWORD flags = FILE_MAP_READ;
4445
4446 winUnmapfile(pFd);
4447#ifdef SQLITE_MMAP_READWRITE
4448 if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){
4449 protect = PAGE_READWRITE;
4450 flags |= FILE_MAP_WRITE;
4451 }
4452#endif
4453#if SQLITE_OS_WINRT
4454 pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
4455#elif defined(SQLITE_WIN32_HAS_WIDE)
4456 pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
4457 (DWORD)((nMap>>32) & 0xffffffff),
4458 (DWORD)(nMap & 0xffffffff), NULL);
4459#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
4460 pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
4461 (DWORD)((nMap>>32) & 0xffffffff),
4462 (DWORD)(nMap & 0xffffffff), NULL);
4463#endif
4464 if( pFd->hMap==NULL ){
4465 pFd->lastErrno = osGetLastError();
4466 rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
4467 "winMapfile1", pFd->zPath);
4468 /* Log the error, but continue normal operation using xRead/xWrite */
4469 OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=%s\n",
4470 osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
4471 return SQLITE_OK;
4472 }
4473 assert( (nMap % winSysInfo.dwPageSize)==0 );
4474 assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff );
4475#if SQLITE_OS_WINRT
4476 pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, (SIZE_T)nMap);
4477#else
4478 pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap);
4479#endif
4480 if( pNew==NULL ){
4481 osCloseHandle(pFd->hMap);
4482 pFd->hMap = NULL;
4483 pFd->lastErrno = osGetLastError();
4484 rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
4485 "winMapfile2", pFd->zPath);
4486 /* Log the error, but continue normal operation using xRead/xWrite */
4487 OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n",
4488 osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
4489 return SQLITE_OK;
4490 }
4491 pFd->pMapRegion = pNew;
4492 pFd->mmapSize = nMap;
4493 }
4494
4495 OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
4496 osGetCurrentProcessId(), pFd));
4497 return SQLITE_OK;
4498}
4499#endif /* SQLITE_MAX_MMAP_SIZE>0 */
4500
4501/*
4502** If possible, return a pointer to a mapping of file fd starting at offset
4503** iOff. The mapping must be valid for at least nAmt bytes.
4504**
4505** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
4506** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
4507** Finally, if an error does occur, return an SQLite error code. The final
4508** value of *pp is undefined in this case.
4509**
4510** If this function does return a pointer, the caller must eventually
4511** release the reference by calling winUnfetch().
4512*/
4513static int winFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
4514#if SQLITE_MAX_MMAP_SIZE>0
4515 winFile *pFd = (winFile*)fd; /* The underlying database file */
4516#endif
4517 *pp = 0;
4518
4519 OSTRACE(("FETCH pid=%lu, pFile=%p, offset=%lld, amount=%d, pp=%p\n",
4520 osGetCurrentProcessId(), fd, iOff, nAmt, pp));
4521
4522#if SQLITE_MAX_MMAP_SIZE>0
4523 if( pFd->mmapSizeMax>0 ){
4524 if( pFd->pMapRegion==0 ){
4525 int rc = winMapfile(pFd, -1);
4526 if( rc!=SQLITE_OK ){
4527 OSTRACE(("FETCH pid=%lu, pFile=%p, rc=%s\n",
4528 osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
4529 return rc;
4530 }
4531 }
4532 if( pFd->mmapSize >= iOff+nAmt ){
4533 assert( pFd->pMapRegion!=0 );
4534 *pp = &((u8 *)pFd->pMapRegion)[iOff];
4535 pFd->nFetchOut++;
4536 }
4537 }
4538#endif
4539
4540 OSTRACE(("FETCH pid=%lu, pFile=%p, pp=%p, *pp=%p, rc=SQLITE_OK\n",
4541 osGetCurrentProcessId(), fd, pp, *pp));
4542 return SQLITE_OK;
4543}
4544
4545/*
4546** If the third argument is non-NULL, then this function releases a
4547** reference obtained by an earlier call to winFetch(). The second
4548** argument passed to this function must be the same as the corresponding
4549** argument that was passed to the winFetch() invocation.
4550**
4551** Or, if the third argument is NULL, then this function is being called
4552** to inform the VFS layer that, according to POSIX, any existing mapping
4553** may now be invalid and should be unmapped.
4554*/
4555static int winUnfetch(sqlite3_file *fd, i64 iOff, void *p){
4556#if SQLITE_MAX_MMAP_SIZE>0
4557 winFile *pFd = (winFile*)fd; /* The underlying database file */
4558
4559 /* If p==0 (unmap the entire file) then there must be no outstanding
4560 ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
4561 ** then there must be at least one outstanding. */
4562 assert( (p==0)==(pFd->nFetchOut==0) );
4563
4564 /* If p!=0, it must match the iOff value. */
4565 assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
4566
4567 OSTRACE(("UNFETCH pid=%lu, pFile=%p, offset=%lld, p=%p\n",
4568 osGetCurrentProcessId(), pFd, iOff, p));
4569
4570 if( p ){
4571 pFd->nFetchOut--;
4572 }else{
4573 /* FIXME: If Windows truly always prevents truncating or deleting a
4574 ** file while a mapping is held, then the following winUnmapfile() call
4575 ** is unnecessary can be omitted - potentially improving
4576 ** performance. */
4577 winUnmapfile(pFd);
4578 }
4579
4580 assert( pFd->nFetchOut>=0 );
4581#endif
4582
4583 OSTRACE(("UNFETCH pid=%lu, pFile=%p, rc=SQLITE_OK\n",
4584 osGetCurrentProcessId(), fd));
4585 return SQLITE_OK;
4586}
4587
4588/*
4589** Here ends the implementation of all sqlite3_file methods.
4590**
4591********************** End sqlite3_file Methods *******************************
4592******************************************************************************/
4593
4594/*
4595** This vector defines all the methods that can operate on an
4596** sqlite3_file for win32.
4597*/
4598static const sqlite3_io_methods winIoMethod = {
4599 3, /* iVersion */
4600 winClose, /* xClose */
4601 winRead, /* xRead */
4602 winWrite, /* xWrite */
4603 winTruncate, /* xTruncate */
4604 winSync, /* xSync */
4605 winFileSize, /* xFileSize */
4606 winLock, /* xLock */
4607 winUnlock, /* xUnlock */
4608 winCheckReservedLock, /* xCheckReservedLock */
4609 winFileControl, /* xFileControl */
4610 winSectorSize, /* xSectorSize */
4611 winDeviceCharacteristics, /* xDeviceCharacteristics */
4612 winShmMap, /* xShmMap */
4613 winShmLock, /* xShmLock */
4614 winShmBarrier, /* xShmBarrier */
4615 winShmUnmap, /* xShmUnmap */
4616 winFetch, /* xFetch */
4617 winUnfetch /* xUnfetch */
4618};
4619
4620/*
4621** This vector defines all the methods that can operate on an
4622** sqlite3_file for win32 without performing any locking.
4623*/
4624static const sqlite3_io_methods winIoNolockMethod = {
4625 3, /* iVersion */
4626 winClose, /* xClose */
4627 winRead, /* xRead */
4628 winWrite, /* xWrite */
4629 winTruncate, /* xTruncate */
4630 winSync, /* xSync */
4631 winFileSize, /* xFileSize */
4632 winNolockLock, /* xLock */
4633 winNolockUnlock, /* xUnlock */
4634 winNolockCheckReservedLock, /* xCheckReservedLock */
4635 winFileControl, /* xFileControl */
4636 winSectorSize, /* xSectorSize */
4637 winDeviceCharacteristics, /* xDeviceCharacteristics */
4638 winShmMap, /* xShmMap */
4639 winShmLock, /* xShmLock */
4640 winShmBarrier, /* xShmBarrier */
4641 winShmUnmap, /* xShmUnmap */
4642 winFetch, /* xFetch */
4643 winUnfetch /* xUnfetch */
4644};
4645
4646static winVfsAppData winAppData = {
4647 &winIoMethod, /* pMethod */
4648 0, /* pAppData */
4649 0 /* bNoLock */
4650};
4651
4652static winVfsAppData winNolockAppData = {
4653 &winIoNolockMethod, /* pMethod */
4654 0, /* pAppData */
4655 1 /* bNoLock */
4656};
4657
4658/****************************************************************************
4659**************************** sqlite3_vfs methods ****************************
4660**
4661** This division contains the implementation of methods on the
4662** sqlite3_vfs object.
4663*/
4664
4665#if defined(__CYGWIN__)
4666/*
4667** Convert a filename from whatever the underlying operating system
4668** supports for filenames into UTF-8. Space to hold the result is
4669** obtained from malloc and must be freed by the calling function.
4670*/
4671static char *winConvertToUtf8Filename(const void *zFilename){
4672 char *zConverted = 0;
4673 if( osIsNT() ){
4674 zConverted = winUnicodeToUtf8(zFilename);
4675 }
4676#ifdef SQLITE_WIN32_HAS_ANSI
4677 else{
4678 zConverted = winMbcsToUtf8(zFilename, osAreFileApisANSI());
4679 }
4680#endif
4681 /* caller will handle out of memory */
4682 return zConverted;
4683}
4684#endif
4685
4686/*
4687** Convert a UTF-8 filename into whatever form the underlying
4688** operating system wants filenames in. Space to hold the result
4689** is obtained from malloc and must be freed by the calling
4690** function.
4691*/
4692static void *winConvertFromUtf8Filename(const char *zFilename){
4693 void *zConverted = 0;
4694 if( osIsNT() ){
4695 zConverted = winUtf8ToUnicode(zFilename);
4696 }
4697#ifdef SQLITE_WIN32_HAS_ANSI
4698 else{
4699 zConverted = winUtf8ToMbcs(zFilename, osAreFileApisANSI());
4700 }
4701#endif
4702 /* caller will handle out of memory */
4703 return zConverted;
4704}
4705
4706/*
4707** This function returns non-zero if the specified UTF-8 string buffer
4708** ends with a directory separator character or one was successfully
4709** added to it.
4710*/
4711static int winMakeEndInDirSep(int nBuf, char *zBuf){
4712 if( zBuf ){
4713 int nLen = sqlite3Strlen30(zBuf);
4714 if( nLen>0 ){
4715 if( winIsDirSep(zBuf[nLen-1]) ){
4716 return 1;
4717 }else if( nLen+1<nBuf ){
4718 zBuf[nLen] = winGetDirSep();
4719 zBuf[nLen+1] = '\0';
4720 return 1;
4721 }
4722 }
4723 }
4724 return 0;
4725}
4726
4727/*
4728** If sqlite3_temp_directory is defined, take the mutex and return true.
4729**
4730** If sqlite3_temp_directory is NULL (undefined), omit the mutex and
4731** return false.
4732*/
4733static int winTempDirDefined(void){
4734 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
4735 if( sqlite3_temp_directory!=0 ) return 1;
4736 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
4737 return 0;
4738}
4739
4740/*
4741** Create a temporary file name and store the resulting pointer into pzBuf.
4742** The pointer returned in pzBuf must be freed via sqlite3_free().
4743*/
4744static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){
4745 static char zChars[] =
4746 "abcdefghijklmnopqrstuvwxyz"
4747 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
4748 "0123456789";
4749 size_t i, j;
4750 int nPre = sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX);
4751 int nMax, nBuf, nDir, nLen;
4752 char *zBuf;
4753
4754 /* It's odd to simulate an io-error here, but really this is just
4755 ** using the io-error infrastructure to test that SQLite handles this
4756 ** function failing.
4757 */
4758 SimulateIOError( return SQLITE_IOERR );
4759
4760 /* Allocate a temporary buffer to store the fully qualified file
4761 ** name for the temporary file. If this fails, we cannot continue.
4762 */
4763 nMax = pVfs->mxPathname; nBuf = nMax + 2;
4764 zBuf = sqlite3MallocZero( nBuf );
4765 if( !zBuf ){
4766 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4767 return SQLITE_IOERR_NOMEM_BKPT;
4768 }
4769
4770 /* Figure out the effective temporary directory. First, check if one
4771 ** has been explicitly set by the application; otherwise, use the one
4772 ** configured by the operating system.
4773 */
4774 nDir = nMax - (nPre + 15);
4775 assert( nDir>0 );
4776 if( winTempDirDefined() ){
4777 int nDirLen = sqlite3Strlen30(sqlite3_temp_directory);
4778 if( nDirLen>0 ){
4779 if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){
4780 nDirLen++;
4781 }
4782 if( nDirLen>nDir ){
4783 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
4784 sqlite3_free(zBuf);
4785 OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
4786 return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0);
4787 }
4788 sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory);
4789 }
4790 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
4791 }
4792
4793#if defined(__CYGWIN__)
4794 else{
4795 static const char *azDirs[] = {
4796 0, /* getenv("SQLITE_TMPDIR") */
4797 0, /* getenv("TMPDIR") */
4798 0, /* getenv("TMP") */
4799 0, /* getenv("TEMP") */
4800 0, /* getenv("USERPROFILE") */
4801 "/var/tmp",
4802 "/usr/tmp",
4803 "/tmp",
4804 ".",
4805 0 /* List terminator */
4806 };
4807 unsigned int i;
4808 const char *zDir = 0;
4809
4810 if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
4811 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
4812 if( !azDirs[2] ) azDirs[2] = getenv("TMP");
4813 if( !azDirs[3] ) azDirs[3] = getenv("TEMP");
4814 if( !azDirs[4] ) azDirs[4] = getenv("USERPROFILE");
4815 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
4816 void *zConverted;
4817 if( zDir==0 ) continue;
4818 /* If the path starts with a drive letter followed by the colon
4819 ** character, assume it is already a native Win32 path; otherwise,
4820 ** it must be converted to a native Win32 path via the Cygwin API
4821 ** prior to using it.
4822 */
4823 if( winIsDriveLetterAndColon(zDir) ){
4824 zConverted = winConvertFromUtf8Filename(zDir);
4825 if( !zConverted ){
4826 sqlite3_free(zBuf);
4827 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4828 return SQLITE_IOERR_NOMEM_BKPT;
4829 }
4830 if( winIsDir(zConverted) ){
4831 sqlite3_snprintf(nMax, zBuf, "%s", zDir);
4832 sqlite3_free(zConverted);
4833 break;
4834 }
4835 sqlite3_free(zConverted);
4836 }else{
4837 zConverted = sqlite3MallocZero( nMax+1 );
4838 if( !zConverted ){
4839 sqlite3_free(zBuf);
4840 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4841 return SQLITE_IOERR_NOMEM_BKPT;
4842 }
4843 if( cygwin_conv_path(
4844 osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A, zDir,
4845 zConverted, nMax+1)<0 ){
4846 sqlite3_free(zConverted);
4847 sqlite3_free(zBuf);
4848 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_CONVPATH\n"));
4849 return winLogError(SQLITE_IOERR_CONVPATH, (DWORD)errno,
4850 "winGetTempname2", zDir);
4851 }
4852 if( winIsDir(zConverted) ){
4853 /* At this point, we know the candidate directory exists and should
4854 ** be used. However, we may need to convert the string containing
4855 ** its name into UTF-8 (i.e. if it is UTF-16 right now).
4856 */
4857 char *zUtf8 = winConvertToUtf8Filename(zConverted);
4858 if( !zUtf8 ){
4859 sqlite3_free(zConverted);
4860 sqlite3_free(zBuf);
4861 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4862 return SQLITE_IOERR_NOMEM_BKPT;
4863 }
4864 sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
4865 sqlite3_free(zUtf8);
4866 sqlite3_free(zConverted);
4867 break;
4868 }
4869 sqlite3_free(zConverted);
4870 }
4871 }
4872 }
4873#elif !SQLITE_OS_WINRT && !defined(__CYGWIN__)
4874 else if( osIsNT() ){
4875 char *zMulti;
4876 LPWSTR zWidePath = sqlite3MallocZero( nMax*sizeof(WCHAR) );
4877 if( !zWidePath ){
4878 sqlite3_free(zBuf);
4879 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4880 return SQLITE_IOERR_NOMEM_BKPT;
4881 }
4882 if( osGetTempPathW(nMax, zWidePath)==0 ){
4883 sqlite3_free(zWidePath);
4884 sqlite3_free(zBuf);
4885 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
4886 return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
4887 "winGetTempname2", 0);
4888 }
4889 zMulti = winUnicodeToUtf8(zWidePath);
4890 if( zMulti ){
4891 sqlite3_snprintf(nMax, zBuf, "%s", zMulti);
4892 sqlite3_free(zMulti);
4893 sqlite3_free(zWidePath);
4894 }else{
4895 sqlite3_free(zWidePath);
4896 sqlite3_free(zBuf);
4897 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4898 return SQLITE_IOERR_NOMEM_BKPT;
4899 }
4900 }
4901#ifdef SQLITE_WIN32_HAS_ANSI
4902 else{
4903 char *zUtf8;
4904 char *zMbcsPath = sqlite3MallocZero( nMax );
4905 if( !zMbcsPath ){
4906 sqlite3_free(zBuf);
4907 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4908 return SQLITE_IOERR_NOMEM_BKPT;
4909 }
4910 if( osGetTempPathA(nMax, zMbcsPath)==0 ){
4911 sqlite3_free(zBuf);
4912 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
4913 return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
4914 "winGetTempname3", 0);
4915 }
4916 zUtf8 = winMbcsToUtf8(zMbcsPath, osAreFileApisANSI());
4917 if( zUtf8 ){
4918 sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
4919 sqlite3_free(zUtf8);
4920 }else{
4921 sqlite3_free(zBuf);
4922 OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
4923 return SQLITE_IOERR_NOMEM_BKPT;
4924 }
4925 }
4926#endif /* SQLITE_WIN32_HAS_ANSI */
4927#endif /* !SQLITE_OS_WINRT */
4928
4929 /*
4930 ** Check to make sure the temporary directory ends with an appropriate
4931 ** separator. If it does not and there is not enough space left to add
4932 ** one, fail.
4933 */
4934 if( !winMakeEndInDirSep(nDir+1, zBuf) ){
4935 sqlite3_free(zBuf);
4936 OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
4937 return winLogError(SQLITE_ERROR, 0, "winGetTempname4", 0);
4938 }
4939
4940 /*
4941 ** Check that the output buffer is large enough for the temporary file
4942 ** name in the following format:
4943 **
4944 ** "<temporary_directory>/etilqs_XXXXXXXXXXXXXXX\0\0"
4945 **
4946 ** If not, return SQLITE_ERROR. The number 17 is used here in order to
4947 ** account for the space used by the 15 character random suffix and the
4948 ** two trailing NUL characters. The final directory separator character
4949 ** has already added if it was not already present.
4950 */
4951 nLen = sqlite3Strlen30(zBuf);
4952 if( (nLen + nPre + 17) > nBuf ){
4953 sqlite3_free(zBuf);
4954 OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
4955 return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0);
4956 }
4957
4958 sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX);
4959
4960 j = sqlite3Strlen30(zBuf);
4961 sqlite3_randomness(15, &zBuf[j]);
4962 for(i=0; i<15; i++, j++){
4963 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
4964 }
4965 zBuf[j] = 0;
4966 zBuf[j+1] = 0;
4967 *pzBuf = zBuf;
4968
4969 OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf));
4970 return SQLITE_OK;
4971}
4972
4973/*
4974** Return TRUE if the named file is really a directory. Return false if
4975** it is something other than a directory, or if there is any kind of memory
4976** allocation failure.
4977*/
4978static int winIsDir(const void *zConverted){
4979 DWORD attr;
4980 int rc = 0;
4981 DWORD lastErrno;
4982
4983 if( osIsNT() ){
4984 int cnt = 0;
4985 WIN32_FILE_ATTRIBUTE_DATA sAttrData;
4986 memset(&sAttrData, 0, sizeof(sAttrData));
4987 while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
4988 GetFileExInfoStandard,
4989 &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
4990 if( !rc ){
4991 return 0; /* Invalid name? */
4992 }
4993 attr = sAttrData.dwFileAttributes;
4994#if SQLITE_OS_WINCE==0
4995 }else{
4996 attr = osGetFileAttributesA((char*)zConverted);
4997#endif
4998 }
4999 return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY);
5000}
5001
5002/* forward reference */
5003static int winAccess(
5004 sqlite3_vfs *pVfs, /* Not used on win32 */
5005 const char *zFilename, /* Name of file to check */
5006 int flags, /* Type of test to make on this file */
5007 int *pResOut /* OUT: Result */
5008);
5009
5010/*
5011** Open a file.
5012*/
5013static int winOpen(
5014 sqlite3_vfs *pVfs, /* Used to get maximum path length and AppData */
5015 const char *zName, /* Name of the file (UTF-8) */
5016 sqlite3_file *id, /* Write the SQLite file handle here */
5017 int flags, /* Open mode flags */
5018 int *pOutFlags /* Status return flags */
5019){
5020 HANDLE h;
5021 DWORD lastErrno = 0;
5022 DWORD dwDesiredAccess;
5023 DWORD dwShareMode;
5024 DWORD dwCreationDisposition;
5025 DWORD dwFlagsAndAttributes = 0;
5026#if SQLITE_OS_WINCE
5027 int isTemp = 0;
5028#endif
5029 winVfsAppData *pAppData;
5030 winFile *pFile = (winFile*)id;
5031 void *zConverted; /* Filename in OS encoding */
5032 const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
5033 int cnt = 0;
5034
5035 /* If argument zPath is a NULL pointer, this function is required to open
5036 ** a temporary file. Use this buffer to store the file name in.
5037 */
5038 char *zTmpname = 0; /* For temporary filename, if necessary. */
5039
5040 int rc = SQLITE_OK; /* Function Return Code */
5041#if !defined(NDEBUG) || SQLITE_OS_WINCE
5042 int eType = flags&0xFFFFFF00; /* Type of file to open */
5043#endif
5044
5045 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
5046 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
5047 int isCreate = (flags & SQLITE_OPEN_CREATE);
5048 int isReadonly = (flags & SQLITE_OPEN_READONLY);
5049 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
5050
5051#ifndef NDEBUG
5052 int isOpenJournal = (isCreate && (
5053 eType==SQLITE_OPEN_SUPER_JOURNAL
5054 || eType==SQLITE_OPEN_MAIN_JOURNAL
5055 || eType==SQLITE_OPEN_WAL
5056 ));
5057#endif
5058
5059 OSTRACE(("OPEN name=%s, pFile=%p, flags=%x, pOutFlags=%p\n",
5060 zUtf8Name, id, flags, pOutFlags));
5061
5062 /* Check the following statements are true:
5063 **
5064 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
5065 ** (b) if CREATE is set, then READWRITE must also be set, and
5066 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
5067 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
5068 */
5069 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
5070 assert(isCreate==0 || isReadWrite);
5071 assert(isExclusive==0 || isCreate);
5072 assert(isDelete==0 || isCreate);
5073
5074 /* The main DB, main journal, WAL file and super-journal are never
5075 ** automatically deleted. Nor are they ever temporary files. */
5076 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5077 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5078 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL );
5079 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
5080
5081 /* Assert that the upper layer has set one of the "file-type" flags. */
5082 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
5083 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5084 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL
5085 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
5086 );
5087
5088 assert( pFile!=0 );
5089 memset(pFile, 0, sizeof(winFile));
5090 pFile->h = INVALID_HANDLE_VALUE;
5091
5092#if SQLITE_OS_WINRT
5093 if( !zUtf8Name && !sqlite3_temp_directory ){
5094 sqlite3_log(SQLITE_ERROR,
5095 "sqlite3_temp_directory variable should be set for WinRT");
5096 }
5097#endif
5098
5099 /* If the second argument to this function is NULL, generate a
5100 ** temporary file name to use
5101 */
5102 if( !zUtf8Name ){
5103 assert( isDelete && !isOpenJournal );
5104 rc = winGetTempname(pVfs, &zTmpname);
5105 if( rc!=SQLITE_OK ){
5106 OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc)));
5107 return rc;
5108 }
5109 zUtf8Name = zTmpname;
5110 }
5111
5112 /* Database filenames are double-zero terminated if they are not
5113 ** URIs with parameters. Hence, they can always be passed into
5114 ** sqlite3_uri_parameter().
5115 */
5116 assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) ||
5117 zUtf8Name[sqlite3Strlen30(zUtf8Name)+1]==0 );
5118
5119 /* Convert the filename to the system encoding. */
5120 zConverted = winConvertFromUtf8Filename(zUtf8Name);
5121 if( zConverted==0 ){
5122 sqlite3_free(zTmpname);
5123 OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name));
5124 return SQLITE_IOERR_NOMEM_BKPT;
5125 }
5126
5127 if( winIsDir(zConverted) ){
5128 sqlite3_free(zConverted);
5129 sqlite3_free(zTmpname);
5130 OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name));
5131 return SQLITE_CANTOPEN_ISDIR;
5132 }
5133
5134 if( isReadWrite ){
5135 dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
5136 }else{
5137 dwDesiredAccess = GENERIC_READ;
5138 }
5139
5140 /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
5141 ** created. SQLite doesn't use it to indicate "exclusive access"
5142 ** as it is usually understood.
5143 */
5144 if( isExclusive ){
5145 /* Creates a new file, only if it does not already exist. */
5146 /* If the file exists, it fails. */
5147 dwCreationDisposition = CREATE_NEW;
5148 }else if( isCreate ){
5149 /* Open existing file, or create if it doesn't exist */
5150 dwCreationDisposition = OPEN_ALWAYS;
5151 }else{
5152 /* Opens a file, only if it exists. */
5153 dwCreationDisposition = OPEN_EXISTING;
5154 }
5155
5156 if( 0==sqlite3_uri_boolean(zName, "exclusive", 0) ){
5157 dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
5158 }else{
5159 dwShareMode = 0;
5160 }
5161
5162 if( isDelete ){
5163#if SQLITE_OS_WINCE
5164 dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
5165 isTemp = 1;
5166#else
5167 dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
5168 | FILE_ATTRIBUTE_HIDDEN
5169 | FILE_FLAG_DELETE_ON_CLOSE;
5170#endif
5171 }else{
5172 dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
5173 }
5174 /* Reports from the internet are that performance is always
5175 ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
5176#if SQLITE_OS_WINCE
5177 dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
5178#endif
5179
5180 if( osIsNT() ){
5181#if SQLITE_OS_WINRT
5182 CREATEFILE2_EXTENDED_PARAMETERS extendedParameters;
5183 extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS);
5184 extendedParameters.dwFileAttributes =
5185 dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK;
5186 extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK;
5187 extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS;
5188 extendedParameters.lpSecurityAttributes = NULL;
5189 extendedParameters.hTemplateFile = NULL;
5190 do{
5191 h = osCreateFile2((LPCWSTR)zConverted,
5192 dwDesiredAccess,
5193 dwShareMode,
5194 dwCreationDisposition,
5195 &extendedParameters);
5196 if( h!=INVALID_HANDLE_VALUE ) break;
5197 if( isReadWrite ){
5198 int rc2, isRO = 0;
5199 sqlite3BeginBenignMalloc();
5200 rc2 = winAccess(pVfs, zName, SQLITE_ACCESS_READ, &isRO);
5201 sqlite3EndBenignMalloc();
5202 if( rc2==SQLITE_OK && isRO ) break;
5203 }
5204 }while( winRetryIoerr(&cnt, &lastErrno) );
5205#else
5206 do{
5207 h = osCreateFileW((LPCWSTR)zConverted,
5208 dwDesiredAccess,
5209 dwShareMode, NULL,
5210 dwCreationDisposition,
5211 dwFlagsAndAttributes,
5212 NULL);
5213 if( h!=INVALID_HANDLE_VALUE ) break;
5214 if( isReadWrite ){
5215 int rc2, isRO = 0;
5216 sqlite3BeginBenignMalloc();
5217 rc2 = winAccess(pVfs, zName, SQLITE_ACCESS_READ, &isRO);
5218 sqlite3EndBenignMalloc();
5219 if( rc2==SQLITE_OK && isRO ) break;
5220 }
5221 }while( winRetryIoerr(&cnt, &lastErrno) );
5222#endif
5223 }
5224#ifdef SQLITE_WIN32_HAS_ANSI
5225 else{
5226 do{
5227 h = osCreateFileA((LPCSTR)zConverted,
5228 dwDesiredAccess,
5229 dwShareMode, NULL,
5230 dwCreationDisposition,
5231 dwFlagsAndAttributes,
5232 NULL);
5233 if( h!=INVALID_HANDLE_VALUE ) break;
5234 if( isReadWrite ){
5235 int rc2, isRO = 0;
5236 sqlite3BeginBenignMalloc();
5237 rc2 = winAccess(pVfs, zName, SQLITE_ACCESS_READ, &isRO);
5238 sqlite3EndBenignMalloc();
5239 if( rc2==SQLITE_OK && isRO ) break;
5240 }
5241 }while( winRetryIoerr(&cnt, &lastErrno) );
5242 }
5243#endif
5244 winLogIoerr(cnt, __LINE__);
5245
5246 OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
5247 dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
5248
5249 if( h==INVALID_HANDLE_VALUE ){
5250 sqlite3_free(zConverted);
5251 sqlite3_free(zTmpname);
5252 if( isReadWrite && !isExclusive ){
5253 return winOpen(pVfs, zName, id,
5254 ((flags|SQLITE_OPEN_READONLY) &
5255 ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
5256 pOutFlags);
5257 }else{
5258 pFile->lastErrno = lastErrno;
5259 winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
5260 return SQLITE_CANTOPEN_BKPT;
5261 }
5262 }
5263
5264 if( pOutFlags ){
5265 if( isReadWrite ){
5266 *pOutFlags = SQLITE_OPEN_READWRITE;
5267 }else{
5268 *pOutFlags = SQLITE_OPEN_READONLY;
5269 }
5270 }
5271
5272 OSTRACE(("OPEN file=%p, name=%s, access=%lx, pOutFlags=%p, *pOutFlags=%d, "
5273 "rc=%s\n", h, zUtf8Name, dwDesiredAccess, pOutFlags, pOutFlags ?
5274 *pOutFlags : 0, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
5275
5276 pAppData = (winVfsAppData*)pVfs->pAppData;
5277
5278#if SQLITE_OS_WINCE
5279 {
5280 if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
5281 && ((pAppData==NULL) || !pAppData->bNoLock)
5282 && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
5283 ){
5284 osCloseHandle(h);
5285 sqlite3_free(zConverted);
5286 sqlite3_free(zTmpname);
5287 OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc)));
5288 return rc;
5289 }
5290 }
5291 if( isTemp ){
5292 pFile->zDeleteOnClose = zConverted;
5293 }else
5294#endif
5295 {
5296 sqlite3_free(zConverted);
5297 }
5298
5299 sqlite3_free(zTmpname);
5300 id->pMethods = pAppData ? pAppData->pMethod : &winIoMethod;
5301 pFile->pVfs = pVfs;
5302 pFile->h = h;
5303 if( isReadonly ){
5304 pFile->ctrlFlags |= WINFILE_RDONLY;
5305 }
5306 if( (flags & SQLITE_OPEN_MAIN_DB)
5307 && sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE)
5308 ){
5309 pFile->ctrlFlags |= WINFILE_PSOW;
5310 }
5311 pFile->lastErrno = NO_ERROR;
5312 pFile->zPath = zName;
5313#if SQLITE_MAX_MMAP_SIZE>0
5314 pFile->hMap = NULL;
5315 pFile->pMapRegion = 0;
5316 pFile->mmapSize = 0;
5317 pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap;
5318#endif
5319
5320 OpenCounter(+1);
5321 return rc;
5322}
5323
5324/*
5325** Delete the named file.
5326**
5327** Note that Windows does not allow a file to be deleted if some other
5328** process has it open. Sometimes a virus scanner or indexing program
5329** will open a journal file shortly after it is created in order to do
5330** whatever it does. While this other process is holding the
5331** file open, we will be unable to delete it. To work around this
5332** problem, we delay 100 milliseconds and try to delete again. Up
5333** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
5334** up and returning an error.
5335*/
5336static int winDelete(
5337 sqlite3_vfs *pVfs, /* Not used on win32 */
5338 const char *zFilename, /* Name of file to delete */
5339 int syncDir /* Not used on win32 */
5340){
5341 int cnt = 0;
5342 int rc;
5343 DWORD attr;
5344 DWORD lastErrno = 0;
5345 void *zConverted;
5346 UNUSED_PARAMETER(pVfs);
5347 UNUSED_PARAMETER(syncDir);
5348
5349 SimulateIOError(return SQLITE_IOERR_DELETE);
5350 OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir));
5351
5352 zConverted = winConvertFromUtf8Filename(zFilename);
5353 if( zConverted==0 ){
5354 OSTRACE(("DELETE name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
5355 return SQLITE_IOERR_NOMEM_BKPT;
5356 }
5357 if( osIsNT() ){
5358 do {
5359#if SQLITE_OS_WINRT
5360 WIN32_FILE_ATTRIBUTE_DATA sAttrData;
5361 memset(&sAttrData, 0, sizeof(sAttrData));
5362 if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
5363 &sAttrData) ){
5364 attr = sAttrData.dwFileAttributes;
5365 }else{
5366 lastErrno = osGetLastError();
5367 if( lastErrno==ERROR_FILE_NOT_FOUND
5368 || lastErrno==ERROR_PATH_NOT_FOUND ){
5369 rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
5370 }else{
5371 rc = SQLITE_ERROR;
5372 }
5373 break;
5374 }
5375#else
5376 attr = osGetFileAttributesW(zConverted);
5377#endif
5378 if ( attr==INVALID_FILE_ATTRIBUTES ){
5379 lastErrno = osGetLastError();
5380 if( lastErrno==ERROR_FILE_NOT_FOUND
5381 || lastErrno==ERROR_PATH_NOT_FOUND ){
5382 rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
5383 }else{
5384 rc = SQLITE_ERROR;
5385 }
5386 break;
5387 }
5388 if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
5389 rc = SQLITE_ERROR; /* Files only. */
5390 break;
5391 }
5392 if ( osDeleteFileW(zConverted) ){
5393 rc = SQLITE_OK; /* Deleted OK. */
5394 break;
5395 }
5396 if ( !winRetryIoerr(&cnt, &lastErrno) ){
5397 rc = SQLITE_ERROR; /* No more retries. */
5398 break;
5399 }
5400 } while(1);
5401 }
5402#ifdef SQLITE_WIN32_HAS_ANSI
5403 else{
5404 do {
5405 attr = osGetFileAttributesA(zConverted);
5406 if ( attr==INVALID_FILE_ATTRIBUTES ){
5407 lastErrno = osGetLastError();
5408 if( lastErrno==ERROR_FILE_NOT_FOUND
5409 || lastErrno==ERROR_PATH_NOT_FOUND ){
5410 rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
5411 }else{
5412 rc = SQLITE_ERROR;
5413 }
5414 break;
5415 }
5416 if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
5417 rc = SQLITE_ERROR; /* Files only. */
5418 break;
5419 }
5420 if ( osDeleteFileA(zConverted) ){
5421 rc = SQLITE_OK; /* Deleted OK. */
5422 break;
5423 }
5424 if ( !winRetryIoerr(&cnt, &lastErrno) ){
5425 rc = SQLITE_ERROR; /* No more retries. */
5426 break;
5427 }
5428 } while(1);
5429 }
5430#endif
5431 if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
5432 rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename);
5433 }else{
5434 winLogIoerr(cnt, __LINE__);
5435 }
5436 sqlite3_free(zConverted);
5437 OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
5438 return rc;
5439}
5440
5441/*
5442** Check the existence and status of a file.
5443*/
5444static int winAccess(
5445 sqlite3_vfs *pVfs, /* Not used on win32 */
5446 const char *zFilename, /* Name of file to check */
5447 int flags, /* Type of test to make on this file */
5448 int *pResOut /* OUT: Result */
5449){
5450 DWORD attr;
5451 int rc = 0;
5452 DWORD lastErrno = 0;
5453 void *zConverted;
5454 UNUSED_PARAMETER(pVfs);
5455
5456 SimulateIOError( return SQLITE_IOERR_ACCESS; );
5457 OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n",
5458 zFilename, flags, pResOut));
5459
5460 zConverted = winConvertFromUtf8Filename(zFilename);
5461 if( zConverted==0 ){
5462 OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
5463 return SQLITE_IOERR_NOMEM_BKPT;
5464 }
5465 if( osIsNT() ){
5466 int cnt = 0;
5467 WIN32_FILE_ATTRIBUTE_DATA sAttrData;
5468 memset(&sAttrData, 0, sizeof(sAttrData));
5469 while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
5470 GetFileExInfoStandard,
5471 &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
5472 if( rc ){
5473 /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
5474 ** as if it does not exist.
5475 */
5476 if( flags==SQLITE_ACCESS_EXISTS
5477 && sAttrData.nFileSizeHigh==0
5478 && sAttrData.nFileSizeLow==0 ){
5479 attr = INVALID_FILE_ATTRIBUTES;
5480 }else{
5481 attr = sAttrData.dwFileAttributes;
5482 }
5483 }else{
5484 winLogIoerr(cnt, __LINE__);
5485 if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){
5486 sqlite3_free(zConverted);
5487 return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess",
5488 zFilename);
5489 }else{
5490 attr = INVALID_FILE_ATTRIBUTES;
5491 }
5492 }
5493 }
5494#ifdef SQLITE_WIN32_HAS_ANSI
5495 else{
5496 attr = osGetFileAttributesA((char*)zConverted);
5497 }
5498#endif
5499 sqlite3_free(zConverted);
5500 switch( flags ){
5501 case SQLITE_ACCESS_READ:
5502 case SQLITE_ACCESS_EXISTS:
5503 rc = attr!=INVALID_FILE_ATTRIBUTES;
5504 break;
5505 case SQLITE_ACCESS_READWRITE:
5506 rc = attr!=INVALID_FILE_ATTRIBUTES &&
5507 (attr & FILE_ATTRIBUTE_READONLY)==0;
5508 break;
5509 default:
5510 assert(!"Invalid flags argument");
5511 }
5512 *pResOut = rc;
5513 OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
5514 zFilename, pResOut, *pResOut));
5515 return SQLITE_OK;
5516}
5517
5518/*
5519** Returns non-zero if the specified path name starts with the "long path"
5520** prefix.
5521*/
5522static BOOL winIsLongPathPrefix(
5523 const char *zPathname
5524){
5525 return ( zPathname[0]=='\\' && zPathname[1]=='\\'
5526 && zPathname[2]=='?' && zPathname[3]=='\\' );
5527}
5528
5529/*
5530** Returns non-zero if the specified path name starts with a drive letter
5531** followed by a colon character.
5532*/
5533static BOOL winIsDriveLetterAndColon(
5534 const char *zPathname
5535){
5536 return ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' );
5537}
5538
5539/*
5540** Returns non-zero if the specified path name should be used verbatim. If
5541** non-zero is returned from this function, the calling function must simply
5542** use the provided path name verbatim -OR- resolve it into a full path name
5543** using the GetFullPathName Win32 API function (if available).
5544*/
5545static BOOL winIsVerbatimPathname(
5546 const char *zPathname
5547){
5548 /*
5549 ** If the path name starts with a forward slash or a backslash, it is either
5550 ** a legal UNC name, a volume relative path, or an absolute path name in the
5551 ** "Unix" format on Windows. There is no easy way to differentiate between
5552 ** the final two cases; therefore, we return the safer return value of TRUE
5553 ** so that callers of this function will simply use it verbatim.
5554 */
5555 if ( winIsDirSep(zPathname[0]) ){
5556 return TRUE;
5557 }
5558
5559 /*
5560 ** If the path name starts with a letter and a colon it is either a volume
5561 ** relative path or an absolute path. Callers of this function must not
5562 ** attempt to treat it as a relative path name (i.e. they should simply use
5563 ** it verbatim).
5564 */
5565 if ( winIsDriveLetterAndColon(zPathname) ){
5566 return TRUE;
5567 }
5568
5569 /*
5570 ** If we get to this point, the path name should almost certainly be a purely
5571 ** relative one (i.e. not a UNC name, not absolute, and not volume relative).
5572 */
5573 return FALSE;
5574}
5575
5576/*
5577** Turn a relative pathname into a full pathname. Write the full
5578** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
5579** bytes in size.
5580*/
5581static int winFullPathnameNoMutex(
5582 sqlite3_vfs *pVfs, /* Pointer to vfs object */
5583 const char *zRelative, /* Possibly relative input path */
5584 int nFull, /* Size of output buffer in bytes */
5585 char *zFull /* Output buffer */
5586){
5587#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
5588 DWORD nByte;
5589 void *zConverted;
5590 char *zOut;
5591#endif
5592
5593 /* If this path name begins with "/X:" or "\\?\", where "X" is any
5594 ** alphabetic character, discard the initial "/" from the pathname.
5595 */
5596 if( zRelative[0]=='/' && (winIsDriveLetterAndColon(zRelative+1)
5597 || winIsLongPathPrefix(zRelative+1)) ){
5598 zRelative++;
5599 }
5600
5601#if defined(__CYGWIN__)
5602 SimulateIOError( return SQLITE_ERROR );
5603 UNUSED_PARAMETER(nFull);
5604 assert( nFull>=pVfs->mxPathname );
5605 if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
5606 /*
5607 ** NOTE: We are dealing with a relative path name and the data
5608 ** directory has been set. Therefore, use it as the basis
5609 ** for converting the relative path name to an absolute
5610 ** one by prepending the data directory and a slash.
5611 */
5612 char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
5613 if( !zOut ){
5614 return SQLITE_IOERR_NOMEM_BKPT;
5615 }
5616 if( cygwin_conv_path(
5617 (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A) |
5618 CCP_RELATIVE, zRelative, zOut, pVfs->mxPathname+1)<0 ){
5619 sqlite3_free(zOut);
5620 return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
5621 "winFullPathname1", zRelative);
5622 }else{
5623 char *zUtf8 = winConvertToUtf8Filename(zOut);
5624 if( !zUtf8 ){
5625 sqlite3_free(zOut);
5626 return SQLITE_IOERR_NOMEM_BKPT;
5627 }
5628 sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
5629 sqlite3_data_directory, winGetDirSep(), zUtf8);
5630 sqlite3_free(zUtf8);
5631 sqlite3_free(zOut);
5632 }
5633 }else{
5634 char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
5635 if( !zOut ){
5636 return SQLITE_IOERR_NOMEM_BKPT;
5637 }
5638 if( cygwin_conv_path(
5639 (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A),
5640 zRelative, zOut, pVfs->mxPathname+1)<0 ){
5641 sqlite3_free(zOut);
5642 return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
5643 "winFullPathname2", zRelative);
5644 }else{
5645 char *zUtf8 = winConvertToUtf8Filename(zOut);
5646 if( !zUtf8 ){
5647 sqlite3_free(zOut);
5648 return SQLITE_IOERR_NOMEM_BKPT;
5649 }
5650 sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zUtf8);
5651 sqlite3_free(zUtf8);
5652 sqlite3_free(zOut);
5653 }
5654 }
5655 return SQLITE_OK;
5656#endif
5657
5658#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
5659 SimulateIOError( return SQLITE_ERROR );
5660 /* WinCE has no concept of a relative pathname, or so I am told. */
5661 /* WinRT has no way to convert a relative path to an absolute one. */
5662 if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
5663 /*
5664 ** NOTE: We are dealing with a relative path name and the data
5665 ** directory has been set. Therefore, use it as the basis
5666 ** for converting the relative path name to an absolute
5667 ** one by prepending the data directory and a backslash.
5668 */
5669 sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
5670 sqlite3_data_directory, winGetDirSep(), zRelative);
5671 }else{
5672 sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative);
5673 }
5674 return SQLITE_OK;
5675#endif
5676
5677#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
5678 /* It's odd to simulate an io-error here, but really this is just
5679 ** using the io-error infrastructure to test that SQLite handles this
5680 ** function failing. This function could fail if, for example, the
5681 ** current working directory has been unlinked.
5682 */
5683 SimulateIOError( return SQLITE_ERROR );
5684 if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
5685 /*
5686 ** NOTE: We are dealing with a relative path name and the data
5687 ** directory has been set. Therefore, use it as the basis
5688 ** for converting the relative path name to an absolute
5689 ** one by prepending the data directory and a backslash.
5690 */
5691 sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
5692 sqlite3_data_directory, winGetDirSep(), zRelative);
5693 return SQLITE_OK;
5694 }
5695 zConverted = winConvertFromUtf8Filename(zRelative);
5696 if( zConverted==0 ){
5697 return SQLITE_IOERR_NOMEM_BKPT;
5698 }
5699 if( osIsNT() ){
5700 LPWSTR zTemp;
5701 nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0);
5702 if( nByte==0 ){
5703 sqlite3_free(zConverted);
5704 return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
5705 "winFullPathname1", zRelative);
5706 }
5707 nByte += 3;
5708 zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
5709 if( zTemp==0 ){
5710 sqlite3_free(zConverted);
5711 return SQLITE_IOERR_NOMEM_BKPT;
5712 }
5713 nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0);
5714 if( nByte==0 ){
5715 sqlite3_free(zConverted);
5716 sqlite3_free(zTemp);
5717 return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
5718 "winFullPathname2", zRelative);
5719 }
5720 sqlite3_free(zConverted);
5721 zOut = winUnicodeToUtf8(zTemp);
5722 sqlite3_free(zTemp);
5723 }
5724#ifdef SQLITE_WIN32_HAS_ANSI
5725 else{
5726 char *zTemp;
5727 nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0);
5728 if( nByte==0 ){
5729 sqlite3_free(zConverted);
5730 return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
5731 "winFullPathname3", zRelative);
5732 }
5733 nByte += 3;
5734 zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
5735 if( zTemp==0 ){
5736 sqlite3_free(zConverted);
5737 return SQLITE_IOERR_NOMEM_BKPT;
5738 }
5739 nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
5740 if( nByte==0 ){
5741 sqlite3_free(zConverted);
5742 sqlite3_free(zTemp);
5743 return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
5744 "winFullPathname4", zRelative);
5745 }
5746 sqlite3_free(zConverted);
5747 zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI());
5748 sqlite3_free(zTemp);
5749 }
5750#endif
5751 if( zOut ){
5752 sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut);
5753 sqlite3_free(zOut);
5754 return SQLITE_OK;
5755 }else{
5756 return SQLITE_IOERR_NOMEM_BKPT;
5757 }
5758#endif
5759}
5760static int winFullPathname(
5761 sqlite3_vfs *pVfs, /* Pointer to vfs object */
5762 const char *zRelative, /* Possibly relative input path */
5763 int nFull, /* Size of output buffer in bytes */
5764 char *zFull /* Output buffer */
5765){
5766 int rc;
5767 MUTEX_LOGIC( sqlite3_mutex *pMutex; )
5768 MUTEX_LOGIC( pMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR); )
5769 sqlite3_mutex_enter(pMutex);
5770 rc = winFullPathnameNoMutex(pVfs, zRelative, nFull, zFull);
5771 sqlite3_mutex_leave(pMutex);
5772 return rc;
5773}
5774
5775#ifndef SQLITE_OMIT_LOAD_EXTENSION
5776/*
5777** Interfaces for opening a shared library, finding entry points
5778** within the shared library, and closing the shared library.
5779*/
5780static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
5781 HANDLE h;
5782#if defined(__CYGWIN__)
5783 int nFull = pVfs->mxPathname+1;
5784 char *zFull = sqlite3MallocZero( nFull );
5785 void *zConverted = 0;
5786 if( zFull==0 ){
5787 OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
5788 return 0;
5789 }
5790 if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){
5791 sqlite3_free(zFull);
5792 OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
5793 return 0;
5794 }
5795 zConverted = winConvertFromUtf8Filename(zFull);
5796 sqlite3_free(zFull);
5797#else
5798 void *zConverted = winConvertFromUtf8Filename(zFilename);
5799 UNUSED_PARAMETER(pVfs);
5800#endif
5801 if( zConverted==0 ){
5802 OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
5803 return 0;
5804 }
5805 if( osIsNT() ){
5806#if SQLITE_OS_WINRT
5807 h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0);
5808#else
5809 h = osLoadLibraryW((LPCWSTR)zConverted);
5810#endif
5811 }
5812#ifdef SQLITE_WIN32_HAS_ANSI
5813 else{
5814 h = osLoadLibraryA((char*)zConverted);
5815 }
5816#endif
5817 OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h));
5818 sqlite3_free(zConverted);
5819 return (void*)h;
5820}
5821static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
5822 UNUSED_PARAMETER(pVfs);
5823 winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut);
5824}
5825static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
5826 FARPROC proc;
5827 UNUSED_PARAMETER(pVfs);
5828 proc = osGetProcAddressA((HANDLE)pH, zSym);
5829 OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n",
5830 (void*)pH, zSym, (void*)proc));
5831 return (void(*)(void))proc;
5832}
5833static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
5834 UNUSED_PARAMETER(pVfs);
5835 osFreeLibrary((HANDLE)pHandle);
5836 OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle));
5837}
5838#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5839 #define winDlOpen 0
5840 #define winDlError 0
5841 #define winDlSym 0
5842 #define winDlClose 0
5843#endif
5844
5845/* State information for the randomness gatherer. */
5846typedef struct EntropyGatherer EntropyGatherer;
5847struct EntropyGatherer {
5848 unsigned char *a; /* Gather entropy into this buffer */
5849 int na; /* Size of a[] in bytes */
5850 int i; /* XOR next input into a[i] */
5851 int nXor; /* Number of XOR operations done */
5852};
5853
5854#if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
5855/* Mix sz bytes of entropy into p. */
5856static void xorMemory(EntropyGatherer *p, unsigned char *x, int sz){
5857 int j, k;
5858 for(j=0, k=p->i; j<sz; j++){
5859 p->a[k++] ^= x[j];
5860 if( k>=p->na ) k = 0;
5861 }
5862 p->i = k;
5863 p->nXor += sz;
5864}
5865#endif /* !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) */
5866
5867/*
5868** Write up to nBuf bytes of randomness into zBuf.
5869*/
5870static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
5871#if defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS)
5872 UNUSED_PARAMETER(pVfs);
5873 memset(zBuf, 0, nBuf);
5874 return nBuf;
5875#else
5876 EntropyGatherer e;
5877 UNUSED_PARAMETER(pVfs);
5878 memset(zBuf, 0, nBuf);
5879 e.a = (unsigned char*)zBuf;
5880 e.na = nBuf;
5881 e.nXor = 0;
5882 e.i = 0;
5883 {
5884 SYSTEMTIME x;
5885 osGetSystemTime(&x);
5886 xorMemory(&e, (unsigned char*)&x, sizeof(SYSTEMTIME));
5887 }
5888 {
5889 DWORD pid = osGetCurrentProcessId();
5890 xorMemory(&e, (unsigned char*)&pid, sizeof(DWORD));
5891 }
5892#if SQLITE_OS_WINRT
5893 {
5894 ULONGLONG cnt = osGetTickCount64();
5895 xorMemory(&e, (unsigned char*)&cnt, sizeof(ULONGLONG));
5896 }
5897#else
5898 {
5899 DWORD cnt = osGetTickCount();
5900 xorMemory(&e, (unsigned char*)&cnt, sizeof(DWORD));
5901 }
5902#endif /* SQLITE_OS_WINRT */
5903 {
5904 LARGE_INTEGER i;
5905 osQueryPerformanceCounter(&i);
5906 xorMemory(&e, (unsigned char*)&i, sizeof(LARGE_INTEGER));
5907 }
5908#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
5909 {
5910 UUID id;
5911 memset(&id, 0, sizeof(UUID));
5912 osUuidCreate(&id);
5913 xorMemory(&e, (unsigned char*)&id, sizeof(UUID));
5914 memset(&id, 0, sizeof(UUID));
5915 osUuidCreateSequential(&id);
5916 xorMemory(&e, (unsigned char*)&id, sizeof(UUID));
5917 }
5918#endif /* !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID */
5919 return e.nXor>nBuf ? nBuf : e.nXor;
5920#endif /* defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS) */
5921}
5922
5923
5924/*
5925** Sleep for a little while. Return the amount of time slept.
5926*/
5927static int winSleep(sqlite3_vfs *pVfs, int microsec){
5928 sqlite3_win32_sleep((microsec+999)/1000);
5929 UNUSED_PARAMETER(pVfs);
5930 return ((microsec+999)/1000)*1000;
5931}
5932
5933/*
5934** The following variable, if set to a non-zero value, is interpreted as
5935** the number of seconds since 1970 and is used to set the result of
5936** sqlite3OsCurrentTime() during testing.
5937*/
5938#ifdef SQLITE_TEST
5939int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
5940#endif
5941
5942/*
5943** Find the current time (in Universal Coordinated Time). Write into *piNow
5944** the current time and date as a Julian Day number times 86_400_000. In
5945** other words, write into *piNow the number of milliseconds since the Julian
5946** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5947** proleptic Gregorian calendar.
5948**
5949** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
5950** cannot be found.
5951*/
5952static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
5953 /* FILETIME structure is a 64-bit value representing the number of
5954 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
5955 */
5956 FILETIME ft;
5957 static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
5958#ifdef SQLITE_TEST
5959 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
5960#endif
5961 /* 2^32 - to avoid use of LL and warnings in gcc */
5962 static const sqlite3_int64 max32BitValue =
5963 (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 +
5964 (sqlite3_int64)294967296;
5965
5966#if SQLITE_OS_WINCE
5967 SYSTEMTIME time;
5968 osGetSystemTime(&time);
5969 /* if SystemTimeToFileTime() fails, it returns zero. */
5970 if (!osSystemTimeToFileTime(&time,&ft)){
5971 return SQLITE_ERROR;
5972 }
5973#else
5974 osGetSystemTimeAsFileTime( &ft );
5975#endif
5976
5977 *piNow = winFiletimeEpoch +
5978 ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) +
5979 (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000;
5980
5981#ifdef SQLITE_TEST
5982 if( sqlite3_current_time ){
5983 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
5984 }
5985#endif
5986 UNUSED_PARAMETER(pVfs);
5987 return SQLITE_OK;
5988}
5989
5990/*
5991** Find the current time (in Universal Coordinated Time). Write the
5992** current time and date as a Julian Day number into *prNow and
5993** return 0. Return 1 if the time and date cannot be found.
5994*/
5995static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
5996 int rc;
5997 sqlite3_int64 i;
5998 rc = winCurrentTimeInt64(pVfs, &i);
5999 if( !rc ){
6000 *prNow = i/86400000.0;
6001 }
6002 return rc;
6003}
6004
6005/*
6006** The idea is that this function works like a combination of
6007** GetLastError() and FormatMessage() on Windows (or errno and
6008** strerror_r() on Unix). After an error is returned by an OS
6009** function, SQLite calls this function with zBuf pointing to
6010** a buffer of nBuf bytes. The OS layer should populate the
6011** buffer with a nul-terminated UTF-8 encoded error message
6012** describing the last IO error to have occurred within the calling
6013** thread.
6014**
6015** If the error message is too large for the supplied buffer,
6016** it should be truncated. The return value of xGetLastError
6017** is zero if the error message fits in the buffer, or non-zero
6018** otherwise (if the message was truncated). If non-zero is returned,
6019** then it is not necessary to include the nul-terminator character
6020** in the output buffer.
6021**
6022** Not supplying an error message will have no adverse effect
6023** on SQLite. It is fine to have an implementation that never
6024** returns an error message:
6025**
6026** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
6027** assert(zBuf[0]=='\0');
6028** return 0;
6029** }
6030**
6031** However if an error message is supplied, it will be incorporated
6032** by sqlite into the error message available to the user using
6033** sqlite3_errmsg(), possibly making IO errors easier to debug.
6034*/
6035static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
6036 DWORD e = osGetLastError();
6037 UNUSED_PARAMETER(pVfs);
6038 if( nBuf>0 ) winGetLastErrorMsg(e, nBuf, zBuf);
6039 return e;
6040}
6041
6042/*
6043** Initialize and deinitialize the operating system interface.
6044*/
6045int sqlite3_os_init(void){
6046 static sqlite3_vfs winVfs = {
6047 3, /* iVersion */
6048 sizeof(winFile), /* szOsFile */
6049 SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
6050 0, /* pNext */
6051 "win32", /* zName */
6052 &winAppData, /* pAppData */
6053 winOpen, /* xOpen */
6054 winDelete, /* xDelete */
6055 winAccess, /* xAccess */
6056 winFullPathname, /* xFullPathname */
6057 winDlOpen, /* xDlOpen */
6058 winDlError, /* xDlError */
6059 winDlSym, /* xDlSym */
6060 winDlClose, /* xDlClose */
6061 winRandomness, /* xRandomness */
6062 winSleep, /* xSleep */
6063 winCurrentTime, /* xCurrentTime */
6064 winGetLastError, /* xGetLastError */
6065 winCurrentTimeInt64, /* xCurrentTimeInt64 */
6066 winSetSystemCall, /* xSetSystemCall */
6067 winGetSystemCall, /* xGetSystemCall */
6068 winNextSystemCall, /* xNextSystemCall */
6069 };
6070#if defined(SQLITE_WIN32_HAS_WIDE)
6071 static sqlite3_vfs winLongPathVfs = {
6072 3, /* iVersion */
6073 sizeof(winFile), /* szOsFile */
6074 SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
6075 0, /* pNext */
6076 "win32-longpath", /* zName */
6077 &winAppData, /* pAppData */
6078 winOpen, /* xOpen */
6079 winDelete, /* xDelete */
6080 winAccess, /* xAccess */
6081 winFullPathname, /* xFullPathname */
6082 winDlOpen, /* xDlOpen */
6083 winDlError, /* xDlError */
6084 winDlSym, /* xDlSym */
6085 winDlClose, /* xDlClose */
6086 winRandomness, /* xRandomness */
6087 winSleep, /* xSleep */
6088 winCurrentTime, /* xCurrentTime */
6089 winGetLastError, /* xGetLastError */
6090 winCurrentTimeInt64, /* xCurrentTimeInt64 */
6091 winSetSystemCall, /* xSetSystemCall */
6092 winGetSystemCall, /* xGetSystemCall */
6093 winNextSystemCall, /* xNextSystemCall */
6094 };
6095#endif
6096 static sqlite3_vfs winNolockVfs = {
6097 3, /* iVersion */
6098 sizeof(winFile), /* szOsFile */
6099 SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
6100 0, /* pNext */
6101 "win32-none", /* zName */
6102 &winNolockAppData, /* pAppData */
6103 winOpen, /* xOpen */
6104 winDelete, /* xDelete */
6105 winAccess, /* xAccess */
6106 winFullPathname, /* xFullPathname */
6107 winDlOpen, /* xDlOpen */
6108 winDlError, /* xDlError */
6109 winDlSym, /* xDlSym */
6110 winDlClose, /* xDlClose */
6111 winRandomness, /* xRandomness */
6112 winSleep, /* xSleep */
6113 winCurrentTime, /* xCurrentTime */
6114 winGetLastError, /* xGetLastError */
6115 winCurrentTimeInt64, /* xCurrentTimeInt64 */
6116 winSetSystemCall, /* xSetSystemCall */
6117 winGetSystemCall, /* xGetSystemCall */
6118 winNextSystemCall, /* xNextSystemCall */
6119 };
6120#if defined(SQLITE_WIN32_HAS_WIDE)
6121 static sqlite3_vfs winLongPathNolockVfs = {
6122 3, /* iVersion */
6123 sizeof(winFile), /* szOsFile */
6124 SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
6125 0, /* pNext */
6126 "win32-longpath-none", /* zName */
6127 &winNolockAppData, /* pAppData */
6128 winOpen, /* xOpen */
6129 winDelete, /* xDelete */
6130 winAccess, /* xAccess */
6131 winFullPathname, /* xFullPathname */
6132 winDlOpen, /* xDlOpen */
6133 winDlError, /* xDlError */
6134 winDlSym, /* xDlSym */
6135 winDlClose, /* xDlClose */
6136 winRandomness, /* xRandomness */
6137 winSleep, /* xSleep */
6138 winCurrentTime, /* xCurrentTime */
6139 winGetLastError, /* xGetLastError */
6140 winCurrentTimeInt64, /* xCurrentTimeInt64 */
6141 winSetSystemCall, /* xSetSystemCall */
6142 winGetSystemCall, /* xGetSystemCall */
6143 winNextSystemCall, /* xNextSystemCall */
6144 };
6145#endif
6146
6147 /* Double-check that the aSyscall[] array has been constructed
6148 ** correctly. See ticket [bb3a86e890c8e96ab] */
6149 assert( ArraySize(aSyscall)==80 );
6150
6151 /* get memory map allocation granularity */
6152 memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
6153#if SQLITE_OS_WINRT
6154 osGetNativeSystemInfo(&winSysInfo);
6155#else
6156 osGetSystemInfo(&winSysInfo);
6157#endif
6158 assert( winSysInfo.dwAllocationGranularity>0 );
6159 assert( winSysInfo.dwPageSize>0 );
6160
6161 sqlite3_vfs_register(&winVfs, 1);
6162
6163#if defined(SQLITE_WIN32_HAS_WIDE)
6164 sqlite3_vfs_register(&winLongPathVfs, 0);
6165#endif
6166
6167 sqlite3_vfs_register(&winNolockVfs, 0);
6168
6169#if defined(SQLITE_WIN32_HAS_WIDE)
6170 sqlite3_vfs_register(&winLongPathNolockVfs, 0);
6171#endif
6172
6173#ifndef SQLITE_OMIT_WAL
6174 winBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
6175#endif
6176
6177 return SQLITE_OK;
6178}
6179
6180int sqlite3_os_end(void){
6181#if SQLITE_OS_WINRT
6182 if( sleepObj!=NULL ){
6183 osCloseHandle(sleepObj);
6184 sleepObj = NULL;
6185 }
6186#endif
6187
6188#ifndef SQLITE_OMIT_WAL
6189 winBigLock = 0;
6190#endif
6191
6192 return SQLITE_OK;
6193}
6194
6195#endif /* SQLITE_OS_WIN */
6196