1 | /* |
2 | Copyright (c) 2005-2019 Intel Corporation |
3 | |
4 | Licensed under the Apache License, Version 2.0 (the "License"); |
5 | you may not use this file except in compliance with the License. |
6 | You may obtain a copy of the License at |
7 | |
8 | http://www.apache.org/licenses/LICENSE-2.0 |
9 | |
10 | Unless required by applicable law or agreed to in writing, software |
11 | distributed under the License is distributed on an "AS IS" BASIS, |
12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | See the License for the specific language governing permissions and |
14 | limitations under the License. |
15 | */ |
16 | |
17 | |
18 | #include "tbbmalloc_internal.h" |
19 | #include <errno.h> |
20 | #include <new> /* for placement new */ |
21 | #include <string.h> /* for memset */ |
22 | |
23 | #include "../tbb/tbb_version.h" |
24 | #include "../tbb/tbb_environment.h" |
25 | #include "../tbb/itt_notify.h" // for __TBB_load_ittnotify() |
26 | |
27 | #if USE_PTHREAD |
28 | #define TlsSetValue_func pthread_setspecific |
29 | #define TlsGetValue_func pthread_getspecific |
30 | #define GetMyTID() pthread_self() |
31 | #include <sched.h> |
32 | inline void do_yield() {sched_yield();} |
33 | extern "C" { static void mallocThreadShutdownNotification(void*); } |
34 | #if __sun || __SUNPRO_CC |
35 | #define __asm__ asm |
36 | #endif |
37 | #include <unistd.h> // sysconf(_SC_PAGESIZE) |
38 | #elif USE_WINTHREAD |
39 | #define GetMyTID() GetCurrentThreadId() |
40 | #if __TBB_WIN8UI_SUPPORT |
41 | #include<thread> |
42 | #define TlsSetValue_func FlsSetValue |
43 | #define TlsGetValue_func FlsGetValue |
44 | #define TlsAlloc() FlsAlloc(NULL) |
45 | #define TLS_ALLOC_FAILURE FLS_OUT_OF_INDEXES |
46 | #define TlsFree FlsFree |
47 | inline void do_yield() {std::this_thread::yield();} |
48 | #else |
49 | #define TlsSetValue_func TlsSetValue |
50 | #define TlsGetValue_func TlsGetValue |
51 | #define TLS_ALLOC_FAILURE TLS_OUT_OF_INDEXES |
52 | inline void do_yield() {SwitchToThread();} |
53 | #endif |
54 | #else |
55 | #error Must define USE_PTHREAD or USE_WINTHREAD |
56 | |
57 | #endif |
58 | |
59 | |
60 | #define FREELIST_NONBLOCKING 1 |
61 | |
62 | namespace rml { |
63 | class MemoryPool; |
64 | namespace internal { |
65 | |
66 | class Block; |
67 | class MemoryPool; |
68 | |
69 | #if MALLOC_CHECK_RECURSION |
70 | |
71 | inline bool isMallocInitialized(); |
72 | |
73 | bool RecursiveMallocCallProtector::noRecursion() { |
74 | MALLOC_ASSERT(isMallocInitialized(), |
75 | "Recursion status can be checked only when initialization was done." ); |
76 | return !mallocRecursionDetected; |
77 | } |
78 | |
79 | #endif // MALLOC_CHECK_RECURSION |
80 | |
81 | /** Support for handling the special UNUSABLE pointer state **/ |
82 | const intptr_t UNUSABLE = 0x1; |
83 | inline bool isSolidPtr( void* ptr ) { |
84 | return (UNUSABLE|(intptr_t)ptr)!=UNUSABLE; |
85 | } |
86 | inline bool isNotForUse( void* ptr ) { |
87 | return (intptr_t)ptr==UNUSABLE; |
88 | } |
89 | |
90 | /* |
91 | * Block::objectSize value used to mark blocks allocated by startupAlloc |
92 | */ |
93 | const uint16_t startupAllocObjSizeMark = ~(uint16_t)0; |
94 | |
95 | /* |
96 | * The following constant is used to define the size of struct Block, the block header. |
97 | * The intent is to have the size of a Block multiple of the cache line size, this allows us to |
98 | * get good alignment at the cost of some overhead equal to the amount of padding included in the Block. |
99 | */ |
100 | const int = estimatedCacheLineSize; |
101 | |
102 | /********* The data structures and global objects **************/ |
103 | |
104 | /* |
105 | * The malloc routines themselves need to be able to occasionally malloc some space, |
106 | * in order to set up the structures used by the thread local structures. This |
107 | * routine performs that functions. |
108 | */ |
109 | class BootStrapBlocks { |
110 | MallocMutex bootStrapLock; |
111 | Block *bootStrapBlock; |
112 | Block *bootStrapBlockUsed; |
113 | FreeObject *bootStrapObjectList; |
114 | public: |
115 | void *allocate(MemoryPool *memPool, size_t size); |
116 | void free(void* ptr); |
117 | void reset(); |
118 | }; |
119 | |
120 | #if USE_INTERNAL_TID |
121 | class ThreadId { |
122 | static tls_key_t Tid_key; |
123 | static intptr_t ThreadCount; |
124 | |
125 | unsigned int id; |
126 | |
127 | static unsigned int tlsNumber() { |
128 | unsigned int result = reinterpret_cast<intptr_t>(TlsGetValue_func(Tid_key)); |
129 | if( !result ) { |
130 | RecursiveMallocCallProtector scoped; |
131 | // Thread-local value is zero -> first call from this thread, |
132 | // need to initialize with next ID value (IDs start from 1) |
133 | result = AtomicIncrement(ThreadCount); // returned new value! |
134 | TlsSetValue_func( Tid_key, reinterpret_cast<void*>(result) ); |
135 | } |
136 | return result; |
137 | } |
138 | public: |
139 | static bool init() { |
140 | #if USE_WINTHREAD |
141 | Tid_key = TlsAlloc(); |
142 | if (Tid_key == TLS_ALLOC_FAILURE) |
143 | return false; |
144 | #else |
145 | int status = pthread_key_create( &Tid_key, NULL ); |
146 | if ( status ) { |
147 | fprintf (stderr, "The memory manager cannot create tls key during initialization\n" ); |
148 | return false; |
149 | } |
150 | #endif /* USE_WINTHREAD */ |
151 | return true; |
152 | } |
153 | static void destroy() { |
154 | if( Tid_key ) { |
155 | #if USE_WINTHREAD |
156 | BOOL status = !(TlsFree( Tid_key )); // fail is zero |
157 | #else |
158 | int status = pthread_key_delete( Tid_key ); |
159 | #endif /* USE_WINTHREAD */ |
160 | if ( status ) |
161 | fprintf (stderr, "The memory manager cannot delete tls key\n" ); |
162 | Tid_key = 0; |
163 | } |
164 | } |
165 | |
166 | ThreadId() : id(ThreadId::tlsNumber()) {} |
167 | bool isCurrentThreadId() const { return id == ThreadId::tlsNumber(); } |
168 | |
169 | #if COLLECT_STATISTICS || MALLOC_TRACE |
170 | friend unsigned int getThreadId() { return ThreadId::tlsNumber(); } |
171 | #endif |
172 | #if COLLECT_STATISTICS |
173 | static unsigned getMaxThreadId() { return ThreadCount; } |
174 | |
175 | friend int STAT_increment(ThreadId tid, int bin, int ctr); |
176 | #endif |
177 | }; |
178 | |
179 | tls_key_t ThreadId::Tid_key; |
180 | intptr_t ThreadId::ThreadCount; |
181 | |
182 | #if COLLECT_STATISTICS |
183 | int STAT_increment(ThreadId tid, int bin, int ctr) |
184 | { |
185 | return ::STAT_increment(tid.id, bin, ctr); |
186 | } |
187 | #endif |
188 | |
189 | #else // USE_INTERNAL_TID |
190 | |
191 | class ThreadId { |
192 | #if USE_PTHREAD |
193 | pthread_t tid; |
194 | #else |
195 | DWORD tid; |
196 | #endif |
197 | public: |
198 | ThreadId() : tid(GetMyTID()) {} |
199 | #if USE_PTHREAD |
200 | bool isCurrentThreadId() const { return pthread_equal(pthread_self(), tid); } |
201 | #else |
202 | bool isCurrentThreadId() const { return GetCurrentThreadId() == tid; } |
203 | #endif |
204 | static bool init() { return true; } |
205 | static void destroy() {} |
206 | }; |
207 | |
208 | #endif // USE_INTERNAL_TID |
209 | |
210 | /*********** Code to provide thread ID and a thread-local void pointer **********/ |
211 | |
212 | bool TLSKey::init() |
213 | { |
214 | #if USE_WINTHREAD |
215 | TLS_pointer_key = TlsAlloc(); |
216 | if (TLS_pointer_key == TLS_ALLOC_FAILURE) |
217 | return false; |
218 | #else |
219 | int status = pthread_key_create( &TLS_pointer_key, mallocThreadShutdownNotification ); |
220 | if ( status ) |
221 | return false; |
222 | #endif /* USE_WINTHREAD */ |
223 | return true; |
224 | } |
225 | |
226 | bool TLSKey::destroy() |
227 | { |
228 | #if USE_WINTHREAD |
229 | BOOL status1 = !(TlsFree(TLS_pointer_key)); // fail is zero |
230 | #else |
231 | int status1 = pthread_key_delete(TLS_pointer_key); |
232 | #endif /* USE_WINTHREAD */ |
233 | MALLOC_ASSERT(!status1, "The memory manager cannot delete tls key." ); |
234 | return status1==0; |
235 | } |
236 | |
237 | inline TLSData* TLSKey::getThreadMallocTLS() const |
238 | { |
239 | return (TLSData *)TlsGetValue_func( TLS_pointer_key ); |
240 | } |
241 | |
242 | inline void TLSKey::setThreadMallocTLS( TLSData * newvalue ) { |
243 | RecursiveMallocCallProtector scoped; |
244 | TlsSetValue_func( TLS_pointer_key, newvalue ); |
245 | } |
246 | |
247 | /* The 'next' field in the block header has to maintain some invariants: |
248 | * it needs to be on a 16K boundary and the first field in the block. |
249 | * Any value stored there needs to have the lower 14 bits set to 0 |
250 | * so that various assert work. This means that if you want to smash this memory |
251 | * for debugging purposes you will need to obey this invariant. |
252 | * The total size of the header needs to be a power of 2 to simplify |
253 | * the alignment requirements. For now it is a 128 byte structure. |
254 | * To avoid false sharing, the fields changed only locally are separated |
255 | * from the fields changed by foreign threads. |
256 | * Changing the size of the block header would require to change |
257 | * some bin allocation sizes, in particular "fitting" sizes (see above). |
258 | */ |
259 | class Bin; |
260 | class StartupBlock; |
261 | |
262 | class MemoryPool { |
263 | // if no explicit grainsize, expect to see malloc in user's pAlloc |
264 | // and set reasonable low granularity |
265 | static const size_t defaultGranularity = estimatedCacheLineSize; |
266 | |
267 | MemoryPool(); // deny |
268 | public: |
269 | static MallocMutex memPoolListLock; |
270 | |
271 | // list of all active pools is used to release |
272 | // all TLS data on thread termination or library unload |
273 | MemoryPool *next, |
274 | *prev; |
275 | ExtMemoryPool extMemPool; |
276 | BootStrapBlocks bootStrapBlocks; |
277 | |
278 | static void initDefaultPool(); |
279 | |
280 | bool init(intptr_t poolId, const MemPoolPolicy* memPoolPolicy); |
281 | bool reset(); |
282 | bool destroy(); |
283 | void onThreadShutdown(TLSData *tlsData); |
284 | |
285 | inline TLSData *getTLS(bool create); |
286 | void clearTLS() { extMemPool.tlsPointerKey.setThreadMallocTLS(NULL); } |
287 | |
288 | Block *getEmptyBlock(size_t size); |
289 | void returnEmptyBlock(Block *block, bool poolTheBlock); |
290 | |
291 | // get/put large object to/from local large object cache |
292 | void *getFromLLOCache(TLSData *tls, size_t size, size_t alignment); |
293 | void putToLLOCache(TLSData *tls, void *object); |
294 | }; |
295 | |
296 | static intptr_t defaultMemPool_space[sizeof(MemoryPool)/sizeof(intptr_t) + |
297 | (sizeof(MemoryPool)%sizeof(intptr_t)? 1 : 0)]; |
298 | static MemoryPool *defaultMemPool = (MemoryPool*)defaultMemPool_space; |
299 | const size_t MemoryPool::defaultGranularity; |
300 | // zero-initialized |
301 | MallocMutex MemoryPool::memPoolListLock; |
302 | // TODO: move huge page status to default pool, because that's its states |
303 | HugePagesStatus hugePages; |
304 | static bool usedBySrcIncluded = false; |
305 | |
306 | // Padding helpers |
307 | template<size_t padd> |
308 | struct PaddingImpl { |
309 | size_t __padding[padd]; |
310 | }; |
311 | |
312 | template<> |
313 | struct PaddingImpl<0> {}; |
314 | |
315 | template<int N> |
316 | struct Padding : PaddingImpl<N/sizeof(size_t)> {}; |
317 | |
318 | // Slab block is 16KB-aligned. To prevent false sharing, separate locally-accessed |
319 | // fields and fields commonly accessed by not owner threads. |
320 | class GlobalBlockFields : public BlockI { |
321 | protected: |
322 | FreeObject *publicFreeList; |
323 | Block *nextPrivatizable; |
324 | MemoryPool *poolPtr; |
325 | }; |
326 | |
327 | class LocalBlockFields : public GlobalBlockFields, Padding<blockHeaderAlignment - sizeof(GlobalBlockFields)> { |
328 | protected: |
329 | Block *next; |
330 | Block *previous; /* Use double linked list to speed up removal */ |
331 | FreeObject *bumpPtr; /* Bump pointer moves from the end to the beginning of a block */ |
332 | FreeObject *freeList; |
333 | /* Pointer to local data for the owner thread. Used for fast finding tls |
334 | when releasing object from a block that current thread owned. |
335 | NULL for orphaned blocks. */ |
336 | TLSData *tlsPtr; |
337 | ThreadId ownerTid; /* the ID of the thread that owns or last owned the block */ |
338 | BackRefIdx backRefIdx; |
339 | uint16_t allocatedCount; /* Number of objects allocated (obviously by the owning thread) */ |
340 | uint16_t objectSize; |
341 | bool isFull; |
342 | |
343 | friend class FreeBlockPool; |
344 | friend class StartupBlock; |
345 | friend class LifoList; |
346 | friend void *BootStrapBlocks::allocate(MemoryPool *, size_t); |
347 | friend bool OrphanedBlocks::cleanup(Backend*); |
348 | friend Block *MemoryPool::getEmptyBlock(size_t); |
349 | }; |
350 | |
351 | // Use inheritance to guarantee that a user data start on next cache line. |
352 | // Can't use member for it, because when LocalBlockFields already on cache line, |
353 | // we must have no additional memory consumption for all compilers. |
354 | class Block : public LocalBlockFields, |
355 | Padding<2*blockHeaderAlignment - sizeof(LocalBlockFields)> { |
356 | public: |
357 | bool empty() const { |
358 | if (allocatedCount > 0) return false; |
359 | MALLOC_ASSERT(!isSolidPtr(publicFreeList), ASSERT_TEXT); |
360 | return true; |
361 | } |
362 | inline FreeObject* allocate(); |
363 | inline FreeObject *allocateFromFreeList(); |
364 | |
365 | inline bool adjustFullness(); |
366 | void adjustPositionInBin(Bin* bin = NULL); |
367 | |
368 | bool freeListNonNull() { return freeList; } |
369 | void freePublicObject(FreeObject *objectToFree); |
370 | inline void freeOwnObject(void *object); |
371 | void reset(); |
372 | void privatizePublicFreeList( bool reset = true ); |
373 | void restoreBumpPtr(); |
374 | void privatizeOrphaned(TLSData *tls, unsigned index); |
375 | bool readyToShare(); |
376 | void shareOrphaned(intptr_t binTag, unsigned index); |
377 | unsigned int getSize() const { |
378 | MALLOC_ASSERT(isStartupAllocObject() || objectSize<minLargeObjectSize, |
379 | "Invalid object size" ); |
380 | return isStartupAllocObject()? 0 : objectSize; |
381 | } |
382 | const BackRefIdx *getBackRefIdx() const { return &backRefIdx; } |
383 | inline bool isOwnedByCurrentThread() const; |
384 | bool isStartupAllocObject() const { return objectSize == startupAllocObjSizeMark; } |
385 | inline FreeObject *findObjectToFree(const void *object) const; |
386 | void checkFreePrecond(const void *object) const { |
387 | #if MALLOC_DEBUG |
388 | const char *msg = "Possible double free or heap corruption." ; |
389 | // small objects are always at least sizeof(size_t) Byte aligned, |
390 | // try to check this before this dereference as for invalid objects |
391 | // this may be unreadable |
392 | MALLOC_ASSERT(isAligned(object, sizeof(size_t)), "Try to free invalid small object" ); |
393 | // releasing to free slab |
394 | MALLOC_ASSERT(allocatedCount>0, msg); |
395 | // must not point to slab's header |
396 | MALLOC_ASSERT((uintptr_t)object - (uintptr_t)this >= sizeof(Block), msg); |
397 | if (startupAllocObjSizeMark == objectSize) // startup block |
398 | MALLOC_ASSERT(object<=bumpPtr, msg); |
399 | else { |
400 | // non-startup objects are 8 Byte aligned |
401 | MALLOC_ASSERT(isAligned(object, 8), "Try to free invalid small object" ); |
402 | MALLOC_ASSERT(allocatedCount <= (slabSize-sizeof(Block))/objectSize |
403 | && (!bumpPtr || object>bumpPtr), msg); |
404 | FreeObject *toFree = findObjectToFree(object); |
405 | // check against head of freeList, as this is mostly |
406 | // expected after double free |
407 | MALLOC_ASSERT(toFree != freeList, msg); |
408 | // check against head of publicFreeList, to detect double free |
409 | // involving foreign thread |
410 | MALLOC_ASSERT(toFree != publicFreeList, msg); |
411 | } |
412 | #else |
413 | suppress_unused_warning(object); |
414 | #endif |
415 | } |
416 | void initEmptyBlock(TLSData *tls, size_t size); |
417 | size_t findObjectSize(void *object) const; |
418 | MemoryPool *getMemPool() const { return poolPtr; } // do not use on the hot path! |
419 | |
420 | protected: |
421 | void cleanBlockHeader(); |
422 | |
423 | private: |
424 | static const float emptyEnoughRatio; /* Threshold on free space needed to "reactivate" a block */ |
425 | |
426 | inline FreeObject *allocateFromBumpPtr(); |
427 | inline FreeObject *findAllocatedObject(const void *address) const; |
428 | inline bool isProperlyPlaced(const void *object) const; |
429 | inline void markOwned(TLSData *tls) { |
430 | MALLOC_ASSERT(!tlsPtr, ASSERT_TEXT); |
431 | ownerTid = ThreadId(); /* save the ID of the current thread */ |
432 | tlsPtr = tls; |
433 | } |
434 | inline void markOrphaned() { |
435 | MALLOC_ASSERT(tlsPtr, ASSERT_TEXT); |
436 | tlsPtr = NULL; |
437 | } |
438 | |
439 | friend class Bin; |
440 | friend class TLSData; |
441 | friend bool MemoryPool::destroy(); |
442 | }; |
443 | |
444 | const float Block::emptyEnoughRatio = 1.0 / 4.0; |
445 | |
446 | MALLOC_STATIC_ASSERT(sizeof(Block) <= 2*estimatedCacheLineSize, |
447 | "The class Block does not fit into 2 cache lines on this platform. " |
448 | "Defining USE_INTERNAL_TID may help to fix it." ); |
449 | |
450 | class Bin { |
451 | private: |
452 | Block *activeBlk; |
453 | Block *mailbox; |
454 | MallocMutex mailLock; |
455 | |
456 | public: |
457 | inline Block* getActiveBlock() const { return activeBlk; } |
458 | void resetActiveBlock() { activeBlk = NULL; } |
459 | bool activeBlockUnused() const { return activeBlk && !activeBlk->allocatedCount; } |
460 | inline void setActiveBlock(Block *block); |
461 | inline Block* setPreviousBlockActive(); |
462 | Block* getPrivatizedFreeListBlock(); |
463 | void moveBlockToFront(Block *block); |
464 | bool cleanPublicFreeLists(); |
465 | void processEmptyBlock(Block *block, bool poolTheBlock); |
466 | void addPublicFreeListBlock(Block* block); |
467 | |
468 | void outofTLSBin(Block* block); |
469 | void verifyTLSBin(size_t size) const; |
470 | void pushTLSBin(Block* block); |
471 | |
472 | void verifyInitState() const { |
473 | MALLOC_ASSERT( !activeBlk, ASSERT_TEXT ); |
474 | MALLOC_ASSERT( !mailbox, ASSERT_TEXT ); |
475 | } |
476 | |
477 | friend void Block::freePublicObject (FreeObject *objectToFree); |
478 | }; |
479 | |
480 | /********* End of the data structures **************/ |
481 | |
482 | /* |
483 | * There are bins for all 8 byte aligned objects less than this segregated size; 8 bins in total |
484 | */ |
485 | const uint32_t minSmallObjectIndex = 0; |
486 | const uint32_t numSmallObjectBins = 8; |
487 | const uint32_t maxSmallObjectSize = 64; |
488 | |
489 | /* |
490 | * There are 4 bins between each couple of powers of 2 [64-128-256-...] |
491 | * from maxSmallObjectSize till this size; 16 bins in total |
492 | */ |
493 | const uint32_t minSegregatedObjectIndex = minSmallObjectIndex+numSmallObjectBins; |
494 | const uint32_t numSegregatedObjectBins = 16; |
495 | const uint32_t maxSegregatedObjectSize = 1024; |
496 | |
497 | /* |
498 | * And there are 5 bins with allocation sizes that are multiples of estimatedCacheLineSize |
499 | * and selected to fit 9, 6, 4, 3, and 2 allocations in a block. |
500 | */ |
501 | const uint32_t minFittingIndex = minSegregatedObjectIndex+numSegregatedObjectBins; |
502 | const uint32_t numFittingBins = 5; |
503 | |
504 | const uint32_t fittingAlignment = estimatedCacheLineSize; |
505 | |
506 | #define SET_FITTING_SIZE(N) ( (slabSize-sizeof(Block))/N ) & ~(fittingAlignment-1) |
507 | // For blockSize=16*1024, sizeof(Block)=2*estimatedCacheLineSize and fittingAlignment=estimatedCacheLineSize, |
508 | // the comments show the fitting sizes and the amounts left unused for estimatedCacheLineSize=64/128: |
509 | const uint32_t fittingSize1 = SET_FITTING_SIZE(9); // 1792/1792 128/000 |
510 | const uint32_t fittingSize2 = SET_FITTING_SIZE(6); // 2688/2688 128/000 |
511 | const uint32_t fittingSize3 = SET_FITTING_SIZE(4); // 4032/3968 128/256 |
512 | const uint32_t fittingSize4 = SET_FITTING_SIZE(3); // 5376/5376 128/000 |
513 | const uint32_t fittingSize5 = SET_FITTING_SIZE(2); // 8128/8064 000/000 |
514 | #undef SET_FITTING_SIZE |
515 | |
516 | /* |
517 | * The total number of thread-specific Block-based bins |
518 | */ |
519 | const uint32_t numBlockBins = minFittingIndex+numFittingBins; |
520 | |
521 | /* |
522 | * Objects of this size and larger are considered large objects. |
523 | */ |
524 | const uint32_t minLargeObjectSize = fittingSize5 + 1; |
525 | |
526 | /* |
527 | * Per-thread pool of slab blocks. Idea behind it is to not share with other |
528 | * threads memory that are likely in local cache(s) of our CPU. |
529 | */ |
530 | class FreeBlockPool { |
531 | private: |
532 | Block *head; |
533 | int size; |
534 | Backend *backend; |
535 | bool lastAccessMiss; |
536 | public: |
537 | static const int POOL_HIGH_MARK = 32; |
538 | static const int POOL_LOW_MARK = 8; |
539 | |
540 | class ResOfGet { |
541 | ResOfGet(); |
542 | public: |
543 | Block* block; |
544 | bool lastAccMiss; |
545 | ResOfGet(Block *b, bool lastMiss) : block(b), lastAccMiss(lastMiss) {} |
546 | }; |
547 | |
548 | // allocated in zero-initialized memory |
549 | FreeBlockPool(Backend *bknd) : backend(bknd) {} |
550 | ResOfGet getBlock(); |
551 | void returnBlock(Block *block); |
552 | bool externalCleanup(); // can be called by another thread |
553 | }; |
554 | |
555 | template<int LOW_MARK, int HIGH_MARK> |
556 | class LocalLOCImpl { |
557 | private: |
558 | static const size_t MAX_TOTAL_SIZE = 4*1024*1024; |
559 | // TODO: can single-linked list be faster here? |
560 | LargeMemoryBlock *head, |
561 | *tail; // need it when do releasing on overflow |
562 | size_t totalSize; |
563 | int numOfBlocks; |
564 | public: |
565 | bool put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool); |
566 | LargeMemoryBlock *get(size_t size); |
567 | bool externalCleanup(ExtMemoryPool *extMemPool); |
568 | #if __TBB_MALLOC_WHITEBOX_TEST |
569 | LocalLOCImpl() : head(NULL), tail(NULL), totalSize(0), numOfBlocks(0) {} |
570 | static size_t getMaxSize() { return MAX_TOTAL_SIZE; } |
571 | static const int LOC_HIGH_MARK = HIGH_MARK; |
572 | #else |
573 | // no ctor, object must be created in zero-initialized memory |
574 | #endif |
575 | }; |
576 | |
577 | typedef LocalLOCImpl<8,32> LocalLOC; // set production code parameters |
578 | |
579 | class TLSData : public TLSRemote { |
580 | MemoryPool *memPool; |
581 | public: |
582 | Bin bin[numBlockBinLimit]; |
583 | FreeBlockPool freeSlabBlocks; |
584 | LocalLOC lloc; |
585 | unsigned currCacheIdx; |
586 | private: |
587 | bool unused; |
588 | public: |
589 | TLSData(MemoryPool *mPool, Backend *bknd) : memPool(mPool), freeSlabBlocks(bknd) {} |
590 | MemoryPool *getMemPool() const { return memPool; } |
591 | Bin* getAllocationBin(size_t size); |
592 | void release(); |
593 | bool externalCleanup(bool cleanOnlyUnused, bool cleanBins) { |
594 | if (!unused && cleanOnlyUnused) return false; |
595 | // Heavy operation in terms of synchronization complexity, |
596 | // should be called only for the current thread |
597 | bool released = cleanBins ? cleanupBlockBins() : false; |
598 | // both cleanups to be called, and the order is not important |
599 | return released | lloc.externalCleanup(&memPool->extMemPool) | freeSlabBlocks.externalCleanup(); |
600 | } |
601 | bool cleanupBlockBins(); |
602 | void markUsed() { unused = false; } // called by owner when TLS touched |
603 | void markUnused() { unused = true; } // can be called by not owner thread |
604 | }; |
605 | |
606 | TLSData *TLSKey::createTLS(MemoryPool *memPool, Backend *backend) |
607 | { |
608 | MALLOC_ASSERT( sizeof(TLSData) >= sizeof(Bin) * numBlockBins + sizeof(FreeBlockPool), ASSERT_TEXT ); |
609 | TLSData* tls = (TLSData*) memPool->bootStrapBlocks.allocate(memPool, sizeof(TLSData)); |
610 | if ( !tls ) |
611 | return NULL; |
612 | new(tls) TLSData(memPool, backend); |
613 | /* the block contains zeroes after bootStrapMalloc, so bins are initialized */ |
614 | #if MALLOC_DEBUG |
615 | for (uint32_t i = 0; i < numBlockBinLimit; i++) |
616 | tls->bin[i].verifyInitState(); |
617 | #endif |
618 | setThreadMallocTLS(tls); |
619 | memPool->extMemPool.allLocalCaches.registerThread(tls); |
620 | return tls; |
621 | } |
622 | |
623 | bool TLSData::cleanupBlockBins() |
624 | { |
625 | bool released = false; |
626 | for (uint32_t i = 0; i < numBlockBinLimit; i++) { |
627 | released |= bin[i].cleanPublicFreeLists(); |
628 | // After cleaning public free lists, only the active block might be empty. |
629 | // Do not use processEmptyBlock because it will just restore bumpPtr. |
630 | Block *block = bin[i].getActiveBlock(); |
631 | if (block && block->empty()) { |
632 | bin[i].outofTLSBin(block); |
633 | memPool->returnEmptyBlock(block, /*poolTheBlock=*/false); |
634 | released = true; |
635 | } |
636 | } |
637 | return released; |
638 | } |
639 | |
640 | bool ExtMemoryPool::releaseAllLocalCaches() |
641 | { |
642 | // Iterate all registered TLS data and clean LLOC and Slab pools |
643 | bool released = allLocalCaches.cleanup(/*cleanOnlyUnused=*/false); |
644 | |
645 | // Bins privatization is done only for the current thread |
646 | if (TLSData *tlsData = tlsPointerKey.getThreadMallocTLS()) |
647 | released |= tlsData->cleanupBlockBins(); |
648 | |
649 | return released; |
650 | } |
651 | |
652 | void AllLocalCaches::registerThread(TLSRemote *tls) |
653 | { |
654 | tls->prev = NULL; |
655 | MallocMutex::scoped_lock lock(listLock); |
656 | MALLOC_ASSERT(head!=tls, ASSERT_TEXT); |
657 | tls->next = head; |
658 | if (head) |
659 | head->prev = tls; |
660 | head = tls; |
661 | MALLOC_ASSERT(head->next!=head, ASSERT_TEXT); |
662 | } |
663 | |
664 | void AllLocalCaches::unregisterThread(TLSRemote *tls) |
665 | { |
666 | MallocMutex::scoped_lock lock(listLock); |
667 | MALLOC_ASSERT(head, "Can't unregister thread: no threads are registered." ); |
668 | if (head == tls) |
669 | head = tls->next; |
670 | if (tls->next) |
671 | tls->next->prev = tls->prev; |
672 | if (tls->prev) |
673 | tls->prev->next = tls->next; |
674 | MALLOC_ASSERT(!tls->next || tls->next->next!=tls->next, ASSERT_TEXT); |
675 | } |
676 | |
677 | bool AllLocalCaches::cleanup(bool cleanOnlyUnused) |
678 | { |
679 | bool released = false; |
680 | { |
681 | MallocMutex::scoped_lock lock(listLock); |
682 | for (TLSRemote *curr=head; curr; curr=curr->next) |
683 | released |= static_cast<TLSData*>(curr)->externalCleanup(cleanOnlyUnused, /*cleanBins=*/false); |
684 | } |
685 | return released; |
686 | } |
687 | |
688 | void AllLocalCaches::markUnused() |
689 | { |
690 | bool locked; |
691 | MallocMutex::scoped_lock lock(listLock, /*block=*/false, &locked); |
692 | if (!locked) // not wait for marking if someone doing something with it |
693 | return; |
694 | |
695 | for (TLSRemote *curr=head; curr; curr=curr->next) |
696 | static_cast<TLSData*>(curr)->markUnused(); |
697 | } |
698 | |
699 | #if MALLOC_CHECK_RECURSION |
700 | MallocMutex RecursiveMallocCallProtector::rmc_mutex; |
701 | pthread_t RecursiveMallocCallProtector::owner_thread; |
702 | void *RecursiveMallocCallProtector::autoObjPtr; |
703 | bool RecursiveMallocCallProtector::mallocRecursionDetected; |
704 | #if __FreeBSD__ |
705 | bool RecursiveMallocCallProtector::canUsePthread; |
706 | #endif |
707 | |
708 | #endif |
709 | |
710 | /*********** End code to provide thread ID and a TLS pointer **********/ |
711 | |
712 | // Parameter for isLargeObject, keeps our expectations on memory origin. |
713 | // Assertions must use unknownMem to reliably report object invalidity. |
714 | enum MemoryOrigin { |
715 | ourMem, // allocated by TBB allocator |
716 | unknownMem // can be allocated by system allocator or TBB allocator |
717 | }; |
718 | |
719 | template<MemoryOrigin> bool isLargeObject(void *object); |
720 | static void *internalMalloc(size_t size); |
721 | static void internalFree(void *object); |
722 | static void *internalPoolMalloc(MemoryPool* mPool, size_t size); |
723 | static bool internalPoolFree(MemoryPool *mPool, void *object, size_t size); |
724 | |
725 | #if !MALLOC_DEBUG |
726 | #if __INTEL_COMPILER || _MSC_VER |
727 | #define NOINLINE(decl) __declspec(noinline) decl |
728 | #define ALWAYSINLINE(decl) __forceinline decl |
729 | #elif __GNUC__ |
730 | #define NOINLINE(decl) decl __attribute__ ((noinline)) |
731 | #define ALWAYSINLINE(decl) decl __attribute__ ((always_inline)) |
732 | #else |
733 | #define NOINLINE(decl) decl |
734 | #define ALWAYSINLINE(decl) decl |
735 | #endif |
736 | |
737 | static NOINLINE( bool doInitialization() ); |
738 | ALWAYSINLINE( bool isMallocInitialized() ); |
739 | |
740 | #undef ALWAYSINLINE |
741 | #undef NOINLINE |
742 | #endif /* !MALLOC_DEBUG */ |
743 | |
744 | |
745 | /********* Now some rough utility code to deal with indexing the size bins. **************/ |
746 | |
747 | /* |
748 | * Given a number return the highest non-zero bit in it. It is intended to work with 32-bit values only. |
749 | * Moreover, on IPF, for sake of simplicity and performance, it is narrowed to only serve for 64 to 1023. |
750 | * This is enough for current algorithm of distribution of sizes among bins. |
751 | * __TBB_Log2 is not used here to minimize dependencies on TBB specific sources. |
752 | */ |
753 | #if _WIN64 && _MSC_VER>=1400 && !__INTEL_COMPILER |
754 | extern "C" unsigned char _BitScanReverse( unsigned long* i, unsigned long w ); |
755 | #pragma intrinsic(_BitScanReverse) |
756 | #endif |
757 | static inline unsigned int highestBitPos(unsigned int n) |
758 | { |
759 | MALLOC_ASSERT( n>=64 && n<1024, ASSERT_TEXT ); // only needed for bsr array lookup, but always true |
760 | unsigned int pos; |
761 | #if __ARCH_x86_32||__ARCH_x86_64 |
762 | |
763 | # if __linux__||__APPLE__||__FreeBSD__||__NetBSD__||__OpenBSD__||__sun||__MINGW32__ |
764 | __asm__ ("bsr %1,%0" : "=r" (pos) : "r" (n)); |
765 | # elif (_WIN32 && (!_WIN64 || __INTEL_COMPILER)) |
766 | __asm |
767 | { |
768 | bsr eax, n |
769 | mov pos, eax |
770 | } |
771 | # elif _WIN64 && _MSC_VER>=1400 |
772 | _BitScanReverse((unsigned long*)&pos, (unsigned long)n); |
773 | # else |
774 | # error highestBitPos() not implemented for this platform |
775 | # endif |
776 | #elif __arm__ |
777 | __asm__ __volatile__ |
778 | ( |
779 | "clz %0, %1\n" |
780 | "rsb %0, %0, %2\n" |
781 | :"=r" (pos) :"r" (n), "I" (31) |
782 | ); |
783 | #else |
784 | static unsigned int bsr[16] = {0/*N/A*/,6,7,7,8,8,8,8,9,9,9,9,9,9,9,9}; |
785 | pos = bsr[ n>>6 ]; |
786 | #endif /* __ARCH_* */ |
787 | return pos; |
788 | } |
789 | |
790 | template<bool Is32Bit> |
791 | unsigned int getSmallObjectIndex(unsigned int size) |
792 | { |
793 | return (size-1)>>3; |
794 | } |
795 | template<> |
796 | unsigned int getSmallObjectIndex</*Is32Bit=*/false>(unsigned int size) |
797 | { |
798 | // For 64-bit malloc, 16 byte alignment is needed except for bin 0. |
799 | unsigned int result = (size-1)>>3; |
800 | if (result) result |= 1; // 0,1,3,5,7; bins 2,4,6 are not aligned to 16 bytes |
801 | return result; |
802 | } |
803 | /* |
804 | * Depending on indexRequest, for a given size return either the index into the bin |
805 | * for objects of this size, or the actual size of objects in this bin. |
806 | */ |
807 | template<bool indexRequest> |
808 | static unsigned int getIndexOrObjectSize (unsigned int size) |
809 | { |
810 | if (size <= maxSmallObjectSize) { // selection from 8/16/24/32/40/48/56/64 |
811 | unsigned int index = getSmallObjectIndex</*Is32Bit=*/(sizeof(size_t)<=4)>( size ); |
812 | /* Bin 0 is for 8 bytes, bin 1 is for 16, and so forth */ |
813 | return indexRequest ? index : (index+1)<<3; |
814 | } |
815 | else if (size <= maxSegregatedObjectSize ) { // 80/96/112/128 / 160/192/224/256 / 320/384/448/512 / 640/768/896/1024 |
816 | unsigned int order = highestBitPos(size-1); // which group of bin sizes? |
817 | MALLOC_ASSERT( 6<=order && order<=9, ASSERT_TEXT ); |
818 | if (indexRequest) |
819 | return minSegregatedObjectIndex - (4*6) - 4 + (4*order) + ((size-1)>>(order-2)); |
820 | else { |
821 | unsigned int alignment = 128 >> (9-order); // alignment in the group |
822 | MALLOC_ASSERT( alignment==16 || alignment==32 || alignment==64 || alignment==128, ASSERT_TEXT ); |
823 | return alignUp(size,alignment); |
824 | } |
825 | } |
826 | else { |
827 | if( size <= fittingSize3 ) { |
828 | if( size <= fittingSize2 ) { |
829 | if( size <= fittingSize1 ) |
830 | return indexRequest ? minFittingIndex : fittingSize1; |
831 | else |
832 | return indexRequest ? minFittingIndex+1 : fittingSize2; |
833 | } else |
834 | return indexRequest ? minFittingIndex+2 : fittingSize3; |
835 | } else { |
836 | if( size <= fittingSize5 ) { |
837 | if( size <= fittingSize4 ) |
838 | return indexRequest ? minFittingIndex+3 : fittingSize4; |
839 | else |
840 | return indexRequest ? minFittingIndex+4 : fittingSize5; |
841 | } else { |
842 | MALLOC_ASSERT( 0,ASSERT_TEXT ); // this should not happen |
843 | return ~0U; |
844 | } |
845 | } |
846 | } |
847 | } |
848 | |
849 | static unsigned int getIndex (unsigned int size) |
850 | { |
851 | return getIndexOrObjectSize</*indexRequest=*/true>(size); |
852 | } |
853 | |
854 | static unsigned int getObjectSize (unsigned int size) |
855 | { |
856 | return getIndexOrObjectSize</*indexRequest=*/false>(size); |
857 | } |
858 | |
859 | |
860 | void *BootStrapBlocks::allocate(MemoryPool *memPool, size_t size) |
861 | { |
862 | FreeObject *result; |
863 | |
864 | MALLOC_ASSERT( size == sizeof(TLSData), ASSERT_TEXT ); |
865 | |
866 | { // Lock with acquire |
867 | MallocMutex::scoped_lock scoped_cs(bootStrapLock); |
868 | |
869 | if( bootStrapObjectList) { |
870 | result = bootStrapObjectList; |
871 | bootStrapObjectList = bootStrapObjectList->next; |
872 | } else { |
873 | if (!bootStrapBlock) { |
874 | bootStrapBlock = memPool->getEmptyBlock(size); |
875 | if (!bootStrapBlock) return NULL; |
876 | } |
877 | result = bootStrapBlock->bumpPtr; |
878 | bootStrapBlock->bumpPtr = (FreeObject *)((uintptr_t)bootStrapBlock->bumpPtr - bootStrapBlock->objectSize); |
879 | if ((uintptr_t)bootStrapBlock->bumpPtr < (uintptr_t)bootStrapBlock+sizeof(Block)) { |
880 | bootStrapBlock->bumpPtr = NULL; |
881 | bootStrapBlock->next = bootStrapBlockUsed; |
882 | bootStrapBlockUsed = bootStrapBlock; |
883 | bootStrapBlock = NULL; |
884 | } |
885 | } |
886 | } // Unlock with release |
887 | |
888 | memset (result, 0, size); |
889 | return (void*)result; |
890 | } |
891 | |
892 | void BootStrapBlocks::free(void* ptr) |
893 | { |
894 | MALLOC_ASSERT( ptr, ASSERT_TEXT ); |
895 | { // Lock with acquire |
896 | MallocMutex::scoped_lock scoped_cs(bootStrapLock); |
897 | ((FreeObject*)ptr)->next = bootStrapObjectList; |
898 | bootStrapObjectList = (FreeObject*)ptr; |
899 | } // Unlock with release |
900 | } |
901 | |
902 | void BootStrapBlocks::reset() |
903 | { |
904 | bootStrapBlock = bootStrapBlockUsed = NULL; |
905 | bootStrapObjectList = NULL; |
906 | } |
907 | |
908 | #if !(FREELIST_NONBLOCKING) |
909 | static MallocMutex publicFreeListLock; // lock for changes of publicFreeList |
910 | #endif |
911 | |
912 | /********* End rough utility code **************/ |
913 | |
914 | /* LifoList assumes zero initialization so a vector of it can be created |
915 | * by just allocating some space with no call to constructor. |
916 | * On Linux, it seems to be necessary to avoid linking with C++ libraries. |
917 | * |
918 | * By usage convention there is no race on the initialization. */ |
919 | LifoList::LifoList( ) : top(NULL) |
920 | { |
921 | // MallocMutex assumes zero initialization |
922 | memset(&lock, 0, sizeof(MallocMutex)); |
923 | } |
924 | |
925 | void LifoList::push(Block *block) |
926 | { |
927 | MallocMutex::scoped_lock scoped_cs(lock); |
928 | block->next = top; |
929 | top = block; |
930 | } |
931 | |
932 | Block *LifoList::pop() |
933 | { |
934 | Block *block=NULL; |
935 | if (top) { |
936 | MallocMutex::scoped_lock scoped_cs(lock); |
937 | if (top) { |
938 | block = top; |
939 | top = block->next; |
940 | } |
941 | } |
942 | return block; |
943 | } |
944 | |
945 | Block *LifoList::grab() |
946 | { |
947 | Block *block = NULL; |
948 | if (top) { |
949 | MallocMutex::scoped_lock scoped_cs(lock); |
950 | block = top; |
951 | top = NULL; |
952 | } |
953 | return block; |
954 | } |
955 | |
956 | /********* Thread and block related code *************/ |
957 | |
958 | template<bool poolDestroy> void AllLargeBlocksList::releaseAll(Backend *backend) { |
959 | LargeMemoryBlock *next, *lmb = loHead; |
960 | loHead = NULL; |
961 | |
962 | for (; lmb; lmb = next) { |
963 | next = lmb->gNext; |
964 | if (poolDestroy) { |
965 | // as it's pool destruction, no need to return object to backend, |
966 | // only remove backrefs, as they are global |
967 | removeBackRef(lmb->backRefIdx); |
968 | } else { |
969 | // clean g(Next|Prev) to prevent removing lmb |
970 | // from AllLargeBlocksList inside returnLargeObject |
971 | lmb->gNext = lmb->gPrev = NULL; |
972 | backend->returnLargeObject(lmb); |
973 | } |
974 | } |
975 | } |
976 | |
977 | TLSData* MemoryPool::getTLS(bool create) |
978 | { |
979 | TLSData* tls = extMemPool.tlsPointerKey.getThreadMallocTLS(); |
980 | if (create && !tls) |
981 | tls = extMemPool.tlsPointerKey.createTLS(this, &extMemPool.backend); |
982 | return tls; |
983 | } |
984 | |
985 | /* |
986 | * Return the bin for the given size. |
987 | */ |
988 | inline Bin* TLSData::getAllocationBin(size_t size) |
989 | { |
990 | return bin + getIndex(size); |
991 | } |
992 | |
993 | /* Return an empty uninitialized block in a non-blocking fashion. */ |
994 | Block *MemoryPool::getEmptyBlock(size_t size) |
995 | { |
996 | TLSData* tls = getTLS(/*create=*/false); |
997 | // try to use per-thread cache, if TLS available |
998 | FreeBlockPool::ResOfGet resOfGet = tls? |
999 | tls->freeSlabBlocks.getBlock() : FreeBlockPool::ResOfGet(NULL, false); |
1000 | Block *result = resOfGet.block; |
1001 | |
1002 | if (!result) { // not found in local cache, asks backend for slabs |
1003 | int num = resOfGet.lastAccMiss? Backend::numOfSlabAllocOnMiss : 1; |
1004 | BackRefIdx backRefIdx[Backend::numOfSlabAllocOnMiss]; |
1005 | |
1006 | result = static_cast<Block*>(extMemPool.backend.getSlabBlock(num)); |
1007 | if (!result) return NULL; |
1008 | |
1009 | if (!extMemPool.userPool()) |
1010 | for (int i=0; i<num; i++) { |
1011 | backRefIdx[i] = BackRefIdx::newBackRef(/*largeObj=*/false); |
1012 | if (backRefIdx[i].isInvalid()) { |
1013 | // roll back resource allocation |
1014 | for (int j=0; j<i; j++) |
1015 | removeBackRef(backRefIdx[j]); |
1016 | Block *b = result; |
1017 | for (int j=0; j<num; b=(Block*)((uintptr_t)b+slabSize), j++) |
1018 | extMemPool.backend.putSlabBlock(b); |
1019 | return NULL; |
1020 | } |
1021 | } |
1022 | // resources were allocated, register blocks |
1023 | Block *b = result; |
1024 | for (int i=0; i<num; b=(Block*)((uintptr_t)b+slabSize), i++) { |
1025 | // slab block in user's pool must have invalid backRefIdx |
1026 | if (extMemPool.userPool()) { |
1027 | new (&b->backRefIdx) BackRefIdx(); |
1028 | } else { |
1029 | setBackRef(backRefIdx[i], b); |
1030 | b->backRefIdx = backRefIdx[i]; |
1031 | } |
1032 | b->tlsPtr = tls; |
1033 | b->poolPtr = this; |
1034 | // all but first one go to per-thread pool |
1035 | if (i > 0) { |
1036 | MALLOC_ASSERT(tls, ASSERT_TEXT); |
1037 | tls->freeSlabBlocks.returnBlock(b); |
1038 | } |
1039 | } |
1040 | } |
1041 | MALLOC_ASSERT(result, ASSERT_TEXT); |
1042 | result->initEmptyBlock(tls, size); |
1043 | STAT_increment(getThreadId(), getIndex(result->objectSize), allocBlockNew); |
1044 | return result; |
1045 | } |
1046 | |
1047 | void MemoryPool::returnEmptyBlock(Block *block, bool poolTheBlock) |
1048 | { |
1049 | block->reset(); |
1050 | if (poolTheBlock) { |
1051 | getTLS(/*create=*/false)->freeSlabBlocks.returnBlock(block); |
1052 | } else { |
1053 | // slab blocks in user's pools do not have valid backRefIdx |
1054 | if (!extMemPool.userPool()) |
1055 | removeBackRef(*(block->getBackRefIdx())); |
1056 | extMemPool.backend.putSlabBlock(block); |
1057 | } |
1058 | } |
1059 | |
1060 | bool ExtMemoryPool::init(intptr_t poolId, rawAllocType rawAlloc, |
1061 | rawFreeType rawFree, size_t granularity, |
1062 | bool keepAllMemory, bool fixedPool) |
1063 | { |
1064 | this->poolId = poolId; |
1065 | this->rawAlloc = rawAlloc; |
1066 | this->rawFree = rawFree; |
1067 | this->granularity = granularity; |
1068 | this->keepAllMemory = keepAllMemory; |
1069 | this->fixedPool = fixedPool; |
1070 | this->delayRegsReleasing = false; |
1071 | if (!initTLS()) |
1072 | return false; |
1073 | loc.init(this); |
1074 | backend.init(this); |
1075 | MALLOC_ASSERT(isPoolValid(), NULL); |
1076 | return true; |
1077 | } |
1078 | |
1079 | bool ExtMemoryPool::initTLS() { return tlsPointerKey.init(); } |
1080 | |
1081 | bool MemoryPool::init(intptr_t poolId, const MemPoolPolicy *policy) |
1082 | { |
1083 | if (!extMemPool.init(poolId, policy->pAlloc, policy->pFree, |
1084 | policy->granularity? policy->granularity : defaultGranularity, |
1085 | policy->keepAllMemory, policy->fixedPool)) |
1086 | return false; |
1087 | { |
1088 | MallocMutex::scoped_lock lock(memPoolListLock); |
1089 | next = defaultMemPool->next; |
1090 | defaultMemPool->next = this; |
1091 | prev = defaultMemPool; |
1092 | if (next) |
1093 | next->prev = this; |
1094 | } |
1095 | return true; |
1096 | } |
1097 | |
1098 | bool MemoryPool::reset() |
1099 | { |
1100 | MALLOC_ASSERT(extMemPool.userPool(), "No reset for the system pool." ); |
1101 | // memory is not releasing during pool reset |
1102 | // TODO: mark regions to release unused on next reset() |
1103 | extMemPool.delayRegionsReleasing(true); |
1104 | |
1105 | bootStrapBlocks.reset(); |
1106 | extMemPool.lmbList.releaseAll</*poolDestroy=*/false>(&extMemPool.backend); |
1107 | if (!extMemPool.reset()) |
1108 | return false; |
1109 | |
1110 | if (!extMemPool.initTLS()) |
1111 | return false; |
1112 | extMemPool.delayRegionsReleasing(false); |
1113 | return true; |
1114 | } |
1115 | |
1116 | bool MemoryPool::destroy() |
1117 | { |
1118 | #if __TBB_MALLOC_LOCACHE_STAT |
1119 | extMemPool.loc.reportStat(stdout); |
1120 | #endif |
1121 | #if __TBB_MALLOC_BACKEND_STAT |
1122 | extMemPool.backend.reportStat(stdout); |
1123 | #endif |
1124 | { |
1125 | MallocMutex::scoped_lock lock(memPoolListLock); |
1126 | // remove itself from global pool list |
1127 | if (prev) |
1128 | prev->next = next; |
1129 | if (next) |
1130 | next->prev = prev; |
1131 | } |
1132 | // slab blocks in non-default pool do not have backreferences, |
1133 | // only large objects do |
1134 | if (extMemPool.userPool()) |
1135 | extMemPool.lmbList.releaseAll</*poolDestroy=*/true>(&extMemPool.backend); |
1136 | else { |
1137 | // only one non-userPool() is supported now |
1138 | MALLOC_ASSERT(this==defaultMemPool, NULL); |
1139 | // There and below in extMemPool.destroy(), do not restore initial state |
1140 | // for user pool, because it's just about to be released. But for system |
1141 | // pool restoring, we do not want to do zeroing of it on subsequent reload. |
1142 | bootStrapBlocks.reset(); |
1143 | extMemPool.orphanedBlocks.reset(); |
1144 | } |
1145 | return extMemPool.destroy(); |
1146 | } |
1147 | |
1148 | void MemoryPool::onThreadShutdown(TLSData *tlsData) |
1149 | { |
1150 | if (tlsData) { // might be called for "empty" TLS |
1151 | tlsData->release(); |
1152 | bootStrapBlocks.free(tlsData); |
1153 | clearTLS(); |
1154 | } |
1155 | } |
1156 | |
1157 | #if MALLOC_DEBUG |
1158 | void Bin::verifyTLSBin (size_t size) const |
1159 | { |
1160 | /* The debug version verifies the TLSBin as needed */ |
1161 | uint32_t objSize = getObjectSize(size); |
1162 | |
1163 | if (activeBlk) { |
1164 | MALLOC_ASSERT( activeBlk->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1165 | MALLOC_ASSERT( activeBlk->objectSize == objSize, ASSERT_TEXT ); |
1166 | #if MALLOC_DEBUG>1 |
1167 | for (Block* temp = activeBlk->next; temp; temp=temp->next) { |
1168 | MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT ); |
1169 | MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1170 | MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT ); |
1171 | MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT ); |
1172 | if (temp->next) { |
1173 | MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT ); |
1174 | } |
1175 | } |
1176 | for (Block* temp = activeBlk->previous; temp; temp=temp->previous) { |
1177 | MALLOC_ASSERT( temp!=activeBlk, ASSERT_TEXT ); |
1178 | MALLOC_ASSERT( temp->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1179 | MALLOC_ASSERT( temp->objectSize == objSize, ASSERT_TEXT ); |
1180 | MALLOC_ASSERT( temp->next->previous == temp, ASSERT_TEXT ); |
1181 | if (temp->previous) { |
1182 | MALLOC_ASSERT( temp->previous->next == temp, ASSERT_TEXT ); |
1183 | } |
1184 | } |
1185 | #endif /* MALLOC_DEBUG>1 */ |
1186 | } |
1187 | } |
1188 | #else /* MALLOC_DEBUG */ |
1189 | inline void Bin::verifyTLSBin (size_t) const { } |
1190 | #endif /* MALLOC_DEBUG */ |
1191 | |
1192 | /* |
1193 | * Add a block to the start of this tls bin list. |
1194 | */ |
1195 | void Bin::pushTLSBin(Block* block) |
1196 | { |
1197 | /* The objectSize should be defined and not a parameter |
1198 | because the function is applied to partially filled blocks as well */ |
1199 | unsigned int size = block->objectSize; |
1200 | |
1201 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1202 | MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT ); |
1203 | MALLOC_ASSERT( block->next == NULL, ASSERT_TEXT ); |
1204 | MALLOC_ASSERT( block->previous == NULL, ASSERT_TEXT ); |
1205 | |
1206 | MALLOC_ASSERT( this, ASSERT_TEXT ); |
1207 | verifyTLSBin(size); |
1208 | |
1209 | block->next = activeBlk; |
1210 | if( activeBlk ) { |
1211 | block->previous = activeBlk->previous; |
1212 | activeBlk->previous = block; |
1213 | if( block->previous ) |
1214 | block->previous->next = block; |
1215 | } else { |
1216 | activeBlk = block; |
1217 | } |
1218 | |
1219 | verifyTLSBin(size); |
1220 | } |
1221 | |
1222 | /* |
1223 | * Take a block out of its tls bin (e.g. before removal). |
1224 | */ |
1225 | void Bin::outofTLSBin(Block* block) |
1226 | { |
1227 | unsigned int size = block->objectSize; |
1228 | |
1229 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1230 | MALLOC_ASSERT( block->objectSize != 0, ASSERT_TEXT ); |
1231 | |
1232 | MALLOC_ASSERT( this, ASSERT_TEXT ); |
1233 | verifyTLSBin(size); |
1234 | |
1235 | if (block == activeBlk) { |
1236 | activeBlk = block->previous? block->previous : block->next; |
1237 | } |
1238 | /* Unlink the block */ |
1239 | if (block->previous) { |
1240 | MALLOC_ASSERT( block->previous->next == block, ASSERT_TEXT ); |
1241 | block->previous->next = block->next; |
1242 | } |
1243 | if (block->next) { |
1244 | MALLOC_ASSERT( block->next->previous == block, ASSERT_TEXT ); |
1245 | block->next->previous = block->previous; |
1246 | } |
1247 | block->next = NULL; |
1248 | block->previous = NULL; |
1249 | |
1250 | verifyTLSBin(size); |
1251 | } |
1252 | |
1253 | Block* Bin::getPrivatizedFreeListBlock() |
1254 | { |
1255 | Block* block; |
1256 | MALLOC_ASSERT( this, ASSERT_TEXT ); |
1257 | // if this method is called, active block usage must be unsuccessful |
1258 | MALLOC_ASSERT( !activeBlk && !mailbox || activeBlk && activeBlk->isFull, ASSERT_TEXT ); |
1259 | |
1260 | // the counter should be changed STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
1261 | if (!FencedLoad((intptr_t&)mailbox)) // hotpath is empty mailbox |
1262 | return NULL; |
1263 | else { // mailbox is not empty, take lock and inspect it |
1264 | MallocMutex::scoped_lock scoped_cs(mailLock); |
1265 | block = mailbox; |
1266 | if( block ) { |
1267 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1268 | MALLOC_ASSERT( !isNotForUse(block->nextPrivatizable), ASSERT_TEXT ); |
1269 | mailbox = block->nextPrivatizable; |
1270 | block->nextPrivatizable = (Block*) this; |
1271 | } |
1272 | } |
1273 | if( block ) { |
1274 | MALLOC_ASSERT( isSolidPtr(block->publicFreeList), ASSERT_TEXT ); |
1275 | block->privatizePublicFreeList(); |
1276 | block->adjustPositionInBin(this); |
1277 | } |
1278 | return block; |
1279 | } |
1280 | |
1281 | void Bin::addPublicFreeListBlock(Block* block) |
1282 | { |
1283 | MallocMutex::scoped_lock scoped_cs(mailLock); |
1284 | block->nextPrivatizable = mailbox; |
1285 | mailbox = block; |
1286 | } |
1287 | |
1288 | // Process publicly freed objects in all blocks and return empty blocks |
1289 | // to the backend in order to reduce overall footprint. |
1290 | bool Bin::cleanPublicFreeLists() |
1291 | { |
1292 | Block* block; |
1293 | if (!FencedLoad((intptr_t&)mailbox)) |
1294 | return false; |
1295 | else { |
1296 | // Grab all the blocks in the mailbox |
1297 | MallocMutex::scoped_lock scoped_cs(mailLock); |
1298 | block = mailbox; |
1299 | mailbox = NULL; |
1300 | } |
1301 | bool released = false; |
1302 | while (block) { |
1303 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1304 | Block* tmp = block->nextPrivatizable; |
1305 | block->nextPrivatizable = (Block*) this; |
1306 | block->privatizePublicFreeList(); |
1307 | if (block->empty()) { |
1308 | processEmptyBlock(block, /*poolTheBlock=*/false); |
1309 | released = true; |
1310 | } else |
1311 | block->adjustPositionInBin(this); |
1312 | block = tmp; |
1313 | } |
1314 | return released; |
1315 | } |
1316 | |
1317 | bool Block::adjustFullness() |
1318 | { |
1319 | if (bumpPtr) { |
1320 | /* If we are still using a bump ptr for this block it is empty enough to use. */ |
1321 | STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough); |
1322 | isFull = false; |
1323 | } else { |
1324 | const float threshold = (slabSize - sizeof(Block)) * (1 - emptyEnoughRatio); |
1325 | /* allocatedCount shows how many objects in the block are in use; however it still counts |
1326 | * blocks freed by other threads; so prior call to privatizePublicFreeList() is recommended */ |
1327 | isFull = (allocatedCount*objectSize > threshold) ? true : false; |
1328 | #if COLLECT_STATISTICS |
1329 | if (isFull) |
1330 | STAT_increment(getThreadId(), getIndex(objectSize), examineNotEmpty); |
1331 | else |
1332 | STAT_increment(getThreadId(), getIndex(objectSize), examineEmptyEnough); |
1333 | #endif |
1334 | } |
1335 | return isFull; |
1336 | } |
1337 | |
1338 | // This method resides in class Block, and not in class Bin, in order to avoid |
1339 | // calling getAllocationBin on a reasonably hot path in Block::freeOwnObject |
1340 | void Block::adjustPositionInBin(Bin* bin/*=NULL*/) |
1341 | { |
1342 | // If the block were full, but became empty enough to use, |
1343 | // move it to the front of the list |
1344 | if (isFull && !adjustFullness()) { |
1345 | if (!bin) |
1346 | bin = tlsPtr->getAllocationBin(objectSize); |
1347 | bin->moveBlockToFront(this); |
1348 | } |
1349 | } |
1350 | |
1351 | /* Restore the bump pointer for an empty block that is planned to use */ |
1352 | void Block::restoreBumpPtr() |
1353 | { |
1354 | MALLOC_ASSERT( allocatedCount == 0, ASSERT_TEXT ); |
1355 | MALLOC_ASSERT( !isSolidPtr(publicFreeList), ASSERT_TEXT ); |
1356 | STAT_increment(getThreadId(), getIndex(objectSize), freeRestoreBumpPtr); |
1357 | bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize); |
1358 | freeList = NULL; |
1359 | isFull = false; |
1360 | } |
1361 | |
1362 | void Block::freeOwnObject(void *object) |
1363 | { |
1364 | tlsPtr->markUsed(); |
1365 | allocatedCount--; |
1366 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
1367 | #if COLLECT_STATISTICS |
1368 | // Note that getAllocationBin is not called on the hottest path with statistics off. |
1369 | if (tlsPtr->getAllocationBin(objectSize)->getActiveBlock() != this) |
1370 | STAT_increment(getThreadId(), getIndex(objectSize), freeToInactiveBlock); |
1371 | else |
1372 | STAT_increment(getThreadId(), getIndex(objectSize), freeToActiveBlock); |
1373 | #endif |
1374 | if (empty()) { |
1375 | // If the last object of a slab is freed, the slab cannot be marked full |
1376 | MALLOC_ASSERT(!isFull, ASSERT_TEXT); |
1377 | tlsPtr->getAllocationBin(objectSize)->processEmptyBlock(this, /*poolTheBlock=*/true); |
1378 | } else { // hot path |
1379 | FreeObject *objectToFree = findObjectToFree(object); |
1380 | objectToFree->next = freeList; |
1381 | freeList = objectToFree; |
1382 | adjustPositionInBin(); |
1383 | } |
1384 | } |
1385 | |
1386 | void Block::freePublicObject (FreeObject *objectToFree) |
1387 | { |
1388 | FreeObject *localPublicFreeList; |
1389 | |
1390 | MALLOC_ITT_SYNC_RELEASING(&publicFreeList); |
1391 | #if FREELIST_NONBLOCKING |
1392 | FreeObject *temp = publicFreeList; |
1393 | do { |
1394 | localPublicFreeList = objectToFree->next = temp; |
1395 | temp = (FreeObject*)AtomicCompareExchange( |
1396 | (intptr_t&)publicFreeList, |
1397 | (intptr_t)objectToFree, (intptr_t)localPublicFreeList ); |
1398 | // no backoff necessary because trying to make change, not waiting for a change |
1399 | } while( temp != localPublicFreeList ); |
1400 | #else |
1401 | STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
1402 | { |
1403 | MallocMutex::scoped_lock scoped_cs(publicFreeListLock); |
1404 | localPublicFreeList = objectToFree->next = publicFreeList; |
1405 | publicFreeList = objectToFree; |
1406 | } |
1407 | #endif |
1408 | |
1409 | if( localPublicFreeList==NULL ) { |
1410 | // if the block is abandoned, its nextPrivatizable pointer should be UNUSABLE |
1411 | // otherwise, it should point to the bin the block belongs to. |
1412 | // reading nextPrivatizable is thread-safe below, because: |
1413 | // 1) the executing thread atomically got publicFreeList==NULL and changed it to non-NULL; |
1414 | // 2) only owning thread can change it back to NULL, |
1415 | // 3) but it can not be done until the block is put to the mailbox |
1416 | // So the executing thread is now the only one that can change nextPrivatizable |
1417 | if( !isNotForUse(nextPrivatizable) ) { |
1418 | MALLOC_ASSERT( nextPrivatizable!=NULL, ASSERT_TEXT ); |
1419 | Bin* theBin = (Bin*) nextPrivatizable; |
1420 | theBin->addPublicFreeListBlock(this); |
1421 | } |
1422 | } |
1423 | STAT_increment(getThreadId(), ThreadCommonCounters, freeToOtherThread); |
1424 | STAT_increment(ownerTid, getIndex(objectSize), freeByOtherThread); |
1425 | } |
1426 | |
1427 | // Make objects freed by other threads available for use again |
1428 | void Block::privatizePublicFreeList( bool reset ) |
1429 | { |
1430 | FreeObject *localPublicFreeList; |
1431 | // If reset is false, publicFreeList should not be zeroed but set to UNUSABLE |
1432 | // to properly synchronize with other threads freeing objects to this slab. |
1433 | const intptr_t endMarker = reset ? 0 : UNUSABLE; |
1434 | |
1435 | // Only the owner thread may reset the pointer to NULL |
1436 | MALLOC_ASSERT( isOwnedByCurrentThread() || !reset, ASSERT_TEXT ); |
1437 | #if FREELIST_NONBLOCKING |
1438 | localPublicFreeList = (FreeObject*)AtomicFetchStore( &publicFreeList, endMarker ); |
1439 | #else |
1440 | STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
1441 | { |
1442 | MallocMutex::scoped_lock scoped_cs(publicFreeListLock); |
1443 | localPublicFreeList = publicFreeList; |
1444 | publicFreeList = endMarker; |
1445 | } |
1446 | #endif |
1447 | MALLOC_ITT_SYNC_ACQUIRED(&publicFreeList); |
1448 | MALLOC_ASSERT( !(reset && isNotForUse(publicFreeList)), ASSERT_TEXT ); |
1449 | |
1450 | // publicFreeList must have been UNUSABLE or valid, but not NULL |
1451 | MALLOC_ASSERT( localPublicFreeList!=NULL, ASSERT_TEXT ); |
1452 | if( isSolidPtr(localPublicFreeList) ) { |
1453 | MALLOC_ASSERT( allocatedCount <= (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
1454 | /* other threads did not change the counter freeing our blocks */ |
1455 | allocatedCount--; |
1456 | FreeObject *temp = localPublicFreeList; |
1457 | while( isSolidPtr(temp->next) ){ // the list will end with either NULL or UNUSABLE |
1458 | temp = temp->next; |
1459 | allocatedCount--; |
1460 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
1461 | } |
1462 | /* merge with local freeList */ |
1463 | temp->next = freeList; |
1464 | freeList = localPublicFreeList; |
1465 | STAT_increment(getThreadId(), getIndex(objectSize), allocPrivatized); |
1466 | } |
1467 | } |
1468 | |
1469 | void Block::privatizeOrphaned(TLSData *tls, unsigned index) |
1470 | { |
1471 | Bin* bin = tls->bin + index; |
1472 | STAT_increment(getThreadId(), index, allocBlockPublic); |
1473 | next = NULL; |
1474 | previous = NULL; |
1475 | MALLOC_ASSERT( publicFreeList!=NULL, ASSERT_TEXT ); |
1476 | /* There is not a race here since no other thread owns this block */ |
1477 | markOwned(tls); |
1478 | // It is safe to change nextPrivatizable, as publicFreeList is not null |
1479 | MALLOC_ASSERT( isNotForUse(nextPrivatizable), ASSERT_TEXT ); |
1480 | nextPrivatizable = (Block*)bin; |
1481 | // the next call is required to change publicFreeList to 0 |
1482 | privatizePublicFreeList(); |
1483 | if( empty() ) { |
1484 | restoreBumpPtr(); |
1485 | } else { |
1486 | adjustFullness(); // check the block fullness and set isFull |
1487 | } |
1488 | MALLOC_ASSERT( !isNotForUse(publicFreeList), ASSERT_TEXT ); |
1489 | } |
1490 | |
1491 | |
1492 | bool Block::readyToShare() |
1493 | { |
1494 | void* oldval; |
1495 | #if FREELIST_NONBLOCKING |
1496 | oldval = (void*)AtomicCompareExchange((intptr_t&)publicFreeList, UNUSABLE, 0); |
1497 | #else |
1498 | STAT_increment(getThreadId(), ThreadCommonCounters, lockPublicFreeList); |
1499 | { |
1500 | MallocMutex::scoped_lock scoped_cs(publicFreeListLock); |
1501 | if ( (oldval=publicFreeList)==NULL ) |
1502 | (intptr_t&)(publicFreeList) = UNUSABLE; |
1503 | } |
1504 | #endif |
1505 | return oldval==NULL; |
1506 | } |
1507 | |
1508 | void Block::shareOrphaned(intptr_t binTag, unsigned index) |
1509 | { |
1510 | MALLOC_ASSERT( binTag, ASSERT_TEXT ); |
1511 | STAT_increment(getThreadId(), index, freeBlockPublic); |
1512 | markOrphaned(); |
1513 | if ((intptr_t)nextPrivatizable==binTag) { |
1514 | // First check passed: the block is not in mailbox yet. |
1515 | // Need to set publicFreeList to non-zero, so other threads |
1516 | // will not change nextPrivatizable and it can be zeroed. |
1517 | if ( !readyToShare() ) { |
1518 | // another thread freed an object; we need to wait until it finishes. |
1519 | // There is no need for exponential backoff, as the wait here is not for a lock; |
1520 | // but need to yield, so the thread we wait has a chance to run. |
1521 | // TODO: add a pause to also be friendly to hyperthreads |
1522 | int count = 256; |
1523 | while( (intptr_t)const_cast<Block* volatile &>(nextPrivatizable)==binTag ) { |
1524 | if (--count==0) { |
1525 | do_yield(); |
1526 | count = 256; |
1527 | } |
1528 | } |
1529 | } |
1530 | } |
1531 | MALLOC_ASSERT( publicFreeList!=NULL, ASSERT_TEXT ); |
1532 | // now it is safe to change our data |
1533 | previous = NULL; |
1534 | // it is caller responsibility to ensure that the list of blocks |
1535 | // formed by nextPrivatizable pointers is kept consistent if required. |
1536 | // if only called from thread shutdown code, it does not matter. |
1537 | (intptr_t&)(nextPrivatizable) = UNUSABLE; |
1538 | } |
1539 | |
1540 | void Block::() |
1541 | { |
1542 | next = NULL; |
1543 | previous = NULL; |
1544 | freeList = NULL; |
1545 | allocatedCount = 0; |
1546 | isFull = false; |
1547 | tlsPtr = NULL; |
1548 | |
1549 | publicFreeList = NULL; |
1550 | } |
1551 | |
1552 | void Block::initEmptyBlock(TLSData *tls, size_t size) |
1553 | { |
1554 | // Having getIndex and getObjectSize called next to each other |
1555 | // allows better compiler optimization as they basically share the code. |
1556 | unsigned int index = getIndex(size); |
1557 | unsigned int objSz = getObjectSize(size); |
1558 | |
1559 | cleanBlockHeader(); |
1560 | objectSize = objSz; |
1561 | markOwned(tls); |
1562 | // bump pointer should be prepared for first allocation - thus mode it down to objectSize |
1563 | bumpPtr = (FreeObject *)((uintptr_t)this + slabSize - objectSize); |
1564 | |
1565 | // each block should have the address where the head of the list of "privatizable" blocks is kept |
1566 | // the only exception is a block for boot strap which is initialized when TLS is yet NULL |
1567 | nextPrivatizable = tls? (Block*)(tls->bin + index) : NULL; |
1568 | TRACEF(( "[ScalableMalloc trace] Empty block %p is initialized, owner is %ld, objectSize is %d, bumpPtr is %p\n" , |
1569 | this, tlsPtr ? getThreadId() : -1, objectSize, bumpPtr )); |
1570 | } |
1571 | |
1572 | Block *OrphanedBlocks::get(TLSData *tls, unsigned int size) |
1573 | { |
1574 | // TODO: try to use index from getAllocationBin |
1575 | unsigned int index = getIndex(size); |
1576 | Block *block = bins[index].pop(); |
1577 | if (block) { |
1578 | MALLOC_ITT_SYNC_ACQUIRED(bins+index); |
1579 | block->privatizeOrphaned(tls, index); |
1580 | } |
1581 | return block; |
1582 | } |
1583 | |
1584 | void OrphanedBlocks::put(intptr_t binTag, Block *block) |
1585 | { |
1586 | unsigned int index = getIndex(block->getSize()); |
1587 | block->shareOrphaned(binTag, index); |
1588 | MALLOC_ITT_SYNC_RELEASING(bins+index); |
1589 | bins[index].push(block); |
1590 | } |
1591 | |
1592 | void OrphanedBlocks::reset() |
1593 | { |
1594 | for (uint32_t i=0; i<numBlockBinLimit; i++) |
1595 | new (bins+i) LifoList(); |
1596 | } |
1597 | |
1598 | bool OrphanedBlocks::cleanup(Backend* backend) |
1599 | { |
1600 | bool released = false; |
1601 | for (uint32_t i=0; i<numBlockBinLimit; i++) { |
1602 | Block* block = bins[i].grab(); |
1603 | MALLOC_ITT_SYNC_ACQUIRED(bins+i); |
1604 | while (block) { |
1605 | Block* next = block->next; |
1606 | block->privatizePublicFreeList( /*reset=*/false ); // do not set publicFreeList to NULL |
1607 | if (block->empty()) { |
1608 | block->reset(); |
1609 | // slab blocks in user's pools do not have valid backRefIdx |
1610 | if (!backend->inUserPool()) |
1611 | removeBackRef(*(block->getBackRefIdx())); |
1612 | backend->putSlabBlock(block); |
1613 | released = true; |
1614 | } else { |
1615 | MALLOC_ITT_SYNC_RELEASING(bins+i); |
1616 | bins[i].push(block); |
1617 | } |
1618 | block = next; |
1619 | } |
1620 | } |
1621 | return released; |
1622 | } |
1623 | |
1624 | FreeBlockPool::ResOfGet FreeBlockPool::getBlock() |
1625 | { |
1626 | Block *b = (Block*)AtomicFetchStore(&head, 0); |
1627 | |
1628 | if (b) { |
1629 | size--; |
1630 | Block *newHead = b->next; |
1631 | lastAccessMiss = false; |
1632 | FencedStore((intptr_t&)head, (intptr_t)newHead); |
1633 | } else |
1634 | lastAccessMiss = true; |
1635 | |
1636 | return ResOfGet(b, lastAccessMiss); |
1637 | } |
1638 | |
1639 | void FreeBlockPool::returnBlock(Block *block) |
1640 | { |
1641 | MALLOC_ASSERT( size <= POOL_HIGH_MARK, ASSERT_TEXT ); |
1642 | Block *localHead = (Block*)AtomicFetchStore(&head, 0); |
1643 | |
1644 | if (!localHead) |
1645 | size = 0; // head was stolen by externalClean, correct size accordingly |
1646 | else if (size == POOL_HIGH_MARK) { |
1647 | // release cold blocks and add hot one, |
1648 | // so keep POOL_LOW_MARK-1 blocks and add new block to head |
1649 | Block *headToFree = localHead, *helper; |
1650 | for (int i=0; i<POOL_LOW_MARK-2; i++) |
1651 | headToFree = headToFree->next; |
1652 | Block *last = headToFree; |
1653 | headToFree = headToFree->next; |
1654 | last->next = NULL; |
1655 | size = POOL_LOW_MARK-1; |
1656 | for (Block *currBl = headToFree; currBl; currBl = helper) { |
1657 | helper = currBl->next; |
1658 | // slab blocks in user's pools do not have valid backRefIdx |
1659 | if (!backend->inUserPool()) |
1660 | removeBackRef(currBl->backRefIdx); |
1661 | backend->putSlabBlock(currBl); |
1662 | } |
1663 | } |
1664 | size++; |
1665 | block->next = localHead; |
1666 | FencedStore((intptr_t&)head, (intptr_t)block); |
1667 | } |
1668 | |
1669 | bool FreeBlockPool::externalCleanup() |
1670 | { |
1671 | Block *helper; |
1672 | bool released = false; |
1673 | |
1674 | for (Block *currBl=(Block*)AtomicFetchStore(&head, 0); currBl; currBl=helper) { |
1675 | helper = currBl->next; |
1676 | // slab blocks in user's pools do not have valid backRefIdx |
1677 | if (!backend->inUserPool()) |
1678 | removeBackRef(currBl->backRefIdx); |
1679 | backend->putSlabBlock(currBl); |
1680 | released = true; |
1681 | } |
1682 | return released; |
1683 | } |
1684 | |
1685 | /* Prepare the block for returning to FreeBlockPool */ |
1686 | void Block::reset() |
1687 | { |
1688 | // it is caller's responsibility to ensure no data is lost before calling this |
1689 | MALLOC_ASSERT( allocatedCount==0, ASSERT_TEXT ); |
1690 | MALLOC_ASSERT( !isSolidPtr(publicFreeList), ASSERT_TEXT ); |
1691 | if (!isStartupAllocObject()) |
1692 | STAT_increment(getThreadId(), getIndex(objectSize), freeBlockBack); |
1693 | |
1694 | cleanBlockHeader(); |
1695 | |
1696 | nextPrivatizable = NULL; |
1697 | |
1698 | objectSize = 0; |
1699 | // for an empty block, bump pointer should point right after the end of the block |
1700 | bumpPtr = (FreeObject *)((uintptr_t)this + slabSize); |
1701 | } |
1702 | |
1703 | inline void Bin::setActiveBlock (Block *block) |
1704 | { |
1705 | // MALLOC_ASSERT( bin, ASSERT_TEXT ); |
1706 | MALLOC_ASSERT( block->isOwnedByCurrentThread(), ASSERT_TEXT ); |
1707 | // it is the caller responsibility to keep bin consistence (i.e. ensure this block is in the bin list) |
1708 | activeBlk = block; |
1709 | } |
1710 | |
1711 | inline Block* Bin::setPreviousBlockActive() |
1712 | { |
1713 | MALLOC_ASSERT( activeBlk, ASSERT_TEXT ); |
1714 | Block* temp = activeBlk->previous; |
1715 | if( temp ) { |
1716 | MALLOC_ASSERT( !(temp->isFull), ASSERT_TEXT ); |
1717 | activeBlk = temp; |
1718 | } |
1719 | return temp; |
1720 | } |
1721 | |
1722 | inline bool Block::isOwnedByCurrentThread() const { |
1723 | return tlsPtr && ownerTid.isCurrentThreadId(); |
1724 | } |
1725 | |
1726 | FreeObject *Block::findObjectToFree(const void *object) const |
1727 | { |
1728 | FreeObject *objectToFree; |
1729 | // Due to aligned allocations, a pointer passed to scalable_free |
1730 | // might differ from the address of internally allocated object. |
1731 | // Small objects however should always be fine. |
1732 | if (objectSize <= maxSegregatedObjectSize) |
1733 | objectToFree = (FreeObject*)object; |
1734 | // "Fitting size" allocations are suspicious if aligned higher than naturally |
1735 | else { |
1736 | if ( ! isAligned(object,2*fittingAlignment) ) |
1737 | // TODO: the above check is questionable - it gives false negatives in ~50% cases, |
1738 | // so might even be slower in average than unconditional use of findAllocatedObject. |
1739 | // here it should be a "real" object |
1740 | objectToFree = (FreeObject*)object; |
1741 | else |
1742 | // here object can be an aligned address, so applying additional checks |
1743 | objectToFree = findAllocatedObject(object); |
1744 | MALLOC_ASSERT( isAligned(objectToFree,fittingAlignment), ASSERT_TEXT ); |
1745 | } |
1746 | MALLOC_ASSERT( isProperlyPlaced(objectToFree), ASSERT_TEXT ); |
1747 | |
1748 | return objectToFree; |
1749 | } |
1750 | |
1751 | void TLSData::release() |
1752 | { |
1753 | memPool->extMemPool.allLocalCaches.unregisterThread(this); |
1754 | externalCleanup(/*cleanOnlyUnused=*/false, /*cleanBins=*/false); |
1755 | |
1756 | for (unsigned index = 0; index < numBlockBins; index++) { |
1757 | Block *activeBlk = bin[index].getActiveBlock(); |
1758 | if (!activeBlk) |
1759 | continue; |
1760 | Block *threadlessBlock = activeBlk->previous; |
1761 | while (threadlessBlock) { |
1762 | Block *threadBlock = threadlessBlock->previous; |
1763 | if (threadlessBlock->empty()) { |
1764 | /* we destroy the thread, so not use its block pool */ |
1765 | memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false); |
1766 | } else { |
1767 | memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock); |
1768 | } |
1769 | threadlessBlock = threadBlock; |
1770 | } |
1771 | threadlessBlock = activeBlk; |
1772 | while (threadlessBlock) { |
1773 | Block *threadBlock = threadlessBlock->next; |
1774 | if (threadlessBlock->empty()) { |
1775 | /* we destroy the thread, so not use its block pool */ |
1776 | memPool->returnEmptyBlock(threadlessBlock, /*poolTheBlock=*/false); |
1777 | } else { |
1778 | memPool->extMemPool.orphanedBlocks.put(intptr_t(bin+index), threadlessBlock); |
1779 | } |
1780 | threadlessBlock = threadBlock; |
1781 | } |
1782 | bin[index].resetActiveBlock(); |
1783 | } |
1784 | } |
1785 | |
1786 | |
1787 | #if MALLOC_CHECK_RECURSION |
1788 | // TODO: Use dedicated heap for this |
1789 | |
1790 | /* |
1791 | * It's a special kind of allocation that can be used when malloc is |
1792 | * not available (either during startup or when malloc was already called and |
1793 | * we are, say, inside pthread_setspecific's call). |
1794 | * Block can contain objects of different sizes, |
1795 | * allocations are performed by moving bump pointer and increasing of object counter, |
1796 | * releasing is done via counter of objects allocated in the block |
1797 | * or moving bump pointer if releasing object is on a bound. |
1798 | * TODO: make bump pointer to grow to the same backward direction as all the others. |
1799 | */ |
1800 | |
1801 | class StartupBlock : public Block { |
1802 | size_t availableSize() const { |
1803 | return slabSize - ((uintptr_t)bumpPtr - (uintptr_t)this); |
1804 | } |
1805 | static StartupBlock *getBlock(); |
1806 | public: |
1807 | static FreeObject *allocate(size_t size); |
1808 | static size_t msize(void *ptr) { return *((size_t*)ptr - 1); } |
1809 | void free(void *ptr); |
1810 | }; |
1811 | |
1812 | static MallocMutex startupMallocLock; |
1813 | static StartupBlock *firstStartupBlock; |
1814 | |
1815 | StartupBlock *StartupBlock::getBlock() |
1816 | { |
1817 | BackRefIdx backRefIdx = BackRefIdx::newBackRef(/*largeObj=*/false); |
1818 | if (backRefIdx.isInvalid()) return NULL; |
1819 | |
1820 | StartupBlock *block = static_cast<StartupBlock*>( |
1821 | defaultMemPool->extMemPool.backend.getSlabBlock(1)); |
1822 | if (!block) return NULL; |
1823 | |
1824 | block->cleanBlockHeader(); |
1825 | setBackRef(backRefIdx, block); |
1826 | block->backRefIdx = backRefIdx; |
1827 | // use startupAllocObjSizeMark to mark objects from startup block marker |
1828 | block->objectSize = startupAllocObjSizeMark; |
1829 | block->bumpPtr = (FreeObject *)((uintptr_t)block + sizeof(StartupBlock)); |
1830 | return block; |
1831 | } |
1832 | |
1833 | FreeObject *StartupBlock::allocate(size_t size) |
1834 | { |
1835 | FreeObject *result; |
1836 | StartupBlock *newBlock = NULL; |
1837 | bool newBlockUnused = false; |
1838 | |
1839 | /* Objects must be aligned on their natural bounds, |
1840 | and objects bigger than word on word's bound. */ |
1841 | size = alignUp(size, sizeof(size_t)); |
1842 | // We need size of an object to implement msize. |
1843 | size_t reqSize = size + sizeof(size_t); |
1844 | // speculatively allocates newBlock to try avoid allocation while holding lock |
1845 | /* TODO: The function is called when malloc nested call is detected, |
1846 | so simultaneous usage from different threads seems unlikely. |
1847 | If pre-allocation is found useless, the code might be simplified. */ |
1848 | if (!firstStartupBlock || firstStartupBlock->availableSize() < reqSize) { |
1849 | newBlock = StartupBlock::getBlock(); |
1850 | if (!newBlock) return NULL; |
1851 | } |
1852 | { |
1853 | MallocMutex::scoped_lock scoped_cs(startupMallocLock); |
1854 | // Re-check whether we need a new block (conditions might have changed) |
1855 | if (!firstStartupBlock || firstStartupBlock->availableSize() < reqSize) { |
1856 | if (!newBlock) { |
1857 | newBlock = StartupBlock::getBlock(); |
1858 | if (!newBlock) return NULL; |
1859 | } |
1860 | newBlock->next = (Block*)firstStartupBlock; |
1861 | if (firstStartupBlock) |
1862 | firstStartupBlock->previous = (Block*)newBlock; |
1863 | firstStartupBlock = newBlock; |
1864 | } else |
1865 | newBlockUnused = true; |
1866 | result = firstStartupBlock->bumpPtr; |
1867 | firstStartupBlock->allocatedCount++; |
1868 | firstStartupBlock->bumpPtr = |
1869 | (FreeObject *)((uintptr_t)firstStartupBlock->bumpPtr + reqSize); |
1870 | } |
1871 | if (newBlock && newBlockUnused) |
1872 | defaultMemPool->returnEmptyBlock(newBlock, /*poolTheBlock=*/false); |
1873 | |
1874 | // keep object size at the negative offset |
1875 | *((size_t*)result) = size; |
1876 | return (FreeObject*)((size_t*)result+1); |
1877 | } |
1878 | |
1879 | void StartupBlock::free(void *ptr) |
1880 | { |
1881 | Block* blockToRelease = NULL; |
1882 | { |
1883 | MallocMutex::scoped_lock scoped_cs(startupMallocLock); |
1884 | |
1885 | MALLOC_ASSERT(firstStartupBlock, ASSERT_TEXT); |
1886 | MALLOC_ASSERT(startupAllocObjSizeMark==objectSize |
1887 | && allocatedCount>0, ASSERT_TEXT); |
1888 | MALLOC_ASSERT((uintptr_t)ptr>=(uintptr_t)this+sizeof(StartupBlock) |
1889 | && (uintptr_t)ptr+StartupBlock::msize(ptr)<=(uintptr_t)this+slabSize, |
1890 | ASSERT_TEXT); |
1891 | if (0 == --allocatedCount) { |
1892 | if (this == firstStartupBlock) |
1893 | firstStartupBlock = (StartupBlock*)firstStartupBlock->next; |
1894 | if (previous) |
1895 | previous->next = next; |
1896 | if (next) |
1897 | next->previous = previous; |
1898 | blockToRelease = this; |
1899 | } else if ((uintptr_t)ptr + StartupBlock::msize(ptr) == (uintptr_t)bumpPtr) { |
1900 | // last object in the block released |
1901 | FreeObject *newBump = (FreeObject*)((size_t*)ptr - 1); |
1902 | MALLOC_ASSERT((uintptr_t)newBump>(uintptr_t)this+sizeof(StartupBlock), |
1903 | ASSERT_TEXT); |
1904 | bumpPtr = newBump; |
1905 | } |
1906 | } |
1907 | if (blockToRelease) { |
1908 | blockToRelease->previous = blockToRelease->next = NULL; |
1909 | defaultMemPool->returnEmptyBlock(blockToRelease, /*poolTheBlock=*/false); |
1910 | } |
1911 | } |
1912 | |
1913 | #endif /* MALLOC_CHECK_RECURSION */ |
1914 | |
1915 | /********* End thread related code *************/ |
1916 | |
1917 | /********* Library initialization *************/ |
1918 | |
1919 | //! Value indicating the state of initialization. |
1920 | /* 0 = initialization not started. |
1921 | * 1 = initialization started but not finished. |
1922 | * 2 = initialization finished. |
1923 | * In theory, we only need values 0 and 2. But value 1 is nonetheless |
1924 | * useful for detecting errors in the double-check pattern. |
1925 | */ |
1926 | static intptr_t mallocInitialized; // implicitly initialized to 0 |
1927 | static MallocMutex initMutex; |
1928 | |
1929 | /** The leading "\0" is here so that applying "strings" to the binary |
1930 | delivers a clean result. */ |
1931 | static char VersionString[] = "\0" TBBMALLOC_VERSION_STRINGS; |
1932 | |
1933 | #if USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND) |
1934 | |
1935 | /* Decrease race interval between dynamic library unloading and pthread key |
1936 | destructor. Protect only Pthreads with supported unloading. */ |
1937 | class ShutdownSync { |
1938 | /* flag is the number of threads in pthread key dtor body |
1939 | (i.e., between threadDtorStart() and threadDtorDone()) |
1940 | or the signal to skip dtor, if flag < 0 */ |
1941 | intptr_t flag; |
1942 | static const intptr_t skipDtor = INTPTR_MIN/2; |
1943 | public: |
1944 | void init() { flag = 0; } |
1945 | /* Suppose that 2*abs(skipDtor) or more threads never call threadDtorStart() |
1946 | simultaneously, so flag never becomes negative because of that. */ |
1947 | bool threadDtorStart() { |
1948 | if (flag < 0) |
1949 | return false; |
1950 | if (AtomicIncrement(flag) <= 0) { // note that new value returned |
1951 | AtomicAdd(flag, -1); // flag is spoiled by us, restore it |
1952 | return false; |
1953 | } |
1954 | return true; |
1955 | } |
1956 | void threadDtorDone() { |
1957 | AtomicAdd(flag, -1); |
1958 | } |
1959 | void processExit() { |
1960 | if (AtomicAdd(flag, skipDtor) != 0) |
1961 | SpinWaitUntilEq(flag, skipDtor); |
1962 | } |
1963 | }; |
1964 | |
1965 | #else |
1966 | |
1967 | class ShutdownSync { |
1968 | public: |
1969 | void init() { } |
1970 | bool threadDtorStart() { return true; } |
1971 | void threadDtorDone() { } |
1972 | void processExit() { } |
1973 | }; |
1974 | |
1975 | #endif // USE_PTHREAD && (__TBB_SOURCE_DIRECTLY_INCLUDED || __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND) |
1976 | |
1977 | static ShutdownSync shutdownSync; |
1978 | |
1979 | inline bool isMallocInitialized() { |
1980 | // Load must have acquire fence; otherwise thread taking "initialized" path |
1981 | // might perform textually later loads *before* mallocInitialized becomes 2. |
1982 | return 2 == FencedLoad(mallocInitialized); |
1983 | } |
1984 | |
1985 | bool isMallocInitializedExt() { |
1986 | return isMallocInitialized(); |
1987 | } |
1988 | |
1989 | /* Caller is responsible for ensuring this routine is called exactly once. */ |
1990 | extern "C" void MallocInitializeITT() { |
1991 | #if DO_ITT_NOTIFY |
1992 | if (!usedBySrcIncluded) |
1993 | tbb::internal::__TBB_load_ittnotify(); |
1994 | #endif |
1995 | } |
1996 | |
1997 | void MemoryPool::initDefaultPool() { |
1998 | hugePages.init(); |
1999 | } |
2000 | |
2001 | /* |
2002 | * Allocator initialization routine; |
2003 | * it is called lazily on the very first scalable_malloc call. |
2004 | */ |
2005 | static bool initMemoryManager() |
2006 | { |
2007 | TRACEF(( "[ScalableMalloc trace] sizeof(Block) is %d (expected 128); sizeof(uintptr_t) is %d\n" , |
2008 | sizeof(Block), sizeof(uintptr_t) )); |
2009 | MALLOC_ASSERT( 2*blockHeaderAlignment == sizeof(Block), ASSERT_TEXT ); |
2010 | MALLOC_ASSERT( sizeof(FreeObject) == sizeof(void*), ASSERT_TEXT ); |
2011 | MALLOC_ASSERT( isAligned(defaultMemPool, sizeof(intptr_t)), |
2012 | "Memory pool must be void*-aligned for atomic to work over aligned arguments." ); |
2013 | |
2014 | #if USE_WINTHREAD |
2015 | const size_t granularity = 64*1024; // granulatity of VirtualAlloc |
2016 | #else |
2017 | // POSIX.1-2001-compliant way to get page size |
2018 | const size_t granularity = sysconf(_SC_PAGESIZE); |
2019 | #endif |
2020 | if (!defaultMemPool) { |
2021 | // Do not rely on static constructors and do the assignment in case |
2022 | // of library static section not initialized at this call yet. |
2023 | defaultMemPool = (MemoryPool*)defaultMemPool_space; |
2024 | } |
2025 | bool initOk = defaultMemPool-> |
2026 | extMemPool.init(0, NULL, NULL, granularity, |
2027 | /*keepAllMemory=*/false, /*fixedPool=*/false); |
2028 | // TODO: extMemPool.init() to not allocate memory |
2029 | if (!initOk || !initBackRefMaster(&defaultMemPool->extMemPool.backend) || !ThreadId::init()) |
2030 | return false; |
2031 | MemoryPool::initDefaultPool(); |
2032 | // init() is required iff initMemoryManager() is called |
2033 | // after mallocProcessShutdownNotification() |
2034 | shutdownSync.init(); |
2035 | #if COLLECT_STATISTICS |
2036 | initStatisticsCollection(); |
2037 | #endif |
2038 | return true; |
2039 | } |
2040 | |
2041 | static bool GetBoolEnvironmentVariable(const char* name) { |
2042 | return tbb::internal::GetBoolEnvironmentVariable(name); |
2043 | } |
2044 | |
2045 | //! Ensures that initMemoryManager() is called once and only once. |
2046 | /** Does not return until initMemoryManager() has been completed by a thread. |
2047 | There is no need to call this routine if mallocInitialized==2 . */ |
2048 | static bool doInitialization() |
2049 | { |
2050 | MallocMutex::scoped_lock lock( initMutex ); |
2051 | if (mallocInitialized!=2) { |
2052 | MALLOC_ASSERT( mallocInitialized==0, ASSERT_TEXT ); |
2053 | mallocInitialized = 1; |
2054 | RecursiveMallocCallProtector scoped; |
2055 | if (!initMemoryManager()) { |
2056 | mallocInitialized = 0; // restore and out |
2057 | return false; |
2058 | } |
2059 | #ifdef MALLOC_EXTRA_INITIALIZATION |
2060 | MALLOC_EXTRA_INITIALIZATION; |
2061 | #endif |
2062 | #if MALLOC_CHECK_RECURSION |
2063 | RecursiveMallocCallProtector::detectNaiveOverload(); |
2064 | #endif |
2065 | MALLOC_ASSERT( mallocInitialized==1, ASSERT_TEXT ); |
2066 | // Store must have release fence, otherwise mallocInitialized==2 |
2067 | // might become remotely visible before side effects of |
2068 | // initMemoryManager() become remotely visible. |
2069 | FencedStore( mallocInitialized, 2 ); |
2070 | if( GetBoolEnvironmentVariable("TBB_VERSION" ) ) { |
2071 | fputs(VersionString+1,stderr); |
2072 | hugePages.printStatus(); |
2073 | } |
2074 | } |
2075 | /* It can't be 0 or I would have initialized it */ |
2076 | MALLOC_ASSERT( mallocInitialized==2, ASSERT_TEXT ); |
2077 | return true; |
2078 | } |
2079 | |
2080 | /********* End library initialization *************/ |
2081 | |
2082 | /********* The malloc show begins *************/ |
2083 | |
2084 | |
2085 | FreeObject *Block::allocateFromFreeList() |
2086 | { |
2087 | FreeObject *result; |
2088 | |
2089 | if (!freeList) return NULL; |
2090 | |
2091 | result = freeList; |
2092 | MALLOC_ASSERT( result, ASSERT_TEXT ); |
2093 | |
2094 | freeList = result->next; |
2095 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
2096 | allocatedCount++; |
2097 | STAT_increment(getThreadId(), getIndex(objectSize), allocFreeListUsed); |
2098 | |
2099 | return result; |
2100 | } |
2101 | |
2102 | FreeObject *Block::allocateFromBumpPtr() |
2103 | { |
2104 | FreeObject *result = bumpPtr; |
2105 | if (result) { |
2106 | bumpPtr = (FreeObject *) ((uintptr_t) bumpPtr - objectSize); |
2107 | if ( (uintptr_t)bumpPtr < (uintptr_t)this+sizeof(Block) ) { |
2108 | bumpPtr = NULL; |
2109 | } |
2110 | MALLOC_ASSERT( allocatedCount < (slabSize-sizeof(Block))/objectSize, ASSERT_TEXT ); |
2111 | allocatedCount++; |
2112 | STAT_increment(getThreadId(), getIndex(objectSize), allocBumpPtrUsed); |
2113 | } |
2114 | return result; |
2115 | } |
2116 | |
2117 | inline FreeObject* Block::allocate() |
2118 | { |
2119 | MALLOC_ASSERT( isOwnedByCurrentThread(), ASSERT_TEXT ); |
2120 | |
2121 | /* for better cache locality, first looking in the free list. */ |
2122 | if ( FreeObject *result = allocateFromFreeList() ) { |
2123 | return result; |
2124 | } |
2125 | MALLOC_ASSERT( !freeList, ASSERT_TEXT ); |
2126 | |
2127 | /* if free list is empty, try thread local bump pointer allocation. */ |
2128 | if ( FreeObject *result = allocateFromBumpPtr() ) { |
2129 | return result; |
2130 | } |
2131 | MALLOC_ASSERT( !bumpPtr, ASSERT_TEXT ); |
2132 | |
2133 | /* the block is considered full. */ |
2134 | isFull = true; |
2135 | return NULL; |
2136 | } |
2137 | |
2138 | size_t Block::findObjectSize(void *object) const |
2139 | { |
2140 | size_t blSize = getSize(); |
2141 | #if MALLOC_CHECK_RECURSION |
2142 | // Currently, there is no aligned allocations from startup blocks, |
2143 | // so we can return just StartupBlock::msize(). |
2144 | // TODO: This must be extended if we add aligned allocation from startup blocks. |
2145 | if (!blSize) |
2146 | return StartupBlock::msize(object); |
2147 | #endif |
2148 | // object can be aligned, so real size can be less than block's |
2149 | size_t size = |
2150 | blSize - ((uintptr_t)object - (uintptr_t)findObjectToFree(object)); |
2151 | MALLOC_ASSERT(size>0 && size<minLargeObjectSize, ASSERT_TEXT); |
2152 | return size; |
2153 | } |
2154 | |
2155 | void Bin::moveBlockToFront(Block *block) |
2156 | { |
2157 | /* move the block to the front of the bin */ |
2158 | if (block == activeBlk) return; |
2159 | outofTLSBin(block); |
2160 | pushTLSBin(block); |
2161 | } |
2162 | |
2163 | void Bin::processEmptyBlock(Block *block, bool poolTheBlock) |
2164 | { |
2165 | if (block != activeBlk) { |
2166 | /* We are not using this block; return it to the pool */ |
2167 | outofTLSBin(block); |
2168 | block->getMemPool()->returnEmptyBlock(block, poolTheBlock); |
2169 | } else { |
2170 | /* all objects are free - let's restore the bump pointer */ |
2171 | block->restoreBumpPtr(); |
2172 | } |
2173 | } |
2174 | |
2175 | template<int LOW_MARK, int HIGH_MARK> |
2176 | bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::put(LargeMemoryBlock *object, ExtMemoryPool *extMemPool) |
2177 | { |
2178 | const size_t size = object->unalignedSize; |
2179 | // not spoil cache with too large object, that can cause its total cleanup |
2180 | if (size > MAX_TOTAL_SIZE) |
2181 | return false; |
2182 | LargeMemoryBlock *localHead = (LargeMemoryBlock*)AtomicFetchStore(&head, 0); |
2183 | |
2184 | object->prev = NULL; |
2185 | object->next = localHead; |
2186 | if (localHead) |
2187 | localHead->prev = object; |
2188 | else { |
2189 | // those might not be cleaned during local cache stealing, correct them |
2190 | totalSize = 0; |
2191 | numOfBlocks = 0; |
2192 | tail = object; |
2193 | } |
2194 | localHead = object; |
2195 | totalSize += size; |
2196 | numOfBlocks++; |
2197 | // must meet both size and number of cached objects constrains |
2198 | if (totalSize > MAX_TOTAL_SIZE || numOfBlocks >= HIGH_MARK) { |
2199 | // scanning from tail until meet conditions |
2200 | while (totalSize > MAX_TOTAL_SIZE || numOfBlocks > LOW_MARK) { |
2201 | totalSize -= tail->unalignedSize; |
2202 | numOfBlocks--; |
2203 | tail = tail->prev; |
2204 | } |
2205 | LargeMemoryBlock *headToRelease = tail->next; |
2206 | tail->next = NULL; |
2207 | |
2208 | extMemPool->freeLargeObjectList(headToRelease); |
2209 | } |
2210 | |
2211 | FencedStore((intptr_t&)head, (intptr_t)localHead); |
2212 | return true; |
2213 | } |
2214 | |
2215 | template<int LOW_MARK, int HIGH_MARK> |
2216 | LargeMemoryBlock *LocalLOCImpl<LOW_MARK, HIGH_MARK>::get(size_t size) |
2217 | { |
2218 | LargeMemoryBlock *localHead, *res=NULL; |
2219 | |
2220 | if (size > MAX_TOTAL_SIZE) |
2221 | return NULL; |
2222 | |
2223 | if (!head || (localHead = (LargeMemoryBlock*)AtomicFetchStore(&head, 0)) == NULL) { |
2224 | // do not restore totalSize, numOfBlocks and tail at this point, |
2225 | // as they are used only in put(), where they must be restored |
2226 | return NULL; |
2227 | } |
2228 | |
2229 | for (LargeMemoryBlock *curr = localHead; curr; curr=curr->next) { |
2230 | if (curr->unalignedSize == size) { |
2231 | res = curr; |
2232 | if (curr->next) |
2233 | curr->next->prev = curr->prev; |
2234 | else |
2235 | tail = curr->prev; |
2236 | if (curr != localHead) |
2237 | curr->prev->next = curr->next; |
2238 | else |
2239 | localHead = curr->next; |
2240 | totalSize -= size; |
2241 | numOfBlocks--; |
2242 | break; |
2243 | } |
2244 | } |
2245 | FencedStore((intptr_t&)head, (intptr_t)localHead); |
2246 | return res; |
2247 | } |
2248 | |
2249 | template<int LOW_MARK, int HIGH_MARK> |
2250 | bool LocalLOCImpl<LOW_MARK, HIGH_MARK>::externalCleanup(ExtMemoryPool *extMemPool) |
2251 | { |
2252 | if (LargeMemoryBlock *localHead = (LargeMemoryBlock*)AtomicFetchStore(&head, 0)) { |
2253 | extMemPool->freeLargeObjectList(localHead); |
2254 | return true; |
2255 | } |
2256 | return false; |
2257 | } |
2258 | |
2259 | void *MemoryPool::getFromLLOCache(TLSData* tls, size_t size, size_t alignment) |
2260 | { |
2261 | LargeMemoryBlock *lmb = NULL; |
2262 | |
2263 | size_t = sizeof(LargeMemoryBlock)+sizeof(LargeObjectHdr); |
2264 | size_t allocationSize = LargeObjectCache::alignToBin(size+headersSize+alignment); |
2265 | if (allocationSize < size) // allocationSize is wrapped around after alignToBin |
2266 | return NULL; |
2267 | MALLOC_ASSERT(allocationSize >= alignment, "Overflow must be checked before." ); |
2268 | |
2269 | if (tls) { |
2270 | tls->markUsed(); |
2271 | lmb = tls->lloc.get(allocationSize); |
2272 | } |
2273 | if (!lmb) |
2274 | lmb = extMemPool.mallocLargeObject(this, allocationSize); |
2275 | |
2276 | if (lmb) { |
2277 | // doing shuffle we suppose that alignment offset guarantees |
2278 | // that different cache lines are in use |
2279 | MALLOC_ASSERT(alignment >= estimatedCacheLineSize, ASSERT_TEXT); |
2280 | |
2281 | void *alignedArea = (void*)alignUp((uintptr_t)lmb+headersSize, alignment); |
2282 | uintptr_t alignedRight = |
2283 | alignDown((uintptr_t)lmb+lmb->unalignedSize - size, alignment); |
2284 | // Has some room to shuffle object between cache lines? |
2285 | // Note that alignedRight and alignedArea are aligned at alignment. |
2286 | unsigned ptrDelta = alignedRight - (uintptr_t)alignedArea; |
2287 | if (ptrDelta && tls) { // !tls is cold path |
2288 | // for the hot path of alignment==estimatedCacheLineSize, |
2289 | // allow compilers to use shift for division |
2290 | // (since estimatedCacheLineSize is a power-of-2 constant) |
2291 | unsigned numOfPossibleOffsets = alignment == estimatedCacheLineSize? |
2292 | ptrDelta / estimatedCacheLineSize : |
2293 | ptrDelta / alignment; |
2294 | unsigned myCacheIdx = ++tls->currCacheIdx; |
2295 | unsigned offset = myCacheIdx % numOfPossibleOffsets; |
2296 | |
2297 | // Move object to a cache line with an offset that is different from |
2298 | // previous allocation. This supposedly allows us to use cache |
2299 | // associativity more efficiently. |
2300 | alignedArea = (void*)((uintptr_t)alignedArea + offset*alignment); |
2301 | } |
2302 | MALLOC_ASSERT((uintptr_t)lmb+lmb->unalignedSize >= |
2303 | (uintptr_t)alignedArea+size, "Object doesn't fit the block." ); |
2304 | LargeObjectHdr * = (LargeObjectHdr*)alignedArea-1; |
2305 | header->memoryBlock = lmb; |
2306 | header->backRefIdx = lmb->backRefIdx; |
2307 | setBackRef(header->backRefIdx, header); |
2308 | |
2309 | lmb->objectSize = size; |
2310 | |
2311 | MALLOC_ASSERT( isLargeObject<unknownMem>(alignedArea), ASSERT_TEXT ); |
2312 | MALLOC_ASSERT( isAligned(alignedArea, alignment), ASSERT_TEXT ); |
2313 | |
2314 | return alignedArea; |
2315 | } |
2316 | return NULL; |
2317 | } |
2318 | |
2319 | void MemoryPool::putToLLOCache(TLSData *tls, void *object) |
2320 | { |
2321 | LargeObjectHdr * = (LargeObjectHdr*)object - 1; |
2322 | // overwrite backRefIdx to simplify double free detection |
2323 | header->backRefIdx = BackRefIdx(); |
2324 | |
2325 | if (tls) { |
2326 | tls->markUsed(); |
2327 | if (tls->lloc.put(header->memoryBlock, &extMemPool)) |
2328 | return; |
2329 | } |
2330 | extMemPool.freeLargeObject(header->memoryBlock); |
2331 | } |
2332 | |
2333 | /* |
2334 | * All aligned allocations fall into one of the following categories: |
2335 | * 1. if both request size and alignment are <= maxSegregatedObjectSize, |
2336 | * we just align the size up, and request this amount, because for every size |
2337 | * aligned to some power of 2, the allocated object is at least that aligned. |
2338 | * 2. for size<minLargeObjectSize, check if already guaranteed fittingAlignment is enough. |
2339 | * 3. if size+alignment<minLargeObjectSize, we take an object of fittingSizeN and align |
2340 | * its address up; given such pointer, scalable_free could find the real object. |
2341 | * Wrapping of size+alignment is impossible because maximal allowed |
2342 | * alignment plus minLargeObjectSize can't lead to wrapping. |
2343 | * 4. otherwise, aligned large object is allocated. |
2344 | */ |
2345 | static void *allocateAligned(MemoryPool *memPool, size_t size, size_t alignment) |
2346 | { |
2347 | MALLOC_ASSERT( isPowerOfTwo(alignment), ASSERT_TEXT ); |
2348 | |
2349 | if (!isMallocInitialized()) |
2350 | if (!doInitialization()) |
2351 | return NULL; |
2352 | |
2353 | void *result; |
2354 | if (size<=maxSegregatedObjectSize && alignment<=maxSegregatedObjectSize) |
2355 | result = internalPoolMalloc(memPool, alignUp(size? size: sizeof(size_t), alignment)); |
2356 | else if (size<minLargeObjectSize) { |
2357 | if (alignment<=fittingAlignment) |
2358 | result = internalPoolMalloc(memPool, size); |
2359 | else if (size+alignment < minLargeObjectSize) { |
2360 | void *unaligned = internalPoolMalloc(memPool, size+alignment); |
2361 | if (!unaligned) return NULL; |
2362 | result = alignUp(unaligned, alignment); |
2363 | } else |
2364 | goto LargeObjAlloc; |
2365 | } else { |
2366 | LargeObjAlloc: |
2367 | TLSData *tls = memPool->getTLS(/*create=*/true); |
2368 | // take into account only alignment that are higher then natural |
2369 | result = |
2370 | memPool->getFromLLOCache(tls, size, largeObjectAlignment>alignment? |
2371 | largeObjectAlignment: alignment); |
2372 | } |
2373 | |
2374 | MALLOC_ASSERT( isAligned(result, alignment), ASSERT_TEXT ); |
2375 | return result; |
2376 | } |
2377 | |
2378 | static void *reallocAligned(MemoryPool *memPool, void *ptr, |
2379 | size_t newSize, size_t alignment = 0) |
2380 | { |
2381 | void *result; |
2382 | size_t copySize; |
2383 | |
2384 | if (isLargeObject<ourMem>(ptr)) { |
2385 | LargeMemoryBlock* lmb = ((LargeObjectHdr *)ptr - 1)->memoryBlock; |
2386 | copySize = lmb->unalignedSize-((uintptr_t)ptr-(uintptr_t)lmb); |
2387 | |
2388 | // Apply different strategies if size decreases |
2389 | if (newSize <= copySize && (0 == alignment || isAligned(ptr, alignment))) { |
2390 | |
2391 | // For huge objects (that do not fit in backend cache), keep the same space unless |
2392 | // the new size is at least twice smaller |
2393 | bool isMemoryBlockHuge = copySize > memPool->extMemPool.backend.getMaxBinnedSize(); |
2394 | size_t threshold = isMemoryBlockHuge ? copySize / 2 : 0; |
2395 | if (newSize > threshold) { |
2396 | lmb->objectSize = newSize; |
2397 | return ptr; |
2398 | } |
2399 | // TODO: For large objects suitable for the backend cache, |
2400 | // split out the excessive part and put it to the backend. |
2401 | } |
2402 | // Reallocate for real |
2403 | copySize = lmb->objectSize; |
2404 | #if BACKEND_HAS_MREMAP |
2405 | if (void *r = memPool->extMemPool.remap(ptr, copySize, newSize, |
2406 | alignment < largeObjectAlignment ? largeObjectAlignment : alignment)) |
2407 | return r; |
2408 | #endif |
2409 | result = alignment ? allocateAligned(memPool, newSize, alignment) : |
2410 | internalPoolMalloc(memPool, newSize); |
2411 | |
2412 | } else { |
2413 | Block* block = (Block *)alignDown(ptr, slabSize); |
2414 | copySize = block->findObjectSize(ptr); |
2415 | |
2416 | // TODO: Move object to another bin if size decreases and the current bin is "empty enough". |
2417 | // Currently, in case of size decreasing, old pointer is returned |
2418 | if (newSize <= copySize && (0==alignment || isAligned(ptr, alignment))) { |
2419 | return ptr; |
2420 | } else { |
2421 | result = alignment ? allocateAligned(memPool, newSize, alignment) : |
2422 | internalPoolMalloc(memPool, newSize); |
2423 | } |
2424 | } |
2425 | if (result) { |
2426 | memcpy(result, ptr, copySize < newSize ? copySize : newSize); |
2427 | internalPoolFree(memPool, ptr, 0); |
2428 | } |
2429 | return result; |
2430 | } |
2431 | |
2432 | /* A predicate checks if an object is properly placed inside its block */ |
2433 | inline bool Block::isProperlyPlaced(const void *object) const |
2434 | { |
2435 | return 0 == ((uintptr_t)this + slabSize - (uintptr_t)object) % objectSize; |
2436 | } |
2437 | |
2438 | /* Finds the real object inside the block */ |
2439 | FreeObject *Block::findAllocatedObject(const void *address) const |
2440 | { |
2441 | // calculate offset from the end of the block space |
2442 | uint16_t offset = (uintptr_t)this + slabSize - (uintptr_t)address; |
2443 | MALLOC_ASSERT( offset<=slabSize-sizeof(Block), ASSERT_TEXT ); |
2444 | // find offset difference from a multiple of allocation size |
2445 | offset %= objectSize; |
2446 | // and move the address down to where the real object starts. |
2447 | return (FreeObject*)((uintptr_t)address - (offset? objectSize-offset: 0)); |
2448 | } |
2449 | |
2450 | /* |
2451 | * Bad dereference caused by a foreign pointer is possible only here, not earlier in call chain. |
2452 | * Separate function isolates SEH code, as it has bad influence on compiler optimization. |
2453 | */ |
2454 | static inline BackRefIdx safer_dereference (const BackRefIdx *ptr) |
2455 | { |
2456 | BackRefIdx id; |
2457 | #if _MSC_VER |
2458 | __try { |
2459 | #endif |
2460 | id = *ptr; |
2461 | #if _MSC_VER |
2462 | } __except( GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION? |
2463 | EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH ) { |
2464 | id = BackRefIdx(); |
2465 | } |
2466 | #endif |
2467 | return id; |
2468 | } |
2469 | |
2470 | template<MemoryOrigin memOrigin> |
2471 | bool isLargeObject(void *object) |
2472 | { |
2473 | if (!isAligned(object, largeObjectAlignment)) |
2474 | return false; |
2475 | LargeObjectHdr * = (LargeObjectHdr*)object - 1; |
2476 | BackRefIdx idx = (memOrigin == unknownMem) ? |
2477 | safer_dereference(&header->backRefIdx) : header->backRefIdx; |
2478 | |
2479 | return idx.isLargeObject() |
2480 | // in valid LargeObjectHdr memoryBlock is not NULL |
2481 | && header->memoryBlock |
2482 | // in valid LargeObjectHdr memoryBlock points somewhere before header |
2483 | // TODO: more strict check |
2484 | && (uintptr_t)header->memoryBlock < (uintptr_t)header |
2485 | && getBackRef(idx) == header; |
2486 | } |
2487 | |
2488 | static inline bool isSmallObject (void *ptr) |
2489 | { |
2490 | Block* expectedBlock = (Block*)alignDown(ptr, slabSize); |
2491 | const BackRefIdx* idx = expectedBlock->getBackRefIdx(); |
2492 | |
2493 | bool isSmall = expectedBlock == getBackRef(safer_dereference(idx)); |
2494 | if (isSmall) |
2495 | expectedBlock->checkFreePrecond(ptr); |
2496 | return isSmall; |
2497 | } |
2498 | |
2499 | /**** Check if an object was allocated by scalable_malloc ****/ |
2500 | static inline bool isRecognized (void* ptr) |
2501 | { |
2502 | return defaultMemPool->extMemPool.backend.ptrCanBeValid(ptr) && |
2503 | (isLargeObject<unknownMem>(ptr) || isSmallObject(ptr)); |
2504 | } |
2505 | |
2506 | static inline void freeSmallObject(void *object) |
2507 | { |
2508 | /* mask low bits to get the block */ |
2509 | Block *block = (Block *)alignDown(object, slabSize); |
2510 | block->checkFreePrecond(object); |
2511 | |
2512 | #if MALLOC_CHECK_RECURSION |
2513 | if (block->isStartupAllocObject()) { |
2514 | ((StartupBlock *)block)->free(object); |
2515 | return; |
2516 | } |
2517 | #endif |
2518 | if (block->isOwnedByCurrentThread()) { |
2519 | block->freeOwnObject(object); |
2520 | } else { /* Slower path to add to the shared list, the allocatedCount is updated by the owner thread in malloc. */ |
2521 | FreeObject *objectToFree = block->findObjectToFree(object); |
2522 | block->freePublicObject(objectToFree); |
2523 | } |
2524 | } |
2525 | |
2526 | static void *internalPoolMalloc(MemoryPool* memPool, size_t size) |
2527 | { |
2528 | Bin* bin; |
2529 | Block * mallocBlock; |
2530 | |
2531 | if (!memPool) return NULL; |
2532 | |
2533 | if (!size) size = sizeof(size_t); |
2534 | |
2535 | TLSData *tls = memPool->getTLS(/*create=*/true); |
2536 | |
2537 | /* Allocate a large object */ |
2538 | if (size >= minLargeObjectSize) |
2539 | return memPool->getFromLLOCache(tls, size, largeObjectAlignment); |
2540 | |
2541 | if (!tls) return NULL; |
2542 | |
2543 | tls->markUsed(); |
2544 | /* |
2545 | * Get an element in thread-local array corresponding to the given size; |
2546 | * It keeps ptr to the active block for allocations of this size |
2547 | */ |
2548 | bin = tls->getAllocationBin(size); |
2549 | if ( !bin ) return NULL; |
2550 | |
2551 | /* Get a block to try to allocate in. */ |
2552 | for( mallocBlock = bin->getActiveBlock(); mallocBlock; |
2553 | mallocBlock = bin->setPreviousBlockActive() ) // the previous block should be empty enough |
2554 | { |
2555 | if( FreeObject *result = mallocBlock->allocate() ) |
2556 | return result; |
2557 | } |
2558 | |
2559 | /* |
2560 | * else privatize publicly freed objects in some block and allocate from it |
2561 | */ |
2562 | mallocBlock = bin->getPrivatizedFreeListBlock(); |
2563 | if (mallocBlock) { |
2564 | MALLOC_ASSERT( mallocBlock->freeListNonNull(), ASSERT_TEXT ); |
2565 | if ( FreeObject *result = mallocBlock->allocateFromFreeList() ) |
2566 | return result; |
2567 | /* Else something strange happened, need to retry from the beginning; */ |
2568 | TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in public free list; reentering.\n" )); |
2569 | return internalPoolMalloc(memPool, size); |
2570 | } |
2571 | |
2572 | /* |
2573 | * no suitable own blocks, try to get a partial block that some other thread has discarded. |
2574 | */ |
2575 | mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size); |
2576 | while (mallocBlock) { |
2577 | bin->pushTLSBin(mallocBlock); |
2578 | bin->setActiveBlock(mallocBlock); // TODO: move under the below condition? |
2579 | if( FreeObject *result = mallocBlock->allocate() ) |
2580 | return result; |
2581 | mallocBlock = memPool->extMemPool.orphanedBlocks.get(tls, size); |
2582 | } |
2583 | |
2584 | /* |
2585 | * else try to get a new empty block |
2586 | */ |
2587 | mallocBlock = memPool->getEmptyBlock(size); |
2588 | if (mallocBlock) { |
2589 | bin->pushTLSBin(mallocBlock); |
2590 | bin->setActiveBlock(mallocBlock); |
2591 | if( FreeObject *result = mallocBlock->allocate() ) |
2592 | return result; |
2593 | /* Else something strange happened, need to retry from the beginning; */ |
2594 | TRACEF(( "[ScalableMalloc trace] Something is wrong: no objects in empty block; reentering.\n" )); |
2595 | return internalPoolMalloc(memPool, size); |
2596 | } |
2597 | /* |
2598 | * else nothing works so return NULL |
2599 | */ |
2600 | TRACEF(( "[ScalableMalloc trace] No memory found, returning NULL.\n" )); |
2601 | return NULL; |
2602 | } |
2603 | |
2604 | // When size==0 (i.e. unknown), detect here whether the object is large. |
2605 | // For size is known and < minLargeObjectSize, we still need to check |
2606 | // if the actual object is large, because large objects might be used |
2607 | // for aligned small allocations. |
2608 | static bool internalPoolFree(MemoryPool *memPool, void *object, size_t size) |
2609 | { |
2610 | if (!memPool || !object) return false; |
2611 | |
2612 | // The library is initialized at allocation call, so releasing while |
2613 | // not initialized means foreign object is releasing. |
2614 | MALLOC_ASSERT(isMallocInitialized(), ASSERT_TEXT); |
2615 | MALLOC_ASSERT(memPool->extMemPool.userPool() || isRecognized(object), |
2616 | "Invalid pointer during object releasing is detected." ); |
2617 | |
2618 | if (size >= minLargeObjectSize || isLargeObject<ourMem>(object)) |
2619 | memPool->putToLLOCache(memPool->getTLS(/*create=*/false), object); |
2620 | else |
2621 | freeSmallObject(object); |
2622 | return true; |
2623 | } |
2624 | |
2625 | static void *internalMalloc(size_t size) |
2626 | { |
2627 | if (!size) size = sizeof(size_t); |
2628 | |
2629 | #if MALLOC_CHECK_RECURSION |
2630 | if (RecursiveMallocCallProtector::sameThreadActive()) |
2631 | return size<minLargeObjectSize? StartupBlock::allocate(size) : |
2632 | // nested allocation, so skip tls |
2633 | (FreeObject*)defaultMemPool->getFromLLOCache(NULL, size, slabSize); |
2634 | #endif |
2635 | |
2636 | if (!isMallocInitialized()) |
2637 | if (!doInitialization()) |
2638 | return NULL; |
2639 | return internalPoolMalloc(defaultMemPool, size); |
2640 | } |
2641 | |
2642 | static void internalFree(void *object) |
2643 | { |
2644 | internalPoolFree(defaultMemPool, object, 0); |
2645 | } |
2646 | |
2647 | static size_t internalMsize(void* ptr) |
2648 | { |
2649 | MALLOC_ASSERT(ptr, "Invalid pointer passed to internalMsize" ); |
2650 | if (isLargeObject<ourMem>(ptr)) { |
2651 | // TODO: return the maximum memory size, that can be written to this object |
2652 | LargeMemoryBlock* lmb = ((LargeObjectHdr*)ptr - 1)->memoryBlock; |
2653 | return lmb->objectSize; |
2654 | } else { |
2655 | Block *block = (Block*)alignDown(ptr, slabSize); |
2656 | return block->findObjectSize(ptr); |
2657 | } |
2658 | } |
2659 | |
2660 | } // namespace internal |
2661 | |
2662 | using namespace rml::internal; |
2663 | |
2664 | // legacy entry point saved for compatibility with binaries complied |
2665 | // with pre-6003 versions of TBB |
2666 | rml::MemoryPool *pool_create(intptr_t pool_id, const MemPoolPolicy *policy) |
2667 | { |
2668 | rml::MemoryPool *pool; |
2669 | MemPoolPolicy pol(policy->pAlloc, policy->pFree, policy->granularity); |
2670 | |
2671 | pool_create_v1(pool_id, &pol, &pool); |
2672 | return pool; |
2673 | } |
2674 | |
2675 | rml::MemPoolError pool_create_v1(intptr_t pool_id, const MemPoolPolicy *policy, |
2676 | rml::MemoryPool **pool) |
2677 | { |
2678 | if ( !policy->pAlloc || policy->version<MemPoolPolicy::TBBMALLOC_POOL_VERSION |
2679 | // empty pFree allowed only for fixed pools |
2680 | || !(policy->fixedPool || policy->pFree)) { |
2681 | *pool = NULL; |
2682 | return INVALID_POLICY; |
2683 | } |
2684 | if ( policy->version>MemPoolPolicy::TBBMALLOC_POOL_VERSION // future versions are not supported |
2685 | // new flags can be added in place of reserved, but default |
2686 | // behaviour must be supported by this version |
2687 | || policy->reserved ) { |
2688 | *pool = NULL; |
2689 | return UNSUPPORTED_POLICY; |
2690 | } |
2691 | if (!isMallocInitialized()) |
2692 | if (!doInitialization()) { |
2693 | *pool = NULL; |
2694 | return NO_MEMORY; |
2695 | } |
2696 | rml::internal::MemoryPool *memPool = |
2697 | (rml::internal::MemoryPool*)internalMalloc((sizeof(rml::internal::MemoryPool))); |
2698 | if (!memPool) { |
2699 | *pool = NULL; |
2700 | return NO_MEMORY; |
2701 | } |
2702 | memset(memPool, 0, sizeof(rml::internal::MemoryPool)); |
2703 | if (!memPool->init(pool_id, policy)) { |
2704 | internalFree(memPool); |
2705 | *pool = NULL; |
2706 | return NO_MEMORY; |
2707 | } |
2708 | |
2709 | *pool = (rml::MemoryPool*)memPool; |
2710 | return POOL_OK; |
2711 | } |
2712 | |
2713 | bool pool_destroy(rml::MemoryPool* memPool) |
2714 | { |
2715 | if (!memPool) return false; |
2716 | bool ret = ((rml::internal::MemoryPool*)memPool)->destroy(); |
2717 | internalFree(memPool); |
2718 | |
2719 | return ret; |
2720 | } |
2721 | |
2722 | bool pool_reset(rml::MemoryPool* memPool) |
2723 | { |
2724 | if (!memPool) return false; |
2725 | |
2726 | return ((rml::internal::MemoryPool*)memPool)->reset(); |
2727 | } |
2728 | |
2729 | void *pool_malloc(rml::MemoryPool* mPool, size_t size) |
2730 | { |
2731 | return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size); |
2732 | } |
2733 | |
2734 | void *pool_realloc(rml::MemoryPool* mPool, void *object, size_t size) |
2735 | { |
2736 | if (!object) |
2737 | return internalPoolMalloc((rml::internal::MemoryPool*)mPool, size); |
2738 | if (!size) { |
2739 | internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0); |
2740 | return NULL; |
2741 | } |
2742 | return reallocAligned((rml::internal::MemoryPool*)mPool, object, size, 0); |
2743 | } |
2744 | |
2745 | void *pool_aligned_malloc(rml::MemoryPool* mPool, size_t size, size_t alignment) |
2746 | { |
2747 | if (!isPowerOfTwo(alignment) || 0==size) |
2748 | return NULL; |
2749 | |
2750 | return allocateAligned((rml::internal::MemoryPool*)mPool, size, alignment); |
2751 | } |
2752 | |
2753 | void *pool_aligned_realloc(rml::MemoryPool* memPool, void *ptr, size_t size, size_t alignment) |
2754 | { |
2755 | if (!isPowerOfTwo(alignment)) |
2756 | return NULL; |
2757 | rml::internal::MemoryPool *mPool = (rml::internal::MemoryPool*)memPool; |
2758 | void *tmp; |
2759 | |
2760 | if (!ptr) |
2761 | tmp = allocateAligned(mPool, size, alignment); |
2762 | else if (!size) { |
2763 | internalPoolFree(mPool, ptr, 0); |
2764 | return NULL; |
2765 | } else |
2766 | tmp = reallocAligned(mPool, ptr, size, alignment); |
2767 | |
2768 | return tmp; |
2769 | } |
2770 | |
2771 | bool pool_free(rml::MemoryPool *mPool, void *object) |
2772 | { |
2773 | return internalPoolFree((rml::internal::MemoryPool*)mPool, object, 0); |
2774 | } |
2775 | |
2776 | rml::MemoryPool *pool_identify(void *object) |
2777 | { |
2778 | rml::internal::MemoryPool *pool; |
2779 | if (isLargeObject<ourMem>(object)) { |
2780 | LargeObjectHdr * = (LargeObjectHdr*)object - 1; |
2781 | pool = header->memoryBlock->pool; |
2782 | } else { |
2783 | Block *block = (Block*)alignDown(object, slabSize); |
2784 | pool = block->getMemPool(); |
2785 | } |
2786 | // do not return defaultMemPool, as it can't be used in pool_free() etc |
2787 | __TBB_ASSERT_RELEASE(pool!=defaultMemPool, |
2788 | "rml::pool_identify() can't be used for scalable_malloc() etc results." ); |
2789 | return (rml::MemoryPool*)pool; |
2790 | } |
2791 | |
2792 | size_t pool_msize(rml::MemoryPool *mPool, void* object) |
2793 | { |
2794 | if (object) { |
2795 | // No assert for object recognition, cause objects allocated from non-default |
2796 | // memory pool do not participate in range checking and do not have valid backreferences for |
2797 | // small objects. Instead, check that an object belong to the certain memory pool. |
2798 | MALLOC_ASSERT_EX(mPool == pool_identify(object), "Object does not belong to the specified pool" ); |
2799 | return internalMsize(object); |
2800 | } |
2801 | errno = EINVAL; |
2802 | // Unlike _msize, return 0 in case of parameter error. |
2803 | // Returning size_t(-1) looks more like the way to troubles. |
2804 | return 0; |
2805 | } |
2806 | |
2807 | } // namespace rml |
2808 | |
2809 | using namespace rml::internal; |
2810 | |
2811 | #if MALLOC_TRACE |
2812 | static unsigned int threadGoingDownCount = 0; |
2813 | #endif |
2814 | |
2815 | /* |
2816 | * When a thread is shutting down this routine should be called to remove all the thread ids |
2817 | * from the malloc blocks and replace them with a NULL thread id. |
2818 | * |
2819 | * For pthreads, the function is set as a callback in pthread_key_create for TLS bin. |
2820 | * It will be automatically called at thread exit with the key value as the argument, |
2821 | * unless that value is NULL. |
2822 | * For Windows, it is called from DllMain( DLL_THREAD_DETACH ). |
2823 | * |
2824 | * However neither of the above is called for the main process thread, so the routine |
2825 | * also needs to be called during the process shutdown. |
2826 | * |
2827 | */ |
2828 | // TODO: Consider making this function part of class MemoryPool. |
2829 | void doThreadShutdownNotification(TLSData* tls, bool main_thread) |
2830 | { |
2831 | TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return start %d\n" , |
2832 | getThreadId(), threadGoingDownCount++ )); |
2833 | |
2834 | #if USE_PTHREAD |
2835 | if (tls) { |
2836 | if (!shutdownSync.threadDtorStart()) return; |
2837 | tls->getMemPool()->onThreadShutdown(tls); |
2838 | shutdownSync.threadDtorDone(); |
2839 | } else |
2840 | #endif |
2841 | { |
2842 | suppress_unused_warning(tls); // not used on Windows |
2843 | // The default pool is safe to use at this point: |
2844 | // on Linux, only the main thread can go here before destroying defaultMemPool; |
2845 | // on Windows, shutdown is synchronized via loader lock and isMallocInitialized(). |
2846 | // See also __TBB_mallocProcessShutdownNotification() |
2847 | defaultMemPool->onThreadShutdown(defaultMemPool->getTLS(/*create=*/false)); |
2848 | // Take lock to walk through other pools; but waiting might be dangerous at this point |
2849 | // (e.g. on Windows the main thread might deadlock) |
2850 | bool locked; |
2851 | MallocMutex::scoped_lock lock(MemoryPool::memPoolListLock, /*wait=*/!main_thread, &locked); |
2852 | if (locked) { // the list is safe to process |
2853 | for (MemoryPool *memPool = defaultMemPool->next; memPool; memPool = memPool->next) |
2854 | memPool->onThreadShutdown(memPool->getTLS(/*create=*/false)); |
2855 | } |
2856 | } |
2857 | |
2858 | TRACEF(( "[ScalableMalloc trace] Thread id %d blocks return end\n" , getThreadId() )); |
2859 | } |
2860 | |
2861 | #if USE_PTHREAD |
2862 | void mallocThreadShutdownNotification(void* arg) |
2863 | { |
2864 | // The routine is called for each pool (as TLS dtor) on each thread, except for the main thread |
2865 | if (!isMallocInitialized()) return; |
2866 | doThreadShutdownNotification((TLSData*)arg, false); |
2867 | } |
2868 | #else |
2869 | extern "C" void __TBB_mallocThreadShutdownNotification() |
2870 | { |
2871 | // The routine is called once per thread on Windows |
2872 | if (!isMallocInitialized()) return; |
2873 | doThreadShutdownNotification(NULL, false); |
2874 | } |
2875 | #endif |
2876 | |
2877 | extern "C" void __TBB_mallocProcessShutdownNotification(bool windows_process_dying) |
2878 | { |
2879 | if (!isMallocInitialized()) return; |
2880 | |
2881 | // Don't clean allocator internals if the entire process is exiting |
2882 | if (!windows_process_dying) { |
2883 | doThreadShutdownNotification(NULL, /*main_thread=*/true); |
2884 | } |
2885 | #if __TBB_MALLOC_LOCACHE_STAT |
2886 | printf("cache hit ratio %f, size hit %f\n" , |
2887 | 1.*cacheHits/mallocCalls, 1.*memHitKB/memAllocKB); |
2888 | defaultMemPool->extMemPool.loc.reportStat(stdout); |
2889 | #endif |
2890 | |
2891 | shutdownSync.processExit(); |
2892 | #if __TBB_SOURCE_DIRECTLY_INCLUDED |
2893 | /* Pthread keys must be deleted as soon as possible to not call key dtor |
2894 | on thread termination when then the tbbmalloc code can be already unloaded. |
2895 | */ |
2896 | defaultMemPool->destroy(); |
2897 | destroyBackRefMaster(&defaultMemPool->extMemPool.backend); |
2898 | ThreadId::destroy(); // Delete key for thread id |
2899 | hugePages.reset(); |
2900 | // new total malloc initialization is possible after this point |
2901 | FencedStore(mallocInitialized, 0); |
2902 | #elif __TBB_USE_DLOPEN_REENTRANCY_WORKAROUND |
2903 | /* In most cases we prevent unloading tbbmalloc, and don't clean up memory |
2904 | on process shutdown. When impossible to prevent, library unload results |
2905 | in shutdown notification, and it makes sense to release unused memory |
2906 | at that point (we can't release all memory because it's possible that |
2907 | it will be accessed after this point). |
2908 | TODO: better support systems where we can't prevent unloading by removing |
2909 | pthread destructors and releasing caches. |
2910 | */ |
2911 | defaultMemPool->extMemPool.hardCachesCleanup(); |
2912 | #endif // __TBB_SOURCE_DIRECTLY_INCLUDED |
2913 | |
2914 | #if COLLECT_STATISTICS |
2915 | unsigned nThreads = ThreadId::getMaxThreadId(); |
2916 | for( int i=1; i<=nThreads && i<MAX_THREADS; ++i ) |
2917 | STAT_print(i); |
2918 | #endif |
2919 | if (!usedBySrcIncluded) |
2920 | MALLOC_ITT_FINI_ITTLIB(); |
2921 | } |
2922 | |
2923 | extern "C" void * scalable_malloc(size_t size) |
2924 | { |
2925 | void *ptr = internalMalloc(size); |
2926 | if (!ptr) errno = ENOMEM; |
2927 | return ptr; |
2928 | } |
2929 | |
2930 | extern "C" void scalable_free(void *object) |
2931 | { |
2932 | internalFree(object); |
2933 | } |
2934 | |
2935 | #if MALLOC_ZONE_OVERLOAD_ENABLED |
2936 | extern "C" void __TBB_malloc_free_definite_size(void *object, size_t size) |
2937 | { |
2938 | internalPoolFree(defaultMemPool, object, size); |
2939 | } |
2940 | #endif |
2941 | |
2942 | /* |
2943 | * A variant that provides additional memory safety, by checking whether the given address |
2944 | * was obtained with this allocator, and if not redirecting to the provided alternative call. |
2945 | */ |
2946 | extern "C" void __TBB_malloc_safer_free(void *object, void (*original_free)(void*)) |
2947 | { |
2948 | if (!object) |
2949 | return; |
2950 | |
2951 | // tbbmalloc can allocate object only when tbbmalloc has been initialized |
2952 | if (FencedLoad(mallocInitialized) && defaultMemPool->extMemPool.backend.ptrCanBeValid(object)) { |
2953 | if (isLargeObject<unknownMem>(object)) { |
2954 | // must check 1st for large object, because small object check touches 4 pages on left, |
2955 | // and it can be inaccessible |
2956 | TLSData *tls = defaultMemPool->getTLS(/*create=*/false); |
2957 | |
2958 | defaultMemPool->putToLLOCache(tls, object); |
2959 | return; |
2960 | } else if (isSmallObject(object)) { |
2961 | freeSmallObject(object); |
2962 | return; |
2963 | } |
2964 | } |
2965 | if (original_free) |
2966 | original_free(object); |
2967 | } |
2968 | |
2969 | /********* End the free code *************/ |
2970 | |
2971 | /********* Code for scalable_realloc ***********/ |
2972 | |
2973 | /* |
2974 | * From K&R |
2975 | * "realloc changes the size of the object pointed to by p to size. The contents will |
2976 | * be unchanged up to the minimum of the old and the new sizes. If the new size is larger, |
2977 | * the new space is uninitialized. realloc returns a pointer to the new space, or |
2978 | * NULL if the request cannot be satisfied, in which case *p is unchanged." |
2979 | * |
2980 | */ |
2981 | extern "C" void* scalable_realloc(void* ptr, size_t size) |
2982 | { |
2983 | void *tmp; |
2984 | |
2985 | if (!ptr) |
2986 | tmp = internalMalloc(size); |
2987 | else if (!size) { |
2988 | internalFree(ptr); |
2989 | return NULL; |
2990 | } else |
2991 | tmp = reallocAligned(defaultMemPool, ptr, size, 0); |
2992 | |
2993 | if (!tmp) errno = ENOMEM; |
2994 | return tmp; |
2995 | } |
2996 | |
2997 | /* |
2998 | * A variant that provides additional memory safety, by checking whether the given address |
2999 | * was obtained with this allocator, and if not redirecting to the provided alternative call. |
3000 | */ |
3001 | extern "C" void* __TBB_malloc_safer_realloc(void* ptr, size_t sz, void* original_realloc) |
3002 | { |
3003 | void *tmp; // TODO: fix warnings about uninitialized use of tmp |
3004 | |
3005 | if (!ptr) { |
3006 | tmp = internalMalloc(sz); |
3007 | } else if (FencedLoad(mallocInitialized) && isRecognized(ptr)) { |
3008 | if (!sz) { |
3009 | internalFree(ptr); |
3010 | return NULL; |
3011 | } else { |
3012 | tmp = reallocAligned(defaultMemPool, ptr, sz, 0); |
3013 | } |
3014 | } |
3015 | #if USE_WINTHREAD |
3016 | else if (original_realloc && sz) { |
3017 | orig_ptrs *original_ptrs = static_cast<orig_ptrs*>(original_realloc); |
3018 | if ( original_ptrs->msize ){ |
3019 | size_t oldSize = original_ptrs->msize(ptr); |
3020 | tmp = internalMalloc(sz); |
3021 | if (tmp) { |
3022 | memcpy(tmp, ptr, sz<oldSize? sz : oldSize); |
3023 | if ( original_ptrs->free ){ |
3024 | original_ptrs->free( ptr ); |
3025 | } |
3026 | } |
3027 | } else |
3028 | tmp = NULL; |
3029 | } |
3030 | #else |
3031 | else if (original_realloc) { |
3032 | typedef void* (*realloc_ptr_t)(void*,size_t); |
3033 | realloc_ptr_t original_realloc_ptr; |
3034 | (void *&)original_realloc_ptr = original_realloc; |
3035 | tmp = original_realloc_ptr(ptr,sz); |
3036 | } |
3037 | #endif |
3038 | else tmp = NULL; |
3039 | |
3040 | if (!tmp) errno = ENOMEM; |
3041 | return tmp; |
3042 | } |
3043 | |
3044 | /********* End code for scalable_realloc ***********/ |
3045 | |
3046 | /********* Code for scalable_calloc ***********/ |
3047 | |
3048 | /* |
3049 | * From K&R |
3050 | * calloc returns a pointer to space for an array of nobj objects, |
3051 | * each of size size, or NULL if the request cannot be satisfied. |
3052 | * The space is initialized to zero bytes. |
3053 | * |
3054 | */ |
3055 | |
3056 | extern "C" void * scalable_calloc(size_t nobj, size_t size) |
3057 | { |
3058 | // it's square root of maximal size_t value |
3059 | const size_t mult_not_overflow = size_t(1) << (sizeof(size_t)*CHAR_BIT/2); |
3060 | const size_t arraySize = nobj * size; |
3061 | |
3062 | // check for overflow during multiplication: |
3063 | if (nobj>=mult_not_overflow || size>=mult_not_overflow) // 1) heuristic check |
3064 | if (nobj && arraySize / nobj != size) { // 2) exact check |
3065 | errno = ENOMEM; |
3066 | return NULL; |
3067 | } |
3068 | void* result = internalMalloc(arraySize); |
3069 | if (result) |
3070 | memset(result, 0, arraySize); |
3071 | else |
3072 | errno = ENOMEM; |
3073 | return result; |
3074 | } |
3075 | |
3076 | /********* End code for scalable_calloc ***********/ |
3077 | |
3078 | /********* Code for aligned allocation API **********/ |
3079 | |
3080 | extern "C" int scalable_posix_memalign(void **memptr, size_t alignment, size_t size) |
3081 | { |
3082 | if ( !isPowerOfTwoAtLeast(alignment, sizeof(void*)) ) |
3083 | return EINVAL; |
3084 | void *result = allocateAligned(defaultMemPool, size, alignment); |
3085 | if (!result) |
3086 | return ENOMEM; |
3087 | *memptr = result; |
3088 | return 0; |
3089 | } |
3090 | |
3091 | extern "C" void * scalable_aligned_malloc(size_t size, size_t alignment) |
3092 | { |
3093 | if (!isPowerOfTwo(alignment) || 0==size) { |
3094 | errno = EINVAL; |
3095 | return NULL; |
3096 | } |
3097 | void *tmp = allocateAligned(defaultMemPool, size, alignment); |
3098 | if (!tmp) errno = ENOMEM; |
3099 | return tmp; |
3100 | } |
3101 | |
3102 | extern "C" void * scalable_aligned_realloc(void *ptr, size_t size, size_t alignment) |
3103 | { |
3104 | if (!isPowerOfTwo(alignment)) { |
3105 | errno = EINVAL; |
3106 | return NULL; |
3107 | } |
3108 | void *tmp; |
3109 | |
3110 | if (!ptr) |
3111 | tmp = allocateAligned(defaultMemPool, size, alignment); |
3112 | else if (!size) { |
3113 | scalable_free(ptr); |
3114 | return NULL; |
3115 | } else |
3116 | tmp = reallocAligned(defaultMemPool, ptr, size, alignment); |
3117 | |
3118 | if (!tmp) errno = ENOMEM; |
3119 | return tmp; |
3120 | } |
3121 | |
3122 | extern "C" void * __TBB_malloc_safer_aligned_realloc(void *ptr, size_t size, size_t alignment, void* orig_function) |
3123 | { |
3124 | /* corner cases left out of reallocAligned to not deal with errno there */ |
3125 | if (!isPowerOfTwo(alignment)) { |
3126 | errno = EINVAL; |
3127 | return NULL; |
3128 | } |
3129 | void *tmp = NULL; |
3130 | |
3131 | if (!ptr) { |
3132 | tmp = allocateAligned(defaultMemPool, size, alignment); |
3133 | } else if (FencedLoad(mallocInitialized) && isRecognized(ptr)) { |
3134 | if (!size) { |
3135 | internalFree(ptr); |
3136 | return NULL; |
3137 | } else { |
3138 | tmp = reallocAligned(defaultMemPool, ptr, size, alignment); |
3139 | } |
3140 | } |
3141 | #if USE_WINTHREAD |
3142 | else { |
3143 | orig_aligned_ptrs *original_ptrs = static_cast<orig_aligned_ptrs*>(orig_function); |
3144 | if (size) { |
3145 | // Without orig_msize, we can't do anything with this. |
3146 | // Just keeping old pointer. |
3147 | if ( original_ptrs->aligned_msize ){ |
3148 | // set alignment and offset to have possibly correct oldSize |
3149 | size_t oldSize = original_ptrs->aligned_msize(ptr, sizeof(void*), 0); |
3150 | tmp = allocateAligned(defaultMemPool, size, alignment); |
3151 | if (tmp) { |
3152 | memcpy(tmp, ptr, size<oldSize? size : oldSize); |
3153 | if ( original_ptrs->aligned_free ){ |
3154 | original_ptrs->aligned_free( ptr ); |
3155 | } |
3156 | } |
3157 | } |
3158 | } else { |
3159 | if ( original_ptrs->aligned_free ){ |
3160 | original_ptrs->aligned_free( ptr ); |
3161 | } |
3162 | return NULL; |
3163 | } |
3164 | } |
3165 | #else |
3166 | // As original_realloc can't align result, and there is no way to find |
3167 | // size of reallocating object, we are giving up. |
3168 | suppress_unused_warning(orig_function); |
3169 | #endif |
3170 | if (!tmp) errno = ENOMEM; |
3171 | return tmp; |
3172 | } |
3173 | |
3174 | extern "C" void scalable_aligned_free(void *ptr) |
3175 | { |
3176 | internalFree(ptr); |
3177 | } |
3178 | |
3179 | /********* end code for aligned allocation API **********/ |
3180 | |
3181 | /********* Code for scalable_msize ***********/ |
3182 | |
3183 | /* |
3184 | * Returns the size of a memory block allocated in the heap. |
3185 | */ |
3186 | extern "C" size_t scalable_msize(void* ptr) |
3187 | { |
3188 | if (ptr) { |
3189 | MALLOC_ASSERT(isRecognized(ptr), "Invalid pointer in scalable_msize detected." ); |
3190 | return internalMsize(ptr); |
3191 | } |
3192 | errno = EINVAL; |
3193 | // Unlike _msize, return 0 in case of parameter error. |
3194 | // Returning size_t(-1) looks more like the way to troubles. |
3195 | return 0; |
3196 | } |
3197 | |
3198 | /* |
3199 | * A variant that provides additional memory safety, by checking whether the given address |
3200 | * was obtained with this allocator, and if not redirecting to the provided alternative call. |
3201 | */ |
3202 | extern "C" size_t __TBB_malloc_safer_msize(void *object, size_t (*original_msize)(void*)) |
3203 | { |
3204 | if (object) { |
3205 | // Check if the memory was allocated by scalable_malloc |
3206 | if (FencedLoad(mallocInitialized) && isRecognized(object)) |
3207 | return internalMsize(object); |
3208 | else if (original_msize) |
3209 | return original_msize(object); |
3210 | } |
3211 | // object is NULL or unknown, or foreign and no original_msize |
3212 | #if USE_WINTHREAD |
3213 | errno = EINVAL; // errno expected to be set only on this platform |
3214 | #endif |
3215 | return 0; |
3216 | } |
3217 | |
3218 | /* |
3219 | * The same as above but for _aligned_msize case |
3220 | */ |
3221 | extern "C" size_t __TBB_malloc_safer_aligned_msize(void *object, size_t alignment, size_t offset, size_t (*orig_aligned_msize)(void*,size_t,size_t)) |
3222 | { |
3223 | if (object) { |
3224 | // Check if the memory was allocated by scalable_malloc |
3225 | if (FencedLoad(mallocInitialized) && isRecognized(object)) |
3226 | return internalMsize(object); |
3227 | else if (orig_aligned_msize) |
3228 | return orig_aligned_msize(object,alignment,offset); |
3229 | } |
3230 | // object is NULL or unknown |
3231 | errno = EINVAL; |
3232 | return 0; |
3233 | } |
3234 | |
3235 | /********* End code for scalable_msize ***********/ |
3236 | |
3237 | extern "C" int scalable_allocation_mode(int param, intptr_t value) |
3238 | { |
3239 | if (param == TBBMALLOC_SET_SOFT_HEAP_LIMIT) { |
3240 | defaultMemPool->extMemPool.backend.setRecommendedMaxSize((size_t)value); |
3241 | return TBBMALLOC_OK; |
3242 | } else if (param == USE_HUGE_PAGES) { |
3243 | #if __linux__ |
3244 | switch (value) { |
3245 | case 0: |
3246 | case 1: |
3247 | hugePages.setMode(value); |
3248 | return TBBMALLOC_OK; |
3249 | default: |
3250 | return TBBMALLOC_INVALID_PARAM; |
3251 | } |
3252 | #else |
3253 | return TBBMALLOC_NO_EFFECT; |
3254 | #endif |
3255 | #if __TBB_SOURCE_DIRECTLY_INCLUDED |
3256 | } else if (param == TBBMALLOC_INTERNAL_SOURCE_INCLUDED) { |
3257 | switch (value) { |
3258 | case 0: // used by dynamic library |
3259 | case 1: // used by static library or directly included sources |
3260 | usedBySrcIncluded = value; |
3261 | return TBBMALLOC_OK; |
3262 | default: |
3263 | return TBBMALLOC_INVALID_PARAM; |
3264 | } |
3265 | #endif |
3266 | } else if (param == TBBMALLOC_SET_HUGE_SIZE_THRESHOLD) { |
3267 | defaultMemPool->extMemPool.loc.setHugeSizeThreshold((size_t)value); |
3268 | return TBBMALLOC_OK; |
3269 | } |
3270 | return TBBMALLOC_INVALID_PARAM; |
3271 | } |
3272 | |
3273 | extern "C" int scalable_allocation_command(int cmd, void *param) |
3274 | { |
3275 | if (param) |
3276 | return TBBMALLOC_INVALID_PARAM; |
3277 | |
3278 | bool released = false; |
3279 | switch(cmd) { |
3280 | case TBBMALLOC_CLEAN_THREAD_BUFFERS: |
3281 | if (TLSData *tls = defaultMemPool->getTLS(/*create=*/false)) |
3282 | released = tls->externalCleanup(/*cleanOnlyUnused*/false, /*cleanBins=*/true); |
3283 | break; |
3284 | case TBBMALLOC_CLEAN_ALL_BUFFERS: |
3285 | released = defaultMemPool->extMemPool.hardCachesCleanup(); |
3286 | break; |
3287 | default: |
3288 | return TBBMALLOC_INVALID_PARAM; |
3289 | } |
3290 | return released ? TBBMALLOC_OK : TBBMALLOC_NO_EFFECT; |
3291 | } |
3292 | |