| 1 | /* |
| 2 | Copyright (c) 2005-2019 Intel Corporation |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | /** |
| 18 | The test checks that for different ranges of random numbers (from 0 to |
| 19 | [MinThread, MaxThread]) generated with different seeds the probability |
| 20 | of each number in the range deviates from the ideal random distribution |
| 21 | by no more than AcceptableDeviation percent. |
| 22 | **/ |
| 23 | |
| 24 | #define HARNESS_DEFAULT_MIN_THREADS 2 |
| 25 | #define HARNESS_DEFAULT_MAX_THREADS 32 |
| 26 | |
| 27 | #define HARNESS_DEFINE_PRIVATE_PUBLIC 1 |
| 28 | #include "harness_inject_scheduler.h" |
| 29 | |
| 30 | #define TEST_TOTAL_SEQUENCE 0 |
| 31 | |
| 32 | #include "harness.h" |
| 33 | #include "tbb/atomic.h" |
| 34 | |
| 35 | //! Coefficient defining tolerable deviation from ideal random distribution |
| 36 | const double AcceptableDeviation = 2.1; |
| 37 | //! Tolerable probability of failure to achieve tolerable distribution |
| 38 | const double AcceptableProbabilityOfOutliers = 1e-5; |
| 39 | //! Coefficient defining the length of random numbers series used to estimate the distribution |
| 40 | /** Number of random values generated per each range element. I.e. the larger is |
| 41 | the range, the longer is the series of random values. **/ |
| 42 | const uintptr_t SeriesBaseLen = 100; |
| 43 | //! Number of random numbers series to generate |
| 44 | const uintptr_t NumSeries = 100; |
| 45 | //! Number of random number generation series with different seeds |
| 46 | const uintptr_t NumSeeds = 100; |
| 47 | |
| 48 | tbb::atomic<uintptr_t> NumHighOutliers; |
| 49 | tbb::atomic<uintptr_t> NumLowOutliers; |
| 50 | |
| 51 | inline void CheckProbability ( double probability, double expectedProbability, int index, int numIndices, void* seed ) { |
| 52 | double lowerBound = expectedProbability / AcceptableDeviation, |
| 53 | upperBound = expectedProbability * AcceptableDeviation; |
| 54 | if ( probability < lowerBound ) { |
| 55 | if ( !NumLowOutliers ) |
| 56 | REMARK( "Warning: Probability %.3f of hitting index %d among %d elements is out of acceptable range (%.3f - %.3f) for seed %p\n" , |
| 57 | probability, index, numIndices, lowerBound, upperBound, seed ); |
| 58 | ++NumLowOutliers; |
| 59 | } |
| 60 | else if ( probability > upperBound ) { |
| 61 | if ( !NumHighOutliers ) |
| 62 | REMARK( "Warning: Probability %.3f of hitting index %d among %d elements is out of acceptable range (%.3f - %.3f) for seed %p\n" , |
| 63 | probability, index, numIndices, lowerBound, upperBound, seed ); |
| 64 | ++NumHighOutliers; |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | struct CheckDistributionBody { |
| 69 | void operator() ( int id ) const { |
| 70 | uintptr_t randomRange = id + MinThread; |
| 71 | uintptr_t *curHits = new uintptr_t[randomRange] |
| 72 | #if TEST_TOTAL_SEQUENCE |
| 73 | , *totalHits = new uintptr_t[randomRange] |
| 74 | #endif |
| 75 | ; |
| 76 | double expectedProbability = 1./randomRange; |
| 77 | // Loop through different seeds |
| 78 | for ( uintptr_t i = 0; i < NumSeeds; ++i ) { |
| 79 | // Seed value mimics the one used by the TBB task scheduler |
| 80 | void* seed = (char*)&curHits + i * 16; |
| 81 | tbb::internal::FastRandom random( seed ); |
| 82 | // According to Section 3.2.1.2 of Volume 2 of Knuth's Art of Computer Programming |
| 83 | // the following conditions must be hold for m=2^32: |
| 84 | ASSERT((random.c&1)!=0, "c is relatively prime to m" ); |
| 85 | ASSERT((random.a-1)%4==0, "a-1 is a multiple of p, for every prime p dividing m." |
| 86 | " And a-1 is a multiple of 4, if m is a multiple of 4" ); |
| 87 | |
| 88 | memset( curHits, 0, randomRange * sizeof(uintptr_t) ); |
| 89 | #if TEST_TOTAL_SEQUENCE |
| 90 | memset( totalHits, 0, randomRange * sizeof(uintptr_t) ); |
| 91 | #endif |
| 92 | const uintptr_t seriesLen = randomRange * SeriesBaseLen, |
| 93 | experimentLen = NumSeries * seriesLen; |
| 94 | uintptr_t *curSeries = new uintptr_t[seriesLen], // circular buffer |
| 95 | randsGenerated = 0; |
| 96 | // Initialize statistics |
| 97 | while ( randsGenerated < seriesLen ) { |
| 98 | uintptr_t idx = random.get() % randomRange; |
| 99 | ++curHits[idx]; |
| 100 | #if TEST_TOTAL_SEQUENCE |
| 101 | ++totalHits[idx]; |
| 102 | #endif |
| 103 | curSeries[randsGenerated++] = idx; |
| 104 | } |
| 105 | while ( randsGenerated < experimentLen ) { |
| 106 | for ( uintptr_t j = 0; j < randomRange; ++j ) { |
| 107 | CheckProbability( double(curHits[j])/seriesLen, expectedProbability, j, randomRange, seed ); |
| 108 | #if TEST_TOTAL_SEQUENCE |
| 109 | CheckProbability( double(totalHits[j])/randsGenerated, expectedProbability, j, randomRange, seed ); |
| 110 | #endif |
| 111 | } |
| 112 | --curHits[curSeries[randsGenerated % seriesLen]]; |
| 113 | int idx = random.get() % randomRange; |
| 114 | ++curHits[idx]; |
| 115 | #if TEST_TOTAL_SEQUENCE |
| 116 | ++totalHits[idx]; |
| 117 | #endif |
| 118 | curSeries[randsGenerated++ % seriesLen] = idx; |
| 119 | } |
| 120 | delete [] curSeries; |
| 121 | } |
| 122 | delete [] curHits; |
| 123 | #if TEST_TOTAL_SEQUENCE |
| 124 | delete [] totalHits; |
| 125 | #endif |
| 126 | } |
| 127 | }; |
| 128 | |
| 129 | struct rng { |
| 130 | tbb::internal::FastRandom my_fast_random; |
| 131 | rng (unsigned seed):my_fast_random(seed) {} |
| 132 | unsigned short operator()(){return my_fast_random.get();} |
| 133 | }; |
| 134 | |
| 135 | template <std::size_t seriesLen > |
| 136 | struct SingleCheck{ |
| 137 | bool operator()(unsigned seed)const{ |
| 138 | std::size_t series1[seriesLen]={0}; |
| 139 | std::size_t series2[seriesLen]={0}; |
| 140 | std::generate(series1,series1+seriesLen,rng(seed)); |
| 141 | std::generate(series2,series2+seriesLen,rng(seed)); |
| 142 | return std::equal(series1,series1+seriesLen,series2); |
| 143 | } |
| 144 | }; |
| 145 | |
| 146 | template <std::size_t seriesLen ,size_t seedsNum> |
| 147 | struct CheckReproducibilityBody:NoAssign{ |
| 148 | unsigned short seeds[seedsNum]; |
| 149 | const std::size_t grainSize; |
| 150 | CheckReproducibilityBody(std::size_t GrainSize): grainSize(GrainSize){ |
| 151 | //first generate seeds to check on, and make sure that sequence is reproducible |
| 152 | ASSERT(SingleCheck<seedsNum>()(0),"Series generated by FastRandom must be reproducible" ); |
| 153 | std::generate(seeds,seeds+seedsNum,rng(0)); |
| 154 | } |
| 155 | |
| 156 | void operator()(int id)const{ |
| 157 | for (size_t i=id*grainSize; (i<seedsNum)&&(i< ((id+1)*grainSize));++i ){ |
| 158 | ASSERT(SingleCheck<seriesLen>()(i),"Series generated by FastRandom must be reproducible" ); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | }; |
| 163 | #include "tbb/tbb_thread.h" |
| 164 | |
| 165 | int TestMain () { |
| 166 | ASSERT( AcceptableDeviation < 100, NULL ); |
| 167 | MinThread = max(MinThread, 2); |
| 168 | MaxThread = max(MinThread, MaxThread); |
| 169 | double NumChecks = double(NumSeeds) * (MaxThread - MinThread + 1) * (MaxThread + MinThread) / 2.0 * (SeriesBaseLen * NumSeries - SeriesBaseLen); |
| 170 | REMARK( "Number of distribution quality checks %g\n" , NumChecks ); |
| 171 | NumLowOutliers = NumHighOutliers = 0; |
| 172 | // Parallelism is used in this test only to speed up the long serial checks |
| 173 | // Essentially it is a loop over random number ranges |
| 174 | // Ideally tbb::parallel_for could be used to parallelize the outermost loop |
| 175 | // in CheckDistributionBody, but it is not used to avoid unit test contamination. |
| 176 | int P = tbb::tbb_thread::hardware_concurrency(); |
| 177 | enum {reproducibilitySeedsToTest=1000}; |
| 178 | enum {reproducibilitySeriesLen=100}; |
| 179 | CheckReproducibilityBody<reproducibilitySeriesLen,reproducibilitySeedsToTest> CheckReproducibility(reproducibilitySeedsToTest/MaxThread); |
| 180 | while ( MinThread <= MaxThread ) { |
| 181 | int ThreadsToRun = min(P, MaxThread - MinThread + 1); |
| 182 | REMARK("Checking random range [%d;%d)\n" , MinThread, MinThread+ThreadsToRun); |
| 183 | NativeParallelFor( ThreadsToRun, CheckDistributionBody() ); |
| 184 | NativeParallelFor( ThreadsToRun, CheckReproducibility ); |
| 185 | MinThread += P; |
| 186 | } |
| 187 | double observedProbabilityOfOutliers = (NumLowOutliers + NumHighOutliers) / NumChecks; |
| 188 | if ( observedProbabilityOfOutliers > AcceptableProbabilityOfOutliers ) { |
| 189 | if ( NumLowOutliers ) |
| 190 | REPORT( "Warning: %d cases of too low probability of a given number detected\n" , (int)NumLowOutliers ); |
| 191 | if ( NumHighOutliers ) |
| 192 | REPORT( "Warning: %d cases of too high probability of a given number detected\n" , (int)NumHighOutliers ); |
| 193 | ASSERT( observedProbabilityOfOutliers <= AcceptableProbabilityOfOutliers, NULL ); |
| 194 | } |
| 195 | return Harness::Done; |
| 196 | } |
| 197 | |