1 | /* |
2 | Copyright (c) 2005-2019 Intel Corporation |
3 | |
4 | Licensed under the Apache License, Version 2.0 (the "License"); |
5 | you may not use this file except in compliance with the License. |
6 | You may obtain a copy of the License at |
7 | |
8 | http://www.apache.org/licenses/LICENSE-2.0 |
9 | |
10 | Unless required by applicable law or agreed to in writing, software |
11 | distributed under the License is distributed on an "AS IS" BASIS, |
12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | See the License for the specific language governing permissions and |
14 | limitations under the License. |
15 | */ |
16 | |
17 | #include <cstdio> |
18 | #include <vector> |
19 | #include <math.h> |
20 | |
21 | #include "tbb/atomic.h" |
22 | #include "tbb/tick_count.h" |
23 | #include "tbb/task_scheduler_init.h" |
24 | #include "tbb/task_group.h" |
25 | #include "tbb/concurrent_priority_queue.h" |
26 | #include "tbb/spin_mutex.h" |
27 | #include "tbb/parallel_for.h" |
28 | #include "tbb/blocked_range.h" |
29 | #include "../../common/utility/utility.h" |
30 | #include "../../common/utility/fast_random.h" |
31 | |
32 | #if defined(_MSC_VER) && defined(_Wp64) |
33 | // Workaround for overzealous compiler warnings in /Wp64 mode |
34 | #pragma warning (disable: 4267) |
35 | #endif /* _MSC_VER && _Wp64 */ |
36 | |
37 | using namespace std; |
38 | using namespace tbb; |
39 | |
40 | struct point { |
41 | double x, y; |
42 | point() {} |
43 | point(double _x, double _y) : x(_x), y(_y) {} |
44 | point(const point& p) : x(p.x), y(p.y) {} |
45 | }; |
46 | |
47 | double get_distance(const point& p1, const point& p2) { |
48 | double xdiff=p1.x-p2.x, ydiff=p1.y-p2.y; |
49 | return sqrt(xdiff*xdiff + ydiff*ydiff); |
50 | } |
51 | |
52 | // generates random points on 2D plane within a box of maxsize width & height |
53 | point generate_random_point(utility::FastRandom& mr) { |
54 | const size_t maxsize=500; |
55 | double x = (double)(mr.get() % maxsize); |
56 | double y = (double)(mr.get() % maxsize); |
57 | return point(x,y); |
58 | } |
59 | |
60 | // weighted toss makes closer nodes (in the point vector) heavily connected |
61 | bool die_toss(size_t a, size_t b, utility::FastRandom& mr) { |
62 | int node_diff = std::abs((int)(a-b)); |
63 | // near nodes |
64 | if (node_diff < 16) return true; |
65 | // mid nodes |
66 | if (node_diff < 64) return ((int)mr.get() % 8 == 0); |
67 | // far nodes |
68 | if (node_diff < 512) return ((int)mr.get() % 16 == 0); |
69 | return false; |
70 | } |
71 | |
72 | typedef vector<point> point_set; |
73 | typedef size_t vertex_id; |
74 | typedef std::pair<vertex_id,double> vertex_rec; |
75 | typedef vector<vector<vertex_id> > edge_set; |
76 | |
77 | bool verbose = false; // prints bin details and other diagnostics to screen |
78 | bool silent = false; // suppress all output except for time |
79 | size_t N = 1000; // number of vertices |
80 | size_t src = 0; // start of path |
81 | size_t dst = N-1; // end of path |
82 | double INF=100000.0; // infinity |
83 | size_t grainsize = 16; // number of vertices per task on average |
84 | size_t max_spawn; // max tasks to spawn |
85 | tbb::atomic<size_t> num_spawn; // number of active tasks |
86 | |
87 | point_set vertices; // vertices |
88 | edge_set edges; // edges |
89 | vector<vertex_id> predecessor; // for recreating path from src to dst |
90 | |
91 | vector<double> f_distance; // estimated distances at particular vertex |
92 | vector<double> g_distance; // current shortest distances from src vertex |
93 | spin_mutex *locks; // a lock for each vertex |
94 | task_group *sp_group; // task group for tasks executing sub-problems |
95 | |
96 | class compare_f { |
97 | public: |
98 | bool operator()(const vertex_rec& u, const vertex_rec& v) const { |
99 | return u.second>v.second; |
100 | } |
101 | }; |
102 | |
103 | concurrent_priority_queue<vertex_rec, compare_f> open_set; // tentative vertices |
104 | |
105 | void shortpath_helper(); |
106 | |
107 | #if !__TBB_CPP11_LAMBDAS_PRESENT |
108 | class shortpath_helper_functor { |
109 | public: |
110 | shortpath_helper_functor() {}; |
111 | void operator() () const { shortpath_helper(); } |
112 | }; |
113 | #endif |
114 | |
115 | void shortpath() { |
116 | sp_group = new task_group; |
117 | g_distance[src] = 0.0; // src's distance from src is zero |
118 | f_distance[src] = get_distance(vertices[src], vertices[dst]); // estimate distance from src to dst |
119 | open_set.push(make_pair(src,f_distance[src])); // push src into open_set |
120 | #if __TBB_CPP11_LAMBDAS_PRESENT |
121 | sp_group->run([](){ shortpath_helper(); }); |
122 | #else |
123 | sp_group->run( shortpath_helper_functor() ); |
124 | #endif |
125 | sp_group->wait(); |
126 | delete sp_group; |
127 | } |
128 | |
129 | void shortpath_helper() { |
130 | vertex_rec u_rec; |
131 | while (open_set.try_pop(u_rec)) { |
132 | vertex_id u = u_rec.first; |
133 | if (u==dst) continue; |
134 | double f = u_rec.second; |
135 | double old_g_u = 0.0; |
136 | { |
137 | spin_mutex::scoped_lock l(locks[u]); |
138 | if (f > f_distance[u]) continue; // prune search space |
139 | old_g_u = g_distance[u]; |
140 | } |
141 | for (size_t i=0; i<edges[u].size(); ++i) { |
142 | vertex_id v = edges[u][i]; |
143 | double new_g_v = old_g_u + get_distance(vertices[u], vertices[v]); |
144 | double new_f_v = 0.0; |
145 | // the push flag lets us move some work out of the critical section below |
146 | bool push = false; |
147 | { |
148 | spin_mutex::scoped_lock l(locks[v]); |
149 | if (new_g_v < g_distance[v]) { |
150 | predecessor[v] = u; |
151 | g_distance[v] = new_g_v; |
152 | new_f_v = f_distance[v] = g_distance[v] + get_distance(vertices[v], vertices[dst]); |
153 | push = true; |
154 | } |
155 | } |
156 | if (push) { |
157 | open_set.push(make_pair(v,new_f_v)); |
158 | size_t n_spawn = ++num_spawn; |
159 | if (n_spawn < max_spawn) { |
160 | #if __TBB_CPP11_LAMBDAS_PRESENT |
161 | sp_group->run([]{ shortpath_helper(); }); |
162 | #else |
163 | sp_group->run( shortpath_helper_functor() ); |
164 | #endif |
165 | } |
166 | else --num_spawn; |
167 | } |
168 | } |
169 | } |
170 | --num_spawn; |
171 | } |
172 | |
173 | void make_path(vertex_id src, vertex_id dst, vector<vertex_id>& path) { |
174 | vertex_id at = predecessor[dst]; |
175 | if (at == N) path.push_back(src); |
176 | else if (at == src) { path.push_back(src); path.push_back(dst); } |
177 | else { make_path(src, at, path); path.push_back(dst); } |
178 | } |
179 | |
180 | void print_path() { |
181 | vector<vertex_id> path; |
182 | double path_length=0.0; |
183 | make_path(src, dst, path); |
184 | if (verbose) printf("\n " ); |
185 | for (size_t i=0; i<path.size(); ++i) { |
186 | if (path[i] != dst) { |
187 | double seg_length = get_distance(vertices[path[i]], vertices[path[i+1]]); |
188 | if (verbose) printf("%6.1f " , seg_length); |
189 | path_length += seg_length; |
190 | } |
191 | else if (verbose) printf("\n" ); |
192 | } |
193 | if (verbose) { |
194 | for (size_t i=0; i<path.size(); ++i) { |
195 | if (path[i] != dst) printf("(%4d)------>" , (int)path[i]); |
196 | else printf("(%4d)\n" , (int)path[i]); |
197 | } |
198 | } |
199 | if (verbose) printf("Total distance = %5.1f\n" , path_length); |
200 | else if (!silent) printf(" %5.1f\n" , path_length); |
201 | } |
202 | |
203 | int get_default_num_threads() { |
204 | static int threads = 0; |
205 | if (threads == 0) |
206 | threads = tbb::task_scheduler_init::default_num_threads(); |
207 | return threads; |
208 | } |
209 | |
210 | #if !__TBB_CPP11_LAMBDAS_PRESENT |
211 | class gen_vertices { |
212 | public: |
213 | gen_vertices() {} |
214 | void operator() (blocked_range<size_t>& r) const { |
215 | utility::FastRandom my_random((unsigned int)r.begin()); |
216 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
217 | vertices[i] = generate_random_point(my_random); |
218 | } |
219 | } |
220 | }; |
221 | |
222 | class gen_edges { |
223 | public: |
224 | gen_edges() {} |
225 | void operator() (blocked_range<size_t>& r) const { |
226 | utility::FastRandom my_random((unsigned int)r.begin()); |
227 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
228 | for (size_t j=0; j<i; ++j) { |
229 | if (die_toss(i, j, my_random)) |
230 | edges[i].push_back(j); |
231 | } |
232 | } |
233 | } |
234 | }; |
235 | |
236 | class reset_vertices { |
237 | public: |
238 | reset_vertices() {} |
239 | void operator() (blocked_range<size_t>& r) const { |
240 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
241 | f_distance[i] = g_distance[i] = INF; |
242 | predecessor[i] = N; |
243 | } |
244 | } |
245 | }; |
246 | #endif |
247 | |
248 | void InitializeGraph() { |
249 | task_scheduler_init init(get_default_num_threads()); |
250 | vertices.resize(N); |
251 | edges.resize(N); |
252 | predecessor.resize(N); |
253 | g_distance.resize(N); |
254 | f_distance.resize(N); |
255 | locks = new spin_mutex[N]; |
256 | if (verbose) printf("Generating vertices...\n" ); |
257 | #if __TBB_CPP11_LAMBDAS_PRESENT |
258 | parallel_for(blocked_range<size_t>(0,N,64), |
259 | [&](blocked_range<size_t>& r) { |
260 | utility::FastRandom my_random(r.begin()); |
261 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
262 | vertices[i] = generate_random_point(my_random); |
263 | } |
264 | }, simple_partitioner()); |
265 | #else |
266 | parallel_for(blocked_range<size_t>(0,N,64), gen_vertices(), simple_partitioner()); |
267 | #endif |
268 | if (verbose) printf("Generating edges...\n" ); |
269 | #if __TBB_CPP11_LAMBDAS_PRESENT |
270 | parallel_for(blocked_range<size_t>(0,N,64), |
271 | [&](blocked_range<size_t>& r) { |
272 | utility::FastRandom my_random(r.begin()); |
273 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
274 | for (size_t j=0; j<i; ++j) { |
275 | if (die_toss(i, j, my_random)) |
276 | edges[i].push_back(j); |
277 | } |
278 | } |
279 | }, simple_partitioner()); |
280 | #else |
281 | parallel_for(blocked_range<size_t>(0,N,64), gen_edges(), simple_partitioner()); |
282 | #endif |
283 | for (size_t i=0; i<N; ++i) { |
284 | for (size_t j=0; j<edges[i].size(); ++j) { |
285 | vertex_id k = edges[i][j]; |
286 | edges[k].push_back(i); |
287 | } |
288 | } |
289 | if (verbose) printf("Done.\n" ); |
290 | } |
291 | |
292 | void ReleaseGraph() { |
293 | delete []locks; |
294 | } |
295 | |
296 | void ResetGraph() { |
297 | task_scheduler_init init(get_default_num_threads()); |
298 | #if __TBB_CPP11_LAMBDAS_PRESENT |
299 | parallel_for(blocked_range<size_t>(0,N), |
300 | [&](blocked_range<size_t>& r) { |
301 | for (size_t i=r.begin(); i!=r.end(); ++i) { |
302 | f_distance[i] = g_distance[i] = INF; |
303 | predecessor[i] = N; |
304 | } |
305 | }); |
306 | #else |
307 | parallel_for(blocked_range<size_t>(0,N), reset_vertices()); |
308 | #endif |
309 | } |
310 | |
311 | int main(int argc, char *argv[]) { |
312 | try { |
313 | utility::thread_number_range threads(get_default_num_threads); |
314 | utility::parse_cli_arguments(argc, argv, |
315 | utility::cli_argument_pack() |
316 | //"-h" option for displaying help is present implicitly |
317 | .positional_arg(threads,"#threads" ,utility::thread_number_range_desc) |
318 | .arg(verbose,"verbose" ," print diagnostic output to screen" ) |
319 | .arg(silent,"silent" ," limits output to timing info; overrides verbose" ) |
320 | .arg(N,"N" ," number of vertices" ) |
321 | .arg(src,"start" ," start of path" ) |
322 | .arg(dst,"end" ," end of path" ) |
323 | ); |
324 | if (silent) verbose = false; // make silent override verbose |
325 | else |
326 | printf("shortpath will run with %d vertices to find shortest path between vertices" |
327 | " %d and %d using %d:%d threads.\n" , |
328 | (int)N, (int)src, (int)dst, (int)threads.first, (int)threads.last); |
329 | |
330 | if (dst >= N) { |
331 | if (verbose) |
332 | printf("end value %d is invalid for %d vertices; correcting to %d\n" , (int)dst, (int)N, (int)N-1); |
333 | dst = N-1; |
334 | } |
335 | |
336 | num_spawn = 0; |
337 | max_spawn = N/grainsize; |
338 | tick_count t0, t1; |
339 | InitializeGraph(); |
340 | for (int n_thr=threads.first; n_thr<=threads.last; n_thr=threads.step(n_thr)) { |
341 | ResetGraph(); |
342 | task_scheduler_init init(n_thr); |
343 | t0 = tick_count::now(); |
344 | shortpath(); |
345 | t1 = tick_count::now(); |
346 | if (!silent) { |
347 | if (predecessor[dst] != N) { |
348 | printf("%d threads: [%6.6f] The shortest path from vertex %d to vertex %d is:" , |
349 | (int)n_thr, (t1-t0).seconds(), (int)src, (int)dst); |
350 | print_path(); |
351 | } |
352 | else { |
353 | printf("%d threads: [%6.6f] There is no path from vertex %d to vertex %d\n" , |
354 | (int)n_thr, (t1-t0).seconds(), (int)src, (int)dst); |
355 | } |
356 | } else |
357 | utility::report_elapsed_time((t1-t0).seconds()); |
358 | } |
359 | ReleaseGraph(); |
360 | return 0; |
361 | } catch(std::exception& e) { |
362 | cerr<<"error occurred. error text is :\"" <<e.what()<<"\"\n" ; |
363 | return 1; |
364 | } |
365 | } |
366 | |