| 1 | //============================================================================ |
| 2 | // |
| 3 | // SSSS tt lll lll |
| 4 | // SS SS tt ll ll |
| 5 | // SS tttttt eeee ll ll aaaa |
| 6 | // SSSS tt ee ee ll ll aa |
| 7 | // SS tt eeeeee ll ll aaaaa -- "An Atari 2600 VCS Emulator" |
| 8 | // SS SS tt ee ll ll aa aa |
| 9 | // SSSS ttt eeeee llll llll aaaaa |
| 10 | // |
| 11 | // Copyright (c) 1995-2019 by Bradford W. Mott, Stephen Anthony |
| 12 | // and the Stella Team |
| 13 | // |
| 14 | // See the file "License.txt" for information on usage and redistribution of |
| 15 | // this file, and for a DISCLAIMER OF ALL WARRANTIES. |
| 16 | //============================================================================ |
| 17 | |
| 18 | #include <cmath> |
| 19 | |
| 20 | #include "Event.hxx" |
| 21 | #include "Paddles.hxx" |
| 22 | |
| 23 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 24 | Paddles::Paddles(Jack jack, const Event& event, const System& system, |
| 25 | bool swappaddle, bool swapaxis, bool swapdir) |
| 26 | : Controller(jack, event, system, Controller::Type::Paddles), |
| 27 | myMPaddleID(-1), |
| 28 | myMPaddleIDX(-1), |
| 29 | myMPaddleIDY(-1) |
| 30 | { |
| 31 | // We must start with minimum resistance; see commit |
| 32 | // 38b452e1a047a0dca38c5bcce7c271d40f76736e for more information |
| 33 | setPin(AnalogPin::Five, MIN_RESISTANCE); |
| 34 | setPin(AnalogPin::Nine, MIN_RESISTANCE); |
| 35 | |
| 36 | // The following logic reflects that mapping paddles to different |
| 37 | // devices can be extremely complex |
| 38 | // As well, while many paddle games have horizontal movement of |
| 39 | // objects (which maps nicely to horizontal movement of the joystick |
| 40 | // or mouse), others have vertical movement |
| 41 | // This vertical handling is taken care of by swapping the axes |
| 42 | // On the other hand, some games treat paddle resistance differently, |
| 43 | // (ie, increasing resistance can move an object right instead of left) |
| 44 | // This is taken care of by swapping the direction of movement |
| 45 | // Arrgh, did I mention that paddles are complex ... |
| 46 | |
| 47 | // As much as possible, precompute which events we care about for |
| 48 | // a given port; this will speed up processing in update() |
| 49 | |
| 50 | // Consider whether this is the left or right port |
| 51 | if(myJack == Jack::Left) |
| 52 | { |
| 53 | if(!swappaddle) // First paddle is 0, second is 1 |
| 54 | { |
| 55 | // These aren't affected by changes in axis orientation |
| 56 | myP0AxisValue = Event::PaddleZeroAnalog; |
| 57 | myP1AxisValue = Event::PaddleOneAnalog; |
| 58 | myP0FireEvent = Event::PaddleZeroFire; |
| 59 | myP1FireEvent = Event::PaddleOneFire; |
| 60 | |
| 61 | // Direction of movement is swapped |
| 62 | // That is, moving in a certain direction on an axis can |
| 63 | // result in either increasing or decreasing paddle movement |
| 64 | if(!swapdir) |
| 65 | { |
| 66 | myP0DecEvent = Event::PaddleZeroDecrease; |
| 67 | myP0IncEvent = Event::PaddleZeroIncrease; |
| 68 | myP1DecEvent = Event::PaddleOneDecrease; |
| 69 | myP1IncEvent = Event::PaddleOneIncrease; |
| 70 | } |
| 71 | else |
| 72 | { |
| 73 | myP0DecEvent = Event::PaddleZeroIncrease; |
| 74 | myP0IncEvent = Event::PaddleZeroDecrease; |
| 75 | myP1DecEvent = Event::PaddleOneIncrease; |
| 76 | myP1IncEvent = Event::PaddleOneDecrease; |
| 77 | } |
| 78 | } |
| 79 | else // First paddle is 1, second is 0 |
| 80 | { |
| 81 | // These aren't affected by changes in axis orientation |
| 82 | myP0AxisValue = Event::PaddleOneAnalog; |
| 83 | myP1AxisValue = Event::PaddleZeroAnalog; |
| 84 | myP0FireEvent = Event::PaddleOneFire; |
| 85 | myP1FireEvent = Event::PaddleZeroFire; |
| 86 | |
| 87 | // Direction of movement is swapped |
| 88 | // That is, moving in a certain direction on an axis can |
| 89 | // result in either increasing or decreasing paddle movement |
| 90 | if(!swapdir) |
| 91 | { |
| 92 | myP0DecEvent = Event::PaddleOneDecrease; |
| 93 | myP0IncEvent = Event::PaddleOneIncrease; |
| 94 | myP1DecEvent = Event::PaddleZeroDecrease; |
| 95 | myP1IncEvent = Event::PaddleZeroIncrease; |
| 96 | } |
| 97 | else |
| 98 | { |
| 99 | myP0DecEvent = Event::PaddleOneIncrease; |
| 100 | myP0IncEvent = Event::PaddleOneDecrease; |
| 101 | myP1DecEvent = Event::PaddleZeroIncrease; |
| 102 | myP1IncEvent = Event::PaddleZeroDecrease; |
| 103 | } |
| 104 | } |
| 105 | } |
| 106 | else // Jack is right port |
| 107 | { |
| 108 | if(!swappaddle) // First paddle is 2, second is 3 |
| 109 | { |
| 110 | // These aren't affected by changes in axis orientation |
| 111 | myP0AxisValue = Event::PaddleTwoAnalog; |
| 112 | myP1AxisValue = Event::PaddleThreeAnalog; |
| 113 | myP0FireEvent = Event::PaddleTwoFire; |
| 114 | myP1FireEvent = Event::PaddleThreeFire; |
| 115 | |
| 116 | // Direction of movement is swapped |
| 117 | // That is, moving in a certain direction on an axis can |
| 118 | // result in either increasing or decreasing paddle movement |
| 119 | if(!swapdir) |
| 120 | { |
| 121 | myP0DecEvent = Event::PaddleTwoDecrease; |
| 122 | myP0IncEvent = Event::PaddleTwoIncrease; |
| 123 | myP1DecEvent = Event::PaddleThreeDecrease; |
| 124 | myP1IncEvent = Event::PaddleThreeIncrease; |
| 125 | } |
| 126 | else |
| 127 | { |
| 128 | myP0DecEvent = Event::PaddleTwoIncrease; |
| 129 | myP0IncEvent = Event::PaddleTwoDecrease; |
| 130 | myP1DecEvent = Event::PaddleThreeIncrease; |
| 131 | myP1IncEvent = Event::PaddleThreeDecrease; |
| 132 | } |
| 133 | } |
| 134 | else // First paddle is 3, second is 2 |
| 135 | { |
| 136 | // These aren't affected by changes in axis orientation |
| 137 | myP0AxisValue = Event::PaddleThreeAnalog; |
| 138 | myP1AxisValue = Event::PaddleTwoAnalog; |
| 139 | myP0FireEvent = Event::PaddleThreeFire; |
| 140 | myP1FireEvent = Event::PaddleTwoFire; |
| 141 | |
| 142 | // Direction of movement is swapped |
| 143 | // That is, moving in a certain direction on an axis can |
| 144 | // result in either increasing or decreasing paddle movement |
| 145 | if(!swapdir) |
| 146 | { |
| 147 | myP0DecEvent = Event::PaddleThreeDecrease; |
| 148 | myP0IncEvent = Event::PaddleThreeIncrease; |
| 149 | myP1DecEvent = Event::PaddleTwoDecrease; |
| 150 | myP1IncEvent = Event::PaddleTwoIncrease; |
| 151 | } |
| 152 | else |
| 153 | { |
| 154 | myP0DecEvent = Event::PaddleThreeIncrease; |
| 155 | myP0IncEvent = Event::PaddleThreeDecrease; |
| 156 | myP1DecEvent = Event::PaddleTwoIncrease; |
| 157 | myP1IncEvent = Event::PaddleTwoDecrease; |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | // The following are independent of whether or not the port |
| 163 | // is left or right |
| 164 | MOUSE_SENSITIVITY = swapdir ? -abs(MOUSE_SENSITIVITY) : |
| 165 | abs(MOUSE_SENSITIVITY); |
| 166 | if(!swapaxis) |
| 167 | { |
| 168 | myAxisMouseMotion = Event::MouseAxisXValue; |
| 169 | myAxisDigitalZero = 0; |
| 170 | myAxisDigitalOne = 1; |
| 171 | } |
| 172 | else |
| 173 | { |
| 174 | myAxisMouseMotion = Event::MouseAxisYValue; |
| 175 | myAxisDigitalZero = 1; |
| 176 | myAxisDigitalOne = 0; |
| 177 | } |
| 178 | |
| 179 | // Digital pins 1, 2 and 6 are not connected |
| 180 | setPin(DigitalPin::One, true); |
| 181 | setPin(DigitalPin::Two, true); |
| 182 | setPin(DigitalPin::Six, true); |
| 183 | |
| 184 | // Digital emulation of analog paddle movement |
| 185 | myKeyRepeat0 = myKeyRepeat1 = false; |
| 186 | myPaddleRepeat0 = myPaddleRepeat1 = myLastAxisX = myLastAxisY = 0; |
| 187 | |
| 188 | myCharge[0] = myCharge[1] = TRIGRANGE / 2; |
| 189 | myLastCharge[0] = myLastCharge[1] = 0; |
| 190 | } |
| 191 | |
| 192 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 193 | void Paddles::update() |
| 194 | { |
| 195 | setPin(DigitalPin::Three, true); |
| 196 | setPin(DigitalPin::Four, true); |
| 197 | |
| 198 | // Digital events (from keyboard or joystick hats & buttons) |
| 199 | setPin(DigitalPin::Three, myEvent.get(myP1FireEvent) == 0); |
| 200 | setPin(DigitalPin::Four, myEvent.get(myP0FireEvent) == 0); |
| 201 | |
| 202 | // Paddle movement is a very difficult thing to accurately emulate, |
| 203 | // since it originally came from an analog device that had very |
| 204 | // peculiar behaviour |
| 205 | // Compounding the problem is the fact that we'd like to emulate |
| 206 | // movement with 'digital' data (like from a keyboard or a digital |
| 207 | // joystick axis), but also from a mouse (relative values) |
| 208 | // and Stelladaptor-like devices (absolute analog values clamped to |
| 209 | // a certain range) |
| 210 | // And to top it all off, we don't want one devices input to conflict |
| 211 | // with the others ... |
| 212 | |
| 213 | // Analog axis events from Stelladaptor-like devices |
| 214 | // These devices generate data in the range -32768 to 32767, |
| 215 | // so we have to scale appropriately |
| 216 | // Since these events are generated and stored indefinitely, |
| 217 | // we only process the first one we see (when it differs from |
| 218 | // previous values by a pre-defined amount) |
| 219 | // Otherwise, it would always override input from digital and mouse |
| 220 | bool sa_changed = false; |
| 221 | int sa_xaxis = myEvent.get(myP0AxisValue); |
| 222 | int sa_yaxis = myEvent.get(myP1AxisValue); |
| 223 | int new_val; |
| 224 | |
| 225 | const double bFac[MAX_DEJITTER - MIN_DEJITTER + 1] = { |
| 226 | // higher values mean more dejitter strength |
| 227 | 0, // off |
| 228 | 0.50, 0.59, 0.67, 0.74, 0.80, |
| 229 | 0.85, 0.89, 0.92, 0.94, 0.95 |
| 230 | }; |
| 231 | const double dFac[MAX_DEJITTER - MIN_DEJITTER + 1] = { |
| 232 | // lower values mean more dejitter strength |
| 233 | 1, // off |
| 234 | 1.0 / 181, 1.0 / 256, 1.0 / 362, 1.0 / 512, 1.0 / 724, |
| 235 | 1.0 / 1024, 1.0 / 1448, 1.0 / 2048, 1.0 / 2896, 1.0 / 4096 |
| 236 | }; |
| 237 | const double baseFactor = bFac[DEJITTER_BASE]; |
| 238 | const double diffFactor = dFac[DEJITTER_DIFF]; |
| 239 | |
| 240 | if(abs(myLastAxisX - sa_xaxis) > 10) |
| 241 | { |
| 242 | // dejitter, suppress small changes only |
| 243 | double dejitter = std::pow(baseFactor, abs(sa_xaxis - myLastAxisX) * diffFactor); |
| 244 | new_val = sa_xaxis * (1 - dejitter) + myLastAxisX * dejitter; |
| 245 | |
| 246 | // only use new dejittered value for larger differences |
| 247 | if (abs(new_val - sa_xaxis) > 10) |
| 248 | sa_xaxis = new_val; |
| 249 | |
| 250 | setPin(AnalogPin::Nine, Int32(MAX_RESISTANCE * ((32767 - Int16(sa_xaxis)) / 65536.0))); |
| 251 | sa_changed = true; |
| 252 | } |
| 253 | if(abs(myLastAxisY - sa_yaxis) > 10) |
| 254 | { |
| 255 | // dejitter, suppress small changes only |
| 256 | double dejitter = std::pow(baseFactor, abs(sa_yaxis - myLastAxisY) * diffFactor); |
| 257 | new_val = sa_yaxis * (1 - dejitter) + myLastAxisY * dejitter; |
| 258 | |
| 259 | // only use new dejittered value for larger differences |
| 260 | if (abs(new_val - sa_yaxis) > 10) |
| 261 | sa_yaxis = new_val; |
| 262 | |
| 263 | setPin(AnalogPin::Five, Int32(MAX_RESISTANCE * ((32767 - Int16(sa_yaxis)) / 65536.0))); |
| 264 | sa_changed = true; |
| 265 | } |
| 266 | myLastAxisX = sa_xaxis; |
| 267 | myLastAxisY = sa_yaxis; |
| 268 | if(sa_changed) |
| 269 | return; |
| 270 | |
| 271 | // Mouse motion events give relative movement |
| 272 | // That is, they're only relevant if they're non-zero |
| 273 | if(myMPaddleID > -1) |
| 274 | { |
| 275 | // We're in auto mode, where a single axis is used for one paddle only |
| 276 | myCharge[myMPaddleID] = BSPF::clamp(myCharge[myMPaddleID] - |
| 277 | (myEvent.get(myAxisMouseMotion) * MOUSE_SENSITIVITY), |
| 278 | TRIGMIN, TRIGRANGE); |
| 279 | if(myEvent.get(Event::MouseButtonLeftValue) || |
| 280 | myEvent.get(Event::MouseButtonRightValue)) |
| 281 | setPin(ourButtonPin[myMPaddleID], false); |
| 282 | } |
| 283 | else |
| 284 | { |
| 285 | // Test for 'untied' mouse axis mode, where each axis is potentially |
| 286 | // mapped to a separate paddle |
| 287 | if(myMPaddleIDX > -1) |
| 288 | { |
| 289 | myCharge[myMPaddleIDX] = BSPF::clamp(myCharge[myMPaddleIDX] - |
| 290 | (myEvent.get(Event::MouseAxisXValue) * MOUSE_SENSITIVITY), |
| 291 | TRIGMIN, TRIGRANGE); |
| 292 | if(myEvent.get(Event::MouseButtonLeftValue)) |
| 293 | setPin(ourButtonPin[myMPaddleIDX], false); |
| 294 | } |
| 295 | if(myMPaddleIDY > -1) |
| 296 | { |
| 297 | myCharge[myMPaddleIDY] = BSPF::clamp(myCharge[myMPaddleIDY] - |
| 298 | (myEvent.get(Event::MouseAxisYValue) * MOUSE_SENSITIVITY), |
| 299 | TRIGMIN, TRIGRANGE); |
| 300 | if(myEvent.get(Event::MouseButtonRightValue)) |
| 301 | setPin(ourButtonPin[myMPaddleIDY], false); |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | // Finally, consider digital input, where movement happens |
| 306 | // until a digital event is released |
| 307 | if(myKeyRepeat0) |
| 308 | { |
| 309 | myPaddleRepeat0++; |
| 310 | if(myPaddleRepeat0 > DIGITAL_SENSITIVITY) |
| 311 | myPaddleRepeat0 = DIGITAL_DISTANCE; |
| 312 | } |
| 313 | if(myKeyRepeat1) |
| 314 | { |
| 315 | myPaddleRepeat1++; |
| 316 | if(myPaddleRepeat1 > DIGITAL_SENSITIVITY) |
| 317 | myPaddleRepeat1 = DIGITAL_DISTANCE; |
| 318 | } |
| 319 | |
| 320 | myKeyRepeat0 = false; |
| 321 | myKeyRepeat1 = false; |
| 322 | |
| 323 | if(myEvent.get(myP0DecEvent)) |
| 324 | { |
| 325 | myKeyRepeat0 = true; |
| 326 | if(myCharge[myAxisDigitalZero] > myPaddleRepeat0) |
| 327 | myCharge[myAxisDigitalZero] -= myPaddleRepeat0; |
| 328 | } |
| 329 | if(myEvent.get(myP0IncEvent)) |
| 330 | { |
| 331 | myKeyRepeat0 = true; |
| 332 | if((myCharge[myAxisDigitalZero] + myPaddleRepeat0) < TRIGRANGE) |
| 333 | myCharge[myAxisDigitalZero] += myPaddleRepeat0; |
| 334 | } |
| 335 | if(myEvent.get(myP1DecEvent)) |
| 336 | { |
| 337 | myKeyRepeat1 = true; |
| 338 | if(myCharge[myAxisDigitalOne] > myPaddleRepeat1) |
| 339 | myCharge[myAxisDigitalOne] -= myPaddleRepeat1; |
| 340 | } |
| 341 | if(myEvent.get(myP1IncEvent)) |
| 342 | { |
| 343 | myKeyRepeat1 = true; |
| 344 | if((myCharge[myAxisDigitalOne] + myPaddleRepeat1) < TRIGRANGE) |
| 345 | myCharge[myAxisDigitalOne] += myPaddleRepeat1; |
| 346 | } |
| 347 | |
| 348 | // Only change state if the charge has actually changed |
| 349 | if(myCharge[1] != myLastCharge[1]) |
| 350 | setPin(AnalogPin::Five, Int32(MAX_RESISTANCE * (myCharge[1] / double(TRIGMAX)))); |
| 351 | if(myCharge[0] != myLastCharge[0]) |
| 352 | setPin(AnalogPin::Nine, Int32(MAX_RESISTANCE * (myCharge[0] / double(TRIGMAX)))); |
| 353 | |
| 354 | myLastCharge[1] = myCharge[1]; |
| 355 | myLastCharge[0] = myCharge[0]; |
| 356 | } |
| 357 | |
| 358 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 359 | bool Paddles::setMouseControl( |
| 360 | Controller::Type xtype, int xid, Controller::Type ytype, int yid) |
| 361 | { |
| 362 | // In 'automatic' mode, both axes on the mouse map to a single paddle, |
| 363 | // and the paddle axis and direction settings are taken into account |
| 364 | // This overrides any other mode |
| 365 | if(xtype == Controller::Type::Paddles && ytype == Controller::Type::Paddles && xid == yid) |
| 366 | { |
| 367 | myMPaddleID = ((myJack == Jack::Left && (xid == 0 || xid == 1)) || |
| 368 | (myJack == Jack::Right && (xid == 2 || xid == 3)) |
| 369 | ) ? xid & 0x01 : -1; |
| 370 | myMPaddleIDX = myMPaddleIDY = -1; |
| 371 | } |
| 372 | else |
| 373 | { |
| 374 | // The following is somewhat complex, but we need to pre-process as much |
| 375 | // as possible, so that ::update() can run quickly |
| 376 | myMPaddleID = -1; |
| 377 | if(myJack == Jack::Left && xtype == Controller::Type::Paddles) |
| 378 | { |
| 379 | myMPaddleIDX = (xid == 0 || xid == 1) ? xid & 0x01 : -1; |
| 380 | myMPaddleIDY = (yid == 0 || yid == 1) ? yid & 0x01 : -1; |
| 381 | } |
| 382 | else if(myJack == Jack::Right && ytype == Controller::Type::Paddles) |
| 383 | { |
| 384 | myMPaddleIDX = (xid == 2 || xid == 3) ? xid & 0x01 : -1; |
| 385 | myMPaddleIDY = (yid == 2 || yid == 3) ? yid & 0x01 : -1; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | return true; |
| 390 | } |
| 391 | |
| 392 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 393 | void Paddles::setDejitterBase(int strength) |
| 394 | { |
| 395 | DEJITTER_BASE = BSPF::clamp(strength, MIN_DEJITTER, MAX_DEJITTER); |
| 396 | } |
| 397 | |
| 398 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 399 | void Paddles::setDejitterDiff(int strength) |
| 400 | { |
| 401 | DEJITTER_DIFF = BSPF::clamp(strength, MIN_DEJITTER, MAX_DEJITTER); |
| 402 | } |
| 403 | |
| 404 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 405 | void Paddles::setDigitalSensitivity(int sensitivity) |
| 406 | { |
| 407 | DIGITAL_SENSITIVITY = BSPF::clamp(sensitivity, 1, MAX_DIGITAL_SENSE); |
| 408 | DIGITAL_DISTANCE = 20 + (DIGITAL_SENSITIVITY << 3); |
| 409 | } |
| 410 | |
| 411 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 412 | void Paddles::setMouseSensitivity(int sensitivity) |
| 413 | { |
| 414 | MOUSE_SENSITIVITY = BSPF::clamp(sensitivity, 1, MAX_MOUSE_SENSE); |
| 415 | } |
| 416 | |
| 417 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 418 | void Paddles::setPaddleRange(int range) |
| 419 | { |
| 420 | range = BSPF::clamp(range, 1, 100); |
| 421 | TRIGRANGE = int(TRIGMAX * (range / 100.0)); |
| 422 | } |
| 423 | |
| 424 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 425 | int Paddles::TRIGRANGE = Paddles::TRIGMAX; |
| 426 | int Paddles::DIGITAL_SENSITIVITY = -1; |
| 427 | int Paddles::DIGITAL_DISTANCE = -1; |
| 428 | int Paddles::MOUSE_SENSITIVITY = -1; |
| 429 | int Paddles::DEJITTER_BASE = 0; |
| 430 | int Paddles::DEJITTER_DIFF = 0; |
| 431 | |
| 432 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 433 | const Controller::DigitalPin Paddles::ourButtonPin[2] = { |
| 434 | DigitalPin::Four, DigitalPin::Three |
| 435 | }; |
| 436 | |