| 1 | /* |
| 2 | Copyright (c) 2005-2019 Intel Corporation |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | |
| 18 | #include "tbbmalloc_internal.h" |
| 19 | #include <errno.h> |
| 20 | #include <new> /* for placement new */ |
| 21 | #include <string.h> /* for memset */ |
| 22 | |
| 23 | #include "../tbb/tbb_version.h" |
| 24 | #include "../tbb/tbb_environment.h" |
| 25 | #include "../tbb/itt_notify.h" // for __TBB_load_ittnotify() |
| 26 | |
| 27 | #if USE_PTHREAD |
| 28 | #define TlsSetValue_func pthread_setspecific |
| 29 | #define TlsGetValue_func pthread_getspecific |
| 30 | #define GetMyTID() pthread_self() |
| 31 | #include <sched.h> |
| 32 | inline void do_yield() {sched_yield();} |
| 33 | extern "C" { static void mallocThreadShutdownNotification(void*); } |
| 34 | #if __sun || __SUNPRO_CC |
| 35 | #define __asm__ asm |
| 36 | #endif |
| 37 | #include <unistd.h> // sysconf(_SC_PAGESIZE) |
| 38 | #elif USE_WINTHREAD |
| 39 | #define GetMyTID() GetCurrentThreadId() |
| 40 | #if __TBB_WIN8UI_SUPPORT |
| 41 | #include<thread> |
| 42 | #define TlsSetValue_func FlsSetValue |
| 43 | #define TlsGetValue_func FlsGetValue |
| 44 | #define TlsAlloc() FlsAlloc(NULL) |
| 45 | #define TLS_ALLOC_FAILURE FLS_OUT_OF_INDEXES |
| 46 | #define TlsFree FlsFree |
| 47 | inline void do_yield() {std::this_thread::yield();} |
| 48 | #else |
| 49 | #define TlsSetValue_func TlsSetValue |
| 50 | #define TlsGetValue_func TlsGetValue |
| 51 | #define TLS_ALLOC_FAILURE TLS_OUT_OF_INDEXES |
| 52 | inline void do_yield() {SwitchToThread();} |
| 53 | #endif |
| 54 | #else |
| 55 | #error Must define USE_PTHREAD or USE_WINTHREAD |
| 56 | |
| 57 | #endif |
| 58 | |
| 59 | |
| 60 | #define FREELIST_NONBLOCKING 1 |
| 61 | |
| 62 | namespace rml { |
| 63 | class MemoryPool; |
| 64 | namespace internal { |
| 65 | |
| 66 | class Block; |
| 67 | class MemoryPool; |
| 68 | |
| 69 | #if MALLOC_CHECK_RECURSION |
| 70 | |
| 71 | inline bool isMallocInitialized(); |
| 72 | |
| 73 | bool RecursiveMallocCallProtector::noRecursion() { |
| 74 | MALLOC_ASSERT(isMallocInitialized(), |
| 75 | "Recursion status can be checked only when initialization was done." ); |
| 76 | return !mallocRecursionDetected; |
| 77 | } |
| 78 | |
| 79 | #endif // MALLOC_CHECK_RECURSION |
| 80 | |
| 81 | /** Support for handling the special UNUSABLE pointer state **/ |
| 82 | const intptr_t UNUSABLE = 0x1; |
| 83 | inline bool isSolidPtr( void* ptr ) { |
| 84 | return (UNUSABLE|(intptr_t)ptr)!=UNUSABLE; |
| 85 | } |
| 86 | inline bool isNotForUse( void* ptr ) { |
| 87 | return (intptr_t)ptr==UNUSABLE; |
| 88 | } |
| 89 | |
| 90 | /* |
| 91 | * Block::objectSize value used to mark blocks allocated by startupAlloc |
| 92 | */ |
| 93 | const uint16_t startupAllocObjSizeMark = ~(uint16_t)0; |
| 94 | |
| 95 | /* |
| 96 | * The following constant is used to define the size of struct Block, the block header. |
| 97 | * The intent is to have the size of a Block multiple of the cache line size, this allows us to |
| 98 | * get good alignment at the cost of some overhead equal to the amount of padding included in the Block. |
| 99 | */ |
| 100 | const int = estimatedCacheLineSize; |
| 101 | |
| 102 | /********* The data structures and global objects **************/ |
| 103 | |
| 104 | /* |
| 105 | * The malloc routines themselves need to be able to occasionally malloc some space, |
| 106 | * in order to set up the structures used by the thread local structures. This |
| 107 | * routine performs that functions. |
| 108 | */ |
| 109 | class BootStrapBlocks { |
| 110 | MallocMutex bootStrapLock; |
| 111 | Block *bootStrapBlock; |
| 112 | Block *bootStrapBlockUsed; |
| 113 | FreeObject *bootStrapObjectList; |
| 114 | public: |
| 115 | void *allocate(MemoryPool *memPool, size_t size); |
| 116 | void free(void* ptr); |
| 117 | void reset(); |
| 118 | }; |
| 119 | |
| 120 | #if USE_INTERNAL_TID |
| 121 | class ThreadId { |
| 122 | static tls_key_t Tid_key; |
| 123 | static intptr_t ThreadCount; |
| 124 | |
| 125 | unsigned int id; |
| 126 | |
| 127 | static unsigned int tlsNumber() { |
| 128 | unsigned int result = reinterpret_cast<intptr_t>(TlsGetValue_func(Tid_key)); |
| 129 | if( !result ) { |
| 130 | RecursiveMallocCallProtector scoped; |
| 131 | // Thread-local value is zero -> first call from this thread, |
| 132 | // need to initialize with next ID value (IDs start from 1) |
| 133 | result = AtomicIncrement(ThreadCount); // returned new value! |
| 134 | TlsSetValue_func( Tid_key, reinterpret_cast<void*>(result) ); |
| 135 | } |
| 136 | return result; |
| 137 | } |
| 138 | public: |
| 139 | static bool init() { |
| 140 | #if USE_WINTHREAD |
| 141 | Tid_key = TlsAlloc(); |
| 142 | if (Tid_key == TLS_ALLOC_FAILURE) |
| 143 | return false; |
| 144 | #else |
| 145 | int status = pthread_key_create( &Tid_key, NULL ); |
| 146 | if ( status ) { |
| 147 | fprintf (stderr, "The memory manager cannot create tls key during initialization\n" ); |
| 148 | return false; |
| 149 | } |
| 150 | #endif /* USE_WINTHREAD */ |
| 151 | return true; |
| 152 | } |
| 153 | static void destroy() { |
| 154 | if( Tid_key ) { |
| 155 | #if USE_WINTHREAD |
| 156 | BOOL status = !(TlsFree( Tid_key )); // fail is zero |
| 157 | #else |
| 158 | int status = pthread_key_delete( Tid_key ); |
| 159 | #endif /* USE_WINTHREAD */ |
| 160 | if ( status ) |
| 161 | fprintf (stderr, "The memory manager cannot delete tls key\n" ); |
| 162 | Tid_key = 0; |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | ThreadId() : id(ThreadId::tlsNumber()) {} |
| 167 | bool isCurrentThreadId() const { return id == ThreadId::tlsNumber(); } |
| 168 | |
| 169 | #if COLLECT_STATISTICS || MALLOC_TRACE |
| 170 | friend unsigned int getThreadId() { return ThreadId::tlsNumber(); } |
| 171 | #endif |
| 172 | #if COLLECT_STATISTICS |
| 173 | static unsigned getMaxThreadId() { return ThreadCount; } |
| 174 | |
| 175 | friend int STAT_increment(ThreadId tid, int bin, int ctr); |
| 176 | #endif |
| 177 | }; |
| 178 | |
| 179 | tls_key_t ThreadId::Tid_key; |
| 180 | intptr_t ThreadId::ThreadCount; |
| 181 | |
| 182 | #if COLLECT_STATISTICS |
| 183 | int STAT_increment(ThreadId tid, int bin, int ctr) |
| 184 | { |
| 185 | return ::STAT_increment(tid.id, bin, ctr); |
| 186 | } |
| 187 | #endif |
| 188 | |
| 189 | #else // USE_INTERNAL_TID |
| 190 | |
| 191 | class ThreadId { |
| 192 | #if USE_PTHREAD |
| 193 | pthread_t tid; |
| 194 | #else |
| 195 | DWORD tid; |
| 196 | #endif |
| 197 | public: |
| 198 | ThreadId() : tid(GetMyTID()) {} |
| 199 | #if USE_PTHREAD |
| 200 | bool isCurrentThreadId() const { return pthread_equal(pthread_self(), tid); } |
| 201 | #else |
| 202 | bool isCurrentThreadId() const { return GetCurrentThreadId() == tid; } |
| 203 | #endif |
| 204 | static bool init() { return true; } |
| 205 | static void destroy() {} |
| 206 | }; |
| 207 | |
| 208 | #endif // USE_INTERNAL_TID |
| 209 | |
| 210 | /*********** Code to provide thread ID and a thread-local void pointer **********/ |
| 211 | |
| 212 | bool TLSKey::init() |
| 213 | { |
| 214 | #if USE_WINTHREAD |
| 215 | TLS_pointer_key = TlsAlloc(); |
| 216 | if (TLS_pointer_key == TLS_ALLOC_FAILURE) |
| 217 | return false; |
| 218 | #else |
| 219 | int status = pthread_key_create( &TLS_pointer_key, mallocThreadShutdownNotification ); |
| 220 | if ( status ) |
| 221 | return false; |
| 222 | #endif /* USE_WINTHREAD */ |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | bool TLSKey::destroy() |
| 227 | { |
| 228 | #if USE_WINTHREAD |
| 229 | BOOL status1 = !(TlsFree(TLS_pointer_key)); // fail is zero |
| 230 | #else |
| 231 | int status1 = pthread_key_delete(TLS_pointer_key); |
| 232 | #endif /* USE_WINTHREAD */ |
| 233 | MALLOC_ASSERT(!status1, "The memory manager cannot delete tls key." ); |
| 234 | return status1==0; |
| 235 | } |
| 236 | |
| 237 | inline TLSData* TLSKey::getThreadMallocTLS() const |
| 238 | { |
| 239 | return (TLSData *)TlsGetValue_func( TLS_pointer_key ); |
| 240 | } |
| 241 | |
| 242 | inline void TLSKey::setThreadMallocTLS( TLSData * newvalue ) { |
| 243 | RecursiveMallocCallProtector scoped; |
| 244 | TlsSetValue_func( TLS_pointer_key, newvalue ); |
| 245 | } |
| 246 | |
| 247 | /* The 'next' field in the block header has to maintain some invariants: |
| 248 | * it needs to be on a 16K boundary and the first field in the block. |
| 249 | * Any value stored there needs to have the lower 14 bits set to 0 |
| 250 | * so that various assert work. This means that if you want to smash this memory |
| 251 | * for debugging purposes you will need to obey this invariant. |
| 252 | * The total size of the header needs to be a power of 2 to simplify |
| 253 | * the alignment requirements. For now it is a 128 byte structure. |
| 254 | * To avoid false sharing, the fields changed only locally are separated |
| 255 | * from the fields changed by foreign threads. |
| 256 | * Changing the size of the block header would require to change |
| 257 | * some bin allocation sizes, in particular "fitting" sizes (see above). |
| 258 | */ |
| 259 | class Bin; |
| 260 | class StartupBlock; |
| 261 | |
| 262 | class MemoryPool { |
| 263 | // if no explicit grainsize, expect to see malloc in user's pAlloc |
| 264 | // and set reasonable low granularity |
| 265 | static const size_t defaultGranularity = estimatedCacheLineSize; |
| 266 | |
| 267 | MemoryPool(); // deny |
| 268 | public: |
| 269 | static MallocMutex memPoolListLock; |
| 270 | |
| 271 | // list of all active pools is used to release |
| 272 | // all TLS data on thread termination or library unload |
| 273 | MemoryPool *next, |
| 274 | *prev; |
| 275 | ExtMemoryPool extMemPool; |
| 276 | BootStrapBlocks bootStrapBlocks; |
| 277 | |
| 278 | static void initDefaultPool(); |
| 279 | |
| 280 | bool init(intptr_t poolId, const MemPoolPolicy* memPoolPolicy); |
| 281 | bool reset(); |
| 282 | bool destroy(); |
| 283 | void onThreadShutdown(TLSData *tlsData); |
| 284 | |
| 285 | inline TLSData *getTLS(bool create); |
| 286 | void clearTLS() { extMemPool.tlsPointerKey.setThreadMallocTLS(NULL); } |
| 287 | |
| 288 | Block *getEmptyBlock(size_t size); |
| 289 | void returnEmptyBlock(Block *block, bool poolTheBlock); |
| 290 | |
| 291 | // get/put large object to/from local large object cache |
| 292 | void *getFromLLOCache(TLSData *tls, size_t size, size_t alignment); |
| 293 | void putToLLOCache(TLSData *tls, void *object); |
| 294 | }; |
| 295 | |
| 296 | static intptr_t defaultMemPool_space[sizeof(MemoryPool)/sizeof(intptr_t) + |
| 297 | (sizeof(MemoryPool)%sizeof(intptr_t)? 1 : 0)]; |
| 298 | static MemoryPool *defaultMemPool = (MemoryPool*)defaultMemPool_space; |
| 299 | const size_t MemoryPool::defaultGranularity; |
| 300 | // zero-initialized |
| 301 | MallocMutex MemoryPool::memPoolListLock; |
| 302 | // TODO: move huge page status to default pool, because that's its states |
| 303 | HugePagesStatus hugePages; |
| 304 | static bool usedBySrcIncluded = false; |
| 305 | |
| 306 | // Padding helpers |
| 307 | template<size_t padd> |
| 308 | struct PaddingImpl { |
| 309 | size_t __padding[padd]; |
| 310 | }; |
| 311 | |
| 312 | template<> |
| 313 | struct PaddingImpl<0> {}; |
| 314 | |
| 315 | template<int N> |
| 316 | struct Padding : PaddingImpl<N/sizeof(size_t)> {}; |
| 317 | |
| 318 | // Slab block is 16KB-aligned. To prevent false sharing, separate locally-accessed |
| 319 | // fields and fields commonly accessed by not owner threads. |
| 320 | class GlobalBlockFields : public BlockI { |
| 321 | protected: |
| 322 | FreeObject *publicFreeList; |
| 323 | Block *nextPrivatizable; |
| 324 | MemoryPool *poolPtr; |
| 325 | }; |
| 326 | |
| 327 | class LocalBlockFields : public GlobalBlockFields, Padding<blockHeaderAlignment - sizeof(GlobalBlockFields)> { |
| 328 | protected: |
| 329 | Block *next; |
| 330 | Block *previous; /* Use double linked list to speed up removal */ |
| 331 | FreeObject *bumpPtr; /* Bump pointer moves from the end to the beginning of a block */ |
| 332 | FreeObject *freeList; |
| 333 | /* Pointer to local data for the owner thread. Used for fast finding tls |
| 334 | when releasing object from a block that current thread owned. |
| 335 | NULL for orphaned blocks. */ |
| 336 | TLSData *tlsPtr; |
| 337 | ThreadId ownerTid; /* the ID of the thread that owns or last owned the block */ |
| 338 | BackRefIdx backRefIdx; |
| 339 | uint16_t allocatedCount; /* Number of objects allocated (obviously by the owning thread) */ |
| 340 | uint16_t objectSize; |
| 341 | bool isFull; |
| 342 | |
| 343 | friend class FreeBlockPool; |
| 344 | friend class StartupBlock; |
| 345 | friend class LifoList; |
| 346 | friend void *BootStrapBlocks::allocate(MemoryPool *, size_t); |
| 347 | friend bool OrphanedBlocks::cleanup(Backend*); |
| 348 | friend Block *MemoryPool::getEmptyBlock(size_t); |
| 349 | }; |
| 350 | |
| 351 | // Use inheritance to guarantee that a user data start on next cache line. |
| 352 | // Can't use member for it, because when LocalBlockFields already on cache line, |
| 353 | // we must have no additional memory consumption for all compilers. |
| 354 | class Block : public LocalBlockFields, |
| 355 | Padding<2*blockHeaderAlignment - sizeof(LocalBlockFields)> { |
| 356 | public: |
| 357 | bool empty() const { |
| 358 | if (allocatedCount > 0) return false; |
| 359 | MALLOC_ASSERT(!isSolidPtr(publicFreeList), ASSERT_TEXT); |
| 360 | return true; |
| 361 | } |
| 362 | inline FreeObject* allocate(); |
| 363 | inline FreeObject *allocateFromFreeList(); |
| 364 | |
| 365 | inline bool adjustFullness(); |
| 366 | void adjustPositionInBin(Bin* bin = NULL); |
| 367 | |
| 368 | bool freeListNonNull() { return freeList; } |
| 369 | void freePublicObject(FreeObject *objectToFree); |
| 370 | inline void freeOwnObject(void *object); |
| 371 | void reset(); |
| 372 | void privatizePublicFreeList( bool reset = true ); |
| 373 | void restoreBumpPtr(); |
| 374 | void privatizeOrphaned(TLSData *tls, unsigned index); |
| 375 | bool readyToShare(); |
| 376 | void shareOrphaned(intptr_t binTag, unsigned index); |
| 377 | unsigned int getSize() const { |
| 378 | MALLOC_ASSERT(isStartupAllocObject() || objectSize<minLargeObjectSize, |
| 379 | "Invalid object size" ); |
| 380 | return isStartupAllocObject()? 0 : objectSize; |
| 381 | } |
| 382 | const BackRefIdx *getBackRefIdx() const { return &backRefIdx; } |
| 383 | inline bool isOwnedByCurrentThread() const; |
| 384 | bool isStartupAllocObject() const { return objectSize == startupAllocObjSizeMark; } |
| 385 | inline FreeObject *findObjectToFree(const void *object) const; |
| 386 | void checkFreePrecond(const void *object) const { |
| 387 | #if MALLOC_DEBUG |
| 388 | const char *msg = "Possible double free or heap corruption." ; |
| 389 | // small objects are always at least sizeof(size_t) Byte aligned, |
| 390 | // try to check this before this dereference as for invalid objects |
| 391 | // this may be unreadable |
| 392 | MALLOC_ASSERT(isAligned(object, sizeof(size_t)), "Try to free invalid small object" ); |
| 393 | // releasing to free slab |
| 394 | MALLOC_ASSERT(allocatedCount>0, msg); |
| 395 | // must not point to slab's header |
| 396 | MALLOC_ASSERT((uintptr_t)object - (uintptr_t)this >= sizeof(Block), msg); |
| 397 | if (startupAllocObjSizeMark == objectSize) // startup block |
| 398 | MALLOC_ASSERT(object<=bumpPtr, msg); |
| 399 | else { |
| 400 | // non-startup objects are 8 Byte aligned |
| 401 | MALLOC_ASSERT(isAligned(object, 8), "Try to free invalid small object" ); |
| 402 | MALLOC_ASSERT(allocatedCount <= (slabSize-sizeof(Block))/objectSize |
| 403 | && (!bumpPtr || object>bumpPtr), msg); |
| 404 | FreeObject *toFree = findObjectToFree(object); |
| 405 | // check against head of freeList, as this is mostly |
| 406 | // expected after double free |
| 407 | MALLOC_ASSERT(toFree != freeList, msg); |
| 408 | // check against head of publicFreeList, to detect double free |
| 409 | // involving foreign thread |
| 410 | MALLOC_ASSERT(toFree != publicFreeList, msg); |
| 411 | } |
| 412 | #else |
| 413 | suppress_unused_warning(object); |
| 414 | #endif |
| 415 | } |
| 416 | void initEmptyBlock(TLSData *tls, size_t size); |
| 417 | size_t findObjectSize(void *object) const; |
| 418 | MemoryPool *getMemPool() const { return poolPtr; } // do not use on the hot path! |
| 419 | |
| 420 | protected: |
| 421 | void cleanBlockHeader(); |
| 422 | |
| 423 | private: |
| 424 | static const float emptyEnoughRatio; /* Threshold on free space needed to "reactivate" a block */ |
| 425 | |
| 426 | inline FreeObject *allocateFromBumpPtr(); |
| 427 | inline FreeObject *findAllocatedObject(const void *address) const; |
| 428 | inline bool isProperlyPlaced(const void *object) const; |
| 429 | inline void markOwned(TLSData *tls) { |
| 430 | MALLOC_ASSERT(!tlsPtr, ASSERT_TEXT); |
| 431 | ownerTid = ThreadId(); /* save the ID of the current thread */ |
| 432 | tlsPtr = tls; |
| 433 | } |
| 434 | inline void markOrphaned() { |
| 435 | MALLOC_ASSERT(tlsPtr, ASSERT_TEXT); |
| 436 | tlsPtr = NULL; |
| 437 | } |
| 438 | |
| 439 | friend class Bin; |
| 440 | friend class TLSData; |
| 441 | friend bool MemoryPool::destroy(); |
| 442 | }; |
| 443 | |
| 444 | const float Block::emptyEnoughRatio = 1.0 / 4.0; |
| 445 | |
| 446 | MALLOC_STATIC_ASSERT(sizeof(Block) <= 2*estimatedCacheLineSize, |
| 447 | "The class Block does not fit into 2 cache lines on this platform. " |
| 448 | "Defining USE_INTERNAL_TID may help to fix it." ); |
| 449 | |
| 450 | class Bin { |
| 451 | private: |
| 452 | Block *activeBlk; |
| 453 | Block *mailbox; |
| 454 | MallocMutex mailLock; |
| 455 | |
| 456 | public: |
| 457 | inline Block* getActiveBlock() const { return activeBlk; } |
| 458 | void resetActiveBlock() { activeBlk = NULL; } |
| 459 | bool activeBlockUnused() const { return activeBlk && !activeBlk->allocatedCount; } |
| 460 | inline void setActiveBlock(Block *block); |
| 461 | inline Block* setPreviousBlockActive(); |
| 462 | Block* getPrivatizedFreeListBlock(); |
| 463 | void moveBlockToFront(Block *block); |
| 464 | bool cleanPublicFreeLists(); |
| 465 | void processEmptyBlock(Block *block, bool poolTheBlock); |
| 466 | void addPublicFreeListBlock(Block* block); |
| 467 | |
| 468 | void outofTLSBin(Block* block); |
| 469 | void verifyTLSBin(size_t size) const; |
| 470 | void pushTLSBin(Block* block); |
| 471 | |
| 472 | void verifyInitState() const { |
| 473 | MALLOC_ASSERT( !activeBlk, ASSERT_TEXT ); |
| 474 | MALLOC_ASSERT( !mailbox, ASSERT_TEXT ); |
| 475 | } |
| 476 | |
| 477 | friend void Block::freePublicObject (FreeObject *objectToFree); |
| 478 | }; |
| 479 | |
| 480 | /********* End of the data structures **************/ |
| 481 | |
| 482 | /* |
| 483 | * There are bins for all 8 byte aligned objects less than this segregated size; 8 bins in total |
| 484 | */ |
| 485 | const uint32_t minSmallObjectIndex = 0; |
| 486 | const uint32_t numSmallObjectBins = 8; |
| 487 | const uint32_t maxSmallObjectSize = 64; |
| 488 | |
| 489 | /* |
| 490 | * There are 4 bins between each couple of powers of 2 [64-128-256-...] |
| 491 | * from maxSmallObjectSize till this size; 16 bins in total |
| 492 | */ |
| 493 | const uint32_t minSegregatedObjectIndex = minSmallObjectIndex+numSmallObjectBins; |
| 494 | const uint32_t numSegregatedObjectBins = 16; |
| 495 | const uint32_t maxSegregatedObjectSize = 1024; |
| 496 | |
| 497 | /* |
| 498 | * And there are 5 bins with allocation sizes that are multiples of estimatedCacheLineSize |
| 499 | * and selected to fit 9, 6, 4, 3, and 2 allocations in a block. |
| 500 | */ |
| 501 | const uint32_t minFittingIndex = minSegregatedObjectIndex+numSegregatedObjectBins; |
| 502 | const uint32_t numFittingBins = 5; |
| 503 | |
| 504 | const uint32_t fittingAlignment = estimatedCacheLineSize; |
| 505 | |
| 506 | #define SET_FITTING_SIZE(N) ( (slabSize-sizeof(Block))/N ) & ~(fittingAlignment-1) |
| 507 | // For blockSize=16*1024, sizeof(Block)=2*estimatedCacheLineSize and fittingAlignment=estimatedCacheLineSize, |
| 508 | // the comments show the fitting sizes and the amounts left unused for estimatedCacheLineSize=64/128: |
| 509 | const uint32_t fittingSize1 = SET_FITTING_SIZE(9); // 1792/1792 128/000 |
| 510 | const uint32_t fittingSize2 = SET_FITTING_SIZE(6); // 2688/2688 128/000 |
| 511 | const uint32_t fittingSize3 = SET_FITTING_SIZE(4); // 4032/3968 128/256 |
| 512 | const uint32_t fittingSize4 = SET_FITTING_SIZE(3); // 5376/5376 128/000 |
| 513 | const uint32_t fittingSize5 = SET_FITTING_SIZE(2); // 8128/8064 000/000 |
| 514 | #undef SET_FITTING_SIZE |
| 515 | |
| 516 | /* |
| 517 | * The total number of thread-specific Block-based bins |
| 518 | */ |
| 519 | const uint32_t numBlockBins = minFittingIndex+numFittingBins; |
| 520 | |
| 521 | /* |
| 522 | * Objects of this size and larger are considered large objects. |
| 523 | */ |
| 524 | const uint32_t minLargeObjectSize = fittingSize5 + 1; |
| 525 | |
| 526 | /* |
| 527 | * Per-thread pool of slab blocks. Idea behind it is to not share with other |
| 528 | * threads memory that are likely in local cache(s) of our CPU. |
| 529 | */ |
| 530 | class FreeBlockPool { |
| 531 | private: |
| 532 | Block *head; |
| 533 | int size; |
| 534 | Backend *backend; |
| 535 | bool lastAccessMiss; |
| 536 | public: |
| 537 | static const int POOL_HIGH_MARK = 32; |
| 538 | static const int POOL_LOW_MARK = 8; |
| 539 | |
| 540 | class ResOfGet { |
| 541 | ResOfGet(); |
| 542 | public: |
| 543 | Block* block; |
| 544 | bool lastAccMiss; |
| 545 | ResOfGet(Block *b, bool lastMiss) : block(b), lastAccMiss(lastMiss) {} |
| 546 | }; |
| 547 | |
| 548 | // allocated in zero-initialized memory |
| 549 | FreeBlockPool(Backend *bknd) : backend(bknd) {} |
| 550 | ResOfGet getBlock(); |
| 551 | void returnBlock(Block *block); |
| 552 | bool externalCleanup(); // can be called by another thread |
| 553 | }; |
| 554 | |
| 555 | template<int LOW_MARK, int HIGH_MARK> |
| 556 | class LocalLOCImpl { |
| 557 | private: |
| 558 | static const size_t MAX_TOTAL_SIZE = 4*1024*1024; |
| 559 | // TODO: can single-linked list be faster here? |
| 560 | LargeMemoryBlock *head, |
| 561 | *tail; // need it when do releasing on overflow |
| 562 | size_t totalSize; |
| 563 | int numOfBlocks; |
| 564 | public: |
| 565 | bool put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool); |
| 566 | LargeMemoryBlock *get(size_t size); |
| 567 | bool externalCleanup(ExtMemoryPool *extMemPool); |
| 568 | #if __TBB_MALLOC_WHITEBOX_TEST |
| 569 | LocalLOCImpl() : head(NULL), tail(NULL), totalSize(0), numOfBlocks(0) {} |
| 570 | static size_t getMaxSize() { return MAX_TOTAL_SIZE; } |
| 571 | static const int LOC_HIGH_MARK = HIGH_MARK; |
| 572 | #else |
| 573 | // no ctor, object must be created in zero-initialized memory |
| 574 | #endif |
| 575 | }; |
| 576 | |
| 577 | typedef LocalLOCImpl<8,32> LocalLOC; // set production code parameters |
| 578 | |
| 579 | class TLSData : public TLSRemote { |
| 580 | MemoryPool *memPool; |
| 581 | public: |
| 582 | Bin bin[numBlockBinLimit]; |
| 583 | FreeBlockPool freeSlabBlocks; |
| 584 | LocalLOC lloc; |
| 585 | unsigned currCacheIdx; |
| 586 | private: |
| 587 | bool unused; |
| 588 | public: |
| 589 | TLSData(MemoryPool *mPool, Backend *bknd) : memPool(mPool), freeSlabBlocks(bknd) {} |
| 590 | MemoryPool *getMemPool() const { return memPool; } |
| 591 | Bin* getAllocationBin(size_t size); |
| 592 | void release(); |
| 593 | bool externalCleanup(bool cleanOnlyUnused, bool cleanBins) { |
| 594 | if (!unused && cleanOnlyUnused) return false; |
| 595 | // Heavy operation in terms of synchronization complexity, |
| 596 | // should be called only for the current thread |
| 597 | bool released = cleanBins ? cleanupBlockBins() : false; |
| 598 | // both cleanups to be called, and the order is not important |
| 599 | return released | lloc.externalCleanup(&memPool->extMemPool) | freeSlabBlocks.externalCleanup(); |
| 600 | } |
| 601 | bool cleanupBlockBins(); |
| 602 | void markUsed() { unused = false; } // called by owner when TLS touched |
| 603 | void markUnused() { unused = true; } // can be called by not owner thread |
| 604 | }; |
| 605 | |
| 606 | TLSData *TLSKey::createTLS(MemoryPool *memPool, Backend *backend) |
| 607 | { |
| 608 | MALLOC_ASSERT( sizeof(TLSData) >= sizeof(Bin) * numBlockBins + sizeof(FreeBlockPool), ASSERT_TEXT ); |
| 609 | TLSData* tls = (TLSData*) memPool->bootStrapBlocks.allocate(memPool, sizeof(TLSData)); |
| 610 | if ( !tls ) |
| 611 | return NULL; |
| 612 | new(tls) TLSData(memPool, backend); |
| 613 | /* the block contains zeroes after bootStrapMalloc, so bins are initialized */ |
| 614 | #if MALLOC_DEBUG |
| 615 | for (uint32_t i = 0; i < numBlockBinLimit; i++) |
| 616 | tls->bin[i].verifyInitState(); |
| 617 | #endif |
| 618 | setThreadMallocTLS(tls); |
| 619 | memPool->extMemPool.allLocalCaches.registerThread(tls); |
| 620 | return tls; |
| 621 | } |
| 622 | |
| 623 | bool TLSData::cleanupBlockBins() |
| 624 | { |
| 625 | bool released = false; |
| 626 | for (uint32_t i = 0; i < numBlockBinLimit; i++) { |
| 627 | released |= bin[i].cleanPublicFreeLists(); |
| 628 | // After cleaning public free lists, only the active block might be empty. |
| 629 | // Do not use processEmptyBlock because it will just restore bumpPtr. |
| 630 | Block *block = bin[i].getActiveBlock(); |
| 631 | if (block && block->empty()) { |
| 632 | bin[i].outofTLSBin(block); |
| 633 | memPool->returnEmptyBlock(block, /*poolTheBlock=*/false); |
| 634 | released = true; |
| 635 | } |
| 636 | } |
| 637 | return released; |
| 638 | } |
| 639 | |
| 640 | bool ExtMemoryPool::releaseAllLocalCaches() |
| 641 | { |
| 642 | // Iterate all registered TLS data and clean LLOC and Slab pools |
| 643 | bool released = allLocalCaches.cleanup(/*cleanOnlyUnused=*/false); |
| 644 | |
| 645 | // Bins privatization is done only for the current thread |
| 646 | if (TLSData *tlsData = tlsPointerKey.getThreadMallocTLS()) |
| 647 | released |= tlsData->cleanupBlockBins(); |
| 648 | |
| 649 | return released; |
| 650 | } |
| 651 | |
| 652 | void AllLocalCaches::registerThread(TLSRemote *tls) |
| 653 | { |
| 654 | tls->prev = NULL; |
| 655 | MallocMutex::scoped_lock lock(listLock); |
| 656 | MALLOC_ASSERT(head!=tls, ASSERT_TEXT); |
| 657 | tls->next = head; |
| 658 | if (head) |
| 659 | head->prev = tls; |
| 660 | head = tls; |
| 661 | MALLOC_ASSERT(head->next!=head, ASSERT_TEXT); |
| 662 | } |
| 663 | |
| 664 | void AllLocalCaches::unregisterThread(TLSRemote *tls) |
| 665 | { |
| 666 | MallocMutex::scoped_lock lock(listLock); |
| 667 | MALLOC_ASSERT(head, "Can't unregister thread: no threads are registered." ); |
| 668 | if (head == tls) |
| 669 | head = tls->next; |
| 670 | if (tls->next) |
| 671 | tls->next->prev = tls->prev; |
| 672 | if (tls->prev) |
| 673 | tls->prev->next = tls->next; |
| 674 | MALLOC_ASSERT(!tls->next || tls->next->next!=tls->next, ASSERT_TEXT); |
| 675 | } |
| 676 | |
| 677 | bool AllLocalCaches::cleanup(bool cleanOnlyUnused) |
| 678 | { |
| 679 | bool released = false; |
| 680 | { |
| 681 | MallocMutex::scoped_lock lock(listLock); |
| 682 | for (TLSRemote *curr=head; curr; curr=curr->next) |
| 683 | released |= static_cast<TLSData*>(curr)->externalCleanup(cleanOnlyUnused, /*cleanBins=*/false); |
| 684 | } |
| 685 | return released; |
| 686 | } |
| 687 | |
| 688 | void AllLocalCaches::markUnused() |
| 689 | { |
| 690 | bool locked; |
| 691 | MallocMutex::scoped_lock lock(listLock, /*block=*/false, &locked); |
| 692 | if (!locked) // not wait for marking if someone doing something with it |
| 693 | return; |
| 694 | |
| 695 | for (TLSRemote *curr=head; curr; curr=curr->next) |
| 696 | static_cast<TLSData*>(curr)->markUnused(); |
| 697 | } |
| 698 | |
| 699 | #if MALLOC_CHECK_RECURSION |
| 700 | MallocMutex RecursiveMallocCallProtector::rmc_mutex; |
| 701 | pthread_t RecursiveMallocCallProtector::owner_thread; |
| 702 | void *RecursiveMallocCallProtector::autoObjPtr; |
| 703 | bool RecursiveMallocCallProtector::mallocRecursionDetected; |
| 704 | #if __FreeBSD__ |
| 705 | bool RecursiveMallocCallProtector::canUsePthread; |
| 706 | #endif |
| 707 | |
| 708 | #endif |
| 709 | |
| 710 | /*********** End code to provide thread ID and a TLS pointer **********/ |
| 711 | |
| 712 | // Parameter for isLargeObject, keeps our expectations on memory origin. |
| 713 | // Assertions must use unknownMem to reliably report object invalidity. |
| 714 | enum MemoryOrigin { |
| 715 | ourMem, // allocated by TBB allocator |
| 716 | unknownMem // can be allocated by system allocator or TBB allocator |
| 717 | }; |
| 718 | |
| 719 | template<MemoryOrigin> bool isLargeObject(void *object); |
| 720 | static void *internalMalloc(size_t size); |
| 721 | static void internalFree(void *object); |
| 722 | static void *internalPoolMalloc(MemoryPool* mPool, size_t size); |
| 723 | static bool internalPoolFree(MemoryPool *mPool, void *object, size_t size); |
| 724 | |
| 725 | #if !MALLOC_DEBUG |
| 726 | #if __INTEL_COMPILER || _MSC_VER |
| 727 | #define NOINLINE(decl) __declspec(noinline) decl |
| 728 | #define ALWAYSINLINE(decl) __forceinline decl |
| 729 | #elif __GNUC__ |
| 730 | #define NOINLINE(decl) decl __attribute__ ((noinline)) |
| 731 | #define ALWAYSINLINE(decl) decl __attribute__ ((always_inline)) |
| 732 | #else |
| 733 | #define NOINLINE(decl) decl |
| 734 | #define ALWAYSINLINE(decl) decl |
| 735 | #endif |
| 736 | |
| 737 | static NOINLINE( bool doInitialization() ); |
| 738 | ALWAYSINLINE( bool isMallocInitialized() ); |
| 739 | |
| 740 | #undef ALWAYSINLINE |
| 741 | #undef NOINLINE |
| 742 | #endif /* !MALLOC_DEBUG */ |
| 743 | |
| 744 | |
| 745 | /********* Now some rough utility code to deal with indexing the size bins. **************/ |
| 746 | |
| 747 | /* |
| 748 | * Given a number return the highest non-zero bit in it. It is intended to work with 32-bit values only. |
| 749 | * Moreover, on IPF, for sake of simplicity and performance, it is narrowed to only serve for 64 to 1023. |
| 750 | * This is enough for current algorithm of distribution of sizes among bins. |
| 751 | * __TBB_Log2 is not used here to minimize dependencies on TBB specific sources. |
| 752 | */ |
| 753 | #if _WIN64 && _MSC_VER>=1400 && !__INTEL_COMPILER |
| 754 | extern "C" unsigned char _BitScanReverse( unsigned long* i, unsigned long w ); |
| 755 | #pragma intrinsic(_BitScanReverse) |
| 756 | #endif |
| 757 | static inline unsigned int highestBitPos(unsigned int n) |
| 758 | { |
| 759 | MALLOC_ASSERT( n>=64 && n<1024, ASSERT_TEXT ); // only needed for bsr array lookup, but always true |
| 760 | unsigned int pos; |
| 761 | #if __ARCH_x86_32||__ARCH_x86_64 |
| 762 | |
| 763 | # if __linux__||__APPLE__||__FreeBSD__||__NetBSD__||__OpenBSD__||__sun||__MINGW32__ |
| 764 | __asm__ ("bsr %1,%0" : "=r" (pos) : "r" (n)); |
| 765 | # elif (_WIN32 && (!_WIN64 || __INTEL_COMPILER)) |
| 766 | __asm |
| 767 | { |
| 768 | bsr eax, n |
| 769 | mov pos, eax |
| 770 | } |
| 771 | # elif _WIN64 && _MSC_VER>=1400 |
| 772 | _BitScanReverse((unsigned long*)&pos, (unsigned long)n); |
| 773 | # else |
| 774 | # error highestBitPos() not implemented for this platform |
| 775 | # endif |
| 776 | #elif __arm__ |
| 777 | __asm__ __volatile__ |
| 778 | ( |
| 779 | "clz %0, %1\n" |
| 780 | "rsb %0, %0, %2\n" |
| 781 | :"=r" (pos) :"r" (n), "I" (31) |
| 782 | ); |
| 783 | #else |
| 784 | static unsigned int bsr[16] = {0/*N/A*/,6,7,7,8,8,8,8,9,9,9,9,9,9,9,9}; |
| 785 | pos = bsr[ n>>6 ]; |
| 786 | #endif /* __ARCH_* */ |
| 787 | return pos; |
| 788 | } |
| 789 | |
| 790 | template<bool Is32Bit> |
| 791 | unsigned int getSmallObjectIndex(unsigned int size) |
| 792 | { |
| 793 | return (size-1)>>3; |
| 794 | } |
| 795 | template<> |
| 796 | unsigned int getSmallObjectIndex</*Is32Bit=*/false>(unsigned int size) |
| 797 | { |
| 798 | // For 64-bit malloc, 16 byte alignment is needed except for bin 0. |
| 799 | unsigned int result = (size-1)>>3; |
| 800 | if (result) result |= 1; // 0,1,3,5,7; bins 2,4,6 are not aligned to 16 bytes |
| 801 | return result; |
| 802 | } |
| 803 | /* |
| 804 | * Depending on indexRequest, for a given size return either the index into the bin |
| 805 | * for objects of this size, or the actual size of objects in this bin. |
| 806 | */ |
| 807 | template<bool indexRequest> |
| 808 | static unsigned int getIndexOrObjectSize (unsigned int size) |
| 809 | { |
| 810 | if (size <= maxSmallObjectSize) { // selection from 8/16/24/32/40/48/56/64 |
| 811 | unsigned int index = getSmallObjectIndex</*Is32Bit=*/(sizeof(size_t)<=4)>( size ); |
| 812 | /* Bin 0 is for 8 bytes, bin 1 is for 16, and so forth */ |
| 813 | return indexRequest ? index : (index+1)<<3; |
| 814 | } |
| 815 | else if (size <= maxSegregatedObjectSize ) { // 80/96/112/128 / 160/192/224/256 / 320/384/448/512 / 640/768/896/1024 |
| 816 | unsigned int order = highestBitPos(size-1); // which group of bin sizes? |
| 817 | MALLOC_ASSERT( 6<=order && order<=9, ASSERT_TEXT ); |
| 818 | if (indexRequest) |
| 819 | return minSegregatedObjectIndex - (4*6) - 4 + (4*order) + ((size-1)>>(order-2)); |
| 820 | else { |
| 821 | unsigned int alignment = 128 >> (9-order); // alignment in the group |
| 822 | MALLOC_ASSERT( alignment==16 || alignment==32 || alignment==64 || alignment==128, ASSERT_TEXT ); |
| 823 | return alignUp(size,alignment); |
| 824 | } |
| 825 | } |
| 826 | else { |
| 827 | if( size <= fittingSize3 ) { |
| 828 | if( size <= fittingSize2 ) { |
| 829 | if( size <= fittingSize1 ) |
| 830 | return indexRequest ? minFittingIndex : fittingSize1; |
| 831 | else |
| 832 | return indexRequest ? minFittingIndex+1 : fittingSize2; |
| 833 | } else |
| 834 | return indexRequest ? minFittingIndex+2 : fittingSize3; |
| 835 | } else { |
| 836 | if( size <= fittingSize5 ) { |
| 837 | if( size <= fittingSize4 ) |
| 838 | return indexRequest ? minFittingIndex+3 : fittingSize4; |
| 839 | else |
| 840 | return indexRequest ? minFittingIndex+4 : fittingSize5; |
| 841 | } else { |
| 842 | MALLOC_ASSERT( 0,ASSERT_TEXT ); // this should not happen |
| 843 | return ~0U; |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | static unsigned int getIndex (unsigned int size) |
| 850 | { |
| 851 | return getIndexOrObjectSize</*indexRequest=*/true>(size); |
| 852 | } |
| 853 | |
| 854 | static unsigned int getObjectSize (unsigned int size) |
| 855 | { |
| 856 | return getIndexOrObjectSize</*indexRequest=*/false>(size); |
| 857 | } |
| 858 | |
| 859 | |
| 860 | void *BootStrapBlocks::allocate(MemoryPool *memPool, size_t size) |
| 861 | { |
| 862 | FreeObject *result; |
| 863 | |
| 864 | MALLOC_ASSERT( size == sizeof(TLSData), ASSERT_TEXT ); |
| 865 | |
| 866 | { // Lock with acquire |
| 867 | MallocMutex::scoped_lock scoped_cs(bootStrapLock); |
| 868 | |
| 869 | if( bootStrapObjectList) { |
| 870 | result = bootStrapObjectList; |
| 871 | bootStrapObjectList = bootStrapObjectList->next; |
| 872 | } else { |
| 873 | if (!bootStrapBlock) { |
| 874 | bootStrapBlock = memPool->getEmptyBlock(size); |
| 875 | if (!bootStrapBlock) return NULL; |
| 876 | } |
| 877 | result = bootStrapBlock->bumpPtr; |
| 878 | bootStrapBlock->bumpPtr = (FreeObject *)((uintptr_t)bootStrapBlock->bumpPtr - bootStrapBlock->objectSize); |
| 879 | if ((uintptr_t)bootStrapBlock->bumpPtr < (uintptr_t)bootStrapBlock+sizeof(Block)) { |
| 880 | bootStrapBlock->bumpPtr = NULL; |
| 881 | bootStrapBlock->next = bootStrapBlockUsed; |
| 882 | bootStrapBlockUsed = bootStrapBlock; |
| 883 | bootStrapBlock = NULL; |
| 884 | } |
| 885 | } |
| 886 | } // Unlock with release |
| 887 | |
| 888 | memset (result, 0, size); |
| 889 | return (void*)result; |
| 890 | } |
| 891 | |
| 892 | void BootStrapBlocks::free(void* ptr) |
| 893 | { |
| 894 | MALLOC_ASSERT( ptr, ASSERT_TEXT ); |
| 895 | { // Lock with acquire |
| 896 | MallocMutex::scoped_lock scoped_cs(bootStrapLock); |
| 897 | ((FreeObject*)ptr)->next = bootStrapObjectList; |
| 898 | bootStrapObjectList = (FreeObject*)ptr; |
| 899 | } // Unlock with release |
| 900 | } |
| 901 | |
| 902 | void BootStrapBlocks::reset() |
| 903 | { |
| 904 | bootStrapBlock = bootStrapBlockUsed = NULL; |
| 905 | bootStrapObjectList = NULL; |
| 906 | } |
| 907 | |
| 908 | #if !(FREELIST_NONBLOCKING) |
| 909 | static MallocMutex publicFreeListLock; // lock for changes of publicFreeList |
| 910 | #endif |
| 911 | |
| 912 | /********* End rough utility code **************/ |
| 913 | |
| 914 | /* LifoList assumes zero initialization so a vector of it can be created |
| 915 | * by just allocating some space with no call to constructor. |
| 916 | * On Linux, it seems to be necessary to avoid linking with C++ libraries. |
| 917 | * |
| 918 | * By usage convention there is no race on the initialization. */ |
| 919 | LifoList::LifoList( ) : top(NULL) |
| 920 | { |
| 921 | // MallocMutex assumes zero initialization |
| 922 | memset(&lock, 0, sizeof(MallocMutex)); |
| 923 | } |
| 924 | |
| 925 | void LifoList::push(Block *block) |
| 926 | { |
| 927 | MallocMutex::scoped_lock scoped_cs(lock); |
| 928 | block->next = top; |
| 929 | top = block; |
| 930 | } |
| 931 | |
| 932 | Block *LifoList::pop() |
| 933 | { |
| 934 | Block *block=NULL; |
| 935 | if (top) { |
| 936 | MallocMutex::scoped_lock scoped_cs(lock); |
| 937 | if (top) { |
| 938 | block = top; |
| 939 | top = block->next; |
| 940 | } |
| 941 | } |
| 942 | return block; |
| 943 | } |
| 944 | |
| 945 | Block *LifoList::grab() |
| 946 | { |
| 947 | Block *block = NULL; |
| 948 | if (top) { |
| 949 | MallocMutex::scoped_lock scoped_cs(lock); |
| 950 | block = top; |
| 951 | top = NULL; |
| 952 | } |
| 953 | return block; |
| 954 | } |
| 955 | |
| 956 | /********* Thread and block related code *************/ |
| 957 | |
| 958 | template<bool poolDestroy> void AllLargeBlocksList::releaseAll(Backend *backend) { |
| 959 | LargeMemoryBlock *next, *lmb = loHead; |
| 960 | loHead = NULL; |
| 961 | |
| 962 | for (; lmb; lmb = next) { |
| 963 | next = lmb->gNext; |
| 964 | if (poolDestroy) { |
| 965 | // as it's pool destruction, no need to return object to backend, |
| 966 | // only remove backrefs, as they are global |
| 967 | removeBackRef(lmb->backRefIdx); |
| 968 | } else { |
| 969 | // clean g(Next|Prev) to prevent removing lmb |
| 970 | // from AllLargeBlocksList inside returnLargeObject |
| 971 | lmb->gNext = lmb->gPrev = NULL; |
| 972 | backend->returnLargeObject(lmb); |
| 973 | } |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | TLSData* MemoryPool::getTLS(bool create) |
| 978 | { |
| 979 | TLSData* tls = extMemPool.tlsPointerKey.getThreadMallocTLS(); |
| 980 | if (create && !tls) |
| 981 | tls = extMemPool.tlsPointerKey.createTLS(this, &extMemPool.backend); |
| 982 | return tls; |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * Return the bin for the given size. |
| 987 | */ |
| 988 | inline Bin* TLSData::getAllocationBin(size_t size) |
| 989 | { |
| 990 | return bin + getIndex(size); |
| 991 | } |
| 992 | |
| 993 | /* Return an empty uninitialized block in a non-blocking fashion. */ |
| 994 | Block *MemoryPool::getEmptyBlock(size_t size) |
| 995 | { |
| 996 | TLSData* tls = getTLS(/*create=*/false); |
| 997 | // try to use per-thread cache, if TLS available |
| 998 | FreeBlockPool::ResOfGet resOfGet = tls? |
| 999 | tls->freeSlabBlocks.getBlock() : FreeBlockPool::ResOfGet(NULL, false); |
| 1000 | Block *result = resOfGet.block; |
| 1001 | |
| 1002 | if (!result) { // not found in local cache, asks backend for slabs |
| 1003 | int num = resOfGet.lastAccMiss? Backend::numOfSlabAllocOnMiss : 1; |
| 1004 | BackRefIdx backRefIdx[Backend::numOfSlabAllocOnMiss]; |
| 1005 | |
| 1006 | result = static_cast<Block*>(extMemPool.backend.getSlabBlock(num)); |
| 1007 | if (!result) return NULL; |
| 1008 | |
| 1009 | if (!extMemPool.userPool()) |
| 1010 | for (int i=0; i<num; i++) { |
| 1011 | backRefIdx[i] = BackRefIdx::newBackRef(/*largeObj=*/false); |
| 1012 | if (backRefIdx[i].isInvalid()) { |
| 1013 | // roll back resource allocation |
| 1014 | for (int j=0; j<i; j++) |
| 1015 | removeBackRef(backRefIdx[j]); |
| 1016 | Block *b = result; |
| 1017 | for (int j=0; j<num; b=(Block*)((uintptr_t)b+slabSize), j++) |
| 1018 | extMemPool.backend.putSlabBlock(b); |
| 1019 | return NULL; |
| 1020 | } |
| 1021 | } |
| 1022 | // resources were allocated, register blocks |
| 1023 | Block *b = result; |
| 1024 | for (int i=0; i<num; b=(Block*)((uintptr_t)b+slabSize), i++) { |
| 1025 | // slab block in user's pool must have invalid backRefIdx |
| 1026 | if (extMemPool.userPool()) { |
| 1027 | new (&b->backRefIdx) BackRefIdx(); |
| 1028 | } else { |
| 1029 | setBackRef(backRefIdx[i], b); |
| 1030 | b->backRefIdx = backRefIdx[i]; |
| 1031 | } |
| 1032 | b->tlsPtr = tls; |
| 1033 | b->poolPtr = this; |
| 1034 | // all but first one go to per-thread pool |
| 1035 | if (i > 0) { |
| 1036 | MALLOC_ASSERT(tls, ASSERT_TEXT); |
| 1037 | tls->freeSlabBlocks.returnBlock(b); |
| 1038 | } |
| 1039 | } |
| 1040 | } |
| 1041 | MALLOC_ASSERT(result, ASSERT_TEXT); |
| 1042 | result->initEmptyBlock(tls, size); |
| 1043 | STAT_increment(getThreadId(), getIndex(result->objectSize), allocBlockNew); |
| 1044 | return result; |
| 1045 | } |
| 1046 | |
| 1047 | void MemoryPool::returnEmptyBlock(Block *block, bool poolTheBlock) |
| 1048 | { |
| 1049 | block->reset(); |
| 1050 | if (poolTheBlock) { |
| 1051 | getTLS(/*create=*/false)->freeSlabBlocks.returnBlock(block); |
| 1052 | } else { |
| 1053 | // slab blocks in user's pools do not have valid backRefIdx |
| 1054 | if (!extMemPool.userPool()) |
| 1055 | removeBackRef(*(block->getBackRefIdx())); |
| 1056 | extMemPool.backend.putSlabBlock(block); |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | bool ExtMemoryPool::init(intptr_t poolId, rawAllocType rawAlloc, |
| 1061 | rawFreeType rawFree, size_t granularity, |
| 1062 | bool keepAllMemory, bool fixedPool) |
| 1063 | { |
| 1064 | this->poolId = poolId; |
| 1065 | this->rawAlloc = rawAlloc; |
| 1066 | this->rawFree = rawFree; |
| 1067 | this->granularity = granularity; |
| 1068 | this->keepAllMemory = keepAllMemory; |
| 1069 | this->fixedPool = fixedPool; |
| 1070 | this->delayRegsReleasing = false; |
| 1071 | if (!initTLS()) |
| 1072 | return false; |
| 1073 | loc.init(this); |
| 1074 | backend.init(this); |
| 1075 | MALLOC_ASSERT(isPoolValid(), NULL); |
| 1076 | return true; |
| 1077 | } |
| 1078 | |
| 1079 | bool ExtMemoryPool::initTLS() { return tlsPointerKey.init(); } |
| 1080 | |
| 1081 | bool MemoryPool::init(intptr_t poolId, const MemPoolPolicy *policy) |
| 1082 | { |
| 1083 | if (!extMemPool.init(poolId, policy->pAlloc, policy->pFree, |
| 1084 | policy->granularity? policy->granularity : defaultGranularity, |
| 1085 | policy->keepAllMemory, policy->fixedPool)) |
| 1086 | return false; |
| 1087 | { |
| 1088 | MallocMutex::scoped_lock lock(memPoolListLock); |
| 1089 | next = defaultMemPool->next; |
| 1090 | defaultMemPool->next = this; |
| 1091 | prev = defaultMemPool; |
| 1092 | if (next) |
| 1093 | next->prev = this; |
| 1094 | } |
| 1095 | return true; |
| 1096 | } |
| 1097 | |
| 1098 | bool MemoryPool::reset() |
| 1099 | { |
| 1100 | MALLOC_ASSERT(extMemPool.userPool(), "No reset for the system pool." ); |
| 1101 | // memory is not releasing during pool reset |
| 1102 | // TODO: mark regions to release unused on next reset() |
| 1103 | extMemPool.delayRegionsReleasing(true); |
| 1104 | |
| 1105 | bootStrapBlocks.reset(); |
| 1106 | extMemPool.lmbList.releaseAll</*poolDestroy=*/false>(&extMemPool.backend); |
| 1107 | if (!extMemPool.reset()) |
| 1108 | return false; |
| 1109 | |
| 1110 | if (!extMemPool.initTLS()) |
| 1111 | return false; |
| 1112 | extMemPool.delayRegionsReleasing(false); |
| 1113 | return true; |
| 1114 | } |
| 1115 | |
| 1116 | bool MemoryPool::destroy() |
| 1117 | { |
| 1118 | #if __TBB_MALLOC_LOCACHE_STAT |
| 1119 | extMemPool.loc.reportStat(stdout); |
| 1120 | #endif |
| 1121 | #if __TBB_MALLOC_BACKEND_STAT |
| 1122 | extMemPool.backend.reportStat(stdout); |
| 1123 | #endif |
| 1124 | { |
| 1125 | MallocMutex::scoped_lock lock(memPoolListLock); |
| 1126 | // remove itself from global pool list |
| 1127 | if (prev) |
| 1128 | prev->next = next; |
| 1129 | if (next) |
| 1130 | next->prev = prev; |
| 1131 | } |
| 1132 | // slab blocks in non-default pool do not have backreferences, |
| 1133 | // only large objects do |
| 1134 | if (extMemPool.userPool()) |
| 1135 | extMemPool.lmbList.releaseAll</*poolDestroy=*/true>(&extMemPool.backend); |
| 1136 | else { |
| 1137 | // only one non-userPool() is supported now |
| 1138 | MALLOC_ASSERT(this==defaultMemPool, NULL); |
| 1139 | // There and below in extMemPool.destroy(), do not restore initial state |
| 1140 | // for user pool, because it's just about to be released. But for system |
| 1141 | // pool restoring, we do not want to do zeroing of it on subsequent reload. |
| 1142 | bootStrapBlocks.reset(); |
| 1143 | extMemPool.orphanedBlocks.reset(); |
| 1144 | } |
| 1145 | return extMemPool.destroy(); |
| 1146 | } |
| 1147 | |
| 1148 | void MemoryPool::onThreadShutdown(TLSData *tlsData) |
| 1149 | { |
| 1150 | if (tlsData) { // might be called for "empty" TLS |
| 1151 | tlsData->release(); |
| 1152 | bootStrapBlocks.free(tlsData); |
| 1153 | clearTLS(); |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | #if MALLOC_DEBUG |
| 1158 | void Bin::verifyTLSBin (size_t size) const |
| 1159 | { |
| 1160 | /* The debug version verifies the TLSBin as needed */ |
| 1161 | uint32_t objSize = getObjectSize(size); |
| 1162 | |
| 1163 | if (activeBlk) { |
| 1164 | MALLOC_ASSERT( activeBlk->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1165 | MALLOC_ASSERT( activeBlk->objectSize == objSize, ASSERT_TEXT ); |
| 1166 | #if MALLOC_DEBUG>1 |
| 1167 | for (Block* temp = activeBlk->next; temp; temp=temp->next) { |
| 1168 | MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT ); |
| 1169 | MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1170 | MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT ); |
| 1171 | MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT ); |
| 1172 | if (temp->next) { |
| 1173 | MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT ); |
| 1174 | } |
| 1175 | } |
| 1176 | for (Block* temp = activeBlk->previous; temp; temp=temp->previous) { |
| 1177 | MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT ); |
| 1178 | MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1179 | MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT ); |
| 1180 | MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT ); |
| 1181 | if (temp->previous) { |
| 1182 | MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT ); |
| 1183 | } |
| 1184 | } |
| 1185 | #endif /* MALLOC_DEBUG>1 */ |
| 1186 | } |
| 1187 | } |
| 1188 | #else /* MALLOC_DEBUG */ |
| 1189 | inline void Bin::verifyTLSBin (size_t) const { } |
| 1190 | #endif /* MALLOC_DEBUG */ |
| 1191 | |
| 1192 | /* |
| 1193 | * Add a block to the start of this tls bin list. |
| 1194 | */ |
| 1195 | void Bin::pushTLSBin(Block* block) |
| 1196 | { |
| 1197 | /* The objectSize should be defined and not a parameter |
| 1198 | because the function is applied to partially filled blocks as well */ |
| 1199 | unsigned int size = block->objectSize; |
| 1200 | |
| 1201 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1202 | MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT ); |
| 1203 | MALLOC_ASSERT( block->next == NULL, ASSERT_TEXT ); |
| 1204 | MALLOC_ASSERT( block->previous == NULL, ASSERT_TEXT ); |
| 1205 | |
| 1206 | MALLOC_ASSERT( this, ASSERT_TEXT ); |
| 1207 | verifyTLSBin(size); |
| 1208 | |
| 1209 | block->next = activeBlk; |
| 1210 | if( activeBlk ) { |
| 1211 | block->previous = activeBlk->previous; |
| 1212 | activeBlk->previous = block; |
| 1213 | if( block->previous ) |
| 1214 | block->previous->next = block; |
| 1215 | } else { |
| 1216 | activeBlk = block; |
| 1217 | } |
| 1218 | |
| 1219 | verifyTLSBin(size); |
| 1220 | } |
| 1221 | |
| 1222 | /* |
| 1223 | * Take a block out of its tls bin (e.g. before removal). |
| 1224 | */ |
| 1225 | void Bin::outofTLSBin(Block* block) |
| 1226 | { |
| 1227 | unsigned int size = block->objectSize; |
| 1228 | |
| 1229 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1230 | MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT ); |
| 1231 | |
| 1232 | MALLOC_ASSERT( this, ASSERT_TEXT ); |
| 1233 | verifyTLSBin(size); |
| 1234 | |
| 1235 | if (block == activeBlk) { |
| 1236 | activeBlk = block->previous? block->previous : block->next; |
| 1237 | } |
| 1238 | /* Unlink the block */ |
| 1239 | if (block->previous) { |
| 1240 | MALLOC_ASSERT( block->previous->next == block, ASSERT_TEXT ); |
| 1241 | block->previous->next = block->next; |
| 1242 | } |
| 1243 | if (block->next) { |
| 1244 | MALLOC_ASSERT( block->next->previous == block, ASSERT_TEXT ); |
| 1245 | block->next->previous = block->previous; |
| 1246 | } |
| 1247 | block->next = NULL; |
| 1248 | block->previous = NULL; |
| 1249 | |
| 1250 | verifyTLSBin(size); |
| 1251 | } |
| 1252 | |
| 1253 | Block* Bin::getPrivatizedFreeListBlock() |
| 1254 | { |
| 1255 | Block* block; |
| 1256 | MALLOC_ASSERT( this, ASSERT_TEXT ); |
| 1257 | // if this method is called, active block usage must be unsuccessful |
| 1258 | MALLOC_ASSERT( !activeBlk && !mailbox || activeBlk && activeBlk->isFull, ASSERT_TEXT ); |
| 1259 | |
| 1260 | // the counter should be changed STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
| 1261 | if (!FencedLoad((intptr_t&)mailbox)) // hotpath is empty mailbox |
| 1262 | return NULL; |
| 1263 | else { // mailbox is not empty, take lock and inspect it |
| 1264 | MallocMutex::scoped_lock scoped_cs(mailLock); |
| 1265 | block = mailbox; |
| 1266 | if( block ) { |
| 1267 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1268 | MALLOC_ASSERT( !isNotForUse(block->nextPrivatizable), ASSERT_TEXT ); |
| 1269 | mailbox = block->nextPrivatizable; |
| 1270 | block->nextPrivatizable = (Block*) this; |
| 1271 | } |
| 1272 | } |
| 1273 | if( block ) { |
| 1274 | MALLOC_ASSERT( isSolidPtr(block->publicFreeList), ASSERT_TEXT ); |
| 1275 | block->privatizePublicFreeList(); |
| 1276 | block->adjustPositionInBin(this); |
| 1277 | } |
| 1278 | return block; |
| 1279 | } |
| 1280 | |
| 1281 | void Bin::addPublicFreeListBlock(Block* block) |
| 1282 | { |
| 1283 | MallocMutex::scoped_lock scoped_cs(mailLock); |
| 1284 | block->nextPrivatizable = mailbox; |
| 1285 | mailbox = block; |
| 1286 | } |
| 1287 | |
| 1288 | // Process publicly freed objects in all blocks and return empty blocks |
| 1289 | // to the backend in order to reduce overall footprint. |
| 1290 | bool Bin::cleanPublicFreeLists() |
| 1291 | { |
| 1292 | Block* block; |
| 1293 | if (!FencedLoad((intptr_t&)mailbox)) |
| 1294 | return false; |
| 1295 | else { |
| 1296 | // Grab all the blocks in the mailbox |
| 1297 | MallocMutex::scoped_lock scoped_cs(mailLock); |
| 1298 | block = mailbox; |
| 1299 | mailbox = NULL; |
| 1300 | } |
| 1301 | bool released = false; |
| 1302 | while (block) { |
| 1303 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1304 | Block* tmp = block->nextPrivatizable; |
| 1305 | block->nextPrivatizable = (Block*) this; |
| 1306 | block->privatizePublicFreeList(); |
| 1307 | if (block->empty()) { |
| 1308 | processEmptyBlock(block, /*poolTheBlock=*/false); |
| 1309 | released = true; |
| 1310 | } else |
| 1311 | block->adjustPositionInBin(this); |
| 1312 | block = tmp; |
| 1313 | } |
| 1314 | return released; |
| 1315 | } |
| 1316 | |
| 1317 | bool Block::adjustFullness() |
| 1318 | { |
| 1319 | if (bumpPtr) { |
| 1320 | /* If we are still using a bump ptr for this block it is empty enough to use. */ |
| 1321 | STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough); |
| 1322 | isFull = false; |
| 1323 | } else { |
| 1324 | const float threshold = (slabSize - sizeof(Block)) * (1 - emptyEnoughRatio); |
| 1325 | /* allocatedCount shows how many objects in the block are in use; however it still counts |
| 1326 | * blocks freed by other threads; so prior call to privatizePublicFreeList() is recommended */ |
| 1327 | isFull = (allocatedCount*objectSize > threshold) ? true : false; |
| 1328 | #if COLLECT_STATISTICS |
| 1329 | if (isFull) |
| 1330 | STAT_increment(getThreadId(), getIndex(objectSize), examineNotEmpty); |
| 1331 | else |
| 1332 | STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough); |
| 1333 | #endif |
| 1334 | } |
| 1335 | return isFull; |
| 1336 | } |
| 1337 | |
| 1338 | // This method resides in class Block, and not in class Bin, in order to avoid |
| 1339 | // calling getAllocationBin on a reasonably hot path in Block::freeOwnObject |
| 1340 | void Block::adjustPositionInBin(Bin* bin/*=NULL*/) |
| 1341 | { |
| 1342 | // If the block were full, but became empty enough to use, |
| 1343 | // move it to the front of the list |
| 1344 | if (isFull && !adjustFullness()) { |
| 1345 | if (!bin) |
| 1346 | bin = tlsPtr->getAllocationBin(objectSize); |
| 1347 | bin->moveBlockToFront(this); |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | /* Restore the bump pointer for an empty block that is planned to use */ |
| 1352 | void Block::restoreBumpPtr() |
| 1353 | { |
| 1354 | MALLOC_ASSERT( allocatedCount == 0, ASSERT_TEXT ); |
| 1355 | MALLOC_ASSERT( !isSolidPtr(publicFreeList), ASSERT_TEXT ); |
| 1356 | STAT_increment(getThreadId(), getIndex(objectSize), freeRestoreBumpPtr); |
| 1357 | bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize); |
| 1358 | freeList = NULL; |
| 1359 | isFull = false; |
| 1360 | } |
| 1361 | |
| 1362 | void Block::freeOwnObject(void *object) |
| 1363 | { |
| 1364 | tlsPtr->markUsed(); |
| 1365 | allocatedCount--; |
| 1366 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
| 1367 | #if COLLECT_STATISTICS |
| 1368 | // Note that getAllocationBin is not called on the hottest path with statistics off. |
| 1369 | if (tlsPtr->getAllocationBin(objectSize)->getActiveBlock() != this) |
| 1370 | STAT_increment(getThreadId(), getIndex(objectSize), freeToInactiveBlock); |
| 1371 | else |
| 1372 | STAT_increment(getThreadId(), getIndex(objectSize), freeToActiveBlock); |
| 1373 | #endif |
| 1374 | if (empty()) { |
| 1375 | // If the last object of a slab is freed, the slab cannot be marked full |
| 1376 | MALLOC_ASSERT(!isFull, ASSERT_TEXT); |
| 1377 | tlsPtr->getAllocationBin(objectSize)->processEmptyBlock(this, /*poolTheBlock=*/true); |
| 1378 | } else { // hot path |
| 1379 | FreeObject *objectToFree = findObjectToFree(object); |
| 1380 | objectToFree->next = freeList; |
| 1381 | freeList = objectToFree; |
| 1382 | adjustPositionInBin(); |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | void Block::freePublicObject (FreeObject *objectToFree) |
| 1387 | { |
| 1388 | FreeObject *localPublicFreeList; |
| 1389 | |
| 1390 | MALLOC_ITT_SYNC_RELEASING(&publicFreeList); |
| 1391 | #if FREELIST_NONBLOCKING |
| 1392 | FreeObject *temp = publicFreeList; |
| 1393 | do { |
| 1394 | localPublicFreeList = objectToFree->next = temp; |
| 1395 | temp = (FreeObject*)AtomicCompareExchange( |
| 1396 | (intptr_t&)publicFreeList, |
| 1397 | (intptr_t)objectToFree, (intptr_t)localPublicFreeList ); |
| 1398 | // no backoff necessary because trying to make change, not waiting for a change |
| 1399 | } while( temp != localPublicFreeList ); |
| 1400 | #else |
| 1401 | STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
| 1402 | { |
| 1403 | MallocMutex::scoped_lock scoped_cs(publicFreeListLock); |
| 1404 | localPublicFreeList = objectToFree->next = publicFreeList; |
| 1405 | publicFreeList = objectToFree; |
| 1406 | } |
| 1407 | #endif |
| 1408 | |
| 1409 | if( localPublicFreeList==NULL ) { |
| 1410 | // if the block is abandoned, its nextPrivatizable pointer should be UNUSABLE |
| 1411 | // otherwise, it should point to the bin the block belongs to. |
| 1412 | // reading nextPrivatizable is thread-safe below, because: |
| 1413 | // 1) the executing thread atomically got publicFreeList==NULL and changed it to non-NULL; |
| 1414 | // 2) only owning thread can change it back to NULL, |
| 1415 | // 3) but it can not be done until the block is put to the mailbox |
| 1416 | // So the executing thread is now the only one that can change nextPrivatizable |
| 1417 | if( !isNotForUse(nextPrivatizable) ) { |
| 1418 | MALLOC_ASSERT( nextPrivatizable!=NULL, ASSERT_TEXT ); |
| 1419 | Bin* theBin = (Bin*) nextPrivatizable; |
| 1420 | theBin->addPublicFreeListBlock(this); |
| 1421 | } |
| 1422 | } |
| 1423 | STAT_increment(getThreadId(), ThreadCommonCounters, freeToOtherThread); |
| 1424 | STAT_increment(ownerTid, getIndex(objectSize), freeByOtherThread); |
| 1425 | } |
| 1426 | |
| 1427 | // Make objects freed by other threads available for use again |
| 1428 | void Block::privatizePublicFreeList( bool reset ) |
| 1429 | { |
| 1430 | FreeObject *localPublicFreeList; |
| 1431 | // If reset is false, publicFreeList should not be zeroed but set to UNUSABLE |
| 1432 | // to properly synchronize with other threads freeing objects to this slab. |
| 1433 | const intptr_t endMarker = reset ? 0 : UNUSABLE; |
| 1434 | |
| 1435 | // Only the owner thread may reset the pointer to NULL |
| 1436 | MALLOC_ASSERT( isOwnedByCurrentThread() || !reset, ASSERT_TEXT ); |
| 1437 | #if FREELIST_NONBLOCKING |
| 1438 | localPublicFreeList = (FreeObject*)AtomicFetchStore( &publicFreeList, endMarker ); |
| 1439 | #else |
| 1440 | STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
| 1441 | { |
| 1442 | MallocMutex::scoped_lock scoped_cs(publicFreeListLock); |
| 1443 | localPublicFreeList = publicFreeList; |
| 1444 | publicFreeList = endMarker; |
| 1445 | } |
| 1446 | #endif |
| 1447 | MALLOC_ITT_SYNC_ACQUIRED(&publicFreeList); |
| 1448 | MALLOC_ASSERT( !(reset && isNotForUse(publicFreeList)), ASSERT_TEXT ); |
| 1449 | |
| 1450 | // publicFreeList must have been UNUSABLE or valid, but not NULL |
| 1451 | MALLOC_ASSERT( localPublicFreeList!=NULL, ASSERT_TEXT ); |
| 1452 | if( isSolidPtr(localPublicFreeList) ) { |
| 1453 | MALLOC_ASSERT( allocatedCount <= (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
| 1454 | /* other threads did not change the counter freeing our blocks */ |
| 1455 | allocatedCount--; |
| 1456 | FreeObject *temp = localPublicFreeList; |
| 1457 | while( isSolidPtr(temp->next) ){ // the list will end with either NULL or UNUSABLE |
| 1458 | temp = temp->next; |
| 1459 | allocatedCount--; |
| 1460 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
| 1461 | } |
| 1462 | /* merge with local freeList */ |
| 1463 | temp->next = freeList; |
| 1464 | freeList = localPublicFreeList; |
| 1465 | STAT_increment(getThreadId(), getIndex(objectSize), allocPrivatized); |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | void Block::privatizeOrphaned(TLSData *tls, unsigned index) |
| 1470 | { |
| 1471 | Bin* bin = tls->bin + index; |
| 1472 | STAT_increment(getThreadId(), index, allocBlockPublic); |
| 1473 | next = NULL; |
| 1474 | previous = NULL; |
| 1475 | MALLOC_ASSERT( publicFreeList!=NULL, ASSERT_TEXT ); |
| 1476 | /* There is not a race here since no other thread owns this block */ |
| 1477 | markOwned(tls); |
| 1478 | // It is safe to change nextPrivatizable, as publicFreeList is not null |
| 1479 | MALLOC_ASSERT( isNotForUse(nextPrivatizable), ASSERT_TEXT ); |
| 1480 | nextPrivatizable = (Block*)bin; |
| 1481 | // the next call is required to change publicFreeList to 0 |
| 1482 | privatizePublicFreeList(); |
| 1483 | if( empty() ) { |
| 1484 | restoreBumpPtr(); |
| 1485 | } else { |
| 1486 | adjustFullness(); // check the block fullness and set isFull |
| 1487 | } |
| 1488 | MALLOC_ASSERT( !isNotForUse(publicFreeList), ASSERT_TEXT ); |
| 1489 | } |
| 1490 | |
| 1491 | |
| 1492 | bool Block::readyToShare() |
| 1493 | { |
| 1494 | void* oldval; |
| 1495 | #if FREELIST_NONBLOCKING |
| 1496 | oldval = (void*)AtomicCompareExchange((intptr_t&)publicFreeList, UNUSABLE, 0); |
| 1497 | #else |
| 1498 | STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
| 1499 | { |
| 1500 | MallocMutex::scoped_lock scoped_cs(publicFreeListLock); |
| 1501 | if ( (oldval=publicFreeList)==NULL ) |
| 1502 | (intptr_t&)(publicFreeList) = UNUSABLE; |
| 1503 | } |
| 1504 | #endif |
| 1505 | return oldval==NULL; |
| 1506 | } |
| 1507 | |
| 1508 | void Block::shareOrphaned(intptr_t binTag, unsigned index) |
| 1509 | { |
| 1510 | MALLOC_ASSERT( binTag, ASSERT_TEXT ); |
| 1511 | STAT_increment(getThreadId(), index, freeBlockPublic); |
| 1512 | markOrphaned(); |
| 1513 | if ((intptr_t)nextPrivatizable==binTag) { |
| 1514 | // First check passed: the block is not in mailbox yet. |
| 1515 | // Need to set publicFreeList to non-zero, so other threads |
| 1516 | // will not change nextPrivatizable and it can be zeroed. |
| 1517 | if ( !readyToShare() ) { |
| 1518 | // another thread freed an object; we need to wait until it finishes. |
| 1519 | // There is no need for exponential backoff, as the wait here is not for a lock; |
| 1520 | // but need to yield, so the thread we wait has a chance to run. |
| 1521 | // TODO: add a pause to also be friendly to hyperthreads |
| 1522 | int count = 256; |
| 1523 | while( (intptr_t)const_cast<Block* volatile &>(nextPrivatizable)==binTag ) { |
| 1524 | if (--count==0) { |
| 1525 | do_yield(); |
| 1526 | count = 256; |
| 1527 | } |
| 1528 | } |
| 1529 | } |
| 1530 | } |
| 1531 | MALLOC_ASSERT( publicFreeList!=NULL, ASSERT_TEXT ); |
| 1532 | // now it is safe to change our data |
| 1533 | previous = NULL; |
| 1534 | // it is caller responsibility to ensure that the list of blocks |
| 1535 | // formed by nextPrivatizable pointers is kept consistent if required. |
| 1536 | // if only called from thread shutdown code, it does not matter. |
| 1537 | (intptr_t&)(nextPrivatizable) = UNUSABLE; |
| 1538 | } |
| 1539 | |
| 1540 | void Block::() |
| 1541 | { |
| 1542 | next = NULL; |
| 1543 | previous = NULL; |
| 1544 | freeList = NULL; |
| 1545 | allocatedCount = 0; |
| 1546 | isFull = false; |
| 1547 | tlsPtr = NULL; |
| 1548 | |
| 1549 | publicFreeList = NULL; |
| 1550 | } |
| 1551 | |
| 1552 | void Block::initEmptyBlock(TLSData *tls, size_t size) |
| 1553 | { |
| 1554 | // Having getIndex and getObjectSize called next to each other |
| 1555 | // allows better compiler optimization as they basically share the code. |
| 1556 | unsigned int index = getIndex(size); |
| 1557 | unsigned int objSz = getObjectSize(size); |
| 1558 | |
| 1559 | cleanBlockHeader(); |
| 1560 | objectSize = objSz; |
| 1561 | markOwned(tls); |
| 1562 | // bump pointer should be prepared for first allocation - thus mode it down to objectSize |
| 1563 | bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize); |
| 1564 | |
| 1565 | // each block should have the address where the head of the list of "privatizable" blocks is kept |
| 1566 | // the only exception is a block for boot strap which is initialized when TLS is yet NULL |
| 1567 | nextPrivatizable = tls? (Block*)(tls->bin + index) : NULL; |
| 1568 | TRACEF(( "[ScalableMalloc trace] Empty block %p is initialized, owner is %ld, objectSize is %d, bumpPtr is %p\n" , |
| 1569 | this, tlsPtr ? getThreadId() : -1, objectSize, bumpPtr )); |
| 1570 | } |
| 1571 | |
| 1572 | Block *OrphanedBlocks::get(TLSData *tls, unsigned int size) |
| 1573 | { |
| 1574 | // TODO: try to use index from getAllocationBin |
| 1575 | unsigned int index = getIndex(size); |
| 1576 | Block *block = bins[index].pop(); |
| 1577 | if (block) { |
| 1578 | MALLOC_ITT_SYNC_ACQUIRED(bins+index); |
| 1579 | block->privatizeOrphaned(tls, index); |
| 1580 | } |
| 1581 | return block; |
| 1582 | } |
| 1583 | |
| 1584 | void OrphanedBlocks::put(intptr_t binTag, Block *block) |
| 1585 | { |
| 1586 | unsigned int index = getIndex(block->getSize()); |
| 1587 | block->shareOrphaned(binTag, index); |
| 1588 | MALLOC_ITT_SYNC_RELEASING(bins+index); |
| 1589 | bins[index].push(block); |
| 1590 | } |
| 1591 | |
| 1592 | void OrphanedBlocks::reset() |
| 1593 | { |
| 1594 | for (uint32_t i=0; i<numBlockBinLimit; i++) |
| 1595 | new (bins+i) LifoList(); |
| 1596 | } |
| 1597 | |
| 1598 | bool OrphanedBlocks::cleanup(Backend* backend) |
| 1599 | { |
| 1600 | bool released = false; |
| 1601 | for (uint32_t i=0; i<numBlockBinLimit; i++) { |
| 1602 | Block* block = bins[i].grab(); |
| 1603 | MALLOC_ITT_SYNC_ACQUIRED(bins+i); |
| 1604 | while (block) { |
| 1605 | Block* next = block->next; |
| 1606 | block->privatizePublicFreeList( /*reset=*/false ); // do not set publicFreeList to NULL |
| 1607 | if (block->empty()) { |
| 1608 | block->reset(); |
| 1609 | // slab blocks in user's pools do not have valid backRefIdx |
| 1610 | if (!backend->inUserPool()) |
| 1611 | removeBackRef(*(block->getBackRefIdx())); |
| 1612 | backend->putSlabBlock(block); |
| 1613 | released = true; |
| 1614 | } else { |
| 1615 | MALLOC_ITT_SYNC_RELEASING(bins+i); |
| 1616 | bins[i].push(block); |
| 1617 | } |
| 1618 | block = next; |
| 1619 | } |
| 1620 | } |
| 1621 | return released; |
| 1622 | } |
| 1623 | |
| 1624 | FreeBlockPool::ResOfGet FreeBlockPool::getBlock() |
| 1625 | { |
| 1626 | Block *b = (Block*)AtomicFetchStore(&head, 0); |
| 1627 | |
| 1628 | if (b) { |
| 1629 | size--; |
| 1630 | Block *newHead = b->next; |
| 1631 | lastAccessMiss = false; |
| 1632 | FencedStore((intptr_t&)head, (intptr_t)newHead); |
| 1633 | } else |
| 1634 | lastAccessMiss = true; |
| 1635 | |
| 1636 | return ResOfGet(b, lastAccessMiss); |
| 1637 | } |
| 1638 | |
| 1639 | void FreeBlockPool::returnBlock(Block *block) |
| 1640 | { |
| 1641 | MALLOC_ASSERT( size <= POOL_HIGH_MARK, ASSERT_TEXT ); |
| 1642 | Block *localHead = (Block*)AtomicFetchStore(&head, 0); |
| 1643 | |
| 1644 | if (!localHead) |
| 1645 | size = 0; // head was stolen by externalClean, correct size accordingly |
| 1646 | else if (size == POOL_HIGH_MARK) { |
| 1647 | // release cold blocks and add hot one, |
| 1648 | // so keep POOL_LOW_MARK-1 blocks and add new block to head |
| 1649 | Block *headToFree = localHead, *helper; |
| 1650 | for (int i=0; i<POOL_LOW_MARK-2; i++) |
| 1651 | headToFree = headToFree->next; |
| 1652 | Block *last = headToFree; |
| 1653 | headToFree = headToFree->next; |
| 1654 | last->next = NULL; |
| 1655 | size = POOL_LOW_MARK-1; |
| 1656 | for (Block *currBl = headToFree; currBl; currBl = helper) { |
| 1657 | helper = currBl->next; |
| 1658 | // slab blocks in user's pools do not have valid backRefIdx |
| 1659 | if (!backend->inUserPool()) |
| 1660 | removeBackRef(currBl->backRefIdx); |
| 1661 | backend->putSlabBlock(currBl); |
| 1662 | } |
| 1663 | } |
| 1664 | size++; |
| 1665 | block->next = localHead; |
| 1666 | FencedStore((intptr_t&)head, (intptr_t)block); |
| 1667 | } |
| 1668 | |
| 1669 | bool FreeBlockPool::externalCleanup() |
| 1670 | { |
| 1671 | Block *helper; |
| 1672 | bool released = false; |
| 1673 | |
| 1674 | for (Block *currBl=(Block*)AtomicFetchStore(&head, 0); currBl; currBl=helper) { |
| 1675 | helper = currBl->next; |
| 1676 | // slab blocks in user's pools do not have valid backRefIdx |
| 1677 | if (!backend->inUserPool()) |
| 1678 | removeBackRef(currBl->backRefIdx); |
| 1679 | backend->putSlabBlock(currBl); |
| 1680 | released = true; |
| 1681 | } |
| 1682 | return released; |
| 1683 | } |
| 1684 | |
| 1685 | /* Prepare the block for returning to FreeBlockPool */ |
| 1686 | void Block::reset() |
| 1687 | { |
| 1688 | // it is caller's responsibility to ensure no data is lost before calling this |
| 1689 | MALLOC_ASSERT( allocatedCount==0, ASSERT_TEXT ); |
| 1690 | MALLOC_ASSERT( !isSolidPtr(publicFreeList), ASSERT_TEXT ); |
| 1691 | if (!isStartupAllocObject()) |
| 1692 | STAT_increment(getThreadId(), getIndex(objectSize), freeBlockBack); |
| 1693 | |
| 1694 | cleanBlockHeader(); |
| 1695 | |
| 1696 | nextPrivatizable = NULL; |
| 1697 | |
| 1698 | objectSize = 0; |
| 1699 | // for an empty block, bump pointer should point right after the end of the block |
| 1700 | bumpPtr = (FreeObject *)((uintptr_t)this + slabSize); |
| 1701 | } |
| 1702 | |
| 1703 | inline void Bin::setActiveBlock (Block *block) |
| 1704 | { |
| 1705 | // MALLOC_ASSERT( bin, ASSERT_TEXT ); |
| 1706 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 1707 | // it is the caller responsibility to keep bin consistence (i.e. ensure this block is in the bin list) |
| 1708 | activeBlk = block; |
| 1709 | } |
| 1710 | |
| 1711 | inline Block* Bin::setPreviousBlockActive() |
| 1712 | { |
| 1713 | MALLOC_ASSERT( activeBlk, ASSERT_TEXT ); |
| 1714 | Block* temp = activeBlk->previous; |
| 1715 | if( temp ) { |
| 1716 | MALLOC_ASSERT( !(temp->isFull), ASSERT_TEXT ); |
| 1717 | activeBlk = temp; |
| 1718 | } |
| 1719 | return temp; |
| 1720 | } |
| 1721 | |
| 1722 | inline bool Block::isOwnedByCurrentThread() const { |
| 1723 | return tlsPtr && ownerTid.isCurrentThreadId(); |
| 1724 | } |
| 1725 | |
| 1726 | FreeObject *Block::findObjectToFree(const void *object) const |
| 1727 | { |
| 1728 | FreeObject *objectToFree; |
| 1729 | // Due to aligned allocations, a pointer passed to scalable_free |
| 1730 | // might differ from the address of internally allocated object. |
| 1731 | // Small objects however should always be fine. |
| 1732 | if (objectSize <= maxSegregatedObjectSize) |
| 1733 | objectToFree = (FreeObject*)object; |
| 1734 | // "Fitting size" allocations are suspicious if aligned higher than naturally |
| 1735 | else { |
| 1736 | if ( ! isAligned(object,2*fittingAlignment) ) |
| 1737 | // TODO: the above check is questionable - it gives false negatives in ~50% cases, |
| 1738 | // so might even be slower in average than unconditional use of findAllocatedObject. |
| 1739 | // here it should be a "real" object |
| 1740 | objectToFree = (FreeObject*)object; |
| 1741 | else |
| 1742 | // here object can be an aligned address, so applying additional checks |
| 1743 | objectToFree = findAllocatedObject(object); |
| 1744 | MALLOC_ASSERT( isAligned(objectToFree,fittingAlignment), ASSERT_TEXT ); |
| 1745 | } |
| 1746 | MALLOC_ASSERT( isProperlyPlaced(objectToFree), ASSERT_TEXT ); |
| 1747 | |
| 1748 | return objectToFree; |
| 1749 | } |
| 1750 | |
| 1751 | void TLSData::release() |
| 1752 | { |
| 1753 | memPool->extMemPool.allLocalCaches.unregisterThread(this); |
| 1754 | externalCleanup(/*cleanOnlyUnused=*/false, /*cleanBins=*/false); |
| 1755 | |
| 1756 | for (unsigned index = 0; index < numBlockBins; index++) { |
| 1757 | Block *activeBlk = bin[index].getActiveBlock(); |
| 1758 | if (!activeBlk) |
| 1759 | continue; |
| 1760 | Block *threadlessBlock = activeBlk->previous; |
| 1761 | while (threadlessBlock) { |
| 1762 | Block *threadBlock = threadlessBlock->previous; |
| 1763 | if (threadlessBlock->empty()) { |
| 1764 | /* we destroy the thread, so not use its block pool */ |
| 1765 | memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false); |
| 1766 | } else { |
| 1767 | memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock); |
| 1768 | } |
| 1769 | threadlessBlock = threadBlock; |
| 1770 | } |
| 1771 | threadlessBlock = activeBlk; |
| 1772 | while (threadlessBlock) { |
| 1773 | Block *threadBlock = threadlessBlock->next; |
| 1774 | if (threadlessBlock->empty()) { |
| 1775 | /* we destroy the thread, so not use its block pool */ |
| 1776 | memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false); |
| 1777 | } else { |
| 1778 | memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock); |
| 1779 | } |
| 1780 | threadlessBlock = threadBlock; |
| 1781 | } |
| 1782 | bin[index].resetActiveBlock(); |
| 1783 | } |
| 1784 | } |
| 1785 | |
| 1786 | |
| 1787 | #if MALLOC_CHECK_RECURSION |
| 1788 | // TODO: Use dedicated heap for this |
| 1789 | |
| 1790 | /* |
| 1791 | * It's a special kind of allocation that can be used when malloc is |
| 1792 | * not available (either during startup or when malloc was already called and |
| 1793 | * we are, say, inside pthread_setspecific's call). |
| 1794 | * Block can contain objects of different sizes, |
| 1795 | * allocations are performed by moving bump pointer and increasing of object counter, |
| 1796 | * releasing is done via counter of objects allocated in the block |
| 1797 | * or moving bump pointer if releasing object is on a bound. |
| 1798 | * TODO: make bump pointer to grow to the same backward direction as all the others. |
| 1799 | */ |
| 1800 | |
| 1801 | class StartupBlock : public Block { |
| 1802 | size_t availableSize() const { |
| 1803 | return slabSize - ((uintptr_t)bumpPtr - (uintptr_t)this); |
| 1804 | } |
| 1805 | static StartupBlock *getBlock(); |
| 1806 | public: |
| 1807 | static FreeObject *allocate(size_t size); |
| 1808 | static size_t msize(void *ptr) { return *((size_t*)ptr - 1); } |
| 1809 | void free(void *ptr); |
| 1810 | }; |
| 1811 | |
| 1812 | static MallocMutex startupMallocLock; |
| 1813 | static StartupBlock *firstStartupBlock; |
| 1814 | |
| 1815 | StartupBlock *StartupBlock::getBlock() |
| 1816 | { |
| 1817 | BackRefIdx backRefIdx = BackRefIdx::newBackRef(/*largeObj=*/false); |
| 1818 | if (backRefIdx.isInvalid()) return NULL; |
| 1819 | |
| 1820 | StartupBlock *block = static_cast<StartupBlock*>( |
| 1821 | defaultMemPool->extMemPool.backend.getSlabBlock(1)); |
| 1822 | if (!block) return NULL; |
| 1823 | |
| 1824 | block->cleanBlockHeader(); |
| 1825 | setBackRef(backRefIdx, block); |
| 1826 | block->backRefIdx = backRefIdx; |
| 1827 | // use startupAllocObjSizeMark to mark objects from startup block marker |
| 1828 | block->objectSize = startupAllocObjSizeMark; |
| 1829 | block->bumpPtr = (FreeObject *)((uintptr_t)block + sizeof(StartupBlock)); |
| 1830 | return block; |
| 1831 | } |
| 1832 | |
| 1833 | FreeObject *StartupBlock::allocate(size_t size) |
| 1834 | { |
| 1835 | FreeObject *result; |
| 1836 | StartupBlock *newBlock = NULL; |
| 1837 | bool newBlockUnused = false; |
| 1838 | |
| 1839 | /* Objects must be aligned on their natural bounds, |
| 1840 | and objects bigger than word on word's bound. */ |
| 1841 | size = alignUp(size, sizeof(size_t)); |
| 1842 | // We need size of an object to implement msize. |
| 1843 | size_t reqSize = size + sizeof(size_t); |
| 1844 | // speculatively allocates newBlock to try avoid allocation while holding lock |
| 1845 | /* TODO: The function is called when malloc nested call is detected, |
| 1846 | so simultaneous usage from different threads seems unlikely. |
| 1847 | If pre-allocation is found useless, the code might be simplified. */ |
| 1848 | if (!firstStartupBlock || firstStartupBlock->availableSize() < reqSize) { |
| 1849 | newBlock = StartupBlock::getBlock(); |
| 1850 | if (!newBlock) return NULL; |
| 1851 | } |
| 1852 | { |
| 1853 | MallocMutex::scoped_lock scoped_cs(startupMallocLock); |
| 1854 | // Re-check whether we need a new block (conditions might have changed) |
| 1855 | if (!firstStartupBlock || firstStartupBlock->availableSize() < reqSize) { |
| 1856 | if (!newBlock) { |
| 1857 | newBlock = StartupBlock::getBlock(); |
| 1858 | if (!newBlock) return NULL; |
| 1859 | } |
| 1860 | newBlock->next = (Block*)firstStartupBlock; |
| 1861 | if (firstStartupBlock) |
| 1862 | firstStartupBlock->previous = (Block*)newBlock; |
| 1863 | firstStartupBlock = newBlock; |
| 1864 | } else |
| 1865 | newBlockUnused = true; |
| 1866 | result = firstStartupBlock->bumpPtr; |
| 1867 | firstStartupBlock->allocatedCount++; |
| 1868 | firstStartupBlock->bumpPtr = |
| 1869 | (FreeObject *)((uintptr_t)firstStartupBlock->bumpPtr + reqSize); |
| 1870 | } |
| 1871 | if (newBlock && newBlockUnused) |
| 1872 | defaultMemPool->returnEmptyBlock(newBlock, /*poolTheBlock=*/false); |
| 1873 | |
| 1874 | // keep object size at the negative offset |
| 1875 | *((size_t*)result) = size; |
| 1876 | return (FreeObject*)((size_t*)result+1); |
| 1877 | } |
| 1878 | |
| 1879 | void StartupBlock::free(void *ptr) |
| 1880 | { |
| 1881 | Block* blockToRelease = NULL; |
| 1882 | { |
| 1883 | MallocMutex::scoped_lock scoped_cs(startupMallocLock); |
| 1884 | |
| 1885 | MALLOC_ASSERT(firstStartupBlock, ASSERT_TEXT); |
| 1886 | MALLOC_ASSERT(startupAllocObjSizeMark==objectSize |
| 1887 | && allocatedCount>0, ASSERT_TEXT); |
| 1888 | MALLOC_ASSERT((uintptr_t)ptr>=(uintptr_t)this+sizeof(StartupBlock) |
| 1889 | && (uintptr_t)ptr+StartupBlock::msize(ptr)<=(uintptr_t)this+slabSize, |
| 1890 | ASSERT_TEXT); |
| 1891 | if (0 == --allocatedCount) { |
| 1892 | if (this == firstStartupBlock) |
| 1893 | firstStartupBlock = (StartupBlock*)firstStartupBlock->next; |
| 1894 | if (previous) |
| 1895 | previous->next = next; |
| 1896 | if (next) |
| 1897 | next->previous = previous; |
| 1898 | blockToRelease = this; |
| 1899 | } else if ((uintptr_t)ptr + StartupBlock::msize(ptr) == (uintptr_t)bumpPtr) { |
| 1900 | // last object in the block released |
| 1901 | FreeObject *newBump = (FreeObject*)((size_t*)ptr - 1); |
| 1902 | MALLOC_ASSERT((uintptr_t)newBump>(uintptr_t)this+sizeof(StartupBlock), |
| 1903 | ASSERT_TEXT); |
| 1904 | bumpPtr = newBump; |
| 1905 | } |
| 1906 | } |
| 1907 | if (blockToRelease) { |
| 1908 | blockToRelease->previous = blockToRelease->next = NULL; |
| 1909 | defaultMemPool->returnEmptyBlock(blockToRelease, /*poolTheBlock=*/false); |
| 1910 | } |
| 1911 | } |
| 1912 | |
| 1913 | #endif /* MALLOC_CHECK_RECURSION */ |
| 1914 | |
| 1915 | /********* End thread related code *************/ |
| 1916 | |
| 1917 | /********* Library initialization *************/ |
| 1918 | |
| 1919 | //! Value indicating the state of initialization. |
| 1920 | /* 0 = initialization not started. |
| 1921 | * 1 = initialization started but not finished. |
| 1922 | * 2 = initialization finished. |
| 1923 | * In theory, we only need values 0 and 2. But value 1 is nonetheless |
| 1924 | * useful for detecting errors in the double-check pattern. |
| 1925 | */ |
| 1926 | static intptr_t mallocInitialized; // implicitly initialized to 0 |
| 1927 | static MallocMutex initMutex; |
| 1928 | |
| 1929 | /** The leading "\0" is here so that applying "strings" to the binary |
| 1930 | delivers a clean result. */ |
| 1931 | static char VersionString[] = "\0" TBBMALLOC_VERSION_STRINGS; |
| 1932 | |
| 1933 | #if USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND) |
| 1934 | |
| 1935 | /* Decrease race interval between dynamic library unloading and pthread key |
| 1936 | destructor. Protect only Pthreads with supported unloading. */ |
| 1937 | class ShutdownSync { |
| 1938 | /* flag is the number of threads in pthread key dtor body |
| 1939 | (i.e., between threadDtorStart() and threadDtorDone()) |
| 1940 | or the signal to skip dtor, if flag < 0 */ |
| 1941 | intptr_t flag; |
| 1942 | static const intptr_t skipDtor = INTPTR_MIN/2; |
| 1943 | public: |
| 1944 | void init() { flag = 0; } |
| 1945 | /* Suppose that 2*abs(skipDtor) or more threads never call threadDtorStart() |
| 1946 | simultaneously, so flag never becomes negative because of that. */ |
| 1947 | bool threadDtorStart() { |
| 1948 | if (flag < 0) |
| 1949 | return false; |
| 1950 | if (AtomicIncrement(flag) <= 0) { // note that new value returned |
| 1951 | AtomicAdd(flag, -1); // flag is spoiled by us, restore it |
| 1952 | return false; |
| 1953 | } |
| 1954 | return true; |
| 1955 | } |
| 1956 | void threadDtorDone() { |
| 1957 | AtomicAdd(flag, -1); |
| 1958 | } |
| 1959 | void processExit() { |
| 1960 | if (AtomicAdd(flag, skipDtor) != 0) |
| 1961 | SpinWaitUntilEq(flag, skipDtor); |
| 1962 | } |
| 1963 | }; |
| 1964 | |
| 1965 | #else |
| 1966 | |
| 1967 | class ShutdownSync { |
| 1968 | public: |
| 1969 | void init() { } |
| 1970 | bool threadDtorStart() { return true; } |
| 1971 | void threadDtorDone() { } |
| 1972 | void processExit() { } |
| 1973 | }; |
| 1974 | |
| 1975 | #endif // USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND) |
| 1976 | |
| 1977 | static ShutdownSync shutdownSync; |
| 1978 | |
| 1979 | inline bool isMallocInitialized() { |
| 1980 | // Load must have acquire fence; otherwise thread taking "initialized" path |
| 1981 | // might perform textually later loads *before* mallocInitialized becomes 2. |
| 1982 | return 2 == FencedLoad(mallocInitialized); |
| 1983 | } |
| 1984 | |
| 1985 | bool isMallocInitializedExt() { |
| 1986 | return isMallocInitialized(); |
| 1987 | } |
| 1988 | |
| 1989 | /* Caller is responsible for ensuring this routine is called exactly once. */ |
| 1990 | extern "C" void MallocInitializeITT() { |
| 1991 | #if DO_ITT_NOTIFY |
| 1992 | if (!usedBySrcIncluded) |
| 1993 | tbb::internal::__TBB_load_ittnotify(); |
| 1994 | #endif |
| 1995 | } |
| 1996 | |
| 1997 | void MemoryPool::initDefaultPool() { |
| 1998 | hugePages.init(); |
| 1999 | } |
| 2000 | |
| 2001 | /* |
| 2002 | * Allocator initialization routine; |
| 2003 | * it is called lazily on the very first scalable_malloc call. |
| 2004 | */ |
| 2005 | static bool initMemoryManager() |
| 2006 | { |
| 2007 | TRACEF(( "[ScalableMalloc trace] sizeof(Block) is %d (expected 128); sizeof(uintptr_t) is %d\n" , |
| 2008 | sizeof(Block), sizeof(uintptr_t) )); |
| 2009 | MALLOC_ASSERT( 2*blockHeaderAlignment == sizeof(Block), ASSERT_TEXT ); |
| 2010 | MALLOC_ASSERT( sizeof(FreeObject) == sizeof(void*), ASSERT_TEXT ); |
| 2011 | MALLOC_ASSERT( isAligned(defaultMemPool, sizeof(intptr_t)), |
| 2012 | "Memory pool must be void*-aligned for atomic to work over aligned arguments." ); |
| 2013 | |
| 2014 | #if USE_WINTHREAD |
| 2015 | const size_t granularity = 64*1024; // granulatity of VirtualAlloc |
| 2016 | #else |
| 2017 | // POSIX.1-2001-compliant way to get page size |
| 2018 | const size_t granularity = sysconf(_SC_PAGESIZE); |
| 2019 | #endif |
| 2020 | if (!defaultMemPool) { |
| 2021 | // Do not rely on static constructors and do the assignment in case |
| 2022 | // of library static section not initialized at this call yet. |
| 2023 | defaultMemPool = (MemoryPool*)defaultMemPool_space; |
| 2024 | } |
| 2025 | bool initOk = defaultMemPool-> |
| 2026 | extMemPool.init(0, NULL, NULL, granularity, |
| 2027 | /*keepAllMemory=*/false, /*fixedPool=*/false); |
| 2028 | // TODO: extMemPool.init() to not allocate memory |
| 2029 | if (!initOk || !initBackRefMaster(&defaultMemPool->extMemPool.backend) || !ThreadId::init()) |
| 2030 | return false; |
| 2031 | MemoryPool::initDefaultPool(); |
| 2032 | // init() is required iff initMemoryManager() is called |
| 2033 | // after mallocProcessShutdownNotification() |
| 2034 | shutdownSync.init(); |
| 2035 | #if COLLECT_STATISTICS |
| 2036 | initStatisticsCollection(); |
| 2037 | #endif |
| 2038 | return true; |
| 2039 | } |
| 2040 | |
| 2041 | static bool GetBoolEnvironmentVariable(const char* name) { |
| 2042 | return tbb::internal::GetBoolEnvironmentVariable(name); |
| 2043 | } |
| 2044 | |
| 2045 | //! Ensures that initMemoryManager() is called once and only once. |
| 2046 | /** Does not return until initMemoryManager() has been completed by a thread. |
| 2047 | There is no need to call this routine if mallocInitialized==2 . */ |
| 2048 | static bool doInitialization() |
| 2049 | { |
| 2050 | MallocMutex::scoped_lock lock( initMutex ); |
| 2051 | if (mallocInitialized!=2) { |
| 2052 | MALLOC_ASSERT( mallocInitialized==0, ASSERT_TEXT ); |
| 2053 | mallocInitialized = 1; |
| 2054 | RecursiveMallocCallProtector scoped; |
| 2055 | if (!initMemoryManager()) { |
| 2056 | mallocInitialized = 0; // restore and out |
| 2057 | return false; |
| 2058 | } |
| 2059 | #ifdef MALLOC_EXTRA_INITIALIZATION |
| 2060 | MALLOC_EXTRA_INITIALIZATION; |
| 2061 | #endif |
| 2062 | #if MALLOC_CHECK_RECURSION |
| 2063 | RecursiveMallocCallProtector::detectNaiveOverload(); |
| 2064 | #endif |
| 2065 | MALLOC_ASSERT( mallocInitialized==1, ASSERT_TEXT ); |
| 2066 | // Store must have release fence, otherwise mallocInitialized==2 |
| 2067 | // might become remotely visible before side effects of |
| 2068 | // initMemoryManager() become remotely visible. |
| 2069 | FencedStore( mallocInitialized, 2 ); |
| 2070 | if( GetBoolEnvironmentVariable("TBB_VERSION" ) ) { |
| 2071 | fputs(VersionString+1,stderr); |
| 2072 | hugePages.printStatus(); |
| 2073 | } |
| 2074 | } |
| 2075 | /* It can't be 0 or I would have initialized it */ |
| 2076 | MALLOC_ASSERT( mallocInitialized==2, ASSERT_TEXT ); |
| 2077 | return true; |
| 2078 | } |
| 2079 | |
| 2080 | /********* End library initialization *************/ |
| 2081 | |
| 2082 | /********* The malloc show begins *************/ |
| 2083 | |
| 2084 | |
| 2085 | FreeObject *Block::allocateFromFreeList() |
| 2086 | { |
| 2087 | FreeObject *result; |
| 2088 | |
| 2089 | if (!freeList) return NULL; |
| 2090 | |
| 2091 | result = freeList; |
| 2092 | MALLOC_ASSERT( result, ASSERT_TEXT ); |
| 2093 | |
| 2094 | freeList = result->next; |
| 2095 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
| 2096 | allocatedCount++; |
| 2097 | STAT_increment(getThreadId(), getIndex(objectSize), allocFreeListUsed); |
| 2098 | |
| 2099 | return result; |
| 2100 | } |
| 2101 | |
| 2102 | FreeObject *Block::allocateFromBumpPtr() |
| 2103 | { |
| 2104 | FreeObject *result = bumpPtr; |
| 2105 | if (result) { |
| 2106 | bumpPtr = (FreeObject *) ((uintptr_t) bumpPtr - objectSize); |
| 2107 | if ( (uintptr_t)bumpPtr < (uintptr_t)this+sizeof(Block) ) { |
| 2108 | bumpPtr = NULL; |
| 2109 | } |
| 2110 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
| 2111 | allocatedCount++; |
| 2112 | STAT_increment(getThreadId(), getIndex(objectSize), allocBumpPtrUsed); |
| 2113 | } |
| 2114 | return result; |
| 2115 | } |
| 2116 | |
| 2117 | inline FreeObject* Block::allocate() |
| 2118 | { |
| 2119 | MALLOC_ASSERT( isOwnedByCurrentThread(), ASSERT_TEXT ); |
| 2120 | |
| 2121 | /* for better cache locality, first looking in the free list. */ |
| 2122 | if ( FreeObject *result = allocateFromFreeList() ) { |
| 2123 | return result; |
| 2124 | } |
| 2125 | MALLOC_ASSERT( !freeList, ASSERT_TEXT ); |
| 2126 | |
| 2127 | /* if free list is empty, try thread local bump pointer allocation. */ |
| 2128 | if ( FreeObject *result = allocateFromBumpPtr() ) { |
| 2129 | return result; |
| 2130 | } |
| 2131 | MALLOC_ASSERT( !bumpPtr, ASSERT_TEXT ); |
| 2132 | |
| 2133 | /* the block is considered full. */ |
| 2134 | isFull = true; |
| 2135 | return NULL; |
| 2136 | } |
| 2137 | |
| 2138 | size_t Block::findObjectSize(void *object) const |
| 2139 | { |
| 2140 | size_t blSize = getSize(); |
| 2141 | #if MALLOC_CHECK_RECURSION |
| 2142 | // Currently, there is no aligned allocations from startup blocks, |
| 2143 | // so we can return just StartupBlock::msize(). |
| 2144 | // TODO: This must be extended if we add aligned allocation from startup blocks. |
| 2145 | if (!blSize) |
| 2146 | return StartupBlock::msize(object); |
| 2147 | #endif |
| 2148 | // object can be aligned, so real size can be less than block's |
| 2149 | size_t size = |
| 2150 | blSize - ((uintptr_t)object - (uintptr_t)findObjectToFree(object)); |
| 2151 | MALLOC_ASSERT(size>0 && size<minLargeObjectSize, ASSERT_TEXT); |
| 2152 | return size; |
| 2153 | } |
| 2154 | |
| 2155 | void Bin::moveBlockToFront(Block *block) |
| 2156 | { |
| 2157 | /* move the block to the front of the bin */ |
| 2158 | if (block == activeBlk) return; |
| 2159 | outofTLSBin(block); |
| 2160 | pushTLSBin(block); |
| 2161 | } |
| 2162 | |
| 2163 | void Bin::processEmptyBlock(Block *block, bool poolTheBlock) |
| 2164 | { |
| 2165 | if (block != activeBlk) { |
| 2166 | /* We are not using this block; return it to the pool */ |
| 2167 | outofTLSBin(block); |
| 2168 | block->getMemPool()->returnEmptyBlock(block, poolTheBlock); |
| 2169 | } else { |
| 2170 | /* all objects are free - let's restore the bump pointer */ |
| 2171 | block->restoreBumpPtr(); |
| 2172 | } |
| 2173 | } |
| 2174 | |
| 2175 | template<int LOW_MARK, int HIGH_MARK> |
| 2176 | bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool) |
| 2177 | { |
| 2178 | const size_t size = object->unalignedSize; |
| 2179 | // not spoil cache with too large object, that can cause its total cleanup |
| 2180 | if (size > MAX_TOTAL_SIZE) |
| 2181 | return false; |
| 2182 | LargeMemoryBlock *localHead = (LargeMemoryBlock*)AtomicFetchStore(&head, 0); |
| 2183 | |
| 2184 | object->prev = NULL; |
| 2185 | object->next = localHead; |
| 2186 | if (localHead) |
| 2187 | localHead->prev = object; |
| 2188 | else { |
| 2189 | // those might not be cleaned during local cache stealing, correct them |
| 2190 | totalSize = 0; |
| 2191 | numOfBlocks = 0; |
| 2192 | tail = object; |
| 2193 | } |
| 2194 | localHead = object; |
| 2195 | totalSize += size; |
| 2196 | numOfBlocks++; |
| 2197 | // must meet both size and number of cached objects constrains |
| 2198 | if (totalSize > MAX_TOTAL_SIZE || numOfBlocks >= HIGH_MARK) { |
| 2199 | // scanning from tail until meet conditions |
| 2200 | while (totalSize > MAX_TOTAL_SIZE || numOfBlocks > LOW_MARK) { |
| 2201 | totalSize -= tail->unalignedSize; |
| 2202 | numOfBlocks--; |
| 2203 | tail = tail->prev; |
| 2204 | } |
| 2205 | LargeMemoryBlock *headToRelease = tail->next; |
| 2206 | tail->next = NULL; |
| 2207 | |
| 2208 | extMemPool->freeLargeObjectList(headToRelease); |
| 2209 | } |
| 2210 | |
| 2211 | FencedStore((intptr_t&)head, (intptr_t)localHead); |
| 2212 | return true; |
| 2213 | } |
| 2214 | |
| 2215 | template<int LOW_MARK, int HIGH_MARK> |
| 2216 | LargeMemoryBlock *LocalLOCImpl<LOW_MARK, HIGH_MARK>::get(size_t size) |
| 2217 | { |
| 2218 | LargeMemoryBlock *localHead, *res=NULL; |
| 2219 | |
| 2220 | if (size > MAX_TOTAL_SIZE) |
| 2221 | return NULL; |
| 2222 | |
| 2223 | if (!head || (localHead = (LargeMemoryBlock*)AtomicFetchStore(&head, 0)) == NULL) { |
| 2224 | // do not restore totalSize, numOfBlocks and tail at this point, |
| 2225 | // as they are used only in put(), where they must be restored |
| 2226 | return NULL; |
| 2227 | } |
| 2228 | |
| 2229 | for (LargeMemoryBlock *curr = localHead; curr; curr=curr->next) { |
| 2230 | if (curr->unalignedSize == size) { |
| 2231 | res = curr; |
| 2232 | if (curr->next) |
| 2233 | curr->next->prev = curr->prev; |
| 2234 | else |
| 2235 | tail = curr->prev; |
| 2236 | if (curr != localHead) |
| 2237 | curr->prev->next = curr->next; |
| 2238 | else |
| 2239 | localHead = curr->next; |
| 2240 | totalSize -= size; |
| 2241 | numOfBlocks--; |
| 2242 | break; |
| 2243 | } |
| 2244 | } |
| 2245 | FencedStore((intptr_t&)head, (intptr_t)localHead); |
| 2246 | return res; |
| 2247 | } |
| 2248 | |
| 2249 | template<int LOW_MARK, int HIGH_MARK> |
| 2250 | bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::externalCleanup(ExtMemoryPool *extMemPool) |
| 2251 | { |
| 2252 | if (LargeMemoryBlock *localHead = (LargeMemoryBlock*)AtomicFetchStore(&head, 0)) { |
| 2253 | extMemPool->freeLargeObjectList(localHead); |
| 2254 | return true; |
| 2255 | } |
| 2256 | return false; |
| 2257 | } |
| 2258 | |
| 2259 | void *MemoryPool::getFromLLOCache(TLSData* tls, size_t size, size_t alignment) |
| 2260 | { |
| 2261 | LargeMemoryBlock *lmb = NULL; |
| 2262 | |
| 2263 | size_t = sizeof(LargeMemoryBlock)+sizeof(LargeObjectHdr); |
| 2264 | size_t allocationSize = LargeObjectCache::alignToBin(size+headersSize+alignment); |
| 2265 | if (allocationSize < size) // allocationSize is wrapped around after alignToBin |
| 2266 | return NULL; |
| 2267 | MALLOC_ASSERT(allocationSize >= alignment, "Overflow must be checked before." ); |
| 2268 | |
| 2269 | if (tls) { |
| 2270 | tls->markUsed(); |
| 2271 | lmb = tls->lloc.get(allocationSize); |
| 2272 | } |
| 2273 | if (!lmb) |
| 2274 | lmb = extMemPool.mallocLargeObject(this, allocationSize); |
| 2275 | |
| 2276 | if (lmb) { |
| 2277 | // doing shuffle we suppose that alignment offset guarantees |
| 2278 | // that different cache lines are in use |
| 2279 | MALLOC_ASSERT(alignment >= estimatedCacheLineSize, ASSERT_TEXT); |
| 2280 | |
| 2281 | void *alignedArea = (void*)alignUp((uintptr_t)lmb+headersSize, alignment); |
| 2282 | uintptr_t alignedRight = |
| 2283 | alignDown((uintptr_t)lmb+lmb->unalignedSize - size, alignment); |
| 2284 | // Has some room to shuffle object between cache lines? |
| 2285 | // Note that alignedRight and alignedArea are aligned at alignment. |
| 2286 | unsigned ptrDelta = alignedRight - (uintptr_t)alignedArea; |
| 2287 | if (ptrDelta && tls) { // !tls is cold path |
| 2288 | // for the hot path of alignment==estimatedCacheLineSize, |
| 2289 | // allow compilers to use shift for division |
| 2290 | // (since estimatedCacheLineSize is a power-of-2 constant) |
| 2291 | unsigned numOfPossibleOffsets = alignment == estimatedCacheLineSize? |
| 2292 | ptrDelta / estimatedCacheLineSize : |
| 2293 | ptrDelta / alignment; |
| 2294 | unsigned myCacheIdx = ++tls->currCacheIdx; |
| 2295 | unsigned offset = myCacheIdx % numOfPossibleOffsets; |
| 2296 | |
| 2297 | // Move object to a cache line with an offset that is different from |
| 2298 | // previous allocation. This supposedly allows us to use cache |
| 2299 | // associativity more efficiently. |
| 2300 | alignedArea = (void*)((uintptr_t)alignedArea + offset*alignment); |
| 2301 | } |
| 2302 | MALLOC_ASSERT((uintptr_t)lmb+lmb->unalignedSize >= |
| 2303 | (uintptr_t)alignedArea+size, "Object doesn't fit the block." ); |
| 2304 | LargeObjectHdr * = (LargeObjectHdr*)alignedArea-1; |
| 2305 | header->memoryBlock = lmb; |
| 2306 | header->backRefIdx = lmb->backRefIdx; |
| 2307 | setBackRef(header->backRefIdx, header); |
| 2308 | |
| 2309 | lmb->objectSize = size; |
| 2310 | |
| 2311 | MALLOC_ASSERT( isLargeObject<unknownMem>(alignedArea), ASSERT_TEXT ); |
| 2312 | MALLOC_ASSERT( isAligned(alignedArea, alignment), ASSERT_TEXT ); |
| 2313 | |
| 2314 | return alignedArea; |
| 2315 | } |
| 2316 | return NULL; |
| 2317 | } |
| 2318 | |
| 2319 | void MemoryPool::putToLLOCache(TLSData *tls, void *object) |
| 2320 | { |
| 2321 | LargeObjectHdr * = (LargeObjectHdr*)object - 1; |
| 2322 | // overwrite backRefIdx to simplify double free detection |
| 2323 | header->backRefIdx = BackRefIdx(); |
| 2324 | |
| 2325 | if (tls) { |
| 2326 | tls->markUsed(); |
| 2327 | if (tls->lloc.put(header->memoryBlock, &extMemPool)) |
| 2328 | return; |
| 2329 | } |
| 2330 | extMemPool.freeLargeObject(header->memoryBlock); |
| 2331 | } |
| 2332 | |
| 2333 | /* |
| 2334 | * All aligned allocations fall into one of the following categories: |
| 2335 | * 1. if both request size and alignment are <= maxSegregatedObjectSize, |
| 2336 | * we just align the size up, and request this amount, because for every size |
| 2337 | * aligned to some power of 2, the allocated object is at least that aligned. |
| 2338 | * 2. for size<minLargeObjectSize, check if already guaranteed fittingAlignment is enough. |
| 2339 | * 3. if size+alignment<minLargeObjectSize, we take an object of fittingSizeN and align |
| 2340 | * its address up; given such pointer, scalable_free could find the real object. |
| 2341 | * Wrapping of size+alignment is impossible because maximal allowed |
| 2342 | * alignment plus minLargeObjectSize can't lead to wrapping. |
| 2343 | * 4. otherwise, aligned large object is allocated. |
| 2344 | */ |
| 2345 | static void *allocateAligned(MemoryPool *memPool, size_t size, size_t alignment) |
| 2346 | { |
| 2347 | MALLOC_ASSERT( isPowerOfTwo(alignment), ASSERT_TEXT ); |
| 2348 | |
| 2349 | if (!isMallocInitialized()) |
| 2350 | if (!doInitialization()) |
| 2351 | return NULL; |
| 2352 | |
| 2353 | void *result; |
| 2354 | if (size<=maxSegregatedObjectSize && alignment<=maxSegregatedObjectSize) |
| 2355 | result = internalPoolMalloc(memPool, alignUp(size? size: sizeof(size_t), alignment)); |
| 2356 | else if (size<minLargeObjectSize) { |
| 2357 | if (alignment<=fittingAlignment) |
| 2358 | result = internalPoolMalloc(memPool, size); |
| 2359 | else if (size+alignment < minLargeObjectSize) { |
| 2360 | void *unaligned = internalPoolMalloc(memPool, size+alignment); |
| 2361 | if (!unaligned) return NULL; |
| 2362 | result = alignUp(unaligned, alignment); |
| 2363 | } else |
| 2364 | goto LargeObjAlloc; |
| 2365 | } else { |
| 2366 | LargeObjAlloc: |
| 2367 | TLSData *tls = memPool->getTLS(/*create=*/true); |
| 2368 | // take into account only alignment that are higher then natural |
| 2369 | result = |
| 2370 | memPool->getFromLLOCache(tls, size, largeObjectAlignment>alignment? |
| 2371 | largeObjectAlignment: alignment); |
| 2372 | } |
| 2373 | |
| 2374 | MALLOC_ASSERT( isAligned(result, alignment), ASSERT_TEXT ); |
| 2375 | return result; |
| 2376 | } |
| 2377 | |
| 2378 | static void *reallocAligned(MemoryPool *memPool, void *ptr, |
| 2379 | size_t newSize, size_t alignment = 0) |
| 2380 | { |
| 2381 | void *result; |
| 2382 | size_t copySize; |
| 2383 | |
| 2384 | if (isLargeObject<ourMem>(ptr)) { |
| 2385 | LargeMemoryBlock* lmb = ((LargeObjectHdr *)ptr - 1)->memoryBlock; |
| 2386 | copySize = lmb->unalignedSize-((uintptr_t)ptr-(uintptr_t)lmb); |
| 2387 | |
| 2388 | // Apply different strategies if size decreases |
| 2389 | if (newSize <= copySize && (0 == alignment || isAligned(ptr, alignment))) { |
| 2390 | |
| 2391 | // For huge objects (that do not fit in backend cache), keep the same space unless |
| 2392 | // the new size is at least twice smaller |
| 2393 | bool isMemoryBlockHuge = copySize > memPool->extMemPool.backend.getMaxBinnedSize(); |
| 2394 | size_t threshold = isMemoryBlockHuge ? copySize / 2 : 0; |
| 2395 | if (newSize > threshold) { |
| 2396 | lmb->objectSize = newSize; |
| 2397 | return ptr; |
| 2398 | } |
| 2399 | // TODO: For large objects suitable for the backend cache, |
| 2400 | // split out the excessive part and put it to the backend. |
| 2401 | } |
| 2402 | // Reallocate for real |
| 2403 | copySize = lmb->objectSize; |
| 2404 | #if BACKEND_HAS_MREMAP |
| 2405 | if (void *r = memPool->extMemPool.remap(ptr, copySize, newSize, |
| 2406 | alignment < largeObjectAlignment ? largeObjectAlignment : alignment)) |
| 2407 | return r; |
| 2408 | #endif |
| 2409 | result = alignment ? allocateAligned(memPool, newSize, alignment) : |
| 2410 | internalPoolMalloc(memPool, newSize); |
| 2411 | |
| 2412 | } else { |
| 2413 | Block* block = (Block *)alignDown(ptr, slabSize); |
| 2414 | copySize = block->findObjectSize(ptr); |
| 2415 | |
| 2416 | // TODO: Move object to another bin if size decreases and the current bin is "empty enough". |
| 2417 | // Currently, in case of size decreasing, old pointer is returned |
| 2418 | if (newSize <= copySize && (0==alignment || isAligned(ptr, alignment))) { |
| 2419 | return ptr; |
| 2420 | } else { |
| 2421 | result = alignment ? allocateAligned(memPool, newSize, alignment) : |
| 2422 | internalPoolMalloc(memPool, newSize); |
| 2423 | } |
| 2424 | } |
| 2425 | if (result) { |
| 2426 | memcpy(result, ptr, copySize < newSize ? copySize : newSize); |
| 2427 | internalPoolFree(memPool, ptr, 0); |
| 2428 | } |
| 2429 | return result; |
| 2430 | } |
| 2431 | |
| 2432 | /* A predicate checks if an object is properly placed inside its block */ |
| 2433 | inline bool Block::isProperlyPlaced(const void *object) const |
| 2434 | { |
| 2435 | return 0 == ((uintptr_t)this + slabSize - (uintptr_t)object) % objectSize; |
| 2436 | } |
| 2437 | |
| 2438 | /* Finds the real object inside the block */ |
| 2439 | FreeObject *Block::findAllocatedObject(const void *address) const |
| 2440 | { |
| 2441 | // calculate offset from the end of the block space |
| 2442 | uint16_t offset = (uintptr_t)this + slabSize - (uintptr_t)address; |
| 2443 | MALLOC_ASSERT( offset<=slabSize-sizeof(Block), ASSERT_TEXT ); |
| 2444 | // find offset difference from a multiple of allocation size |
| 2445 | offset %= objectSize; |
| 2446 | // and move the address down to where the real object starts. |
| 2447 | return (FreeObject*)((uintptr_t)address - (offset? objectSize-offset: 0)); |
| 2448 | } |
| 2449 | |
| 2450 | /* |
| 2451 | * Bad dereference caused by a foreign pointer is possible only here, not earlier in call chain. |
| 2452 | * Separate function isolates SEH code, as it has bad influence on compiler optimization. |
| 2453 | */ |
| 2454 | static inline BackRefIdx safer_dereference (const BackRefIdx *ptr) |
| 2455 | { |
| 2456 | BackRefIdx id; |
| 2457 | #if _MSC_VER |
| 2458 | __try { |
| 2459 | #endif |
| 2460 | id = *ptr; |
| 2461 | #if _MSC_VER |
| 2462 | } __except( GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION? |
| 2463 | EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH ) { |
| 2464 | id = BackRefIdx(); |
| 2465 | } |
| 2466 | #endif |
| 2467 | return id; |
| 2468 | } |
| 2469 | |
| 2470 | template<MemoryOrigin memOrigin> |
| 2471 | bool isLargeObject(void *object) |
| 2472 | { |
| 2473 | if (!isAligned(object, largeObjectAlignment)) |
| 2474 | return false; |
| 2475 | LargeObjectHdr * = (LargeObjectHdr*)object - 1; |
| 2476 | BackRefIdx idx = (memOrigin == unknownMem) ? |
| 2477 | safer_dereference(&header->backRefIdx) : header->backRefIdx; |
| 2478 | |
| 2479 | return idx.isLargeObject() |
| 2480 | // in valid LargeObjectHdr memoryBlock is not NULL |
| 2481 | && header->memoryBlock |
| 2482 | // in valid LargeObjectHdr memoryBlock points somewhere before header |
| 2483 | // TODO: more strict check |
| 2484 | && (uintptr_t)header->memoryBlock < (uintptr_t)header |
| 2485 | && getBackRef(idx) == header; |
| 2486 | } |
| 2487 | |
| 2488 | static inline bool isSmallObject (void *ptr) |
| 2489 | { |
| 2490 | Block* expectedBlock = (Block*)alignDown(ptr, slabSize); |
| 2491 | const BackRefIdx* idx = expectedBlock->getBackRefIdx(); |
| 2492 | |
| 2493 | bool isSmall = expectedBlock == getBackRef(safer_dereference(idx)); |
| 2494 | if (isSmall) |
| 2495 | expectedBlock->checkFreePrecond(ptr); |
| 2496 | return isSmall; |
| 2497 | } |
| 2498 | |
| 2499 | /**** Check if an object was allocated by scalable_malloc ****/ |
| 2500 | static inline bool isRecognized (void* ptr) |
| 2501 | { |
| 2502 | return defaultMemPool->extMemPool.backend.ptrCanBeValid(ptr) && |
| 2503 | (isLargeObject<unknownMem>(ptr) || isSmallObject(ptr)); |
| 2504 | } |
| 2505 | |
| 2506 | static inline void freeSmallObject(void *object) |
| 2507 | { |
| 2508 | /* mask low bits to get the block */ |
| 2509 | Block *block = (Block *)alignDown(object, slabSize); |
| 2510 | block->checkFreePrecond(object); |
| 2511 | |
| 2512 | #if MALLOC_CHECK_RECURSION |
| 2513 | if (block->isStartupAllocObject()) { |
| 2514 | ((StartupBlock *)block)->free(object); |
| 2515 | return; |
| 2516 | } |
| 2517 | #endif |
| 2518 | if (block->isOwnedByCurrentThread()) { |
| 2519 | block->freeOwnObject(object); |
| 2520 | } else { /* Slower path to add to the shared list, the allocatedCount is updated by the owner thread in malloc. */ |
| 2521 | FreeObject *objectToFree = block->findObjectToFree(object); |
| 2522 | block->freePublicObject(objectToFree); |
| 2523 | } |
| 2524 | } |
| 2525 | |
| 2526 | static void *internalPoolMalloc(MemoryPool* memPool, size_t size) |
| 2527 | { |
| 2528 | Bin* bin; |
| 2529 | Block * mallocBlock; |
| 2530 | |
| 2531 | if (!memPool) return NULL; |
| 2532 | |
| 2533 | if (!size) size = sizeof(size_t); |
| 2534 | |
| 2535 | TLSData *tls = memPool->getTLS(/*create=*/true); |
| 2536 | |
| 2537 | /* Allocate a large object */ |
| 2538 | if (size >= minLargeObjectSize) |
| 2539 | return memPool->getFromLLOCache(tls, size, largeObjectAlignment); |
| 2540 | |
| 2541 | if (!tls) return NULL; |
| 2542 | |
| 2543 | tls->markUsed(); |
| 2544 | /* |
| 2545 | * Get an element in thread-local array corresponding to the given size; |
| 2546 | * It keeps ptr to the active block for allocations of this size |
| 2547 | */ |
| 2548 | bin = tls->getAllocationBin(size); |
| 2549 | if ( !bin ) return NULL; |
| 2550 | |
| 2551 | /* Get a block to try to allocate in. */ |
| 2552 | for( mallocBlock = bin->getActiveBlock(); mallocBlock; |
| 2553 | mallocBlock = bin->setPreviousBlockActive() ) // the previous block should be empty enough |
| 2554 | { |
| 2555 | if( FreeObject *result = mallocBlock->allocate() ) |
| 2556 | return result; |
| 2557 | } |
| 2558 | |
| 2559 | /* |
| 2560 | * else privatize publicly freed objects in some block and allocate from it |
| 2561 | */ |
| 2562 | mallocBlock = bin->getPrivatizedFreeListBlock(); |
| 2563 | if (mallocBlock) { |
| 2564 | MALLOC_ASSERT( mallocBlock->freeListNonNull(), ASSERT_TEXT ); |
| 2565 | if ( FreeObject *result = mallocBlock->allocateFromFreeList() ) |
| 2566 | return result; |
| 2567 | /* Else something strange happened, need to retry from the beginning; */ |
| 2568 | TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in public free list; reentering.\n" )); |
| 2569 | return internalPoolMalloc(memPool, size); |
| 2570 | } |
| 2571 | |
| 2572 | /* |
| 2573 | * no suitable own blocks, try to get a partial block that some other thread has discarded. |
| 2574 | */ |
| 2575 | mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size); |
| 2576 | while (mallocBlock) { |
| 2577 | bin->pushTLSBin(mallocBlock); |
| 2578 | bin->setActiveBlock(mallocBlock); // TODO: move under the below condition? |
| 2579 | if( FreeObject *result = mallocBlock->allocate() ) |
| 2580 | return result; |
| 2581 | mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size); |
| 2582 | } |
| 2583 | |
| 2584 | /* |
| 2585 | * else try to get a new empty block |
| 2586 | */ |
| 2587 | mallocBlock = memPool->getEmptyBlock(size); |
| 2588 | if (mallocBlock) { |
| 2589 | bin->pushTLSBin(mallocBlock); |
| 2590 | bin->setActiveBlock(mallocBlock); |
| 2591 | if( FreeObject *result = mallocBlock->allocate() ) |
| 2592 | return result; |
| 2593 | /* Else something strange happened, need to retry from the beginning; */ |
| 2594 | TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in empty block; reentering.\n" )); |
| 2595 | return internalPoolMalloc(memPool, size); |
| 2596 | } |
| 2597 | /* |
| 2598 | * else nothing works so return NULL |
| 2599 | */ |
| 2600 | TRACEF(( "[ScalableMalloc trace] No memory found, returning NULL.\n" )); |
| 2601 | return NULL; |
| 2602 | } |
| 2603 | |
| 2604 | // When size==0 (i.e. unknown), detect here whether the object is large. |
| 2605 | // For size is known and < minLargeObjectSize, we still need to check |
| 2606 | // if the actual object is large, because large objects might be used |
| 2607 | // for aligned small allocations. |
| 2608 | static bool internalPoolFree(MemoryPool *memPool, void *object, size_t size) |
| 2609 | { |
| 2610 | if (!memPool || !object) return false; |
| 2611 | |
| 2612 | // The library is initialized at allocation call, so releasing while |
| 2613 | // not initialized means foreign object is releasing. |
| 2614 | MALLOC_ASSERT(isMallocInitialized(), ASSERT_TEXT); |
| 2615 | MALLOC_ASSERT(memPool->extMemPool.userPool() || isRecognized(object), |
| 2616 | "Invalid pointer during object releasing is detected." ); |
| 2617 | |
| 2618 | if (size >= minLargeObjectSize || isLargeObject<ourMem>(object)) |
| 2619 | memPool->putToLLOCache(memPool->getTLS(/*create=*/false), object); |
| 2620 | else |
| 2621 | freeSmallObject(object); |
| 2622 | return true; |
| 2623 | } |
| 2624 | |
| 2625 | static void *internalMalloc(size_t size) |
| 2626 | { |
| 2627 | if (!size) size = sizeof(size_t); |
| 2628 | |
| 2629 | #if MALLOC_CHECK_RECURSION |
| 2630 | if (RecursiveMallocCallProtector::sameThreadActive()) |
| 2631 | return size<minLargeObjectSize? StartupBlock::allocate(size) : |
| 2632 | // nested allocation, so skip tls |
| 2633 | (FreeObject*)defaultMemPool->getFromLLOCache(NULL, size, slabSize); |
| 2634 | #endif |
| 2635 | |
| 2636 | if (!isMallocInitialized()) |
| 2637 | if (!doInitialization()) |
| 2638 | return NULL; |
| 2639 | return internalPoolMalloc(defaultMemPool, size); |
| 2640 | } |
| 2641 | |
| 2642 | static void internalFree(void *object) |
| 2643 | { |
| 2644 | internalPoolFree(defaultMemPool, object, 0); |
| 2645 | } |
| 2646 | |
| 2647 | static size_t internalMsize(void* ptr) |
| 2648 | { |
| 2649 | MALLOC_ASSERT(ptr, "Invalid pointer passed to internalMsize" ); |
| 2650 | if (isLargeObject<ourMem>(ptr)) { |
| 2651 | // TODO: return the maximum memory size, that can be written to this object |
| 2652 | LargeMemoryBlock* lmb = ((LargeObjectHdr*)ptr - 1)->memoryBlock; |
| 2653 | return lmb->objectSize; |
| 2654 | } else { |
| 2655 | Block *block = (Block*)alignDown(ptr, slabSize); |
| 2656 | return block->findObjectSize(ptr); |
| 2657 | } |
| 2658 | } |
| 2659 | |
| 2660 | } // namespace internal |
| 2661 | |
| 2662 | using namespace rml::internal; |
| 2663 | |
| 2664 | // legacy entry point saved for compatibility with binaries complied |
| 2665 | // with pre-6003 versions of TBB |
| 2666 | rml::MemoryPool *pool_create(intptr_t pool_id, const MemPoolPolicy *policy) |
| 2667 | { |
| 2668 | rml::MemoryPool *pool; |
| 2669 | MemPoolPolicy pol(policy->pAlloc, policy->pFree, policy->granularity); |
| 2670 | |
| 2671 | pool_create_v1(pool_id, &pol, &pool); |
| 2672 | return pool; |
| 2673 | } |
| 2674 | |
| 2675 | rml::MemPoolError pool_create_v1(intptr_t pool_id, const MemPoolPolicy *policy, |
| 2676 | rml::MemoryPool **pool) |
| 2677 | { |
| 2678 | if ( !policy->pAlloc || policy->version<MemPoolPolicy::TBBMALLOC_POOL_VERSION |
| 2679 | // empty pFree allowed only for fixed pools |
| 2680 | || !(policy->fixedPool || policy->pFree)) { |
| 2681 | *pool = NULL; |
| 2682 | return INVALID_POLICY; |
| 2683 | } |
| 2684 | if ( policy->version>MemPoolPolicy::TBBMALLOC_POOL_VERSION // future versions are not supported |
| 2685 | // new flags can be added in place of reserved, but default |
| 2686 | // behaviour must be supported by this version |
| 2687 | || policy->reserved ) { |
| 2688 | *pool = NULL; |
| 2689 | return UNSUPPORTED_POLICY; |
| 2690 | } |
| 2691 | if (!isMallocInitialized()) |
| 2692 | if (!doInitialization()) { |
| 2693 | *pool = NULL; |
| 2694 | return NO_MEMORY; |
| 2695 | } |
| 2696 | rml::internal::MemoryPool *memPool = |
| 2697 | (rml::internal::MemoryPool*)internalMalloc((sizeof(rml::internal::MemoryPool))); |
| 2698 | if (!memPool) { |
| 2699 | *pool = NULL; |
| 2700 | return NO_MEMORY; |
| 2701 | } |
| 2702 | memset(memPool, 0, sizeof(rml::internal::MemoryPool)); |
| 2703 | if (!memPool->init(pool_id, policy)) { |
| 2704 | internalFree(memPool); |
| 2705 | *pool = NULL; |
| 2706 | return NO_MEMORY; |
| 2707 | } |
| 2708 | |
| 2709 | *pool = (rml::MemoryPool*)memPool; |
| 2710 | return POOL_OK; |
| 2711 | } |
| 2712 | |
| 2713 | bool pool_destroy(rml::MemoryPool* memPool) |
| 2714 | { |
| 2715 | if (!memPool) return false; |
| 2716 | bool ret = ((rml::internal::MemoryPool*)memPool)->destroy(); |
| 2717 | internalFree(memPool); |
| 2718 | |
| 2719 | return ret; |
| 2720 | } |
| 2721 | |
| 2722 | bool pool_reset(rml::MemoryPool* memPool) |
| 2723 | { |
| 2724 | if (!memPool) return false; |
| 2725 | |
| 2726 | return ((rml::internal::MemoryPool*)memPool)->reset(); |
| 2727 | } |
| 2728 | |
| 2729 | void *pool_malloc(rml::MemoryPool* mPool, size_t size) |
| 2730 | { |
| 2731 | return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size); |
| 2732 | } |
| 2733 | |
| 2734 | void *pool_realloc(rml::MemoryPool* mPool, void *object, size_t size) |
| 2735 | { |
| 2736 | if (!object) |
| 2737 | return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size); |
| 2738 | if (!size) { |
| 2739 | internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0); |
| 2740 | return NULL; |
| 2741 | } |
| 2742 | return reallocAligned((rml::internal::MemoryPool*)mPool, object, size, 0); |
| 2743 | } |
| 2744 | |
| 2745 | void *pool_aligned_malloc(rml::MemoryPool* mPool, size_t size, size_t alignment) |
| 2746 | { |
| 2747 | if (!isPowerOfTwo(alignment) || 0==size) |
| 2748 | return NULL; |
| 2749 | |
| 2750 | return allocateAligned((rml::internal::MemoryPool*)mPool, size, alignment); |
| 2751 | } |
| 2752 | |
| 2753 | void *pool_aligned_realloc(rml::MemoryPool* memPool, void *ptr, size_t size, size_t alignment) |
| 2754 | { |
| 2755 | if (!isPowerOfTwo(alignment)) |
| 2756 | return NULL; |
| 2757 | rml::internal::MemoryPool *mPool = (rml::internal::MemoryPool*)memPool; |
| 2758 | void *tmp; |
| 2759 | |
| 2760 | if (!ptr) |
| 2761 | tmp = allocateAligned(mPool, size, alignment); |
| 2762 | else if (!size) { |
| 2763 | internalPoolFree(mPool, ptr, 0); |
| 2764 | return NULL; |
| 2765 | } else |
| 2766 | tmp = reallocAligned(mPool, ptr, size, alignment); |
| 2767 | |
| 2768 | return tmp; |
| 2769 | } |
| 2770 | |
| 2771 | bool pool_free(rml::MemoryPool *mPool, void *object) |
| 2772 | { |
| 2773 | return internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0); |
| 2774 | } |
| 2775 | |
| 2776 | rml::MemoryPool *pool_identify(void *object) |
| 2777 | { |
| 2778 | rml::internal::MemoryPool *pool; |
| 2779 | if (isLargeObject<ourMem>(object)) { |
| 2780 | LargeObjectHdr * = (LargeObjectHdr*)object - 1; |
| 2781 | pool = header->memoryBlock->pool; |
| 2782 | } else { |
| 2783 | Block *block = (Block*)alignDown(object, slabSize); |
| 2784 | pool = block->getMemPool(); |
| 2785 | } |
| 2786 | // do not return defaultMemPool, as it can't be used in pool_free() etc |
| 2787 | __TBB_ASSERT_RELEASE(pool!=defaultMemPool, |
| 2788 | "rml::pool_identify() can't be used for scalable_malloc() etc results." ); |
| 2789 | return (rml::MemoryPool*)pool; |
| 2790 | } |
| 2791 | |
| 2792 | size_t pool_msize(rml::MemoryPool *mPool, void* object) |
| 2793 | { |
| 2794 | if (object) { |
| 2795 | // No assert for object recognition, cause objects allocated from non-default |
| 2796 | // memory pool do not participate in range checking and do not have valid backreferences for |
| 2797 | // small objects. Instead, check that an object belong to the certain memory pool. |
| 2798 | MALLOC_ASSERT_EX(mPool == pool_identify(object), "Object does not belong to the specified pool" ); |
| 2799 | return internalMsize(object); |
| 2800 | } |
| 2801 | errno = EINVAL; |
| 2802 | // Unlike _msize, return 0 in case of parameter error. |
| 2803 | // Returning size_t(-1) looks more like the way to troubles. |
| 2804 | return 0; |
| 2805 | } |
| 2806 | |
| 2807 | } // namespace rml |
| 2808 | |
| 2809 | using namespace rml::internal; |
| 2810 | |
| 2811 | #if MALLOC_TRACE |
| 2812 | static unsigned int threadGoingDownCount = 0; |
| 2813 | #endif |
| 2814 | |
| 2815 | /* |
| 2816 | * When a thread is shutting down this routine should be called to remove all the thread ids |
| 2817 | * from the malloc blocks and replace them with a NULL thread id. |
| 2818 | * |
| 2819 | * For pthreads, the function is set as a callback in pthread_key_create for TLS bin. |
| 2820 | * It will be automatically called at thread exit with the key value as the argument, |
| 2821 | * unless that value is NULL. |
| 2822 | * For Windows, it is called from DllMain( DLL_THREAD_DETACH ). |
| 2823 | * |
| 2824 | * However neither of the above is called for the main process thread, so the routine |
| 2825 | * also needs to be called during the process shutdown. |
| 2826 | * |
| 2827 | */ |
| 2828 | // TODO: Consider making this function part of class MemoryPool. |
| 2829 | void doThreadShutdownNotification(TLSData* tls, bool main_thread) |
| 2830 | { |
| 2831 | TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return start %d\n" , |
| 2832 | getThreadId(), threadGoingDownCount++ )); |
| 2833 | |
| 2834 | #if USE_PTHREAD |
| 2835 | if (tls) { |
| 2836 | if (!shutdownSync.threadDtorStart()) return; |
| 2837 | tls->getMemPool()->onThreadShutdown(tls); |
| 2838 | shutdownSync.threadDtorDone(); |
| 2839 | } else |
| 2840 | #endif |
| 2841 | { |
| 2842 | suppress_unused_warning(tls); // not used on Windows |
| 2843 | // The default pool is safe to use at this point: |
| 2844 | // on Linux, only the main thread can go here before destroying defaultMemPool; |
| 2845 | // on Windows, shutdown is synchronized via loader lock and isMallocInitialized(). |
| 2846 | // See also __TBB_mallocProcessShutdownNotification() |
| 2847 | defaultMemPool->onThreadShutdown(defaultMemPool->getTLS(/*create=*/false)); |
| 2848 | // Take lock to walk through other pools; but waiting might be dangerous at this point |
| 2849 | // (e.g. on Windows the main thread might deadlock) |
| 2850 | bool locked; |
| 2851 | MallocMutex::scoped_lock lock(MemoryPool::memPoolListLock, /*wait=*/!main_thread, &locked); |
| 2852 | if (locked) { // the list is safe to process |
| 2853 | for (MemoryPool *memPool = defaultMemPool->next; memPool; memPool = memPool->next) |
| 2854 | memPool->onThreadShutdown(memPool->getTLS(/*create=*/false)); |
| 2855 | } |
| 2856 | } |
| 2857 | |
| 2858 | TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return end\n" , getThreadId() )); |
| 2859 | } |
| 2860 | |
| 2861 | #if USE_PTHREAD |
| 2862 | void mallocThreadShutdownNotification(void* arg) |
| 2863 | { |
| 2864 | // The routine is called for each pool (as TLS dtor) on each thread, except for the main thread |
| 2865 | if (!isMallocInitialized()) return; |
| 2866 | doThreadShutdownNotification((TLSData*)arg, false); |
| 2867 | } |
| 2868 | #else |
| 2869 | extern "C" void __TBB_mallocThreadShutdownNotification() |
| 2870 | { |
| 2871 | // The routine is called once per thread on Windows |
| 2872 | if (!isMallocInitialized()) return; |
| 2873 | doThreadShutdownNotification(NULL, false); |
| 2874 | } |
| 2875 | #endif |
| 2876 | |
| 2877 | extern "C" void __TBB_mallocProcessShutdownNotification(bool windows_process_dying) |
| 2878 | { |
| 2879 | if (!isMallocInitialized()) return; |
| 2880 | |
| 2881 | // Don't clean allocator internals if the entire process is exiting |
| 2882 | if (!windows_process_dying) { |
| 2883 | doThreadShutdownNotification(NULL, /*main_thread=*/true); |
| 2884 | } |
| 2885 | #if __TBB_MALLOC_LOCACHE_STAT |
| 2886 | printf("cache hit ratio %f, size hit %f\n" , |
| 2887 | 1.*cacheHits/mallocCalls, 1.*memHitKB/memAllocKB); |
| 2888 | defaultMemPool->extMemPool.loc.reportStat(stdout); |
| 2889 | #endif |
| 2890 | |
| 2891 | shutdownSync.processExit(); |
| 2892 | #if __TBB_SOURCE_DIRECTLY_INCLUDED |
| 2893 | /* Pthread keys must be deleted as soon as possible to not call key dtor |
| 2894 | on thread termination when then the tbbmalloc code can be already unloaded. |
| 2895 | */ |
| 2896 | defaultMemPool->destroy(); |
| 2897 | destroyBackRefMaster(&defaultMemPool->extMemPool.backend); |
| 2898 | ThreadId::destroy(); // Delete key for thread id |
| 2899 | hugePages.reset(); |
| 2900 | // new total malloc initialization is possible after this point |
| 2901 | FencedStore(mallocInitialized, 0); |
| 2902 | #elif __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND |
| 2903 | /* In most cases we prevent unloading tbbmalloc, and don't clean up memory |
| 2904 | on process shutdown. When impossible to prevent, library unload results |
| 2905 | in shutdown notification, and it makes sense to release unused memory |
| 2906 | at that point (we can't release all memory because it's possible that |
| 2907 | it will be accessed after this point). |
| 2908 | TODO: better support systems where we can't prevent unloading by removing |
| 2909 | pthread destructors and releasing caches. |
| 2910 | */ |
| 2911 | defaultMemPool->extMemPool.hardCachesCleanup(); |
| 2912 | #endif // __TBB_SOURCE_DIRECTLY_INCLUDED |
| 2913 | |
| 2914 | #if COLLECT_STATISTICS |
| 2915 | unsigned nThreads = ThreadId::getMaxThreadId(); |
| 2916 | for( int i=1; i<=nThreads && i<MAX_THREADS; ++i ) |
| 2917 | STAT_print(i); |
| 2918 | #endif |
| 2919 | if (!usedBySrcIncluded) |
| 2920 | MALLOC_ITT_FINI_ITTLIB(); |
| 2921 | } |
| 2922 | |
| 2923 | extern "C" void * scalable_malloc(size_t size) |
| 2924 | { |
| 2925 | void *ptr = internalMalloc(size); |
| 2926 | if (!ptr) errno = ENOMEM; |
| 2927 | return ptr; |
| 2928 | } |
| 2929 | |
| 2930 | extern "C" void scalable_free(void *object) |
| 2931 | { |
| 2932 | internalFree(object); |
| 2933 | } |
| 2934 | |
| 2935 | #if MALLOC_ZONE_OVERLOAD_ENABLED |
| 2936 | extern "C" void __TBB_malloc_free_definite_size(void *object, size_t size) |
| 2937 | { |
| 2938 | internalPoolFree(defaultMemPool, object, size); |
| 2939 | } |
| 2940 | #endif |
| 2941 | |
| 2942 | /* |
| 2943 | * A variant that provides additional memory safety, by checking whether the given address |
| 2944 | * was obtained with this allocator, and if not redirecting to the provided alternative call. |
| 2945 | */ |
| 2946 | extern "C" void __TBB_malloc_safer_free(void *object, void (*original_free)(void*)) |
| 2947 | { |
| 2948 | if (!object) |
| 2949 | return; |
| 2950 | |
| 2951 | // tbbmalloc can allocate object only when tbbmalloc has been initialized |
| 2952 | if (FencedLoad(mallocInitialized) && defaultMemPool->extMemPool.backend.ptrCanBeValid(object)) { |
| 2953 | if (isLargeObject<unknownMem>(object)) { |
| 2954 | // must check 1st for large object, because small object check touches 4 pages on left, |
| 2955 | // and it can be inaccessible |
| 2956 | TLSData *tls = defaultMemPool->getTLS(/*create=*/false); |
| 2957 | |
| 2958 | defaultMemPool->putToLLOCache(tls, object); |
| 2959 | return; |
| 2960 | } else if (isSmallObject(object)) { |
| 2961 | freeSmallObject(object); |
| 2962 | return; |
| 2963 | } |
| 2964 | } |
| 2965 | if (original_free) |
| 2966 | original_free(object); |
| 2967 | } |
| 2968 | |
| 2969 | /********* End the free code *************/ |
| 2970 | |
| 2971 | /********* Code for scalable_realloc ***********/ |
| 2972 | |
| 2973 | /* |
| 2974 | * From K&R |
| 2975 | * "realloc changes the size of the object pointed to by p to size. The contents will |
| 2976 | * be unchanged up to the minimum of the old and the new sizes. If the new size is larger, |
| 2977 | * the new space is uninitialized. realloc returns a pointer to the new space, or |
| 2978 | * NULL if the request cannot be satisfied, in which case *p is unchanged." |
| 2979 | * |
| 2980 | */ |
| 2981 | extern "C" void* scalable_realloc(void* ptr, size_t size) |
| 2982 | { |
| 2983 | void *tmp; |
| 2984 | |
| 2985 | if (!ptr) |
| 2986 | tmp = internalMalloc(size); |
| 2987 | else if (!size) { |
| 2988 | internalFree(ptr); |
| 2989 | return NULL; |
| 2990 | } else |
| 2991 | tmp = reallocAligned(defaultMemPool, ptr, size, 0); |
| 2992 | |
| 2993 | if (!tmp) errno = ENOMEM; |
| 2994 | return tmp; |
| 2995 | } |
| 2996 | |
| 2997 | /* |
| 2998 | * A variant that provides additional memory safety, by checking whether the given address |
| 2999 | * was obtained with this allocator, and if not redirecting to the provided alternative call. |
| 3000 | */ |
| 3001 | extern "C" void* __TBB_malloc_safer_realloc(void* ptr, size_t sz, void* original_realloc) |
| 3002 | { |
| 3003 | void *tmp; // TODO: fix warnings about uninitialized use of tmp |
| 3004 | |
| 3005 | if (!ptr) { |
| 3006 | tmp = internalMalloc(sz); |
| 3007 | } else if (FencedLoad(mallocInitialized) && isRecognized(ptr)) { |
| 3008 | if (!sz) { |
| 3009 | internalFree(ptr); |
| 3010 | return NULL; |
| 3011 | } else { |
| 3012 | tmp = reallocAligned(defaultMemPool, ptr, sz, 0); |
| 3013 | } |
| 3014 | } |
| 3015 | #if USE_WINTHREAD |
| 3016 | else if (original_realloc && sz) { |
| 3017 | orig_ptrs *original_ptrs = static_cast<orig_ptrs*>(original_realloc); |
| 3018 | if ( original_ptrs->msize ){ |
| 3019 | size_t oldSize = original_ptrs->msize(ptr); |
| 3020 | tmp = internalMalloc(sz); |
| 3021 | if (tmp) { |
| 3022 | memcpy(tmp, ptr, sz<oldSize? sz : oldSize); |
| 3023 | if ( original_ptrs->free ){ |
| 3024 | original_ptrs->free( ptr ); |
| 3025 | } |
| 3026 | } |
| 3027 | } else |
| 3028 | tmp = NULL; |
| 3029 | } |
| 3030 | #else |
| 3031 | else if (original_realloc) { |
| 3032 | typedef void* (*realloc_ptr_t)(void*,size_t); |
| 3033 | realloc_ptr_t original_realloc_ptr; |
| 3034 | (void *&)original_realloc_ptr = original_realloc; |
| 3035 | tmp = original_realloc_ptr(ptr,sz); |
| 3036 | } |
| 3037 | #endif |
| 3038 | else tmp = NULL; |
| 3039 | |
| 3040 | if (!tmp) errno = ENOMEM; |
| 3041 | return tmp; |
| 3042 | } |
| 3043 | |
| 3044 | /********* End code for scalable_realloc ***********/ |
| 3045 | |
| 3046 | /********* Code for scalable_calloc ***********/ |
| 3047 | |
| 3048 | /* |
| 3049 | * From K&R |
| 3050 | * calloc returns a pointer to space for an array of nobj objects, |
| 3051 | * each of size size, or NULL if the request cannot be satisfied. |
| 3052 | * The space is initialized to zero bytes. |
| 3053 | * |
| 3054 | */ |
| 3055 | |
| 3056 | extern "C" void * scalable_calloc(size_t nobj, size_t size) |
| 3057 | { |
| 3058 | // it's square root of maximal size_t value |
| 3059 | const size_t mult_not_overflow = size_t(1) << (sizeof(size_t)*CHAR_BIT/2); |
| 3060 | const size_t arraySize = nobj * size; |
| 3061 | |
| 3062 | // check for overflow during multiplication: |
| 3063 | if (nobj>=mult_not_overflow || size>=mult_not_overflow) // 1) heuristic check |
| 3064 | if (nobj && arraySize / nobj != size) { // 2) exact check |
| 3065 | errno = ENOMEM; |
| 3066 | return NULL; |
| 3067 | } |
| 3068 | void* result = internalMalloc(arraySize); |
| 3069 | if (result) |
| 3070 | memset(result, 0, arraySize); |
| 3071 | else |
| 3072 | errno = ENOMEM; |
| 3073 | return result; |
| 3074 | } |
| 3075 | |
| 3076 | /********* End code for scalable_calloc ***********/ |
| 3077 | |
| 3078 | /********* Code for aligned allocation API **********/ |
| 3079 | |
| 3080 | extern "C" int scalable_posix_memalign(void **memptr, size_t alignment, size_t size) |
| 3081 | { |
| 3082 | if ( !isPowerOfTwoAtLeast(alignment, sizeof(void*)) ) |
| 3083 | return EINVAL; |
| 3084 | void *result = allocateAligned(defaultMemPool, size, alignment); |
| 3085 | if (!result) |
| 3086 | return ENOMEM; |
| 3087 | *memptr = result; |
| 3088 | return 0; |
| 3089 | } |
| 3090 | |
| 3091 | extern "C" void * scalable_aligned_malloc(size_t size, size_t alignment) |
| 3092 | { |
| 3093 | if (!isPowerOfTwo(alignment) || 0==size) { |
| 3094 | errno = EINVAL; |
| 3095 | return NULL; |
| 3096 | } |
| 3097 | void *tmp = allocateAligned(defaultMemPool, size, alignment); |
| 3098 | if (!tmp) errno = ENOMEM; |
| 3099 | return tmp; |
| 3100 | } |
| 3101 | |
| 3102 | extern "C" void * scalable_aligned_realloc(void *ptr, size_t size, size_t alignment) |
| 3103 | { |
| 3104 | if (!isPowerOfTwo(alignment)) { |
| 3105 | errno = EINVAL; |
| 3106 | return NULL; |
| 3107 | } |
| 3108 | void *tmp; |
| 3109 | |
| 3110 | if (!ptr) |
| 3111 | tmp = allocateAligned(defaultMemPool, size, alignment); |
| 3112 | else if (!size) { |
| 3113 | scalable_free(ptr); |
| 3114 | return NULL; |
| 3115 | } else |
| 3116 | tmp = reallocAligned(defaultMemPool, ptr, size, alignment); |
| 3117 | |
| 3118 | if (!tmp) errno = ENOMEM; |
| 3119 | return tmp; |
| 3120 | } |
| 3121 | |
| 3122 | extern "C" void * __TBB_malloc_safer_aligned_realloc(void *ptr, size_t size, size_t alignment, void* orig_function) |
| 3123 | { |
| 3124 | /* corner cases left out of reallocAligned to not deal with errno there */ |
| 3125 | if (!isPowerOfTwo(alignment)) { |
| 3126 | errno = EINVAL; |
| 3127 | return NULL; |
| 3128 | } |
| 3129 | void *tmp = NULL; |
| 3130 | |
| 3131 | if (!ptr) { |
| 3132 | tmp = allocateAligned(defaultMemPool, size, alignment); |
| 3133 | } else if (FencedLoad(mallocInitialized) && isRecognized(ptr)) { |
| 3134 | if (!size) { |
| 3135 | internalFree(ptr); |
| 3136 | return NULL; |
| 3137 | } else { |
| 3138 | tmp = reallocAligned(defaultMemPool, ptr, size, alignment); |
| 3139 | } |
| 3140 | } |
| 3141 | #if USE_WINTHREAD |
| 3142 | else { |
| 3143 | orig_aligned_ptrs *original_ptrs = static_cast<orig_aligned_ptrs*>(orig_function); |
| 3144 | if (size) { |
| 3145 | // Without orig_msize, we can't do anything with this. |
| 3146 | // Just keeping old pointer. |
| 3147 | if ( original_ptrs->aligned_msize ){ |
| 3148 | // set alignment and offset to have possibly correct oldSize |
| 3149 | size_t oldSize = original_ptrs->aligned_msize(ptr, sizeof(void*), 0); |
| 3150 | tmp = allocateAligned(defaultMemPool, size, alignment); |
| 3151 | if (tmp) { |
| 3152 | memcpy(tmp, ptr, size<oldSize? size : oldSize); |
| 3153 | if ( original_ptrs->aligned_free ){ |
| 3154 | original_ptrs->aligned_free( ptr ); |
| 3155 | } |
| 3156 | } |
| 3157 | } |
| 3158 | } else { |
| 3159 | if ( original_ptrs->aligned_free ){ |
| 3160 | original_ptrs->aligned_free( ptr ); |
| 3161 | } |
| 3162 | return NULL; |
| 3163 | } |
| 3164 | } |
| 3165 | #else |
| 3166 | // As original_realloc can't align result, and there is no way to find |
| 3167 | // size of reallocating object, we are giving up. |
| 3168 | suppress_unused_warning(orig_function); |
| 3169 | #endif |
| 3170 | if (!tmp) errno = ENOMEM; |
| 3171 | return tmp; |
| 3172 | } |
| 3173 | |
| 3174 | extern "C" void scalable_aligned_free(void *ptr) |
| 3175 | { |
| 3176 | internalFree(ptr); |
| 3177 | } |
| 3178 | |
| 3179 | /********* end code for aligned allocation API **********/ |
| 3180 | |
| 3181 | /********* Code for scalable_msize ***********/ |
| 3182 | |
| 3183 | /* |
| 3184 | * Returns the size of a memory block allocated in the heap. |
| 3185 | */ |
| 3186 | extern "C" size_t scalable_msize(void* ptr) |
| 3187 | { |
| 3188 | if (ptr) { |
| 3189 | MALLOC_ASSERT(isRecognized(ptr), "Invalid pointer in scalable_msize detected." ); |
| 3190 | return internalMsize(ptr); |
| 3191 | } |
| 3192 | errno = EINVAL; |
| 3193 | // Unlike _msize, return 0 in case of parameter error. |
| 3194 | // Returning size_t(-1) looks more like the way to troubles. |
| 3195 | return 0; |
| 3196 | } |
| 3197 | |
| 3198 | /* |
| 3199 | * A variant that provides additional memory safety, by checking whether the given address |
| 3200 | * was obtained with this allocator, and if not redirecting to the provided alternative call. |
| 3201 | */ |
| 3202 | extern "C" size_t __TBB_malloc_safer_msize(void *object, size_t (*original_msize)(void*)) |
| 3203 | { |
| 3204 | if (object) { |
| 3205 | // Check if the memory was allocated by scalable_malloc |
| 3206 | if (FencedLoad(mallocInitialized) && isRecognized(object)) |
| 3207 | return internalMsize(object); |
| 3208 | else if (original_msize) |
| 3209 | return original_msize(object); |
| 3210 | } |
| 3211 | // object is NULL or unknown, or foreign and no original_msize |
| 3212 | #if USE_WINTHREAD |
| 3213 | errno = EINVAL; // errno expected to be set only on this platform |
| 3214 | #endif |
| 3215 | return 0; |
| 3216 | } |
| 3217 | |
| 3218 | /* |
| 3219 | * The same as above but for _aligned_msize case |
| 3220 | */ |
| 3221 | extern "C" size_t __TBB_malloc_safer_aligned_msize(void *object, size_t alignment, size_t offset, size_t (*orig_aligned_msize)(void*,size_t,size_t)) |
| 3222 | { |
| 3223 | if (object) { |
| 3224 | // Check if the memory was allocated by scalable_malloc |
| 3225 | if (FencedLoad(mallocInitialized) && isRecognized(object)) |
| 3226 | return internalMsize(object); |
| 3227 | else if (orig_aligned_msize) |
| 3228 | return orig_aligned_msize(object,alignment,offset); |
| 3229 | } |
| 3230 | // object is NULL or unknown |
| 3231 | errno = EINVAL; |
| 3232 | return 0; |
| 3233 | } |
| 3234 | |
| 3235 | /********* End code for scalable_msize ***********/ |
| 3236 | |
| 3237 | extern "C" int scalable_allocation_mode(int param, intptr_t value) |
| 3238 | { |
| 3239 | if (param == TBBMALLOC_SET_SOFT_HEAP_LIMIT) { |
| 3240 | defaultMemPool->extMemPool.backend.setRecommendedMaxSize((size_t)value); |
| 3241 | return TBBMALLOC_OK; |
| 3242 | } else if (param == USE_HUGE_PAGES) { |
| 3243 | #if __linux__ |
| 3244 | switch (value) { |
| 3245 | case 0: |
| 3246 | case 1: |
| 3247 | hugePages.setMode(value); |
| 3248 | return TBBMALLOC_OK; |
| 3249 | default: |
| 3250 | return TBBMALLOC_INVALID_PARAM; |
| 3251 | } |
| 3252 | #else |
| 3253 | return TBBMALLOC_NO_EFFECT; |
| 3254 | #endif |
| 3255 | #if __TBB_SOURCE_DIRECTLY_INCLUDED |
| 3256 | } else if (param == TBBMALLOC_INTERNAL_SOURCE_INCLUDED) { |
| 3257 | switch (value) { |
| 3258 | case 0: // used by dynamic library |
| 3259 | case 1: // used by static library or directly included sources |
| 3260 | usedBySrcIncluded = value; |
| 3261 | return TBBMALLOC_OK; |
| 3262 | default: |
| 3263 | return TBBMALLOC_INVALID_PARAM; |
| 3264 | } |
| 3265 | #endif |
| 3266 | } else if (param == TBBMALLOC_SET_HUGE_SIZE_THRESHOLD) { |
| 3267 | defaultMemPool->extMemPool.loc.setHugeSizeThreshold((size_t)value); |
| 3268 | return TBBMALLOC_OK; |
| 3269 | } |
| 3270 | return TBBMALLOC_INVALID_PARAM; |
| 3271 | } |
| 3272 | |
| 3273 | extern "C" int scalable_allocation_command(int cmd, void *param) |
| 3274 | { |
| 3275 | if (param) |
| 3276 | return TBBMALLOC_INVALID_PARAM; |
| 3277 | |
| 3278 | bool released = false; |
| 3279 | switch(cmd) { |
| 3280 | case TBBMALLOC_CLEAN_THREAD_BUFFERS: |
| 3281 | if (TLSData *tls = defaultMemPool->getTLS(/*create=*/false)) |
| 3282 | released = tls->externalCleanup(/*cleanOnlyUnused*/false, /*cleanBins=*/true); |
| 3283 | break; |
| 3284 | case TBBMALLOC_CLEAN_ALL_BUFFERS: |
| 3285 | released = defaultMemPool->extMemPool.hardCachesCleanup(); |
| 3286 | break; |
| 3287 | default: |
| 3288 | return TBBMALLOC_INVALID_PARAM; |
| 3289 | } |
| 3290 | return released ? TBBMALLOC_OK : TBBMALLOC_NO_EFFECT; |
| 3291 | } |
| 3292 | |