| 1 | /* |
| 2 | ** 2006 June 10 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file contains code used to help implement virtual tables. |
| 13 | */ |
| 14 | #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 15 | #include "sqliteInt.h" |
| 16 | |
| 17 | /* |
| 18 | ** Before a virtual table xCreate() or xConnect() method is invoked, the |
| 19 | ** sqlite3.pVtabCtx member variable is set to point to an instance of |
| 20 | ** this struct allocated on the stack. It is used by the implementation of |
| 21 | ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which |
| 22 | ** are invoked only from within xCreate and xConnect methods. |
| 23 | */ |
| 24 | struct VtabCtx { |
| 25 | VTable *pVTable; /* The virtual table being constructed */ |
| 26 | Table *pTab; /* The Table object to which the virtual table belongs */ |
| 27 | VtabCtx *pPrior; /* Parent context (if any) */ |
| 28 | int bDeclared; /* True after sqlite3_declare_vtab() is called */ |
| 29 | }; |
| 30 | |
| 31 | /* |
| 32 | ** Construct and install a Module object for a virtual table. When this |
| 33 | ** routine is called, it is guaranteed that all appropriate locks are held |
| 34 | ** and the module is not already part of the connection. |
| 35 | ** |
| 36 | ** If there already exists a module with zName, replace it with the new one. |
| 37 | ** If pModule==0, then delete the module zName if it exists. |
| 38 | */ |
| 39 | Module *sqlite3VtabCreateModule( |
| 40 | sqlite3 *db, /* Database in which module is registered */ |
| 41 | const char *zName, /* Name assigned to this module */ |
| 42 | const sqlite3_module *pModule, /* The definition of the module */ |
| 43 | void *pAux, /* Context pointer for xCreate/xConnect */ |
| 44 | void (*xDestroy)(void *) /* Module destructor function */ |
| 45 | ){ |
| 46 | Module *pMod; |
| 47 | Module *pDel; |
| 48 | char *zCopy; |
| 49 | if( pModule==0 ){ |
| 50 | zCopy = (char*)zName; |
| 51 | pMod = 0; |
| 52 | }else{ |
| 53 | int nName = sqlite3Strlen30(zName); |
| 54 | pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); |
| 55 | if( pMod==0 ){ |
| 56 | sqlite3OomFault(db); |
| 57 | return 0; |
| 58 | } |
| 59 | zCopy = (char *)(&pMod[1]); |
| 60 | memcpy(zCopy, zName, nName+1); |
| 61 | pMod->zName = zCopy; |
| 62 | pMod->pModule = pModule; |
| 63 | pMod->pAux = pAux; |
| 64 | pMod->xDestroy = xDestroy; |
| 65 | pMod->pEpoTab = 0; |
| 66 | pMod->nRefModule = 1; |
| 67 | } |
| 68 | pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); |
| 69 | if( pDel ){ |
| 70 | if( pDel==pMod ){ |
| 71 | sqlite3OomFault(db); |
| 72 | sqlite3DbFree(db, pDel); |
| 73 | pMod = 0; |
| 74 | }else{ |
| 75 | sqlite3VtabEponymousTableClear(db, pDel); |
| 76 | sqlite3VtabModuleUnref(db, pDel); |
| 77 | } |
| 78 | } |
| 79 | return pMod; |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | ** The actual function that does the work of creating a new module. |
| 84 | ** This function implements the sqlite3_create_module() and |
| 85 | ** sqlite3_create_module_v2() interfaces. |
| 86 | */ |
| 87 | static int createModule( |
| 88 | sqlite3 *db, /* Database in which module is registered */ |
| 89 | const char *zName, /* Name assigned to this module */ |
| 90 | const sqlite3_module *pModule, /* The definition of the module */ |
| 91 | void *pAux, /* Context pointer for xCreate/xConnect */ |
| 92 | void (*xDestroy)(void *) /* Module destructor function */ |
| 93 | ){ |
| 94 | int rc = SQLITE_OK; |
| 95 | |
| 96 | sqlite3_mutex_enter(db->mutex); |
| 97 | (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); |
| 98 | rc = sqlite3ApiExit(db, rc); |
| 99 | if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); |
| 100 | sqlite3_mutex_leave(db->mutex); |
| 101 | return rc; |
| 102 | } |
| 103 | |
| 104 | |
| 105 | /* |
| 106 | ** External API function used to create a new virtual-table module. |
| 107 | */ |
| 108 | int sqlite3_create_module( |
| 109 | sqlite3 *db, /* Database in which module is registered */ |
| 110 | const char *zName, /* Name assigned to this module */ |
| 111 | const sqlite3_module *pModule, /* The definition of the module */ |
| 112 | void *pAux /* Context pointer for xCreate/xConnect */ |
| 113 | ){ |
| 114 | #ifdef SQLITE_ENABLE_API_ARMOR |
| 115 | if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; |
| 116 | #endif |
| 117 | return createModule(db, zName, pModule, pAux, 0); |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | ** External API function used to create a new virtual-table module. |
| 122 | */ |
| 123 | int sqlite3_create_module_v2( |
| 124 | sqlite3 *db, /* Database in which module is registered */ |
| 125 | const char *zName, /* Name assigned to this module */ |
| 126 | const sqlite3_module *pModule, /* The definition of the module */ |
| 127 | void *pAux, /* Context pointer for xCreate/xConnect */ |
| 128 | void (*xDestroy)(void *) /* Module destructor function */ |
| 129 | ){ |
| 130 | #ifdef SQLITE_ENABLE_API_ARMOR |
| 131 | if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; |
| 132 | #endif |
| 133 | return createModule(db, zName, pModule, pAux, xDestroy); |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | ** External API to drop all virtual-table modules, except those named |
| 138 | ** on the azNames list. |
| 139 | */ |
| 140 | int sqlite3_drop_modules(sqlite3 *db, const char** azNames){ |
| 141 | HashElem *pThis, *pNext; |
| 142 | #ifdef SQLITE_ENABLE_API_ARMOR |
| 143 | if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; |
| 144 | #endif |
| 145 | for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){ |
| 146 | Module *pMod = (Module*)sqliteHashData(pThis); |
| 147 | pNext = sqliteHashNext(pThis); |
| 148 | if( azNames ){ |
| 149 | int ii; |
| 150 | for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){} |
| 151 | if( azNames[ii]!=0 ) continue; |
| 152 | } |
| 153 | createModule(db, pMod->zName, 0, 0, 0); |
| 154 | } |
| 155 | return SQLITE_OK; |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | ** Decrement the reference count on a Module object. Destroy the |
| 160 | ** module when the reference count reaches zero. |
| 161 | */ |
| 162 | void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){ |
| 163 | assert( pMod->nRefModule>0 ); |
| 164 | pMod->nRefModule--; |
| 165 | if( pMod->nRefModule==0 ){ |
| 166 | if( pMod->xDestroy ){ |
| 167 | pMod->xDestroy(pMod->pAux); |
| 168 | } |
| 169 | assert( pMod->pEpoTab==0 ); |
| 170 | sqlite3DbFree(db, pMod); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | ** Lock the virtual table so that it cannot be disconnected. |
| 176 | ** Locks nest. Every lock should have a corresponding unlock. |
| 177 | ** If an unlock is omitted, resources leaks will occur. |
| 178 | ** |
| 179 | ** If a disconnect is attempted while a virtual table is locked, |
| 180 | ** the disconnect is deferred until all locks have been removed. |
| 181 | */ |
| 182 | void sqlite3VtabLock(VTable *pVTab){ |
| 183 | pVTab->nRef++; |
| 184 | } |
| 185 | |
| 186 | |
| 187 | /* |
| 188 | ** pTab is a pointer to a Table structure representing a virtual-table. |
| 189 | ** Return a pointer to the VTable object used by connection db to access |
| 190 | ** this virtual-table, if one has been created, or NULL otherwise. |
| 191 | */ |
| 192 | VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ |
| 193 | VTable *pVtab; |
| 194 | assert( IsVirtual(pTab) ); |
| 195 | for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); |
| 196 | return pVtab; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | ** Decrement the ref-count on a virtual table object. When the ref-count |
| 201 | ** reaches zero, call the xDisconnect() method to delete the object. |
| 202 | */ |
| 203 | void sqlite3VtabUnlock(VTable *pVTab){ |
| 204 | sqlite3 *db = pVTab->db; |
| 205 | |
| 206 | assert( db ); |
| 207 | assert( pVTab->nRef>0 ); |
| 208 | assert( db->eOpenState==SQLITE_STATE_OPEN |
| 209 | || db->eOpenState==SQLITE_STATE_ZOMBIE ); |
| 210 | |
| 211 | pVTab->nRef--; |
| 212 | if( pVTab->nRef==0 ){ |
| 213 | sqlite3_vtab *p = pVTab->pVtab; |
| 214 | sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod); |
| 215 | if( p ){ |
| 216 | p->pModule->xDisconnect(p); |
| 217 | } |
| 218 | sqlite3DbFree(db, pVTab); |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | ** Table p is a virtual table. This function moves all elements in the |
| 224 | ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated |
| 225 | ** database connections to be disconnected at the next opportunity. |
| 226 | ** Except, if argument db is not NULL, then the entry associated with |
| 227 | ** connection db is left in the p->u.vtab.p list. |
| 228 | */ |
| 229 | static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ |
| 230 | VTable *pRet = 0; |
| 231 | VTable *pVTable; |
| 232 | |
| 233 | assert( IsVirtual(p) ); |
| 234 | pVTable = p->u.vtab.p; |
| 235 | p->u.vtab.p = 0; |
| 236 | |
| 237 | /* Assert that the mutex (if any) associated with the BtShared database |
| 238 | ** that contains table p is held by the caller. See header comments |
| 239 | ** above function sqlite3VtabUnlockList() for an explanation of why |
| 240 | ** this makes it safe to access the sqlite3.pDisconnect list of any |
| 241 | ** database connection that may have an entry in the p->u.vtab.p list. |
| 242 | */ |
| 243 | assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); |
| 244 | |
| 245 | while( pVTable ){ |
| 246 | sqlite3 *db2 = pVTable->db; |
| 247 | VTable *pNext = pVTable->pNext; |
| 248 | assert( db2 ); |
| 249 | if( db2==db ){ |
| 250 | pRet = pVTable; |
| 251 | p->u.vtab.p = pRet; |
| 252 | pRet->pNext = 0; |
| 253 | }else{ |
| 254 | pVTable->pNext = db2->pDisconnect; |
| 255 | db2->pDisconnect = pVTable; |
| 256 | } |
| 257 | pVTable = pNext; |
| 258 | } |
| 259 | |
| 260 | assert( !db || pRet ); |
| 261 | return pRet; |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | ** Table *p is a virtual table. This function removes the VTable object |
| 266 | ** for table *p associated with database connection db from the linked |
| 267 | ** list in p->pVTab. It also decrements the VTable ref count. This is |
| 268 | ** used when closing database connection db to free all of its VTable |
| 269 | ** objects without disturbing the rest of the Schema object (which may |
| 270 | ** be being used by other shared-cache connections). |
| 271 | */ |
| 272 | void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ |
| 273 | VTable **ppVTab; |
| 274 | |
| 275 | assert( IsVirtual(p) ); |
| 276 | assert( sqlite3BtreeHoldsAllMutexes(db) ); |
| 277 | assert( sqlite3_mutex_held(db->mutex) ); |
| 278 | |
| 279 | for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){ |
| 280 | if( (*ppVTab)->db==db ){ |
| 281 | VTable *pVTab = *ppVTab; |
| 282 | *ppVTab = pVTab->pNext; |
| 283 | sqlite3VtabUnlock(pVTab); |
| 284 | break; |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | |
| 290 | /* |
| 291 | ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. |
| 292 | ** |
| 293 | ** This function may only be called when the mutexes associated with all |
| 294 | ** shared b-tree databases opened using connection db are held by the |
| 295 | ** caller. This is done to protect the sqlite3.pDisconnect list. The |
| 296 | ** sqlite3.pDisconnect list is accessed only as follows: |
| 297 | ** |
| 298 | ** 1) By this function. In this case, all BtShared mutexes and the mutex |
| 299 | ** associated with the database handle itself must be held. |
| 300 | ** |
| 301 | ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to |
| 302 | ** the sqlite3.pDisconnect list. In this case either the BtShared mutex |
| 303 | ** associated with the database the virtual table is stored in is held |
| 304 | ** or, if the virtual table is stored in a non-sharable database, then |
| 305 | ** the database handle mutex is held. |
| 306 | ** |
| 307 | ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously |
| 308 | ** by multiple threads. It is thread-safe. |
| 309 | */ |
| 310 | void sqlite3VtabUnlockList(sqlite3 *db){ |
| 311 | VTable *p = db->pDisconnect; |
| 312 | |
| 313 | assert( sqlite3BtreeHoldsAllMutexes(db) ); |
| 314 | assert( sqlite3_mutex_held(db->mutex) ); |
| 315 | |
| 316 | if( p ){ |
| 317 | db->pDisconnect = 0; |
| 318 | sqlite3ExpirePreparedStatements(db, 0); |
| 319 | do { |
| 320 | VTable *pNext = p->pNext; |
| 321 | sqlite3VtabUnlock(p); |
| 322 | p = pNext; |
| 323 | }while( p ); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | ** Clear any and all virtual-table information from the Table record. |
| 329 | ** This routine is called, for example, just before deleting the Table |
| 330 | ** record. |
| 331 | ** |
| 332 | ** Since it is a virtual-table, the Table structure contains a pointer |
| 333 | ** to the head of a linked list of VTable structures. Each VTable |
| 334 | ** structure is associated with a single sqlite3* user of the schema. |
| 335 | ** The reference count of the VTable structure associated with database |
| 336 | ** connection db is decremented immediately (which may lead to the |
| 337 | ** structure being xDisconnected and free). Any other VTable structures |
| 338 | ** in the list are moved to the sqlite3.pDisconnect list of the associated |
| 339 | ** database connection. |
| 340 | */ |
| 341 | void sqlite3VtabClear(sqlite3 *db, Table *p){ |
| 342 | assert( IsVirtual(p) ); |
| 343 | assert( db!=0 ); |
| 344 | if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); |
| 345 | if( p->u.vtab.azArg ){ |
| 346 | int i; |
| 347 | for(i=0; i<p->u.vtab.nArg; i++){ |
| 348 | if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]); |
| 349 | } |
| 350 | sqlite3DbFree(db, p->u.vtab.azArg); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | ** Add a new module argument to pTable->u.vtab.azArg[]. |
| 356 | ** The string is not copied - the pointer is stored. The |
| 357 | ** string will be freed automatically when the table is |
| 358 | ** deleted. |
| 359 | */ |
| 360 | static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){ |
| 361 | sqlite3_int64 nBytes; |
| 362 | char **azModuleArg; |
| 363 | sqlite3 *db = pParse->db; |
| 364 | |
| 365 | assert( IsVirtual(pTable) ); |
| 366 | nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg); |
| 367 | if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
| 368 | sqlite3ErrorMsg(pParse, "too many columns on %s" , pTable->zName); |
| 369 | } |
| 370 | azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes); |
| 371 | if( azModuleArg==0 ){ |
| 372 | sqlite3DbFree(db, zArg); |
| 373 | }else{ |
| 374 | int i = pTable->u.vtab.nArg++; |
| 375 | azModuleArg[i] = zArg; |
| 376 | azModuleArg[i+1] = 0; |
| 377 | pTable->u.vtab.azArg = azModuleArg; |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE |
| 383 | ** statement. The module name has been parsed, but the optional list |
| 384 | ** of parameters that follow the module name are still pending. |
| 385 | */ |
| 386 | void sqlite3VtabBeginParse( |
| 387 | Parse *pParse, /* Parsing context */ |
| 388 | Token *pName1, /* Name of new table, or database name */ |
| 389 | Token *pName2, /* Name of new table or NULL */ |
| 390 | Token *pModuleName, /* Name of the module for the virtual table */ |
| 391 | int ifNotExists /* No error if the table already exists */ |
| 392 | ){ |
| 393 | Table *pTable; /* The new virtual table */ |
| 394 | sqlite3 *db; /* Database connection */ |
| 395 | |
| 396 | sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); |
| 397 | pTable = pParse->pNewTable; |
| 398 | if( pTable==0 ) return; |
| 399 | assert( 0==pTable->pIndex ); |
| 400 | pTable->eTabType = TABTYP_VTAB; |
| 401 | |
| 402 | db = pParse->db; |
| 403 | |
| 404 | assert( pTable->u.vtab.nArg==0 ); |
| 405 | addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName)); |
| 406 | addModuleArgument(pParse, pTable, 0); |
| 407 | addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName)); |
| 408 | assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) |
| 409 | || (pParse->sNameToken.z==pName1->z && pName2->z==0) |
| 410 | ); |
| 411 | pParse->sNameToken.n = (int)( |
| 412 | &pModuleName->z[pModuleName->n] - pParse->sNameToken.z |
| 413 | ); |
| 414 | |
| 415 | #ifndef SQLITE_OMIT_AUTHORIZATION |
| 416 | /* Creating a virtual table invokes the authorization callback twice. |
| 417 | ** The first invocation, to obtain permission to INSERT a row into the |
| 418 | ** sqlite_schema table, has already been made by sqlite3StartTable(). |
| 419 | ** The second call, to obtain permission to create the table, is made now. |
| 420 | */ |
| 421 | if( pTable->u.vtab.azArg ){ |
| 422 | int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); |
| 423 | assert( iDb>=0 ); /* The database the table is being created in */ |
| 424 | sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, |
| 425 | pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName); |
| 426 | } |
| 427 | #endif |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | ** This routine takes the module argument that has been accumulating |
| 432 | ** in pParse->zArg[] and appends it to the list of arguments on the |
| 433 | ** virtual table currently under construction in pParse->pTable. |
| 434 | */ |
| 435 | static void addArgumentToVtab(Parse *pParse){ |
| 436 | if( pParse->sArg.z && pParse->pNewTable ){ |
| 437 | const char *z = (const char*)pParse->sArg.z; |
| 438 | int n = pParse->sArg.n; |
| 439 | sqlite3 *db = pParse->db; |
| 440 | addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | ** The parser calls this routine after the CREATE VIRTUAL TABLE statement |
| 446 | ** has been completely parsed. |
| 447 | */ |
| 448 | void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ |
| 449 | Table *pTab = pParse->pNewTable; /* The table being constructed */ |
| 450 | sqlite3 *db = pParse->db; /* The database connection */ |
| 451 | |
| 452 | if( pTab==0 ) return; |
| 453 | assert( IsVirtual(pTab) ); |
| 454 | addArgumentToVtab(pParse); |
| 455 | pParse->sArg.z = 0; |
| 456 | if( pTab->u.vtab.nArg<1 ) return; |
| 457 | |
| 458 | /* If the CREATE VIRTUAL TABLE statement is being entered for the |
| 459 | ** first time (in other words if the virtual table is actually being |
| 460 | ** created now instead of just being read out of sqlite_schema) then |
| 461 | ** do additional initialization work and store the statement text |
| 462 | ** in the sqlite_schema table. |
| 463 | */ |
| 464 | if( !db->init.busy ){ |
| 465 | char *zStmt; |
| 466 | char *zWhere; |
| 467 | int iDb; |
| 468 | int iReg; |
| 469 | Vdbe *v; |
| 470 | |
| 471 | sqlite3MayAbort(pParse); |
| 472 | |
| 473 | /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ |
| 474 | if( pEnd ){ |
| 475 | pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; |
| 476 | } |
| 477 | zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T" , &pParse->sNameToken); |
| 478 | |
| 479 | /* A slot for the record has already been allocated in the |
| 480 | ** schema table. We just need to update that slot with all |
| 481 | ** the information we've collected. |
| 482 | ** |
| 483 | ** The VM register number pParse->regRowid holds the rowid of an |
| 484 | ** entry in the sqlite_schema table tht was created for this vtab |
| 485 | ** by sqlite3StartTable(). |
| 486 | */ |
| 487 | iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 488 | sqlite3NestedParse(pParse, |
| 489 | "UPDATE %Q." LEGACY_SCHEMA_TABLE " " |
| 490 | "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " |
| 491 | "WHERE rowid=#%d" , |
| 492 | db->aDb[iDb].zDbSName, |
| 493 | pTab->zName, |
| 494 | pTab->zName, |
| 495 | zStmt, |
| 496 | pParse->regRowid |
| 497 | ); |
| 498 | v = sqlite3GetVdbe(pParse); |
| 499 | sqlite3ChangeCookie(pParse, iDb); |
| 500 | |
| 501 | sqlite3VdbeAddOp0(v, OP_Expire); |
| 502 | zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q" , pTab->zName, zStmt); |
| 503 | sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0); |
| 504 | sqlite3DbFree(db, zStmt); |
| 505 | |
| 506 | iReg = ++pParse->nMem; |
| 507 | sqlite3VdbeLoadString(v, iReg, pTab->zName); |
| 508 | sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); |
| 509 | }else{ |
| 510 | /* If we are rereading the sqlite_schema table create the in-memory |
| 511 | ** record of the table. */ |
| 512 | Table *pOld; |
| 513 | Schema *pSchema = pTab->pSchema; |
| 514 | const char *zName = pTab->zName; |
| 515 | assert( zName!=0 ); |
| 516 | sqlite3MarkAllShadowTablesOf(db, pTab); |
| 517 | pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); |
| 518 | if( pOld ){ |
| 519 | sqlite3OomFault(db); |
| 520 | assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ |
| 521 | return; |
| 522 | } |
| 523 | pParse->pNewTable = 0; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | ** The parser calls this routine when it sees the first token |
| 529 | ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. |
| 530 | */ |
| 531 | void sqlite3VtabArgInit(Parse *pParse){ |
| 532 | addArgumentToVtab(pParse); |
| 533 | pParse->sArg.z = 0; |
| 534 | pParse->sArg.n = 0; |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | ** The parser calls this routine for each token after the first token |
| 539 | ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. |
| 540 | */ |
| 541 | void sqlite3VtabArgExtend(Parse *pParse, Token *p){ |
| 542 | Token *pArg = &pParse->sArg; |
| 543 | if( pArg->z==0 ){ |
| 544 | pArg->z = p->z; |
| 545 | pArg->n = p->n; |
| 546 | }else{ |
| 547 | assert(pArg->z <= p->z); |
| 548 | pArg->n = (int)(&p->z[p->n] - pArg->z); |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | ** Invoke a virtual table constructor (either xCreate or xConnect). The |
| 554 | ** pointer to the function to invoke is passed as the fourth parameter |
| 555 | ** to this procedure. |
| 556 | */ |
| 557 | static int vtabCallConstructor( |
| 558 | sqlite3 *db, |
| 559 | Table *pTab, |
| 560 | Module *pMod, |
| 561 | int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), |
| 562 | char **pzErr |
| 563 | ){ |
| 564 | VtabCtx sCtx; |
| 565 | VTable *pVTable; |
| 566 | int rc; |
| 567 | const char *const*azArg; |
| 568 | int nArg = pTab->u.vtab.nArg; |
| 569 | char *zErr = 0; |
| 570 | char *zModuleName; |
| 571 | int iDb; |
| 572 | VtabCtx *pCtx; |
| 573 | |
| 574 | assert( IsVirtual(pTab) ); |
| 575 | azArg = (const char *const*)pTab->u.vtab.azArg; |
| 576 | |
| 577 | /* Check that the virtual-table is not already being initialized */ |
| 578 | for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ |
| 579 | if( pCtx->pTab==pTab ){ |
| 580 | *pzErr = sqlite3MPrintf(db, |
| 581 | "vtable constructor called recursively: %s" , pTab->zName |
| 582 | ); |
| 583 | return SQLITE_LOCKED; |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | zModuleName = sqlite3DbStrDup(db, pTab->zName); |
| 588 | if( !zModuleName ){ |
| 589 | return SQLITE_NOMEM_BKPT; |
| 590 | } |
| 591 | |
| 592 | pVTable = sqlite3MallocZero(sizeof(VTable)); |
| 593 | if( !pVTable ){ |
| 594 | sqlite3OomFault(db); |
| 595 | sqlite3DbFree(db, zModuleName); |
| 596 | return SQLITE_NOMEM_BKPT; |
| 597 | } |
| 598 | pVTable->db = db; |
| 599 | pVTable->pMod = pMod; |
| 600 | pVTable->eVtabRisk = SQLITE_VTABRISK_Normal; |
| 601 | |
| 602 | iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 603 | pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName; |
| 604 | |
| 605 | /* Invoke the virtual table constructor */ |
| 606 | assert( &db->pVtabCtx ); |
| 607 | assert( xConstruct ); |
| 608 | sCtx.pTab = pTab; |
| 609 | sCtx.pVTable = pVTable; |
| 610 | sCtx.pPrior = db->pVtabCtx; |
| 611 | sCtx.bDeclared = 0; |
| 612 | db->pVtabCtx = &sCtx; |
| 613 | rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); |
| 614 | db->pVtabCtx = sCtx.pPrior; |
| 615 | if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); |
| 616 | assert( sCtx.pTab==pTab ); |
| 617 | |
| 618 | if( SQLITE_OK!=rc ){ |
| 619 | if( zErr==0 ){ |
| 620 | *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s" , zModuleName); |
| 621 | }else { |
| 622 | *pzErr = sqlite3MPrintf(db, "%s" , zErr); |
| 623 | sqlite3_free(zErr); |
| 624 | } |
| 625 | sqlite3DbFree(db, pVTable); |
| 626 | }else if( ALWAYS(pVTable->pVtab) ){ |
| 627 | /* Justification of ALWAYS(): A correct vtab constructor must allocate |
| 628 | ** the sqlite3_vtab object if successful. */ |
| 629 | memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); |
| 630 | pVTable->pVtab->pModule = pMod->pModule; |
| 631 | pMod->nRefModule++; |
| 632 | pVTable->nRef = 1; |
| 633 | if( sCtx.bDeclared==0 ){ |
| 634 | const char *zFormat = "vtable constructor did not declare schema: %s" ; |
| 635 | *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); |
| 636 | sqlite3VtabUnlock(pVTable); |
| 637 | rc = SQLITE_ERROR; |
| 638 | }else{ |
| 639 | int iCol; |
| 640 | u16 oooHidden = 0; |
| 641 | /* If everything went according to plan, link the new VTable structure |
| 642 | ** into the linked list headed by pTab->u.vtab.p. Then loop through the |
| 643 | ** columns of the table to see if any of them contain the token "hidden". |
| 644 | ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from |
| 645 | ** the type string. */ |
| 646 | pVTable->pNext = pTab->u.vtab.p; |
| 647 | pTab->u.vtab.p = pVTable; |
| 648 | |
| 649 | for(iCol=0; iCol<pTab->nCol; iCol++){ |
| 650 | char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "" ); |
| 651 | int nType; |
| 652 | int i = 0; |
| 653 | nType = sqlite3Strlen30(zType); |
| 654 | for(i=0; i<nType; i++){ |
| 655 | if( 0==sqlite3StrNICmp("hidden" , &zType[i], 6) |
| 656 | && (i==0 || zType[i-1]==' ') |
| 657 | && (zType[i+6]=='\0' || zType[i+6]==' ') |
| 658 | ){ |
| 659 | break; |
| 660 | } |
| 661 | } |
| 662 | if( i<nType ){ |
| 663 | int j; |
| 664 | int nDel = 6 + (zType[i+6] ? 1 : 0); |
| 665 | for(j=i; (j+nDel)<=nType; j++){ |
| 666 | zType[j] = zType[j+nDel]; |
| 667 | } |
| 668 | if( zType[i]=='\0' && i>0 ){ |
| 669 | assert(zType[i-1]==' '); |
| 670 | zType[i-1] = '\0'; |
| 671 | } |
| 672 | pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; |
| 673 | pTab->tabFlags |= TF_HasHidden; |
| 674 | oooHidden = TF_OOOHidden; |
| 675 | }else{ |
| 676 | pTab->tabFlags |= oooHidden; |
| 677 | } |
| 678 | } |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | sqlite3DbFree(db, zModuleName); |
| 683 | return rc; |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | ** This function is invoked by the parser to call the xConnect() method |
| 688 | ** of the virtual table pTab. If an error occurs, an error code is returned |
| 689 | ** and an error left in pParse. |
| 690 | ** |
| 691 | ** This call is a no-op if table pTab is not a virtual table. |
| 692 | */ |
| 693 | int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ |
| 694 | sqlite3 *db = pParse->db; |
| 695 | const char *zMod; |
| 696 | Module *pMod; |
| 697 | int rc; |
| 698 | |
| 699 | assert( pTab ); |
| 700 | assert( IsVirtual(pTab) ); |
| 701 | if( sqlite3GetVTable(db, pTab) ){ |
| 702 | return SQLITE_OK; |
| 703 | } |
| 704 | |
| 705 | /* Locate the required virtual table module */ |
| 706 | zMod = pTab->u.vtab.azArg[0]; |
| 707 | pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); |
| 708 | |
| 709 | if( !pMod ){ |
| 710 | const char *zModule = pTab->u.vtab.azArg[0]; |
| 711 | sqlite3ErrorMsg(pParse, "no such module: %s" , zModule); |
| 712 | rc = SQLITE_ERROR; |
| 713 | }else{ |
| 714 | char *zErr = 0; |
| 715 | rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); |
| 716 | if( rc!=SQLITE_OK ){ |
| 717 | sqlite3ErrorMsg(pParse, "%s" , zErr); |
| 718 | pParse->rc = rc; |
| 719 | } |
| 720 | sqlite3DbFree(db, zErr); |
| 721 | } |
| 722 | |
| 723 | return rc; |
| 724 | } |
| 725 | /* |
| 726 | ** Grow the db->aVTrans[] array so that there is room for at least one |
| 727 | ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. |
| 728 | */ |
| 729 | static int growVTrans(sqlite3 *db){ |
| 730 | const int ARRAY_INCR = 5; |
| 731 | |
| 732 | /* Grow the sqlite3.aVTrans array if required */ |
| 733 | if( (db->nVTrans%ARRAY_INCR)==0 ){ |
| 734 | VTable **aVTrans; |
| 735 | sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)* |
| 736 | ((sqlite3_int64)db->nVTrans + ARRAY_INCR); |
| 737 | aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); |
| 738 | if( !aVTrans ){ |
| 739 | return SQLITE_NOMEM_BKPT; |
| 740 | } |
| 741 | memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); |
| 742 | db->aVTrans = aVTrans; |
| 743 | } |
| 744 | |
| 745 | return SQLITE_OK; |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should |
| 750 | ** have already been reserved using growVTrans(). |
| 751 | */ |
| 752 | static void addToVTrans(sqlite3 *db, VTable *pVTab){ |
| 753 | /* Add pVtab to the end of sqlite3.aVTrans */ |
| 754 | db->aVTrans[db->nVTrans++] = pVTab; |
| 755 | sqlite3VtabLock(pVTab); |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | ** This function is invoked by the vdbe to call the xCreate method |
| 760 | ** of the virtual table named zTab in database iDb. |
| 761 | ** |
| 762 | ** If an error occurs, *pzErr is set to point to an English language |
| 763 | ** description of the error and an SQLITE_XXX error code is returned. |
| 764 | ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. |
| 765 | */ |
| 766 | int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ |
| 767 | int rc = SQLITE_OK; |
| 768 | Table *pTab; |
| 769 | Module *pMod; |
| 770 | const char *zMod; |
| 771 | |
| 772 | pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); |
| 773 | assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p ); |
| 774 | |
| 775 | /* Locate the required virtual table module */ |
| 776 | zMod = pTab->u.vtab.azArg[0]; |
| 777 | pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); |
| 778 | |
| 779 | /* If the module has been registered and includes a Create method, |
| 780 | ** invoke it now. If the module has not been registered, return an |
| 781 | ** error. Otherwise, do nothing. |
| 782 | */ |
| 783 | if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ |
| 784 | *pzErr = sqlite3MPrintf(db, "no such module: %s" , zMod); |
| 785 | rc = SQLITE_ERROR; |
| 786 | }else{ |
| 787 | rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); |
| 788 | } |
| 789 | |
| 790 | /* Justification of ALWAYS(): The xConstructor method is required to |
| 791 | ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ |
| 792 | if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ |
| 793 | rc = growVTrans(db); |
| 794 | if( rc==SQLITE_OK ){ |
| 795 | addToVTrans(db, sqlite3GetVTable(db, pTab)); |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | return rc; |
| 800 | } |
| 801 | |
| 802 | /* |
| 803 | ** This function is used to set the schema of a virtual table. It is only |
| 804 | ** valid to call this function from within the xCreate() or xConnect() of a |
| 805 | ** virtual table module. |
| 806 | */ |
| 807 | int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ |
| 808 | VtabCtx *pCtx; |
| 809 | int rc = SQLITE_OK; |
| 810 | Table *pTab; |
| 811 | Parse sParse; |
| 812 | int initBusy; |
| 813 | |
| 814 | #ifdef SQLITE_ENABLE_API_ARMOR |
| 815 | if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ |
| 816 | return SQLITE_MISUSE_BKPT; |
| 817 | } |
| 818 | #endif |
| 819 | sqlite3_mutex_enter(db->mutex); |
| 820 | pCtx = db->pVtabCtx; |
| 821 | if( !pCtx || pCtx->bDeclared ){ |
| 822 | sqlite3Error(db, SQLITE_MISUSE); |
| 823 | sqlite3_mutex_leave(db->mutex); |
| 824 | return SQLITE_MISUSE_BKPT; |
| 825 | } |
| 826 | pTab = pCtx->pTab; |
| 827 | assert( IsVirtual(pTab) ); |
| 828 | |
| 829 | sqlite3ParseObjectInit(&sParse, db); |
| 830 | sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; |
| 831 | sParse.disableTriggers = 1; |
| 832 | /* We should never be able to reach this point while loading the |
| 833 | ** schema. Nevertheless, defend against that (turn off db->init.busy) |
| 834 | ** in case a bug arises. */ |
| 835 | assert( db->init.busy==0 ); |
| 836 | initBusy = db->init.busy; |
| 837 | db->init.busy = 0; |
| 838 | sParse.nQueryLoop = 1; |
| 839 | if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable) |
| 840 | && ALWAYS(sParse.pNewTable!=0) |
| 841 | && ALWAYS(!db->mallocFailed) |
| 842 | && IsOrdinaryTable(sParse.pNewTable) |
| 843 | ){ |
| 844 | assert( sParse.zErrMsg==0 ); |
| 845 | if( !pTab->aCol ){ |
| 846 | Table *pNew = sParse.pNewTable; |
| 847 | Index *pIdx; |
| 848 | pTab->aCol = pNew->aCol; |
| 849 | sqlite3ExprListDelete(db, pNew->u.tab.pDfltList); |
| 850 | pTab->nNVCol = pTab->nCol = pNew->nCol; |
| 851 | pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); |
| 852 | pNew->nCol = 0; |
| 853 | pNew->aCol = 0; |
| 854 | assert( pTab->pIndex==0 ); |
| 855 | assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); |
| 856 | if( !HasRowid(pNew) |
| 857 | && pCtx->pVTable->pMod->pModule->xUpdate!=0 |
| 858 | && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 |
| 859 | ){ |
| 860 | /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) |
| 861 | ** or else must have a single-column PRIMARY KEY */ |
| 862 | rc = SQLITE_ERROR; |
| 863 | } |
| 864 | pIdx = pNew->pIndex; |
| 865 | if( pIdx ){ |
| 866 | assert( pIdx->pNext==0 ); |
| 867 | pTab->pIndex = pIdx; |
| 868 | pNew->pIndex = 0; |
| 869 | pIdx->pTable = pTab; |
| 870 | } |
| 871 | } |
| 872 | pCtx->bDeclared = 1; |
| 873 | }else{ |
| 874 | sqlite3ErrorWithMsg(db, SQLITE_ERROR, |
| 875 | (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg); |
| 876 | sqlite3DbFree(db, sParse.zErrMsg); |
| 877 | rc = SQLITE_ERROR; |
| 878 | } |
| 879 | sParse.eParseMode = PARSE_MODE_NORMAL; |
| 880 | |
| 881 | if( sParse.pVdbe ){ |
| 882 | sqlite3VdbeFinalize(sParse.pVdbe); |
| 883 | } |
| 884 | sqlite3DeleteTable(db, sParse.pNewTable); |
| 885 | sqlite3ParseObjectReset(&sParse); |
| 886 | db->init.busy = initBusy; |
| 887 | |
| 888 | assert( (rc&0xff)==rc ); |
| 889 | rc = sqlite3ApiExit(db, rc); |
| 890 | sqlite3_mutex_leave(db->mutex); |
| 891 | return rc; |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | ** This function is invoked by the vdbe to call the xDestroy method |
| 896 | ** of the virtual table named zTab in database iDb. This occurs |
| 897 | ** when a DROP TABLE is mentioned. |
| 898 | ** |
| 899 | ** This call is a no-op if zTab is not a virtual table. |
| 900 | */ |
| 901 | int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ |
| 902 | int rc = SQLITE_OK; |
| 903 | Table *pTab; |
| 904 | |
| 905 | pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); |
| 906 | if( ALWAYS(pTab!=0) |
| 907 | && ALWAYS(IsVirtual(pTab)) |
| 908 | && ALWAYS(pTab->u.vtab.p!=0) |
| 909 | ){ |
| 910 | VTable *p; |
| 911 | int (*xDestroy)(sqlite3_vtab *); |
| 912 | for(p=pTab->u.vtab.p; p; p=p->pNext){ |
| 913 | assert( p->pVtab ); |
| 914 | if( p->pVtab->nRef>0 ){ |
| 915 | return SQLITE_LOCKED; |
| 916 | } |
| 917 | } |
| 918 | p = vtabDisconnectAll(db, pTab); |
| 919 | xDestroy = p->pMod->pModule->xDestroy; |
| 920 | if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect; |
| 921 | assert( xDestroy!=0 ); |
| 922 | pTab->nTabRef++; |
| 923 | rc = xDestroy(p->pVtab); |
| 924 | /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ |
| 925 | if( rc==SQLITE_OK ){ |
| 926 | assert( pTab->u.vtab.p==p && p->pNext==0 ); |
| 927 | p->pVtab = 0; |
| 928 | pTab->u.vtab.p = 0; |
| 929 | sqlite3VtabUnlock(p); |
| 930 | } |
| 931 | sqlite3DeleteTable(db, pTab); |
| 932 | } |
| 933 | |
| 934 | return rc; |
| 935 | } |
| 936 | |
| 937 | /* |
| 938 | ** This function invokes either the xRollback or xCommit method |
| 939 | ** of each of the virtual tables in the sqlite3.aVTrans array. The method |
| 940 | ** called is identified by the second argument, "offset", which is |
| 941 | ** the offset of the method to call in the sqlite3_module structure. |
| 942 | ** |
| 943 | ** The array is cleared after invoking the callbacks. |
| 944 | */ |
| 945 | static void callFinaliser(sqlite3 *db, int offset){ |
| 946 | int i; |
| 947 | if( db->aVTrans ){ |
| 948 | VTable **aVTrans = db->aVTrans; |
| 949 | db->aVTrans = 0; |
| 950 | for(i=0; i<db->nVTrans; i++){ |
| 951 | VTable *pVTab = aVTrans[i]; |
| 952 | sqlite3_vtab *p = pVTab->pVtab; |
| 953 | if( p ){ |
| 954 | int (*x)(sqlite3_vtab *); |
| 955 | x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); |
| 956 | if( x ) x(p); |
| 957 | } |
| 958 | pVTab->iSavepoint = 0; |
| 959 | sqlite3VtabUnlock(pVTab); |
| 960 | } |
| 961 | sqlite3DbFree(db, aVTrans); |
| 962 | db->nVTrans = 0; |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | /* |
| 967 | ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans |
| 968 | ** array. Return the error code for the first error that occurs, or |
| 969 | ** SQLITE_OK if all xSync operations are successful. |
| 970 | ** |
| 971 | ** If an error message is available, leave it in p->zErrMsg. |
| 972 | */ |
| 973 | int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ |
| 974 | int i; |
| 975 | int rc = SQLITE_OK; |
| 976 | VTable **aVTrans = db->aVTrans; |
| 977 | |
| 978 | db->aVTrans = 0; |
| 979 | for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ |
| 980 | int (*x)(sqlite3_vtab *); |
| 981 | sqlite3_vtab *pVtab = aVTrans[i]->pVtab; |
| 982 | if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ |
| 983 | rc = x(pVtab); |
| 984 | sqlite3VtabImportErrmsg(p, pVtab); |
| 985 | } |
| 986 | } |
| 987 | db->aVTrans = aVTrans; |
| 988 | return rc; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | ** Invoke the xRollback method of all virtual tables in the |
| 993 | ** sqlite3.aVTrans array. Then clear the array itself. |
| 994 | */ |
| 995 | int sqlite3VtabRollback(sqlite3 *db){ |
| 996 | callFinaliser(db, offsetof(sqlite3_module,xRollback)); |
| 997 | return SQLITE_OK; |
| 998 | } |
| 999 | |
| 1000 | /* |
| 1001 | ** Invoke the xCommit method of all virtual tables in the |
| 1002 | ** sqlite3.aVTrans array. Then clear the array itself. |
| 1003 | */ |
| 1004 | int sqlite3VtabCommit(sqlite3 *db){ |
| 1005 | callFinaliser(db, offsetof(sqlite3_module,xCommit)); |
| 1006 | return SQLITE_OK; |
| 1007 | } |
| 1008 | |
| 1009 | /* |
| 1010 | ** If the virtual table pVtab supports the transaction interface |
| 1011 | ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is |
| 1012 | ** not currently open, invoke the xBegin method now. |
| 1013 | ** |
| 1014 | ** If the xBegin call is successful, place the sqlite3_vtab pointer |
| 1015 | ** in the sqlite3.aVTrans array. |
| 1016 | */ |
| 1017 | int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ |
| 1018 | int rc = SQLITE_OK; |
| 1019 | const sqlite3_module *pModule; |
| 1020 | |
| 1021 | /* Special case: If db->aVTrans is NULL and db->nVTrans is greater |
| 1022 | ** than zero, then this function is being called from within a |
| 1023 | ** virtual module xSync() callback. It is illegal to write to |
| 1024 | ** virtual module tables in this case, so return SQLITE_LOCKED. |
| 1025 | */ |
| 1026 | if( sqlite3VtabInSync(db) ){ |
| 1027 | return SQLITE_LOCKED; |
| 1028 | } |
| 1029 | if( !pVTab ){ |
| 1030 | return SQLITE_OK; |
| 1031 | } |
| 1032 | pModule = pVTab->pVtab->pModule; |
| 1033 | |
| 1034 | if( pModule->xBegin ){ |
| 1035 | int i; |
| 1036 | |
| 1037 | /* If pVtab is already in the aVTrans array, return early */ |
| 1038 | for(i=0; i<db->nVTrans; i++){ |
| 1039 | if( db->aVTrans[i]==pVTab ){ |
| 1040 | return SQLITE_OK; |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | /* Invoke the xBegin method. If successful, add the vtab to the |
| 1045 | ** sqlite3.aVTrans[] array. */ |
| 1046 | rc = growVTrans(db); |
| 1047 | if( rc==SQLITE_OK ){ |
| 1048 | rc = pModule->xBegin(pVTab->pVtab); |
| 1049 | if( rc==SQLITE_OK ){ |
| 1050 | int iSvpt = db->nStatement + db->nSavepoint; |
| 1051 | addToVTrans(db, pVTab); |
| 1052 | if( iSvpt && pModule->xSavepoint ){ |
| 1053 | pVTab->iSavepoint = iSvpt; |
| 1054 | rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); |
| 1055 | } |
| 1056 | } |
| 1057 | } |
| 1058 | } |
| 1059 | return rc; |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all |
| 1064 | ** virtual tables that currently have an open transaction. Pass iSavepoint |
| 1065 | ** as the second argument to the virtual table method invoked. |
| 1066 | ** |
| 1067 | ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is |
| 1068 | ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is |
| 1069 | ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with |
| 1070 | ** an open transaction is invoked. |
| 1071 | ** |
| 1072 | ** If any virtual table method returns an error code other than SQLITE_OK, |
| 1073 | ** processing is abandoned and the error returned to the caller of this |
| 1074 | ** function immediately. If all calls to virtual table methods are successful, |
| 1075 | ** SQLITE_OK is returned. |
| 1076 | */ |
| 1077 | int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ |
| 1078 | int rc = SQLITE_OK; |
| 1079 | |
| 1080 | assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); |
| 1081 | assert( iSavepoint>=-1 ); |
| 1082 | if( db->aVTrans ){ |
| 1083 | int i; |
| 1084 | for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ |
| 1085 | VTable *pVTab = db->aVTrans[i]; |
| 1086 | const sqlite3_module *pMod = pVTab->pMod->pModule; |
| 1087 | if( pVTab->pVtab && pMod->iVersion>=2 ){ |
| 1088 | int (*xMethod)(sqlite3_vtab *, int); |
| 1089 | sqlite3VtabLock(pVTab); |
| 1090 | switch( op ){ |
| 1091 | case SAVEPOINT_BEGIN: |
| 1092 | xMethod = pMod->xSavepoint; |
| 1093 | pVTab->iSavepoint = iSavepoint+1; |
| 1094 | break; |
| 1095 | case SAVEPOINT_ROLLBACK: |
| 1096 | xMethod = pMod->xRollbackTo; |
| 1097 | break; |
| 1098 | default: |
| 1099 | xMethod = pMod->xRelease; |
| 1100 | break; |
| 1101 | } |
| 1102 | if( xMethod && pVTab->iSavepoint>iSavepoint ){ |
| 1103 | rc = xMethod(pVTab->pVtab, iSavepoint); |
| 1104 | } |
| 1105 | sqlite3VtabUnlock(pVTab); |
| 1106 | } |
| 1107 | } |
| 1108 | } |
| 1109 | return rc; |
| 1110 | } |
| 1111 | |
| 1112 | /* |
| 1113 | ** The first parameter (pDef) is a function implementation. The |
| 1114 | ** second parameter (pExpr) is the first argument to this function. |
| 1115 | ** If pExpr is a column in a virtual table, then let the virtual |
| 1116 | ** table implementation have an opportunity to overload the function. |
| 1117 | ** |
| 1118 | ** This routine is used to allow virtual table implementations to |
| 1119 | ** overload MATCH, LIKE, GLOB, and REGEXP operators. |
| 1120 | ** |
| 1121 | ** Return either the pDef argument (indicating no change) or a |
| 1122 | ** new FuncDef structure that is marked as ephemeral using the |
| 1123 | ** SQLITE_FUNC_EPHEM flag. |
| 1124 | */ |
| 1125 | FuncDef *sqlite3VtabOverloadFunction( |
| 1126 | sqlite3 *db, /* Database connection for reporting malloc problems */ |
| 1127 | FuncDef *pDef, /* Function to possibly overload */ |
| 1128 | int nArg, /* Number of arguments to the function */ |
| 1129 | Expr *pExpr /* First argument to the function */ |
| 1130 | ){ |
| 1131 | Table *pTab; |
| 1132 | sqlite3_vtab *pVtab; |
| 1133 | sqlite3_module *pMod; |
| 1134 | void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; |
| 1135 | void *pArg = 0; |
| 1136 | FuncDef *pNew; |
| 1137 | int rc = 0; |
| 1138 | |
| 1139 | /* Check to see the left operand is a column in a virtual table */ |
| 1140 | if( NEVER(pExpr==0) ) return pDef; |
| 1141 | if( pExpr->op!=TK_COLUMN ) return pDef; |
| 1142 | assert( ExprUseYTab(pExpr) ); |
| 1143 | pTab = pExpr->y.pTab; |
| 1144 | if( NEVER(pTab==0) ) return pDef; |
| 1145 | if( !IsVirtual(pTab) ) return pDef; |
| 1146 | pVtab = sqlite3GetVTable(db, pTab)->pVtab; |
| 1147 | assert( pVtab!=0 ); |
| 1148 | assert( pVtab->pModule!=0 ); |
| 1149 | pMod = (sqlite3_module *)pVtab->pModule; |
| 1150 | if( pMod->xFindFunction==0 ) return pDef; |
| 1151 | |
| 1152 | /* Call the xFindFunction method on the virtual table implementation |
| 1153 | ** to see if the implementation wants to overload this function. |
| 1154 | ** |
| 1155 | ** Though undocumented, we have historically always invoked xFindFunction |
| 1156 | ** with an all lower-case function name. Continue in this tradition to |
| 1157 | ** avoid any chance of an incompatibility. |
| 1158 | */ |
| 1159 | #ifdef SQLITE_DEBUG |
| 1160 | { |
| 1161 | int i; |
| 1162 | for(i=0; pDef->zName[i]; i++){ |
| 1163 | unsigned char x = (unsigned char)pDef->zName[i]; |
| 1164 | assert( x==sqlite3UpperToLower[x] ); |
| 1165 | } |
| 1166 | } |
| 1167 | #endif |
| 1168 | rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); |
| 1169 | if( rc==0 ){ |
| 1170 | return pDef; |
| 1171 | } |
| 1172 | |
| 1173 | /* Create a new ephemeral function definition for the overloaded |
| 1174 | ** function */ |
| 1175 | pNew = sqlite3DbMallocZero(db, sizeof(*pNew) |
| 1176 | + sqlite3Strlen30(pDef->zName) + 1); |
| 1177 | if( pNew==0 ){ |
| 1178 | return pDef; |
| 1179 | } |
| 1180 | *pNew = *pDef; |
| 1181 | pNew->zName = (const char*)&pNew[1]; |
| 1182 | memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); |
| 1183 | pNew->xSFunc = xSFunc; |
| 1184 | pNew->pUserData = pArg; |
| 1185 | pNew->funcFlags |= SQLITE_FUNC_EPHEM; |
| 1186 | return pNew; |
| 1187 | } |
| 1188 | |
| 1189 | /* |
| 1190 | ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] |
| 1191 | ** array so that an OP_VBegin will get generated for it. Add pTab to the |
| 1192 | ** array if it is missing. If pTab is already in the array, this routine |
| 1193 | ** is a no-op. |
| 1194 | */ |
| 1195 | void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ |
| 1196 | Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 1197 | int i, n; |
| 1198 | Table **apVtabLock; |
| 1199 | |
| 1200 | assert( IsVirtual(pTab) ); |
| 1201 | for(i=0; i<pToplevel->nVtabLock; i++){ |
| 1202 | if( pTab==pToplevel->apVtabLock[i] ) return; |
| 1203 | } |
| 1204 | n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); |
| 1205 | apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n); |
| 1206 | if( apVtabLock ){ |
| 1207 | pToplevel->apVtabLock = apVtabLock; |
| 1208 | pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; |
| 1209 | }else{ |
| 1210 | sqlite3OomFault(pToplevel->db); |
| 1211 | } |
| 1212 | } |
| 1213 | |
| 1214 | /* |
| 1215 | ** Check to see if virtual table module pMod can be have an eponymous |
| 1216 | ** virtual table instance. If it can, create one if one does not already |
| 1217 | ** exist. Return non-zero if either the eponymous virtual table instance |
| 1218 | ** exists when this routine returns or if an attempt to create it failed |
| 1219 | ** and an error message was left in pParse. |
| 1220 | ** |
| 1221 | ** An eponymous virtual table instance is one that is named after its |
| 1222 | ** module, and more importantly, does not require a CREATE VIRTUAL TABLE |
| 1223 | ** statement in order to come into existance. Eponymous virtual table |
| 1224 | ** instances always exist. They cannot be DROP-ed. |
| 1225 | ** |
| 1226 | ** Any virtual table module for which xConnect and xCreate are the same |
| 1227 | ** method can have an eponymous virtual table instance. |
| 1228 | */ |
| 1229 | int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ |
| 1230 | const sqlite3_module *pModule = pMod->pModule; |
| 1231 | Table *pTab; |
| 1232 | char *zErr = 0; |
| 1233 | int rc; |
| 1234 | sqlite3 *db = pParse->db; |
| 1235 | if( pMod->pEpoTab ) return 1; |
| 1236 | if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; |
| 1237 | pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
| 1238 | if( pTab==0 ) return 0; |
| 1239 | pTab->zName = sqlite3DbStrDup(db, pMod->zName); |
| 1240 | if( pTab->zName==0 ){ |
| 1241 | sqlite3DbFree(db, pTab); |
| 1242 | return 0; |
| 1243 | } |
| 1244 | pMod->pEpoTab = pTab; |
| 1245 | pTab->nTabRef = 1; |
| 1246 | pTab->eTabType = TABTYP_VTAB; |
| 1247 | pTab->pSchema = db->aDb[0].pSchema; |
| 1248 | assert( pTab->u.vtab.nArg==0 ); |
| 1249 | pTab->iPKey = -1; |
| 1250 | pTab->tabFlags |= TF_Eponymous; |
| 1251 | addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); |
| 1252 | addModuleArgument(pParse, pTab, 0); |
| 1253 | addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); |
| 1254 | rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); |
| 1255 | if( rc ){ |
| 1256 | sqlite3ErrorMsg(pParse, "%s" , zErr); |
| 1257 | sqlite3DbFree(db, zErr); |
| 1258 | sqlite3VtabEponymousTableClear(db, pMod); |
| 1259 | } |
| 1260 | return 1; |
| 1261 | } |
| 1262 | |
| 1263 | /* |
| 1264 | ** Erase the eponymous virtual table instance associated with |
| 1265 | ** virtual table module pMod, if it exists. |
| 1266 | */ |
| 1267 | void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ |
| 1268 | Table *pTab = pMod->pEpoTab; |
| 1269 | if( pTab!=0 ){ |
| 1270 | /* Mark the table as Ephemeral prior to deleting it, so that the |
| 1271 | ** sqlite3DeleteTable() routine will know that it is not stored in |
| 1272 | ** the schema. */ |
| 1273 | pTab->tabFlags |= TF_Ephemeral; |
| 1274 | sqlite3DeleteTable(db, pTab); |
| 1275 | pMod->pEpoTab = 0; |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | /* |
| 1280 | ** Return the ON CONFLICT resolution mode in effect for the virtual |
| 1281 | ** table update operation currently in progress. |
| 1282 | ** |
| 1283 | ** The results of this routine are undefined unless it is called from |
| 1284 | ** within an xUpdate method. |
| 1285 | */ |
| 1286 | int sqlite3_vtab_on_conflict(sqlite3 *db){ |
| 1287 | static const unsigned char aMap[] = { |
| 1288 | SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE |
| 1289 | }; |
| 1290 | #ifdef SQLITE_ENABLE_API_ARMOR |
| 1291 | if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; |
| 1292 | #endif |
| 1293 | assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); |
| 1294 | assert( OE_Ignore==4 && OE_Replace==5 ); |
| 1295 | assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); |
| 1296 | return (int)aMap[db->vtabOnConflict-1]; |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | ** Call from within the xCreate() or xConnect() methods to provide |
| 1301 | ** the SQLite core with additional information about the behavior |
| 1302 | ** of the virtual table being implemented. |
| 1303 | */ |
| 1304 | int sqlite3_vtab_config(sqlite3 *db, int op, ...){ |
| 1305 | va_list ap; |
| 1306 | int rc = SQLITE_OK; |
| 1307 | VtabCtx *p; |
| 1308 | |
| 1309 | #ifdef SQLITE_ENABLE_API_ARMOR |
| 1310 | if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; |
| 1311 | #endif |
| 1312 | sqlite3_mutex_enter(db->mutex); |
| 1313 | p = db->pVtabCtx; |
| 1314 | if( !p ){ |
| 1315 | rc = SQLITE_MISUSE_BKPT; |
| 1316 | }else{ |
| 1317 | assert( p->pTab==0 || IsVirtual(p->pTab) ); |
| 1318 | va_start(ap, op); |
| 1319 | switch( op ){ |
| 1320 | case SQLITE_VTAB_CONSTRAINT_SUPPORT: { |
| 1321 | p->pVTable->bConstraint = (u8)va_arg(ap, int); |
| 1322 | break; |
| 1323 | } |
| 1324 | case SQLITE_VTAB_INNOCUOUS: { |
| 1325 | p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low; |
| 1326 | break; |
| 1327 | } |
| 1328 | case SQLITE_VTAB_DIRECTONLY: { |
| 1329 | p->pVTable->eVtabRisk = SQLITE_VTABRISK_High; |
| 1330 | break; |
| 1331 | } |
| 1332 | default: { |
| 1333 | rc = SQLITE_MISUSE_BKPT; |
| 1334 | break; |
| 1335 | } |
| 1336 | } |
| 1337 | va_end(ap); |
| 1338 | } |
| 1339 | |
| 1340 | if( rc!=SQLITE_OK ) sqlite3Error(db, rc); |
| 1341 | sqlite3_mutex_leave(db->mutex); |
| 1342 | return rc; |
| 1343 | } |
| 1344 | |
| 1345 | #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 1346 | |