| 1 | /* |
| 2 | Copyright (c) 2005-2019 Intel Corporation |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include <cstdio> |
| 18 | #include <vector> |
| 19 | #include <math.h> |
| 20 | |
| 21 | #include "tbb/atomic.h" |
| 22 | #include "tbb/tick_count.h" |
| 23 | #include "tbb/task_scheduler_init.h" |
| 24 | #include "tbb/task_group.h" |
| 25 | #include "tbb/concurrent_priority_queue.h" |
| 26 | #include "tbb/spin_mutex.h" |
| 27 | #include "tbb/parallel_for.h" |
| 28 | #include "tbb/blocked_range.h" |
| 29 | #include "../../common/utility/utility.h" |
| 30 | #include "../../common/utility/fast_random.h" |
| 31 | |
| 32 | #if defined(_MSC_VER) && defined(_Wp64) |
| 33 | // Workaround for overzealous compiler warnings in /Wp64 mode |
| 34 | #pragma warning (disable: 4267) |
| 35 | #endif /* _MSC_VER && _Wp64 */ |
| 36 | |
| 37 | using namespace std; |
| 38 | using namespace tbb; |
| 39 | |
| 40 | struct point { |
| 41 | double x, y; |
| 42 | point() {} |
| 43 | point(double _x, double _y) : x(_x), y(_y) {} |
| 44 | point(const point& p) : x(p.x), y(p.y) {} |
| 45 | }; |
| 46 | |
| 47 | double get_distance(const point& p1, const point& p2) { |
| 48 | double xdiff=p1.x-p2.x, ydiff=p1.y-p2.y; |
| 49 | return sqrt(xdiff*xdiff + ydiff*ydiff); |
| 50 | } |
| 51 | |
| 52 | // generates random points on 2D plane within a box of maxsize width & height |
| 53 | point generate_random_point(utility::FastRandom& mr) { |
| 54 | const size_t maxsize=500; |
| 55 | double x = (double)(mr.get() % maxsize); |
| 56 | double y = (double)(mr.get() % maxsize); |
| 57 | return point(x,y); |
| 58 | } |
| 59 | |
| 60 | // weighted toss makes closer nodes (in the point vector) heavily connected |
| 61 | bool die_toss(size_t a, size_t b, utility::FastRandom& mr) { |
| 62 | int node_diff = std::abs((int)(a-b)); |
| 63 | // near nodes |
| 64 | if (node_diff < 16) return true; |
| 65 | // mid nodes |
| 66 | if (node_diff < 64) return ((int)mr.get() % 8 == 0); |
| 67 | // far nodes |
| 68 | if (node_diff < 512) return ((int)mr.get() % 16 == 0); |
| 69 | return false; |
| 70 | } |
| 71 | |
| 72 | typedef vector<point> point_set; |
| 73 | typedef size_t vertex_id; |
| 74 | typedef std::pair<vertex_id,double> vertex_rec; |
| 75 | typedef vector<vector<vertex_id> > edge_set; |
| 76 | |
| 77 | bool verbose = false; // prints bin details and other diagnostics to screen |
| 78 | bool silent = false; // suppress all output except for time |
| 79 | size_t N = 1000; // number of vertices |
| 80 | size_t src = 0; // start of path |
| 81 | size_t dst = N-1; // end of path |
| 82 | double INF=100000.0; // infinity |
| 83 | size_t grainsize = 16; // number of vertices per task on average |
| 84 | size_t max_spawn; // max tasks to spawn |
| 85 | tbb::atomic<size_t> num_spawn; // number of active tasks |
| 86 | |
| 87 | point_set vertices; // vertices |
| 88 | edge_set edges; // edges |
| 89 | vector<vertex_id> predecessor; // for recreating path from src to dst |
| 90 | |
| 91 | vector<double> f_distance; // estimated distances at particular vertex |
| 92 | vector<double> g_distance; // current shortest distances from src vertex |
| 93 | spin_mutex *locks; // a lock for each vertex |
| 94 | task_group *sp_group; // task group for tasks executing sub-problems |
| 95 | |
| 96 | class compare_f { |
| 97 | public: |
| 98 | bool operator()(const vertex_rec& u, const vertex_rec& v) const { |
| 99 | return u.second>v.second; |
| 100 | } |
| 101 | }; |
| 102 | |
| 103 | concurrent_priority_queue<vertex_rec, compare_f> open_set; // tentative vertices |
| 104 | |
| 105 | void shortpath_helper(); |
| 106 | |
| 107 | #if !__TBB_CPP11_LAMBDAS_PRESENT |
| 108 | class shortpath_helper_functor { |
| 109 | public: |
| 110 | shortpath_helper_functor() {}; |
| 111 | void operator() () const { shortpath_helper(); } |
| 112 | }; |
| 113 | #endif |
| 114 | |
| 115 | void shortpath() { |
| 116 | sp_group = new task_group; |
| 117 | g_distance[src] = 0.0; // src's distance from src is zero |
| 118 | f_distance[src] = get_distance(vertices[src], vertices[dst]); // estimate distance from src to dst |
| 119 | open_set.push(make_pair(src,f_distance[src])); // push src into open_set |
| 120 | #if __TBB_CPP11_LAMBDAS_PRESENT |
| 121 | sp_group->run([](){ shortpath_helper(); }); |
| 122 | #else |
| 123 | sp_group->run( shortpath_helper_functor() ); |
| 124 | #endif |
| 125 | sp_group->wait(); |
| 126 | delete sp_group; |
| 127 | } |
| 128 | |
| 129 | void shortpath_helper() { |
| 130 | vertex_rec u_rec; |
| 131 | while (open_set.try_pop(u_rec)) { |
| 132 | vertex_id u = u_rec.first; |
| 133 | if (u==dst) continue; |
| 134 | double f = u_rec.second; |
| 135 | double old_g_u = 0.0; |
| 136 | { |
| 137 | spin_mutex::scoped_lock l(locks[u]); |
| 138 | if (f > f_distance[u]) continue; // prune search space |
| 139 | old_g_u = g_distance[u]; |
| 140 | } |
| 141 | for (size_t i=0; i<edges[u].size(); ++i) { |
| 142 | vertex_id v = edges[u][i]; |
| 143 | double new_g_v = old_g_u + get_distance(vertices[u], vertices[v]); |
| 144 | double new_f_v = 0.0; |
| 145 | // the push flag lets us move some work out of the critical section below |
| 146 | bool push = false; |
| 147 | { |
| 148 | spin_mutex::scoped_lock l(locks[v]); |
| 149 | if (new_g_v < g_distance[v]) { |
| 150 | predecessor[v] = u; |
| 151 | g_distance[v] = new_g_v; |
| 152 | new_f_v = f_distance[v] = g_distance[v] + get_distance(vertices[v], vertices[dst]); |
| 153 | push = true; |
| 154 | } |
| 155 | } |
| 156 | if (push) { |
| 157 | open_set.push(make_pair(v,new_f_v)); |
| 158 | size_t n_spawn = ++num_spawn; |
| 159 | if (n_spawn < max_spawn) { |
| 160 | #if __TBB_CPP11_LAMBDAS_PRESENT |
| 161 | sp_group->run([]{ shortpath_helper(); }); |
| 162 | #else |
| 163 | sp_group->run( shortpath_helper_functor() ); |
| 164 | #endif |
| 165 | } |
| 166 | else --num_spawn; |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | --num_spawn; |
| 171 | } |
| 172 | |
| 173 | void make_path(vertex_id src, vertex_id dst, vector<vertex_id>& path) { |
| 174 | vertex_id at = predecessor[dst]; |
| 175 | if (at == N) path.push_back(src); |
| 176 | else if (at == src) { path.push_back(src); path.push_back(dst); } |
| 177 | else { make_path(src, at, path); path.push_back(dst); } |
| 178 | } |
| 179 | |
| 180 | void print_path() { |
| 181 | vector<vertex_id> path; |
| 182 | double path_length=0.0; |
| 183 | make_path(src, dst, path); |
| 184 | if (verbose) printf("\n " ); |
| 185 | for (size_t i=0; i<path.size(); ++i) { |
| 186 | if (path[i] != dst) { |
| 187 | double seg_length = get_distance(vertices[path[i]], vertices[path[i+1]]); |
| 188 | if (verbose) printf("%6.1f " , seg_length); |
| 189 | path_length += seg_length; |
| 190 | } |
| 191 | else if (verbose) printf("\n" ); |
| 192 | } |
| 193 | if (verbose) { |
| 194 | for (size_t i=0; i<path.size(); ++i) { |
| 195 | if (path[i] != dst) printf("(%4d)------>" , (int)path[i]); |
| 196 | else printf("(%4d)\n" , (int)path[i]); |
| 197 | } |
| 198 | } |
| 199 | if (verbose) printf("Total distance = %5.1f\n" , path_length); |
| 200 | else if (!silent) printf(" %5.1f\n" , path_length); |
| 201 | } |
| 202 | |
| 203 | int get_default_num_threads() { |
| 204 | static int threads = 0; |
| 205 | if (threads == 0) |
| 206 | threads = tbb::task_scheduler_init::default_num_threads(); |
| 207 | return threads; |
| 208 | } |
| 209 | |
| 210 | #if !__TBB_CPP11_LAMBDAS_PRESENT |
| 211 | class gen_vertices { |
| 212 | public: |
| 213 | gen_vertices() {} |
| 214 | void operator() (blocked_range<size_t>& r) const { |
| 215 | utility::FastRandom my_random((unsigned int)r.begin()); |
| 216 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
| 217 | vertices[i] = generate_random_point(my_random); |
| 218 | } |
| 219 | } |
| 220 | }; |
| 221 | |
| 222 | class gen_edges { |
| 223 | public: |
| 224 | gen_edges() {} |
| 225 | void operator() (blocked_range<size_t>& r) const { |
| 226 | utility::FastRandom my_random((unsigned int)r.begin()); |
| 227 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
| 228 | for (size_t j=0; j<i; ++j) { |
| 229 | if (die_toss(i, j, my_random)) |
| 230 | edges[i].push_back(j); |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | }; |
| 235 | |
| 236 | class reset_vertices { |
| 237 | public: |
| 238 | reset_vertices() {} |
| 239 | void operator() (blocked_range<size_t>& r) const { |
| 240 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
| 241 | f_distance[i] = g_distance[i] = INF; |
| 242 | predecessor[i] = N; |
| 243 | } |
| 244 | } |
| 245 | }; |
| 246 | #endif |
| 247 | |
| 248 | void InitializeGraph() { |
| 249 | task_scheduler_init init(get_default_num_threads()); |
| 250 | vertices.resize(N); |
| 251 | edges.resize(N); |
| 252 | predecessor.resize(N); |
| 253 | g_distance.resize(N); |
| 254 | f_distance.resize(N); |
| 255 | locks = new spin_mutex[N]; |
| 256 | if (verbose) printf("Generating vertices...\n" ); |
| 257 | #if __TBB_CPP11_LAMBDAS_PRESENT |
| 258 | parallel_for(blocked_range<size_t>(0,N,64), |
| 259 | [&](blocked_range<size_t>& r) { |
| 260 | utility::FastRandom my_random(r.begin()); |
| 261 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
| 262 | vertices[i] = generate_random_point(my_random); |
| 263 | } |
| 264 | }, simple_partitioner()); |
| 265 | #else |
| 266 | parallel_for(blocked_range<size_t>(0,N,64), gen_vertices(), simple_partitioner()); |
| 267 | #endif |
| 268 | if (verbose) printf("Generating edges...\n" ); |
| 269 | #if __TBB_CPP11_LAMBDAS_PRESENT |
| 270 | parallel_for(blocked_range<size_t>(0,N,64), |
| 271 | [&](blocked_range<size_t>& r) { |
| 272 | utility::FastRandom my_random(r.begin()); |
| 273 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
| 274 | for (size_t j=0; j<i; ++j) { |
| 275 | if (die_toss(i, j, my_random)) |
| 276 | edges[i].push_back(j); |
| 277 | } |
| 278 | } |
| 279 | }, simple_partitioner()); |
| 280 | #else |
| 281 | parallel_for(blocked_range<size_t>(0,N,64), gen_edges(), simple_partitioner()); |
| 282 | #endif |
| 283 | for (size_t i=0; i<N; ++i) { |
| 284 | for (size_t j=0; j<edges[i].size(); ++j) { |
| 285 | vertex_id k = edges[i][j]; |
| 286 | edges[k].push_back(i); |
| 287 | } |
| 288 | } |
| 289 | if (verbose) printf("Done.\n" ); |
| 290 | } |
| 291 | |
| 292 | void ReleaseGraph() { |
| 293 | delete []locks; |
| 294 | } |
| 295 | |
| 296 | void ResetGraph() { |
| 297 | task_scheduler_init init(get_default_num_threads()); |
| 298 | #if __TBB_CPP11_LAMBDAS_PRESENT |
| 299 | parallel_for(blocked_range<size_t>(0,N), |
| 300 | [&](blocked_range<size_t>& r) { |
| 301 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
| 302 | f_distance[i] = g_distance[i] = INF; |
| 303 | predecessor[i] = N; |
| 304 | } |
| 305 | }); |
| 306 | #else |
| 307 | parallel_for(blocked_range<size_t>(0,N), reset_vertices()); |
| 308 | #endif |
| 309 | } |
| 310 | |
| 311 | int main(int argc, char *argv[]) { |
| 312 | try { |
| 313 | utility::thread_number_range threads(get_default_num_threads); |
| 314 | utility::parse_cli_arguments(argc, argv, |
| 315 | utility::cli_argument_pack() |
| 316 | //"-h" option for displaying help is present implicitly |
| 317 | .positional_arg(threads,"#threads" ,utility::thread_number_range_desc) |
| 318 | .arg(verbose,"verbose" ," print diagnostic output to screen" ) |
| 319 | .arg(silent,"silent" ," limits output to timing info; overrides verbose" ) |
| 320 | .arg(N,"N" ," number of vertices" ) |
| 321 | .arg(src,"start" ," start of path" ) |
| 322 | .arg(dst,"end" ," end of path" ) |
| 323 | ); |
| 324 | if (silent) verbose = false; // make silent override verbose |
| 325 | else |
| 326 | printf("shortpath will run with %d vertices to find shortest path between vertices" |
| 327 | " %d and %d using %d:%d threads.\n" , |
| 328 | (int)N, (int)src, (int)dst, (int)threads.first, (int)threads.last); |
| 329 | |
| 330 | if (dst >= N) { |
| 331 | if (verbose) |
| 332 | printf("end value %d is invalid for %d vertices; correcting to %d\n" , (int)dst, (int)N, (int)N-1); |
| 333 | dst = N-1; |
| 334 | } |
| 335 | |
| 336 | num_spawn = 0; |
| 337 | max_spawn = N/grainsize; |
| 338 | tick_count t0, t1; |
| 339 | InitializeGraph(); |
| 340 | for (int n_thr=threads.first; n_thr<=threads.last; n_thr=threads.step(n_thr)) { |
| 341 | ResetGraph(); |
| 342 | task_scheduler_init init(n_thr); |
| 343 | t0 = tick_count::now(); |
| 344 | shortpath(); |
| 345 | t1 = tick_count::now(); |
| 346 | if (!silent) { |
| 347 | if (predecessor[dst] != N) { |
| 348 | printf("%d threads: [%6.6f] The shortest path from vertex %d to vertex %d is:" , |
| 349 | (int)n_thr, (t1-t0).seconds(), (int)src, (int)dst); |
| 350 | print_path(); |
| 351 | } |
| 352 | else { |
| 353 | printf("%d threads: [%6.6f] There is no path from vertex %d to vertex %d\n" , |
| 354 | (int)n_thr, (t1-t0).seconds(), (int)src, (int)dst); |
| 355 | } |
| 356 | } else |
| 357 | utility::report_elapsed_time((t1-t0).seconds()); |
| 358 | } |
| 359 | ReleaseGraph(); |
| 360 | return 0; |
| 361 | } catch(std::exception& e) { |
| 362 | cerr<<"error occurred. error text is :\"" <<e.what()<<"\"\n" ; |
| 363 | return 1; |
| 364 | } |
| 365 | } |
| 366 | |