1/*
2** The "printf" code that follows dates from the 1980's. It is in
3** the public domain.
4**
5**************************************************************************
6**
7** This file contains code for a set of "printf"-like routines. These
8** routines format strings much like the printf() from the standard C
9** library, though the implementation here has enhancements to support
10** SQLite.
11*/
12#include "sqliteInt.h"
13
14/*
15** Conversion types fall into various categories as defined by the
16** following enumeration.
17*/
18#define etRADIX 0 /* non-decimal integer types. %x %o */
19#define etFLOAT 1 /* Floating point. %f */
20#define etEXP 2 /* Exponentional notation. %e and %E */
21#define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */
22#define etSIZE 4 /* Return number of characters processed so far. %n */
23#define etSTRING 5 /* Strings. %s */
24#define etDYNSTRING 6 /* Dynamically allocated strings. %z */
25#define etPERCENT 7 /* Percent symbol. %% */
26#define etCHARX 8 /* Characters. %c */
27/* The rest are extensions, not normally found in printf() */
28#define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */
29#define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '',
30 NULL pointers replaced by SQL NULL. %Q */
31#define etTOKEN 11 /* a pointer to a Token structure */
32#define etSRCITEM 12 /* a pointer to a SrcItem */
33#define etPOINTER 13 /* The %p conversion */
34#define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */
35#define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
36#define etDECIMAL 16 /* %d or %u, but not %x, %o */
37
38#define etINVALID 17 /* Any unrecognized conversion type */
39
40
41/*
42** An "etByte" is an 8-bit unsigned value.
43*/
44typedef unsigned char etByte;
45
46/*
47** Each builtin conversion character (ex: the 'd' in "%d") is described
48** by an instance of the following structure
49*/
50typedef struct et_info { /* Information about each format field */
51 char fmttype; /* The format field code letter */
52 etByte base; /* The base for radix conversion */
53 etByte flags; /* One or more of FLAG_ constants below */
54 etByte type; /* Conversion paradigm */
55 etByte charset; /* Offset into aDigits[] of the digits string */
56 etByte prefix; /* Offset into aPrefix[] of the prefix string */
57} et_info;
58
59/*
60** Allowed values for et_info.flags
61*/
62#define FLAG_SIGNED 1 /* True if the value to convert is signed */
63#define FLAG_STRING 4 /* Allow infinite precision */
64
65
66/*
67** The following table is searched linearly, so it is good to put the
68** most frequently used conversion types first.
69*/
70static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
71static const char aPrefix[] = "-x0\000X0";
72static const et_info fmtinfo[] = {
73 { 'd', 10, 1, etDECIMAL, 0, 0 },
74 { 's', 0, 4, etSTRING, 0, 0 },
75 { 'g', 0, 1, etGENERIC, 30, 0 },
76 { 'z', 0, 4, etDYNSTRING, 0, 0 },
77 { 'q', 0, 4, etSQLESCAPE, 0, 0 },
78 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
79 { 'w', 0, 4, etSQLESCAPE3, 0, 0 },
80 { 'c', 0, 0, etCHARX, 0, 0 },
81 { 'o', 8, 0, etRADIX, 0, 2 },
82 { 'u', 10, 0, etDECIMAL, 0, 0 },
83 { 'x', 16, 0, etRADIX, 16, 1 },
84 { 'X', 16, 0, etRADIX, 0, 4 },
85#ifndef SQLITE_OMIT_FLOATING_POINT
86 { 'f', 0, 1, etFLOAT, 0, 0 },
87 { 'e', 0, 1, etEXP, 30, 0 },
88 { 'E', 0, 1, etEXP, 14, 0 },
89 { 'G', 0, 1, etGENERIC, 14, 0 },
90#endif
91 { 'i', 10, 1, etDECIMAL, 0, 0 },
92 { 'n', 0, 0, etSIZE, 0, 0 },
93 { '%', 0, 0, etPERCENT, 0, 0 },
94 { 'p', 16, 0, etPOINTER, 0, 1 },
95
96 /* All the rest are undocumented and are for internal use only */
97 { 'T', 0, 0, etTOKEN, 0, 0 },
98 { 'S', 0, 0, etSRCITEM, 0, 0 },
99 { 'r', 10, 1, etORDINAL, 0, 0 },
100};
101
102/* Notes:
103**
104** %S Takes a pointer to SrcItem. Shows name or database.name
105** %!S Like %S but prefer the zName over the zAlias
106*/
107
108/* Floating point constants used for rounding */
109static const double arRound[] = {
110 5.0e-01, 5.0e-02, 5.0e-03, 5.0e-04, 5.0e-05,
111 5.0e-06, 5.0e-07, 5.0e-08, 5.0e-09, 5.0e-10,
112};
113
114/*
115** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
116** conversions will work.
117*/
118#ifndef SQLITE_OMIT_FLOATING_POINT
119/*
120** "*val" is a double such that 0.1 <= *val < 10.0
121** Return the ascii code for the leading digit of *val, then
122** multiply "*val" by 10.0 to renormalize.
123**
124** Example:
125** input: *val = 3.14159
126** output: *val = 1.4159 function return = '3'
127**
128** The counter *cnt is incremented each time. After counter exceeds
129** 16 (the number of significant digits in a 64-bit float) '0' is
130** always returned.
131*/
132static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
133 int digit;
134 LONGDOUBLE_TYPE d;
135 if( (*cnt)<=0 ) return '0';
136 (*cnt)--;
137 digit = (int)*val;
138 d = digit;
139 digit += '0';
140 *val = (*val - d)*10.0;
141 return (char)digit;
142}
143#endif /* SQLITE_OMIT_FLOATING_POINT */
144
145/*
146** Set the StrAccum object to an error mode.
147*/
148void sqlite3StrAccumSetError(StrAccum *p, u8 eError){
149 assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG );
150 p->accError = eError;
151 if( p->mxAlloc ) sqlite3_str_reset(p);
152 if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError);
153}
154
155/*
156** Extra argument values from a PrintfArguments object
157*/
158static sqlite3_int64 getIntArg(PrintfArguments *p){
159 if( p->nArg<=p->nUsed ) return 0;
160 return sqlite3_value_int64(p->apArg[p->nUsed++]);
161}
162static double getDoubleArg(PrintfArguments *p){
163 if( p->nArg<=p->nUsed ) return 0.0;
164 return sqlite3_value_double(p->apArg[p->nUsed++]);
165}
166static char *getTextArg(PrintfArguments *p){
167 if( p->nArg<=p->nUsed ) return 0;
168 return (char*)sqlite3_value_text(p->apArg[p->nUsed++]);
169}
170
171/*
172** Allocate memory for a temporary buffer needed for printf rendering.
173**
174** If the requested size of the temp buffer is larger than the size
175** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error.
176** Do the size check before the memory allocation to prevent rogue
177** SQL from requesting large allocations using the precision or width
178** field of the printf() function.
179*/
180static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){
181 char *z;
182 if( pAccum->accError ) return 0;
183 if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){
184 sqlite3StrAccumSetError(pAccum, SQLITE_TOOBIG);
185 return 0;
186 }
187 z = sqlite3DbMallocRaw(pAccum->db, n);
188 if( z==0 ){
189 sqlite3StrAccumSetError(pAccum, SQLITE_NOMEM);
190 }
191 return z;
192}
193
194/*
195** On machines with a small stack size, you can redefine the
196** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
197*/
198#ifndef SQLITE_PRINT_BUF_SIZE
199# define SQLITE_PRINT_BUF_SIZE 70
200#endif
201#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
202
203/*
204** Hard limit on the precision of floating-point conversions.
205*/
206#ifndef SQLITE_PRINTF_PRECISION_LIMIT
207# define SQLITE_FP_PRECISION_LIMIT 100000000
208#endif
209
210/*
211** Render a string given by "fmt" into the StrAccum object.
212*/
213void sqlite3_str_vappendf(
214 sqlite3_str *pAccum, /* Accumulate results here */
215 const char *fmt, /* Format string */
216 va_list ap /* arguments */
217){
218 int c; /* Next character in the format string */
219 char *bufpt; /* Pointer to the conversion buffer */
220 int precision; /* Precision of the current field */
221 int length; /* Length of the field */
222 int idx; /* A general purpose loop counter */
223 int width; /* Width of the current field */
224 etByte flag_leftjustify; /* True if "-" flag is present */
225 etByte flag_prefix; /* '+' or ' ' or 0 for prefix */
226 etByte flag_alternateform; /* True if "#" flag is present */
227 etByte flag_altform2; /* True if "!" flag is present */
228 etByte flag_zeropad; /* True if field width constant starts with zero */
229 etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */
230 etByte done; /* Loop termination flag */
231 etByte cThousand; /* Thousands separator for %d and %u */
232 etByte xtype = etINVALID; /* Conversion paradigm */
233 u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */
234 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
235 sqlite_uint64 longvalue; /* Value for integer types */
236 LONGDOUBLE_TYPE realvalue; /* Value for real types */
237 const et_info *infop; /* Pointer to the appropriate info structure */
238 char *zOut; /* Rendering buffer */
239 int nOut; /* Size of the rendering buffer */
240 char *zExtra = 0; /* Malloced memory used by some conversion */
241#ifndef SQLITE_OMIT_FLOATING_POINT
242 int exp, e2; /* exponent of real numbers */
243 int nsd; /* Number of significant digits returned */
244 double rounder; /* Used for rounding floating point values */
245 etByte flag_dp; /* True if decimal point should be shown */
246 etByte flag_rtz; /* True if trailing zeros should be removed */
247#endif
248 PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
249 char buf[etBUFSIZE]; /* Conversion buffer */
250
251 /* pAccum never starts out with an empty buffer that was obtained from
252 ** malloc(). This precondition is required by the mprintf("%z...")
253 ** optimization. */
254 assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
255
256 bufpt = 0;
257 if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){
258 pArgList = va_arg(ap, PrintfArguments*);
259 bArgList = 1;
260 }else{
261 bArgList = 0;
262 }
263 for(; (c=(*fmt))!=0; ++fmt){
264 if( c!='%' ){
265 bufpt = (char *)fmt;
266#if HAVE_STRCHRNUL
267 fmt = strchrnul(fmt, '%');
268#else
269 do{ fmt++; }while( *fmt && *fmt != '%' );
270#endif
271 sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt));
272 if( *fmt==0 ) break;
273 }
274 if( (c=(*++fmt))==0 ){
275 sqlite3_str_append(pAccum, "%", 1);
276 break;
277 }
278 /* Find out what flags are present */
279 flag_leftjustify = flag_prefix = cThousand =
280 flag_alternateform = flag_altform2 = flag_zeropad = 0;
281 done = 0;
282 width = 0;
283 flag_long = 0;
284 precision = -1;
285 do{
286 switch( c ){
287 case '-': flag_leftjustify = 1; break;
288 case '+': flag_prefix = '+'; break;
289 case ' ': flag_prefix = ' '; break;
290 case '#': flag_alternateform = 1; break;
291 case '!': flag_altform2 = 1; break;
292 case '0': flag_zeropad = 1; break;
293 case ',': cThousand = ','; break;
294 default: done = 1; break;
295 case 'l': {
296 flag_long = 1;
297 c = *++fmt;
298 if( c=='l' ){
299 c = *++fmt;
300 flag_long = 2;
301 }
302 done = 1;
303 break;
304 }
305 case '1': case '2': case '3': case '4': case '5':
306 case '6': case '7': case '8': case '9': {
307 unsigned wx = c - '0';
308 while( (c = *++fmt)>='0' && c<='9' ){
309 wx = wx*10 + c - '0';
310 }
311 testcase( wx>0x7fffffff );
312 width = wx & 0x7fffffff;
313#ifdef SQLITE_PRINTF_PRECISION_LIMIT
314 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
315 width = SQLITE_PRINTF_PRECISION_LIMIT;
316 }
317#endif
318 if( c!='.' && c!='l' ){
319 done = 1;
320 }else{
321 fmt--;
322 }
323 break;
324 }
325 case '*': {
326 if( bArgList ){
327 width = (int)getIntArg(pArgList);
328 }else{
329 width = va_arg(ap,int);
330 }
331 if( width<0 ){
332 flag_leftjustify = 1;
333 width = width >= -2147483647 ? -width : 0;
334 }
335#ifdef SQLITE_PRINTF_PRECISION_LIMIT
336 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
337 width = SQLITE_PRINTF_PRECISION_LIMIT;
338 }
339#endif
340 if( (c = fmt[1])!='.' && c!='l' ){
341 c = *++fmt;
342 done = 1;
343 }
344 break;
345 }
346 case '.': {
347 c = *++fmt;
348 if( c=='*' ){
349 if( bArgList ){
350 precision = (int)getIntArg(pArgList);
351 }else{
352 precision = va_arg(ap,int);
353 }
354 if( precision<0 ){
355 precision = precision >= -2147483647 ? -precision : -1;
356 }
357 c = *++fmt;
358 }else{
359 unsigned px = 0;
360 while( c>='0' && c<='9' ){
361 px = px*10 + c - '0';
362 c = *++fmt;
363 }
364 testcase( px>0x7fffffff );
365 precision = px & 0x7fffffff;
366 }
367#ifdef SQLITE_PRINTF_PRECISION_LIMIT
368 if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){
369 precision = SQLITE_PRINTF_PRECISION_LIMIT;
370 }
371#endif
372 if( c=='l' ){
373 --fmt;
374 }else{
375 done = 1;
376 }
377 break;
378 }
379 }
380 }while( !done && (c=(*++fmt))!=0 );
381
382 /* Fetch the info entry for the field */
383 infop = &fmtinfo[0];
384 xtype = etINVALID;
385 for(idx=0; idx<ArraySize(fmtinfo); idx++){
386 if( c==fmtinfo[idx].fmttype ){
387 infop = &fmtinfo[idx];
388 xtype = infop->type;
389 break;
390 }
391 }
392
393 /*
394 ** At this point, variables are initialized as follows:
395 **
396 ** flag_alternateform TRUE if a '#' is present.
397 ** flag_altform2 TRUE if a '!' is present.
398 ** flag_prefix '+' or ' ' or zero
399 ** flag_leftjustify TRUE if a '-' is present or if the
400 ** field width was negative.
401 ** flag_zeropad TRUE if the width began with 0.
402 ** flag_long 1 for "l", 2 for "ll"
403 ** width The specified field width. This is
404 ** always non-negative. Zero is the default.
405 ** precision The specified precision. The default
406 ** is -1.
407 ** xtype The class of the conversion.
408 ** infop Pointer to the appropriate info struct.
409 */
410 assert( width>=0 );
411 assert( precision>=(-1) );
412 switch( xtype ){
413 case etPOINTER:
414 flag_long = sizeof(char*)==sizeof(i64) ? 2 :
415 sizeof(char*)==sizeof(long int) ? 1 : 0;
416 /* no break */ deliberate_fall_through
417 case etORDINAL:
418 case etRADIX:
419 cThousand = 0;
420 /* no break */ deliberate_fall_through
421 case etDECIMAL:
422 if( infop->flags & FLAG_SIGNED ){
423 i64 v;
424 if( bArgList ){
425 v = getIntArg(pArgList);
426 }else if( flag_long ){
427 if( flag_long==2 ){
428 v = va_arg(ap,i64) ;
429 }else{
430 v = va_arg(ap,long int);
431 }
432 }else{
433 v = va_arg(ap,int);
434 }
435 if( v<0 ){
436 testcase( v==SMALLEST_INT64 );
437 testcase( v==(-1) );
438 longvalue = ~v;
439 longvalue++;
440 prefix = '-';
441 }else{
442 longvalue = v;
443 prefix = flag_prefix;
444 }
445 }else{
446 if( bArgList ){
447 longvalue = (u64)getIntArg(pArgList);
448 }else if( flag_long ){
449 if( flag_long==2 ){
450 longvalue = va_arg(ap,u64);
451 }else{
452 longvalue = va_arg(ap,unsigned long int);
453 }
454 }else{
455 longvalue = va_arg(ap,unsigned int);
456 }
457 prefix = 0;
458 }
459 if( longvalue==0 ) flag_alternateform = 0;
460 if( flag_zeropad && precision<width-(prefix!=0) ){
461 precision = width-(prefix!=0);
462 }
463 if( precision<etBUFSIZE-10-etBUFSIZE/3 ){
464 nOut = etBUFSIZE;
465 zOut = buf;
466 }else{
467 u64 n;
468 n = (u64)precision + 10;
469 if( cThousand ) n += precision/3;
470 zOut = zExtra = printfTempBuf(pAccum, n);
471 if( zOut==0 ) return;
472 nOut = (int)n;
473 }
474 bufpt = &zOut[nOut-1];
475 if( xtype==etORDINAL ){
476 static const char zOrd[] = "thstndrd";
477 int x = (int)(longvalue % 10);
478 if( x>=4 || (longvalue/10)%10==1 ){
479 x = 0;
480 }
481 *(--bufpt) = zOrd[x*2+1];
482 *(--bufpt) = zOrd[x*2];
483 }
484 {
485 const char *cset = &aDigits[infop->charset];
486 u8 base = infop->base;
487 do{ /* Convert to ascii */
488 *(--bufpt) = cset[longvalue%base];
489 longvalue = longvalue/base;
490 }while( longvalue>0 );
491 }
492 length = (int)(&zOut[nOut-1]-bufpt);
493 while( precision>length ){
494 *(--bufpt) = '0'; /* Zero pad */
495 length++;
496 }
497 if( cThousand ){
498 int nn = (length - 1)/3; /* Number of "," to insert */
499 int ix = (length - 1)%3 + 1;
500 bufpt -= nn;
501 for(idx=0; nn>0; idx++){
502 bufpt[idx] = bufpt[idx+nn];
503 ix--;
504 if( ix==0 ){
505 bufpt[++idx] = cThousand;
506 nn--;
507 ix = 3;
508 }
509 }
510 }
511 if( prefix ) *(--bufpt) = prefix; /* Add sign */
512 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
513 const char *pre;
514 char x;
515 pre = &aPrefix[infop->prefix];
516 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
517 }
518 length = (int)(&zOut[nOut-1]-bufpt);
519 break;
520 case etFLOAT:
521 case etEXP:
522 case etGENERIC:
523 if( bArgList ){
524 realvalue = getDoubleArg(pArgList);
525 }else{
526 realvalue = va_arg(ap,double);
527 }
528#ifdef SQLITE_OMIT_FLOATING_POINT
529 length = 0;
530#else
531 if( precision<0 ) precision = 6; /* Set default precision */
532#ifdef SQLITE_FP_PRECISION_LIMIT
533 if( precision>SQLITE_FP_PRECISION_LIMIT ){
534 precision = SQLITE_FP_PRECISION_LIMIT;
535 }
536#endif
537 if( realvalue<0.0 ){
538 realvalue = -realvalue;
539 prefix = '-';
540 }else{
541 prefix = flag_prefix;
542 }
543 if( xtype==etGENERIC && precision>0 ) precision--;
544 testcase( precision>0xfff );
545 idx = precision & 0xfff;
546 rounder = arRound[idx%10];
547 while( idx>=10 ){ rounder *= 1.0e-10; idx -= 10; }
548 if( xtype==etFLOAT ){
549 double rx = (double)realvalue;
550 sqlite3_uint64 u;
551 int ex;
552 memcpy(&u, &rx, sizeof(u));
553 ex = -1023 + (int)((u>>52)&0x7ff);
554 if( precision+(ex/3) < 15 ) rounder += realvalue*3e-16;
555 realvalue += rounder;
556 }
557 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
558 exp = 0;
559 if( sqlite3IsNaN((double)realvalue) ){
560 bufpt = "NaN";
561 length = 3;
562 break;
563 }
564 if( realvalue>0.0 ){
565 LONGDOUBLE_TYPE scale = 1.0;
566 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;}
567 while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; }
568 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; }
569 realvalue /= scale;
570 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
571 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
572 if( exp>350 ){
573 bufpt = buf;
574 buf[0] = prefix;
575 memcpy(buf+(prefix!=0),"Inf",4);
576 length = 3+(prefix!=0);
577 break;
578 }
579 }
580 bufpt = buf;
581 /*
582 ** If the field type is etGENERIC, then convert to either etEXP
583 ** or etFLOAT, as appropriate.
584 */
585 if( xtype!=etFLOAT ){
586 realvalue += rounder;
587 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
588 }
589 if( xtype==etGENERIC ){
590 flag_rtz = !flag_alternateform;
591 if( exp<-4 || exp>precision ){
592 xtype = etEXP;
593 }else{
594 precision = precision - exp;
595 xtype = etFLOAT;
596 }
597 }else{
598 flag_rtz = flag_altform2;
599 }
600 if( xtype==etEXP ){
601 e2 = 0;
602 }else{
603 e2 = exp;
604 }
605 {
606 i64 szBufNeeded; /* Size of a temporary buffer needed */
607 szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15;
608 if( szBufNeeded > etBUFSIZE ){
609 bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded);
610 if( bufpt==0 ) return;
611 }
612 }
613 zOut = bufpt;
614 nsd = 16 + flag_altform2*10;
615 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
616 /* The sign in front of the number */
617 if( prefix ){
618 *(bufpt++) = prefix;
619 }
620 /* Digits prior to the decimal point */
621 if( e2<0 ){
622 *(bufpt++) = '0';
623 }else{
624 for(; e2>=0; e2--){
625 *(bufpt++) = et_getdigit(&realvalue,&nsd);
626 }
627 }
628 /* The decimal point */
629 if( flag_dp ){
630 *(bufpt++) = '.';
631 }
632 /* "0" digits after the decimal point but before the first
633 ** significant digit of the number */
634 for(e2++; e2<0; precision--, e2++){
635 assert( precision>0 );
636 *(bufpt++) = '0';
637 }
638 /* Significant digits after the decimal point */
639 while( (precision--)>0 ){
640 *(bufpt++) = et_getdigit(&realvalue,&nsd);
641 }
642 /* Remove trailing zeros and the "." if no digits follow the "." */
643 if( flag_rtz && flag_dp ){
644 while( bufpt[-1]=='0' ) *(--bufpt) = 0;
645 assert( bufpt>zOut );
646 if( bufpt[-1]=='.' ){
647 if( flag_altform2 ){
648 *(bufpt++) = '0';
649 }else{
650 *(--bufpt) = 0;
651 }
652 }
653 }
654 /* Add the "eNNN" suffix */
655 if( xtype==etEXP ){
656 *(bufpt++) = aDigits[infop->charset];
657 if( exp<0 ){
658 *(bufpt++) = '-'; exp = -exp;
659 }else{
660 *(bufpt++) = '+';
661 }
662 if( exp>=100 ){
663 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
664 exp %= 100;
665 }
666 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
667 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
668 }
669 *bufpt = 0;
670
671 /* The converted number is in buf[] and zero terminated. Output it.
672 ** Note that the number is in the usual order, not reversed as with
673 ** integer conversions. */
674 length = (int)(bufpt-zOut);
675 bufpt = zOut;
676
677 /* Special case: Add leading zeros if the flag_zeropad flag is
678 ** set and we are not left justified */
679 if( flag_zeropad && !flag_leftjustify && length < width){
680 int i;
681 int nPad = width - length;
682 for(i=width; i>=nPad; i--){
683 bufpt[i] = bufpt[i-nPad];
684 }
685 i = prefix!=0;
686 while( nPad-- ) bufpt[i++] = '0';
687 length = width;
688 }
689#endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */
690 break;
691 case etSIZE:
692 if( !bArgList ){
693 *(va_arg(ap,int*)) = pAccum->nChar;
694 }
695 length = width = 0;
696 break;
697 case etPERCENT:
698 buf[0] = '%';
699 bufpt = buf;
700 length = 1;
701 break;
702 case etCHARX:
703 if( bArgList ){
704 bufpt = getTextArg(pArgList);
705 length = 1;
706 if( bufpt ){
707 buf[0] = c = *(bufpt++);
708 if( (c&0xc0)==0xc0 ){
709 while( length<4 && (bufpt[0]&0xc0)==0x80 ){
710 buf[length++] = *(bufpt++);
711 }
712 }
713 }else{
714 buf[0] = 0;
715 }
716 }else{
717 unsigned int ch = va_arg(ap,unsigned int);
718 if( ch<0x00080 ){
719 buf[0] = ch & 0xff;
720 length = 1;
721 }else if( ch<0x00800 ){
722 buf[0] = 0xc0 + (u8)((ch>>6)&0x1f);
723 buf[1] = 0x80 + (u8)(ch & 0x3f);
724 length = 2;
725 }else if( ch<0x10000 ){
726 buf[0] = 0xe0 + (u8)((ch>>12)&0x0f);
727 buf[1] = 0x80 + (u8)((ch>>6) & 0x3f);
728 buf[2] = 0x80 + (u8)(ch & 0x3f);
729 length = 3;
730 }else{
731 buf[0] = 0xf0 + (u8)((ch>>18) & 0x07);
732 buf[1] = 0x80 + (u8)((ch>>12) & 0x3f);
733 buf[2] = 0x80 + (u8)((ch>>6) & 0x3f);
734 buf[3] = 0x80 + (u8)(ch & 0x3f);
735 length = 4;
736 }
737 }
738 if( precision>1 ){
739 width -= precision-1;
740 if( width>1 && !flag_leftjustify ){
741 sqlite3_str_appendchar(pAccum, width-1, ' ');
742 width = 0;
743 }
744 while( precision-- > 1 ){
745 sqlite3_str_append(pAccum, buf, length);
746 }
747 }
748 bufpt = buf;
749 flag_altform2 = 1;
750 goto adjust_width_for_utf8;
751 case etSTRING:
752 case etDYNSTRING:
753 if( bArgList ){
754 bufpt = getTextArg(pArgList);
755 xtype = etSTRING;
756 }else{
757 bufpt = va_arg(ap,char*);
758 }
759 if( bufpt==0 ){
760 bufpt = "";
761 }else if( xtype==etDYNSTRING ){
762 if( pAccum->nChar==0
763 && pAccum->mxAlloc
764 && width==0
765 && precision<0
766 && pAccum->accError==0
767 ){
768 /* Special optimization for sqlite3_mprintf("%z..."):
769 ** Extend an existing memory allocation rather than creating
770 ** a new one. */
771 assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
772 pAccum->zText = bufpt;
773 pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt);
774 pAccum->nChar = 0x7fffffff & (int)strlen(bufpt);
775 pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED;
776 length = 0;
777 break;
778 }
779 zExtra = bufpt;
780 }
781 if( precision>=0 ){
782 if( flag_altform2 ){
783 /* Set length to the number of bytes needed in order to display
784 ** precision characters */
785 unsigned char *z = (unsigned char*)bufpt;
786 while( precision-- > 0 && z[0] ){
787 SQLITE_SKIP_UTF8(z);
788 }
789 length = (int)(z - (unsigned char*)bufpt);
790 }else{
791 for(length=0; length<precision && bufpt[length]; length++){}
792 }
793 }else{
794 length = 0x7fffffff & (int)strlen(bufpt);
795 }
796 adjust_width_for_utf8:
797 if( flag_altform2 && width>0 ){
798 /* Adjust width to account for extra bytes in UTF-8 characters */
799 int ii = length - 1;
800 while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++;
801 }
802 break;
803 case etSQLESCAPE: /* %q: Escape ' characters */
804 case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */
805 case etSQLESCAPE3: { /* %w: Escape " characters */
806 i64 i, j, k, n;
807 int needQuote, isnull;
808 char ch;
809 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
810 char *escarg;
811
812 if( bArgList ){
813 escarg = getTextArg(pArgList);
814 }else{
815 escarg = va_arg(ap,char*);
816 }
817 isnull = escarg==0;
818 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
819 /* For %q, %Q, and %w, the precision is the number of bytes (or
820 ** characters if the ! flags is present) to use from the input.
821 ** Because of the extra quoting characters inserted, the number
822 ** of output characters may be larger than the precision.
823 */
824 k = precision;
825 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){
826 if( ch==q ) n++;
827 if( flag_altform2 && (ch&0xc0)==0xc0 ){
828 while( (escarg[i+1]&0xc0)==0x80 ){ i++; }
829 }
830 }
831 needQuote = !isnull && xtype==etSQLESCAPE2;
832 n += i + 3;
833 if( n>etBUFSIZE ){
834 bufpt = zExtra = printfTempBuf(pAccum, n);
835 if( bufpt==0 ) return;
836 }else{
837 bufpt = buf;
838 }
839 j = 0;
840 if( needQuote ) bufpt[j++] = q;
841 k = i;
842 for(i=0; i<k; i++){
843 bufpt[j++] = ch = escarg[i];
844 if( ch==q ) bufpt[j++] = ch;
845 }
846 if( needQuote ) bufpt[j++] = q;
847 bufpt[j] = 0;
848 length = j;
849 goto adjust_width_for_utf8;
850 }
851 case etTOKEN: {
852 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
853 if( flag_alternateform ){
854 /* %#T means an Expr pointer that uses Expr.u.zToken */
855 Expr *pExpr = va_arg(ap,Expr*);
856 if( ALWAYS(pExpr) && ALWAYS(!ExprHasProperty(pExpr,EP_IntValue)) ){
857 sqlite3_str_appendall(pAccum, (const char*)pExpr->u.zToken);
858 sqlite3RecordErrorOffsetOfExpr(pAccum->db, pExpr);
859 }
860 }else{
861 /* %T means a Token pointer */
862 Token *pToken = va_arg(ap, Token*);
863 assert( bArgList==0 );
864 if( pToken && pToken->n ){
865 sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n);
866 sqlite3RecordErrorByteOffset(pAccum->db, pToken->z);
867 }
868 }
869 length = width = 0;
870 break;
871 }
872 case etSRCITEM: {
873 SrcItem *pItem;
874 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
875 pItem = va_arg(ap, SrcItem*);
876 assert( bArgList==0 );
877 if( pItem->zAlias && !flag_altform2 ){
878 sqlite3_str_appendall(pAccum, pItem->zAlias);
879 }else if( pItem->zName ){
880 if( pItem->zDatabase ){
881 sqlite3_str_appendall(pAccum, pItem->zDatabase);
882 sqlite3_str_append(pAccum, ".", 1);
883 }
884 sqlite3_str_appendall(pAccum, pItem->zName);
885 }else if( pItem->zAlias ){
886 sqlite3_str_appendall(pAccum, pItem->zAlias);
887 }else{
888 Select *pSel = pItem->pSelect;
889 assert( pSel!=0 );
890 if( pSel->selFlags & SF_NestedFrom ){
891 sqlite3_str_appendf(pAccum, "(join-%u)", pSel->selId);
892 }else{
893 sqlite3_str_appendf(pAccum, "(subquery-%u)", pSel->selId);
894 }
895 }
896 length = width = 0;
897 break;
898 }
899 default: {
900 assert( xtype==etINVALID );
901 return;
902 }
903 }/* End switch over the format type */
904 /*
905 ** The text of the conversion is pointed to by "bufpt" and is
906 ** "length" characters long. The field width is "width". Do
907 ** the output. Both length and width are in bytes, not characters,
908 ** at this point. If the "!" flag was present on string conversions
909 ** indicating that width and precision should be expressed in characters,
910 ** then the values have been translated prior to reaching this point.
911 */
912 width -= length;
913 if( width>0 ){
914 if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
915 sqlite3_str_append(pAccum, bufpt, length);
916 if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
917 }else{
918 sqlite3_str_append(pAccum, bufpt, length);
919 }
920
921 if( zExtra ){
922 sqlite3DbFree(pAccum->db, zExtra);
923 zExtra = 0;
924 }
925 }/* End for loop over the format string */
926} /* End of function */
927
928
929/*
930** The z string points to the first character of a token that is
931** associated with an error. If db does not already have an error
932** byte offset recorded, try to compute the error byte offset for
933** z and set the error byte offset in db.
934*/
935void sqlite3RecordErrorByteOffset(sqlite3 *db, const char *z){
936 const Parse *pParse;
937 const char *zText;
938 const char *zEnd;
939 assert( z!=0 );
940 if( NEVER(db==0) ) return;
941 if( db->errByteOffset!=(-2) ) return;
942 pParse = db->pParse;
943 if( NEVER(pParse==0) ) return;
944 zText =pParse->zTail;
945 if( NEVER(zText==0) ) return;
946 zEnd = &zText[strlen(zText)];
947 if( SQLITE_WITHIN(z,zText,zEnd) ){
948 db->errByteOffset = (int)(z-zText);
949 }
950}
951
952/*
953** If pExpr has a byte offset for the start of a token, record that as
954** as the error offset.
955*/
956void sqlite3RecordErrorOffsetOfExpr(sqlite3 *db, const Expr *pExpr){
957 while( pExpr
958 && (ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) || pExpr->w.iOfst<=0)
959 ){
960 pExpr = pExpr->pLeft;
961 }
962 if( pExpr==0 ) return;
963 db->errByteOffset = pExpr->w.iOfst;
964}
965
966/*
967** Enlarge the memory allocation on a StrAccum object so that it is
968** able to accept at least N more bytes of text.
969**
970** Return the number of bytes of text that StrAccum is able to accept
971** after the attempted enlargement. The value returned might be zero.
972*/
973int sqlite3StrAccumEnlarge(StrAccum *p, int N){
974 char *zNew;
975 assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */
976 if( p->accError ){
977 testcase(p->accError==SQLITE_TOOBIG);
978 testcase(p->accError==SQLITE_NOMEM);
979 return 0;
980 }
981 if( p->mxAlloc==0 ){
982 sqlite3StrAccumSetError(p, SQLITE_TOOBIG);
983 return p->nAlloc - p->nChar - 1;
984 }else{
985 char *zOld = isMalloced(p) ? p->zText : 0;
986 i64 szNew = p->nChar;
987 szNew += (sqlite3_int64)N + 1;
988 if( szNew+p->nChar<=p->mxAlloc ){
989 /* Force exponential buffer size growth as long as it does not overflow,
990 ** to avoid having to call this routine too often */
991 szNew += p->nChar;
992 }
993 if( szNew > p->mxAlloc ){
994 sqlite3_str_reset(p);
995 sqlite3StrAccumSetError(p, SQLITE_TOOBIG);
996 return 0;
997 }else{
998 p->nAlloc = (int)szNew;
999 }
1000 if( p->db ){
1001 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
1002 }else{
1003 zNew = sqlite3Realloc(zOld, p->nAlloc);
1004 }
1005 if( zNew ){
1006 assert( p->zText!=0 || p->nChar==0 );
1007 if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
1008 p->zText = zNew;
1009 p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
1010 p->printfFlags |= SQLITE_PRINTF_MALLOCED;
1011 }else{
1012 sqlite3_str_reset(p);
1013 sqlite3StrAccumSetError(p, SQLITE_NOMEM);
1014 return 0;
1015 }
1016 }
1017 return N;
1018}
1019
1020/*
1021** Append N copies of character c to the given string buffer.
1022*/
1023void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){
1024 testcase( p->nChar + (i64)N > 0x7fffffff );
1025 if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
1026 return;
1027 }
1028 while( (N--)>0 ) p->zText[p->nChar++] = c;
1029}
1030
1031/*
1032** The StrAccum "p" is not large enough to accept N new bytes of z[].
1033** So enlarge if first, then do the append.
1034**
1035** This is a helper routine to sqlite3_str_append() that does special-case
1036** work (enlarging the buffer) using tail recursion, so that the
1037** sqlite3_str_append() routine can use fast calling semantics.
1038*/
1039static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
1040 N = sqlite3StrAccumEnlarge(p, N);
1041 if( N>0 ){
1042 memcpy(&p->zText[p->nChar], z, N);
1043 p->nChar += N;
1044 }
1045}
1046
1047/*
1048** Append N bytes of text from z to the StrAccum object. Increase the
1049** size of the memory allocation for StrAccum if necessary.
1050*/
1051void sqlite3_str_append(sqlite3_str *p, const char *z, int N){
1052 assert( z!=0 || N==0 );
1053 assert( p->zText!=0 || p->nChar==0 || p->accError );
1054 assert( N>=0 );
1055 assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 );
1056 if( p->nChar+N >= p->nAlloc ){
1057 enlargeAndAppend(p,z,N);
1058 }else if( N ){
1059 assert( p->zText );
1060 p->nChar += N;
1061 memcpy(&p->zText[p->nChar-N], z, N);
1062 }
1063}
1064
1065/*
1066** Append the complete text of zero-terminated string z[] to the p string.
1067*/
1068void sqlite3_str_appendall(sqlite3_str *p, const char *z){
1069 sqlite3_str_append(p, z, sqlite3Strlen30(z));
1070}
1071
1072
1073/*
1074** Finish off a string by making sure it is zero-terminated.
1075** Return a pointer to the resulting string. Return a NULL
1076** pointer if any kind of error was encountered.
1077*/
1078static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){
1079 char *zText;
1080 assert( p->mxAlloc>0 && !isMalloced(p) );
1081 zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
1082 if( zText ){
1083 memcpy(zText, p->zText, p->nChar+1);
1084 p->printfFlags |= SQLITE_PRINTF_MALLOCED;
1085 }else{
1086 sqlite3StrAccumSetError(p, SQLITE_NOMEM);
1087 }
1088 p->zText = zText;
1089 return zText;
1090}
1091char *sqlite3StrAccumFinish(StrAccum *p){
1092 if( p->zText ){
1093 p->zText[p->nChar] = 0;
1094 if( p->mxAlloc>0 && !isMalloced(p) ){
1095 return strAccumFinishRealloc(p);
1096 }
1097 }
1098 return p->zText;
1099}
1100
1101/*
1102** Use the content of the StrAccum passed as the second argument
1103** as the result of an SQL function.
1104*/
1105void sqlite3ResultStrAccum(sqlite3_context *pCtx, StrAccum *p){
1106 if( p->accError ){
1107 sqlite3_result_error_code(pCtx, p->accError);
1108 sqlite3_str_reset(p);
1109 }else if( isMalloced(p) ){
1110 sqlite3_result_text(pCtx, p->zText, p->nChar, SQLITE_DYNAMIC);
1111 }else{
1112 sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
1113 sqlite3_str_reset(p);
1114 }
1115}
1116
1117/*
1118** This singleton is an sqlite3_str object that is returned if
1119** sqlite3_malloc() fails to provide space for a real one. This
1120** sqlite3_str object accepts no new text and always returns
1121** an SQLITE_NOMEM error.
1122*/
1123static sqlite3_str sqlite3OomStr = {
1124 0, 0, 0, 0, 0, SQLITE_NOMEM, 0
1125};
1126
1127/* Finalize a string created using sqlite3_str_new().
1128*/
1129char *sqlite3_str_finish(sqlite3_str *p){
1130 char *z;
1131 if( p!=0 && p!=&sqlite3OomStr ){
1132 z = sqlite3StrAccumFinish(p);
1133 sqlite3_free(p);
1134 }else{
1135 z = 0;
1136 }
1137 return z;
1138}
1139
1140/* Return any error code associated with p */
1141int sqlite3_str_errcode(sqlite3_str *p){
1142 return p ? p->accError : SQLITE_NOMEM;
1143}
1144
1145/* Return the current length of p in bytes */
1146int sqlite3_str_length(sqlite3_str *p){
1147 return p ? p->nChar : 0;
1148}
1149
1150/* Return the current value for p */
1151char *sqlite3_str_value(sqlite3_str *p){
1152 if( p==0 || p->nChar==0 ) return 0;
1153 p->zText[p->nChar] = 0;
1154 return p->zText;
1155}
1156
1157/*
1158** Reset an StrAccum string. Reclaim all malloced memory.
1159*/
1160void sqlite3_str_reset(StrAccum *p){
1161 if( isMalloced(p) ){
1162 sqlite3DbFree(p->db, p->zText);
1163 p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
1164 }
1165 p->nAlloc = 0;
1166 p->nChar = 0;
1167 p->zText = 0;
1168}
1169
1170/*
1171** Initialize a string accumulator.
1172**
1173** p: The accumulator to be initialized.
1174** db: Pointer to a database connection. May be NULL. Lookaside
1175** memory is used if not NULL. db->mallocFailed is set appropriately
1176** when not NULL.
1177** zBase: An initial buffer. May be NULL in which case the initial buffer
1178** is malloced.
1179** n: Size of zBase in bytes. If total space requirements never exceed
1180** n then no memory allocations ever occur.
1181** mx: Maximum number of bytes to accumulate. If mx==0 then no memory
1182** allocations will ever occur.
1183*/
1184void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
1185 p->zText = zBase;
1186 p->db = db;
1187 p->nAlloc = n;
1188 p->mxAlloc = mx;
1189 p->nChar = 0;
1190 p->accError = 0;
1191 p->printfFlags = 0;
1192}
1193
1194/* Allocate and initialize a new dynamic string object */
1195sqlite3_str *sqlite3_str_new(sqlite3 *db){
1196 sqlite3_str *p = sqlite3_malloc64(sizeof(*p));
1197 if( p ){
1198 sqlite3StrAccumInit(p, 0, 0, 0,
1199 db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
1200 }else{
1201 p = &sqlite3OomStr;
1202 }
1203 return p;
1204}
1205
1206/*
1207** Print into memory obtained from sqliteMalloc(). Use the internal
1208** %-conversion extensions.
1209*/
1210char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
1211 char *z;
1212 char zBase[SQLITE_PRINT_BUF_SIZE];
1213 StrAccum acc;
1214 assert( db!=0 );
1215 sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
1216 db->aLimit[SQLITE_LIMIT_LENGTH]);
1217 acc.printfFlags = SQLITE_PRINTF_INTERNAL;
1218 sqlite3_str_vappendf(&acc, zFormat, ap);
1219 z = sqlite3StrAccumFinish(&acc);
1220 if( acc.accError==SQLITE_NOMEM ){
1221 sqlite3OomFault(db);
1222 }
1223 return z;
1224}
1225
1226/*
1227** Print into memory obtained from sqliteMalloc(). Use the internal
1228** %-conversion extensions.
1229*/
1230char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
1231 va_list ap;
1232 char *z;
1233 va_start(ap, zFormat);
1234 z = sqlite3VMPrintf(db, zFormat, ap);
1235 va_end(ap);
1236 return z;
1237}
1238
1239/*
1240** Print into memory obtained from sqlite3_malloc(). Omit the internal
1241** %-conversion extensions.
1242*/
1243char *sqlite3_vmprintf(const char *zFormat, va_list ap){
1244 char *z;
1245 char zBase[SQLITE_PRINT_BUF_SIZE];
1246 StrAccum acc;
1247
1248#ifdef SQLITE_ENABLE_API_ARMOR
1249 if( zFormat==0 ){
1250 (void)SQLITE_MISUSE_BKPT;
1251 return 0;
1252 }
1253#endif
1254#ifndef SQLITE_OMIT_AUTOINIT
1255 if( sqlite3_initialize() ) return 0;
1256#endif
1257 sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
1258 sqlite3_str_vappendf(&acc, zFormat, ap);
1259 z = sqlite3StrAccumFinish(&acc);
1260 return z;
1261}
1262
1263/*
1264** Print into memory obtained from sqlite3_malloc()(). Omit the internal
1265** %-conversion extensions.
1266*/
1267char *sqlite3_mprintf(const char *zFormat, ...){
1268 va_list ap;
1269 char *z;
1270#ifndef SQLITE_OMIT_AUTOINIT
1271 if( sqlite3_initialize() ) return 0;
1272#endif
1273 va_start(ap, zFormat);
1274 z = sqlite3_vmprintf(zFormat, ap);
1275 va_end(ap);
1276 return z;
1277}
1278
1279/*
1280** sqlite3_snprintf() works like snprintf() except that it ignores the
1281** current locale settings. This is important for SQLite because we
1282** are not able to use a "," as the decimal point in place of "." as
1283** specified by some locales.
1284**
1285** Oops: The first two arguments of sqlite3_snprintf() are backwards
1286** from the snprintf() standard. Unfortunately, it is too late to change
1287** this without breaking compatibility, so we just have to live with the
1288** mistake.
1289**
1290** sqlite3_vsnprintf() is the varargs version.
1291*/
1292char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
1293 StrAccum acc;
1294 if( n<=0 ) return zBuf;
1295#ifdef SQLITE_ENABLE_API_ARMOR
1296 if( zBuf==0 || zFormat==0 ) {
1297 (void)SQLITE_MISUSE_BKPT;
1298 if( zBuf ) zBuf[0] = 0;
1299 return zBuf;
1300 }
1301#endif
1302 sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
1303 sqlite3_str_vappendf(&acc, zFormat, ap);
1304 zBuf[acc.nChar] = 0;
1305 return zBuf;
1306}
1307char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
1308 char *z;
1309 va_list ap;
1310 va_start(ap,zFormat);
1311 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
1312 va_end(ap);
1313 return z;
1314}
1315
1316/*
1317** This is the routine that actually formats the sqlite3_log() message.
1318** We house it in a separate routine from sqlite3_log() to avoid using
1319** stack space on small-stack systems when logging is disabled.
1320**
1321** sqlite3_log() must render into a static buffer. It cannot dynamically
1322** allocate memory because it might be called while the memory allocator
1323** mutex is held.
1324**
1325** sqlite3_str_vappendf() might ask for *temporary* memory allocations for
1326** certain format characters (%q) or for very large precisions or widths.
1327** Care must be taken that any sqlite3_log() calls that occur while the
1328** memory mutex is held do not use these mechanisms.
1329*/
1330static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
1331 StrAccum acc; /* String accumulator */
1332 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */
1333
1334 sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
1335 sqlite3_str_vappendf(&acc, zFormat, ap);
1336 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
1337 sqlite3StrAccumFinish(&acc));
1338}
1339
1340/*
1341** Format and write a message to the log if logging is enabled.
1342*/
1343void sqlite3_log(int iErrCode, const char *zFormat, ...){
1344 va_list ap; /* Vararg list */
1345 if( sqlite3GlobalConfig.xLog ){
1346 va_start(ap, zFormat);
1347 renderLogMsg(iErrCode, zFormat, ap);
1348 va_end(ap);
1349 }
1350}
1351
1352#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
1353/*
1354** A version of printf() that understands %lld. Used for debugging.
1355** The printf() built into some versions of windows does not understand %lld
1356** and segfaults if you give it a long long int.
1357*/
1358void sqlite3DebugPrintf(const char *zFormat, ...){
1359 va_list ap;
1360 StrAccum acc;
1361 char zBuf[SQLITE_PRINT_BUF_SIZE*10];
1362 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
1363 va_start(ap,zFormat);
1364 sqlite3_str_vappendf(&acc, zFormat, ap);
1365 va_end(ap);
1366 sqlite3StrAccumFinish(&acc);
1367#ifdef SQLITE_OS_TRACE_PROC
1368 {
1369 extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf);
1370 SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf));
1371 }
1372#else
1373 fprintf(stdout,"%s", zBuf);
1374 fflush(stdout);
1375#endif
1376}
1377#endif
1378
1379
1380/*
1381** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument
1382** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
1383*/
1384void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){
1385 va_list ap;
1386 va_start(ap,zFormat);
1387 sqlite3_str_vappendf(p, zFormat, ap);
1388 va_end(ap);
1389}
1390