1/*
2** 2008 December 3
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This module implements an object we call a "RowSet".
14**
15** The RowSet object is a collection of rowids. Rowids
16** are inserted into the RowSet in an arbitrary order. Inserts
17** can be intermixed with tests to see if a given rowid has been
18** previously inserted into the RowSet.
19**
20** After all inserts are finished, it is possible to extract the
21** elements of the RowSet in sorted order. Once this extraction
22** process has started, no new elements may be inserted.
23**
24** Hence, the primitive operations for a RowSet are:
25**
26** CREATE
27** INSERT
28** TEST
29** SMALLEST
30** DESTROY
31**
32** The CREATE and DESTROY primitives are the constructor and destructor,
33** obviously. The INSERT primitive adds a new element to the RowSet.
34** TEST checks to see if an element is already in the RowSet. SMALLEST
35** extracts the least value from the RowSet.
36**
37** The INSERT primitive might allocate additional memory. Memory is
38** allocated in chunks so most INSERTs do no allocation. There is an
39** upper bound on the size of allocated memory. No memory is freed
40** until DESTROY.
41**
42** The TEST primitive includes a "batch" number. The TEST primitive
43** will only see elements that were inserted before the last change
44** in the batch number. In other words, if an INSERT occurs between
45** two TESTs where the TESTs have the same batch nubmer, then the
46** value added by the INSERT will not be visible to the second TEST.
47** The initial batch number is zero, so if the very first TEST contains
48** a non-zero batch number, it will see all prior INSERTs.
49**
50** No INSERTs may occurs after a SMALLEST. An assertion will fail if
51** that is attempted.
52**
53** The cost of an INSERT is roughly constant. (Sometimes new memory
54** has to be allocated on an INSERT.) The cost of a TEST with a new
55** batch number is O(NlogN) where N is the number of elements in the RowSet.
56** The cost of a TEST using the same batch number is O(logN). The cost
57** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
58** primitives are constant time. The cost of DESTROY is O(N).
59**
60** TEST and SMALLEST may not be used by the same RowSet. This used to
61** be possible, but the feature was not used, so it was removed in order
62** to simplify the code.
63*/
64#include "sqliteInt.h"
65
66
67/*
68** Target size for allocation chunks.
69*/
70#define ROWSET_ALLOCATION_SIZE 1024
71
72/*
73** The number of rowset entries per allocation chunk.
74*/
75#define ROWSET_ENTRY_PER_CHUNK \
76 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
77
78/*
79** Each entry in a RowSet is an instance of the following object.
80**
81** This same object is reused to store a linked list of trees of RowSetEntry
82** objects. In that alternative use, pRight points to the next entry
83** in the list, pLeft points to the tree, and v is unused. The
84** RowSet.pForest value points to the head of this forest list.
85*/
86struct RowSetEntry {
87 i64 v; /* ROWID value for this entry */
88 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
89 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
90};
91
92/*
93** RowSetEntry objects are allocated in large chunks (instances of the
94** following structure) to reduce memory allocation overhead. The
95** chunks are kept on a linked list so that they can be deallocated
96** when the RowSet is destroyed.
97*/
98struct RowSetChunk {
99 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
100 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
101};
102
103/*
104** A RowSet in an instance of the following structure.
105**
106** A typedef of this structure if found in sqliteInt.h.
107*/
108struct RowSet {
109 struct RowSetChunk *pChunk; /* List of all chunk allocations */
110 sqlite3 *db; /* The database connection */
111 struct RowSetEntry *pEntry; /* List of entries using pRight */
112 struct RowSetEntry *pLast; /* Last entry on the pEntry list */
113 struct RowSetEntry *pFresh; /* Source of new entry objects */
114 struct RowSetEntry *pForest; /* List of binary trees of entries */
115 u16 nFresh; /* Number of objects on pFresh */
116 u16 rsFlags; /* Various flags */
117 int iBatch; /* Current insert batch */
118};
119
120/*
121** Allowed values for RowSet.rsFlags
122*/
123#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
124#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
125
126/*
127** Allocate a RowSet object. Return NULL if a memory allocation
128** error occurs.
129*/
130RowSet *sqlite3RowSetInit(sqlite3 *db){
131 RowSet *p = sqlite3DbMallocRawNN(db, sizeof(*p));
132 if( p ){
133 int N = sqlite3DbMallocSize(db, p);
134 p->pChunk = 0;
135 p->db = db;
136 p->pEntry = 0;
137 p->pLast = 0;
138 p->pForest = 0;
139 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
140 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
141 p->rsFlags = ROWSET_SORTED;
142 p->iBatch = 0;
143 }
144 return p;
145}
146
147/*
148** Deallocate all chunks from a RowSet. This frees all memory that
149** the RowSet has allocated over its lifetime. This routine is
150** the destructor for the RowSet.
151*/
152void sqlite3RowSetClear(void *pArg){
153 RowSet *p = (RowSet*)pArg;
154 struct RowSetChunk *pChunk, *pNextChunk;
155 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
156 pNextChunk = pChunk->pNextChunk;
157 sqlite3DbFree(p->db, pChunk);
158 }
159 p->pChunk = 0;
160 p->nFresh = 0;
161 p->pEntry = 0;
162 p->pLast = 0;
163 p->pForest = 0;
164 p->rsFlags = ROWSET_SORTED;
165}
166
167/*
168** Deallocate all chunks from a RowSet. This frees all memory that
169** the RowSet has allocated over its lifetime. This routine is
170** the destructor for the RowSet.
171*/
172void sqlite3RowSetDelete(void *pArg){
173 sqlite3RowSetClear(pArg);
174 sqlite3DbFree(((RowSet*)pArg)->db, pArg);
175}
176
177/*
178** Allocate a new RowSetEntry object that is associated with the
179** given RowSet. Return a pointer to the new and completely uninitialized
180** object.
181**
182** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
183** routine returns NULL.
184*/
185static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
186 assert( p!=0 );
187 if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/
188 /* We could allocate a fresh RowSetEntry each time one is needed, but it
189 ** is more efficient to pull a preallocated entry from the pool */
190 struct RowSetChunk *pNew;
191 pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
192 if( pNew==0 ){
193 return 0;
194 }
195 pNew->pNextChunk = p->pChunk;
196 p->pChunk = pNew;
197 p->pFresh = pNew->aEntry;
198 p->nFresh = ROWSET_ENTRY_PER_CHUNK;
199 }
200 p->nFresh--;
201 return p->pFresh++;
202}
203
204/*
205** Insert a new value into a RowSet.
206**
207** The mallocFailed flag of the database connection is set if a
208** memory allocation fails.
209*/
210void sqlite3RowSetInsert(RowSet *p, i64 rowid){
211 struct RowSetEntry *pEntry; /* The new entry */
212 struct RowSetEntry *pLast; /* The last prior entry */
213
214 /* This routine is never called after sqlite3RowSetNext() */
215 assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
216
217 pEntry = rowSetEntryAlloc(p);
218 if( pEntry==0 ) return;
219 pEntry->v = rowid;
220 pEntry->pRight = 0;
221 pLast = p->pLast;
222 if( pLast ){
223 if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/
224 /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
225 ** where possible */
226 p->rsFlags &= ~ROWSET_SORTED;
227 }
228 pLast->pRight = pEntry;
229 }else{
230 p->pEntry = pEntry;
231 }
232 p->pLast = pEntry;
233}
234
235/*
236** Merge two lists of RowSetEntry objects. Remove duplicates.
237**
238** The input lists are connected via pRight pointers and are
239** assumed to each already be in sorted order.
240*/
241static struct RowSetEntry *rowSetEntryMerge(
242 struct RowSetEntry *pA, /* First sorted list to be merged */
243 struct RowSetEntry *pB /* Second sorted list to be merged */
244){
245 struct RowSetEntry head;
246 struct RowSetEntry *pTail;
247
248 pTail = &head;
249 assert( pA!=0 && pB!=0 );
250 for(;;){
251 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
252 assert( pB->pRight==0 || pB->v<=pB->pRight->v );
253 if( pA->v<=pB->v ){
254 if( pA->v<pB->v ) pTail = pTail->pRight = pA;
255 pA = pA->pRight;
256 if( pA==0 ){
257 pTail->pRight = pB;
258 break;
259 }
260 }else{
261 pTail = pTail->pRight = pB;
262 pB = pB->pRight;
263 if( pB==0 ){
264 pTail->pRight = pA;
265 break;
266 }
267 }
268 }
269 return head.pRight;
270}
271
272/*
273** Sort all elements on the list of RowSetEntry objects into order of
274** increasing v.
275*/
276static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
277 unsigned int i;
278 struct RowSetEntry *pNext, *aBucket[40];
279
280 memset(aBucket, 0, sizeof(aBucket));
281 while( pIn ){
282 pNext = pIn->pRight;
283 pIn->pRight = 0;
284 for(i=0; aBucket[i]; i++){
285 pIn = rowSetEntryMerge(aBucket[i], pIn);
286 aBucket[i] = 0;
287 }
288 aBucket[i] = pIn;
289 pIn = pNext;
290 }
291 pIn = aBucket[0];
292 for(i=1; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
293 if( aBucket[i]==0 ) continue;
294 pIn = pIn ? rowSetEntryMerge(pIn, aBucket[i]) : aBucket[i];
295 }
296 return pIn;
297}
298
299
300/*
301** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
302** Convert this tree into a linked list connected by the pRight pointers
303** and return pointers to the first and last elements of the new list.
304*/
305static void rowSetTreeToList(
306 struct RowSetEntry *pIn, /* Root of the input tree */
307 struct RowSetEntry **ppFirst, /* Write head of the output list here */
308 struct RowSetEntry **ppLast /* Write tail of the output list here */
309){
310 assert( pIn!=0 );
311 if( pIn->pLeft ){
312 struct RowSetEntry *p;
313 rowSetTreeToList(pIn->pLeft, ppFirst, &p);
314 p->pRight = pIn;
315 }else{
316 *ppFirst = pIn;
317 }
318 if( pIn->pRight ){
319 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
320 }else{
321 *ppLast = pIn;
322 }
323 assert( (*ppLast)->pRight==0 );
324}
325
326
327/*
328** Convert a sorted list of elements (connected by pRight) into a binary
329** tree with depth of iDepth. A depth of 1 means the tree contains a single
330** node taken from the head of *ppList. A depth of 2 means a tree with
331** three nodes. And so forth.
332**
333** Use as many entries from the input list as required and update the
334** *ppList to point to the unused elements of the list. If the input
335** list contains too few elements, then construct an incomplete tree
336** and leave *ppList set to NULL.
337**
338** Return a pointer to the root of the constructed binary tree.
339*/
340static struct RowSetEntry *rowSetNDeepTree(
341 struct RowSetEntry **ppList,
342 int iDepth
343){
344 struct RowSetEntry *p; /* Root of the new tree */
345 struct RowSetEntry *pLeft; /* Left subtree */
346 if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/
347 /* Prevent unnecessary deep recursion when we run out of entries */
348 return 0;
349 }
350 if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/
351 /* This branch causes a *balanced* tree to be generated. A valid tree
352 ** is still generated without this branch, but the tree is wildly
353 ** unbalanced and inefficient. */
354 pLeft = rowSetNDeepTree(ppList, iDepth-1);
355 p = *ppList;
356 if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/
357 /* It is safe to always return here, but the resulting tree
358 ** would be unbalanced */
359 return pLeft;
360 }
361 p->pLeft = pLeft;
362 *ppList = p->pRight;
363 p->pRight = rowSetNDeepTree(ppList, iDepth-1);
364 }else{
365 p = *ppList;
366 *ppList = p->pRight;
367 p->pLeft = p->pRight = 0;
368 }
369 return p;
370}
371
372/*
373** Convert a sorted list of elements into a binary tree. Make the tree
374** as deep as it needs to be in order to contain the entire list.
375*/
376static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
377 int iDepth; /* Depth of the tree so far */
378 struct RowSetEntry *p; /* Current tree root */
379 struct RowSetEntry *pLeft; /* Left subtree */
380
381 assert( pList!=0 );
382 p = pList;
383 pList = p->pRight;
384 p->pLeft = p->pRight = 0;
385 for(iDepth=1; pList; iDepth++){
386 pLeft = p;
387 p = pList;
388 pList = p->pRight;
389 p->pLeft = pLeft;
390 p->pRight = rowSetNDeepTree(&pList, iDepth);
391 }
392 return p;
393}
394
395/*
396** Extract the smallest element from the RowSet.
397** Write the element into *pRowid. Return 1 on success. Return
398** 0 if the RowSet is already empty.
399**
400** After this routine has been called, the sqlite3RowSetInsert()
401** routine may not be called again.
402**
403** This routine may not be called after sqlite3RowSetTest() has
404** been used. Older versions of RowSet allowed that, but as the
405** capability was not used by the code generator, it was removed
406** for code economy.
407*/
408int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
409 assert( p!=0 );
410 assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */
411
412 /* Merge the forest into a single sorted list on first call */
413 if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/
414 if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
415 p->pEntry = rowSetEntrySort(p->pEntry);
416 }
417 p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT;
418 }
419
420 /* Return the next entry on the list */
421 if( p->pEntry ){
422 *pRowid = p->pEntry->v;
423 p->pEntry = p->pEntry->pRight;
424 if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/
425 /* Free memory immediately, rather than waiting on sqlite3_finalize() */
426 sqlite3RowSetClear(p);
427 }
428 return 1;
429 }else{
430 return 0;
431 }
432}
433
434/*
435** Check to see if element iRowid was inserted into the rowset as
436** part of any insert batch prior to iBatch. Return 1 or 0.
437**
438** If this is the first test of a new batch and if there exist entries
439** on pRowSet->pEntry, then sort those entries into the forest at
440** pRowSet->pForest so that they can be tested.
441*/
442int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
443 struct RowSetEntry *p, *pTree;
444
445 /* This routine is never called after sqlite3RowSetNext() */
446 assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
447
448 /* Sort entries into the forest on the first test of a new batch.
449 ** To save unnecessary work, only do this when the batch number changes.
450 */
451 if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/
452 p = pRowSet->pEntry;
453 if( p ){
454 struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
455 if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
456 /* Only sort the current set of entries if they need it */
457 p = rowSetEntrySort(p);
458 }
459 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
460 ppPrevTree = &pTree->pRight;
461 if( pTree->pLeft==0 ){
462 pTree->pLeft = rowSetListToTree(p);
463 break;
464 }else{
465 struct RowSetEntry *pAux, *pTail;
466 rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
467 pTree->pLeft = 0;
468 p = rowSetEntryMerge(pAux, p);
469 }
470 }
471 if( pTree==0 ){
472 *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
473 if( pTree ){
474 pTree->v = 0;
475 pTree->pRight = 0;
476 pTree->pLeft = rowSetListToTree(p);
477 }
478 }
479 pRowSet->pEntry = 0;
480 pRowSet->pLast = 0;
481 pRowSet->rsFlags |= ROWSET_SORTED;
482 }
483 pRowSet->iBatch = iBatch;
484 }
485
486 /* Test to see if the iRowid value appears anywhere in the forest.
487 ** Return 1 if it does and 0 if not.
488 */
489 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
490 p = pTree->pLeft;
491 while( p ){
492 if( p->v<iRowid ){
493 p = p->pRight;
494 }else if( p->v>iRowid ){
495 p = p->pLeft;
496 }else{
497 return 1;
498 }
499 }
500 }
501 return 0;
502}
503