| 1 | /* |
| 2 | Copyright (c) 2005-2019 Intel Corporation |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | // test critical section |
| 18 | // |
| 19 | #include "tbb/critical_section.h" |
| 20 | #include "tbb/task_scheduler_init.h" |
| 21 | #include "tbb/enumerable_thread_specific.h" |
| 22 | #include "tbb/tick_count.h" |
| 23 | #include "harness_assert.h" |
| 24 | #include "harness.h" |
| 25 | #include <math.h> |
| 26 | |
| 27 | #include "harness_barrier.h" |
| 28 | Harness::SpinBarrier sBarrier; |
| 29 | tbb::critical_section cs; |
| 30 | const int MAX_WORK = 300; |
| 31 | |
| 32 | struct BusyBody : NoAssign { |
| 33 | tbb::enumerable_thread_specific<double> &locals; |
| 34 | const int nThread; |
| 35 | const int WorkRatiox100; |
| 36 | int &unprotected_count; |
| 37 | bool test_throw; |
| 38 | |
| 39 | BusyBody( int nThread_, int workRatiox100_, tbb::enumerable_thread_specific<double> &locals_, int &unprotected_count_, bool test_throw_) : |
| 40 | locals(locals_), |
| 41 | nThread(nThread_), |
| 42 | WorkRatiox100(workRatiox100_), |
| 43 | unprotected_count(unprotected_count_), |
| 44 | test_throw(test_throw_) { |
| 45 | sBarrier.initialize(nThread_); |
| 46 | } |
| 47 | |
| 48 | void operator()(const int /* threadID */ ) const { |
| 49 | int nIters = MAX_WORK/nThread; |
| 50 | sBarrier.wait(); |
| 51 | tbb::tick_count t0 = tbb::tick_count::now(); |
| 52 | for(int j = 0; j < nIters; j++) { |
| 53 | |
| 54 | for(int i = 0; i < MAX_WORK * (100 - WorkRatiox100); i++) { |
| 55 | locals.local() += 1.0; |
| 56 | } |
| 57 | cs.lock(); |
| 58 | ASSERT( !cs.try_lock(), "recursive try_lock must fail" ); |
| 59 | #if TBB_USE_EXCEPTIONS && !__TBB_THROW_ACROSS_MODULE_BOUNDARY_BROKEN |
| 60 | if(test_throw && j == (nIters / 2)) { |
| 61 | bool was_caught = false, |
| 62 | unknown_exception = false; |
| 63 | try { |
| 64 | cs.lock(); |
| 65 | } |
| 66 | catch(tbb::improper_lock& e) { |
| 67 | ASSERT( e.what(), "Error message is absent" ); |
| 68 | was_caught = true; |
| 69 | } |
| 70 | catch(...) { |
| 71 | was_caught = unknown_exception = true; |
| 72 | } |
| 73 | ASSERT(was_caught, "Recursive lock attempt did not throw" ); |
| 74 | ASSERT(!unknown_exception, "tbb::improper_lock exception is expected" ); |
| 75 | } |
| 76 | #endif /* TBB_USE_EXCEPTIONS && !__TBB_THROW_ACROSS_MODULE_BOUNDARY_BROKEN */ |
| 77 | for(int i = 0; i < MAX_WORK * WorkRatiox100; i++) { |
| 78 | locals.local() += 1.0; |
| 79 | } |
| 80 | unprotected_count++; |
| 81 | cs.unlock(); |
| 82 | } |
| 83 | locals.local() = (tbb::tick_count::now() - t0).seconds(); |
| 84 | } |
| 85 | }; |
| 86 | |
| 87 | struct BusyBodyScoped : NoAssign { |
| 88 | tbb::enumerable_thread_specific<double> &locals; |
| 89 | const int nThread; |
| 90 | const int WorkRatiox100; |
| 91 | int &unprotected_count; |
| 92 | bool test_throw; |
| 93 | |
| 94 | BusyBodyScoped( int nThread_, int workRatiox100_, tbb::enumerable_thread_specific<double> &locals_, int &unprotected_count_, bool test_throw_) : |
| 95 | locals(locals_), |
| 96 | nThread(nThread_), |
| 97 | WorkRatiox100(workRatiox100_), |
| 98 | unprotected_count(unprotected_count_), |
| 99 | test_throw(test_throw_) { |
| 100 | sBarrier.initialize(nThread_); |
| 101 | } |
| 102 | |
| 103 | void operator()(const int /* threadID */ ) const { |
| 104 | int nIters = MAX_WORK/nThread; |
| 105 | sBarrier.wait(); |
| 106 | tbb::tick_count t0 = tbb::tick_count::now(); |
| 107 | for(int j = 0; j < nIters; j++) { |
| 108 | |
| 109 | for(int i = 0; i < MAX_WORK * (100 - WorkRatiox100); i++) { |
| 110 | locals.local() += 1.0; |
| 111 | } |
| 112 | { |
| 113 | tbb::critical_section::scoped_lock my_lock(cs); |
| 114 | for(int i = 0; i < MAX_WORK * WorkRatiox100; i++) { |
| 115 | locals.local() += 1.0; |
| 116 | } |
| 117 | unprotected_count++; |
| 118 | } |
| 119 | } |
| 120 | locals.local() = (tbb::tick_count::now() - t0).seconds(); |
| 121 | } |
| 122 | }; |
| 123 | |
| 124 | void |
| 125 | RunOneCriticalSectionTest(int nThreads, int csWorkRatio, bool test_throw) { |
| 126 | tbb::task_scheduler_init init(tbb::task_scheduler_init::deferred); |
| 127 | tbb::enumerable_thread_specific<double> test_locals; |
| 128 | int myCount = 0; |
| 129 | BusyBody myBody(nThreads, csWorkRatio, test_locals, myCount, test_throw); |
| 130 | BusyBodyScoped myScopedBody(nThreads, csWorkRatio, test_locals, myCount, test_throw); |
| 131 | init.initialize(nThreads); |
| 132 | tbb::tick_count t0; |
| 133 | { |
| 134 | t0 = tbb::tick_count::now(); |
| 135 | myCount = 0; |
| 136 | NativeParallelFor(nThreads, myBody); |
| 137 | ASSERT(myCount == (MAX_WORK - (MAX_WORK % nThreads)), NULL); |
| 138 | REMARK("%d threads, work ratio %d per cent, time %g" , nThreads, csWorkRatio, (tbb::tick_count::now() - t0).seconds()); |
| 139 | if (nThreads > 1) { |
| 140 | double etsSum = 0; |
| 141 | double etsMax = 0; |
| 142 | double etsMin = 0; |
| 143 | double etsSigmaSq = 0; |
| 144 | double etsSigma = 0; |
| 145 | |
| 146 | for(tbb::enumerable_thread_specific<double>::const_iterator ci = test_locals.begin(); ci != test_locals.end(); ci++) { |
| 147 | etsSum += *ci; |
| 148 | if(etsMax==0.0) { |
| 149 | etsMin = *ci; |
| 150 | } |
| 151 | else { |
| 152 | if(etsMin > *ci) etsMin = *ci; |
| 153 | } |
| 154 | if(etsMax < *ci) etsMax = *ci; |
| 155 | } |
| 156 | double etsAvg = etsSum / (double)nThreads; |
| 157 | for(tbb::enumerable_thread_specific<double>::const_iterator ci = test_locals.begin(); ci != test_locals.end(); ci++) { |
| 158 | etsSigma = etsAvg - *ci; |
| 159 | etsSigmaSq += etsSigma * etsSigma; |
| 160 | } |
| 161 | // an attempt to gauge the "fairness" of the scheduling of the threads. We figure |
| 162 | // the standard deviation, and compare it with the maximum deviation from the |
| 163 | // average time. If the difference is 0 that means all threads finished in the same |
| 164 | // amount of time. If non-zero, the difference is divided by the time, and the |
| 165 | // negative log is taken. If > 2, then the difference is on the order of 0.01*t |
| 166 | // where T is the average time. We aritrarily define this as "fair." |
| 167 | etsSigma = sqrt(etsSigmaSq/double(nThreads)); |
| 168 | etsMax -= etsAvg; // max - a == delta1 |
| 169 | etsMin = etsAvg - etsMin; // a - min == delta2 |
| 170 | if(etsMax < etsMin) etsMax = etsMin; |
| 171 | etsMax -= etsSigma; |
| 172 | // ASSERT(etsMax >= 0, NULL); // shouldn't the maximum difference from the mean be > the stddev? |
| 173 | etsMax = (etsMax > 0.0) ? etsMax : 0.0; // possible rounding error |
| 174 | double fairness = etsMax / etsAvg; |
| 175 | if(fairness == 0.0) { |
| 176 | fairness = 100.0; |
| 177 | } |
| 178 | else fairness = - log10(fairness); |
| 179 | if(fairness > 2.0 ) { |
| 180 | REMARK(" Fair (%g)\n" , fairness); |
| 181 | } |
| 182 | else { |
| 183 | REMARK(" Unfair (%g)\n" , fairness); |
| 184 | } |
| 185 | } |
| 186 | myCount = 0; |
| 187 | NativeParallelFor(nThreads, myScopedBody); |
| 188 | ASSERT(myCount == (MAX_WORK - (MAX_WORK % nThreads)), NULL); |
| 189 | |
| 190 | } |
| 191 | |
| 192 | init.terminate(); |
| 193 | } |
| 194 | |
| 195 | void |
| 196 | RunParallelTests() { |
| 197 | for(int p = MinThread; p <= MaxThread; p++) { |
| 198 | for(int cs_ratio = 1; cs_ratio < 95; cs_ratio *= 2) { |
| 199 | RunOneCriticalSectionTest(p, cs_ratio, /*test_throw*/true); |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | int TestMain () { |
| 205 | if(MinThread <= 0) MinThread = 1; |
| 206 | |
| 207 | if(MaxThread > 0) { |
| 208 | RunParallelTests(); |
| 209 | } |
| 210 | |
| 211 | return Harness::Done; |
| 212 | } |
| 213 | |