| 1 | // random number generation -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2009-2017 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** |
| 26 | * @file bits/random.h |
| 27 | * This is an internal header file, included by other library headers. |
| 28 | * Do not attempt to use it directly. @headername{random} |
| 29 | */ |
| 30 | |
| 31 | #ifndef _RANDOM_H |
| 32 | #define _RANDOM_H 1 |
| 33 | |
| 34 | #include <vector> |
| 35 | #include <bits/uniform_int_dist.h> |
| 36 | |
| 37 | namespace std _GLIBCXX_VISIBILITY(default) |
| 38 | { |
| 39 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 40 | |
| 41 | // [26.4] Random number generation |
| 42 | |
| 43 | /** |
| 44 | * @defgroup random Random Number Generation |
| 45 | * @ingroup numerics |
| 46 | * |
| 47 | * A facility for generating random numbers on selected distributions. |
| 48 | * @{ |
| 49 | */ |
| 50 | |
| 51 | /** |
| 52 | * @brief A function template for converting the output of a (integral) |
| 53 | * uniform random number generator to a floatng point result in the range |
| 54 | * [0-1). |
| 55 | */ |
| 56 | template<typename _RealType, size_t __bits, |
| 57 | typename _UniformRandomNumberGenerator> |
| 58 | _RealType |
| 59 | generate_canonical(_UniformRandomNumberGenerator& __g); |
| 60 | |
| 61 | _GLIBCXX_END_NAMESPACE_VERSION |
| 62 | |
| 63 | /* |
| 64 | * Implementation-space details. |
| 65 | */ |
| 66 | namespace __detail |
| 67 | { |
| 68 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 69 | |
| 70 | template<typename _UIntType, size_t __w, |
| 71 | bool = __w < static_cast<size_t> |
| 72 | (std::numeric_limits<_UIntType>::digits)> |
| 73 | struct _Shift |
| 74 | { static const _UIntType __value = 0; }; |
| 75 | |
| 76 | template<typename _UIntType, size_t __w> |
| 77 | struct _Shift<_UIntType, __w, true> |
| 78 | { static const _UIntType __value = _UIntType(1) << __w; }; |
| 79 | |
| 80 | template<int __s, |
| 81 | int __which = ((__s <= __CHAR_BIT__ * sizeof (int)) |
| 82 | + (__s <= __CHAR_BIT__ * sizeof (long)) |
| 83 | + (__s <= __CHAR_BIT__ * sizeof (long long)) |
| 84 | /* assume long long no bigger than __int128 */ |
| 85 | + (__s <= 128))> |
| 86 | struct _Select_uint_least_t |
| 87 | { |
| 88 | static_assert(__which < 0, /* needs to be dependent */ |
| 89 | "sorry, would be too much trouble for a slow result" ); |
| 90 | }; |
| 91 | |
| 92 | template<int __s> |
| 93 | struct _Select_uint_least_t<__s, 4> |
| 94 | { typedef unsigned int type; }; |
| 95 | |
| 96 | template<int __s> |
| 97 | struct _Select_uint_least_t<__s, 3> |
| 98 | { typedef unsigned long type; }; |
| 99 | |
| 100 | template<int __s> |
| 101 | struct _Select_uint_least_t<__s, 2> |
| 102 | { typedef unsigned long long type; }; |
| 103 | |
| 104 | #ifdef _GLIBCXX_USE_INT128 |
| 105 | template<int __s> |
| 106 | struct _Select_uint_least_t<__s, 1> |
| 107 | { typedef unsigned __int128 type; }; |
| 108 | #endif |
| 109 | |
| 110 | // Assume a != 0, a < m, c < m, x < m. |
| 111 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, |
| 112 | bool __big_enough = (!(__m & (__m - 1)) |
| 113 | || (_Tp(-1) - __c) / __a >= __m - 1), |
| 114 | bool __schrage_ok = __m % __a < __m / __a> |
| 115 | struct _Mod |
| 116 | { |
| 117 | typedef typename _Select_uint_least_t<std::__lg(__a) |
| 118 | + std::__lg(__m) + 2>::type _Tp2; |
| 119 | static _Tp |
| 120 | __calc(_Tp __x) |
| 121 | { return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); } |
| 122 | }; |
| 123 | |
| 124 | // Schrage. |
| 125 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
| 126 | struct _Mod<_Tp, __m, __a, __c, false, true> |
| 127 | { |
| 128 | static _Tp |
| 129 | __calc(_Tp __x); |
| 130 | }; |
| 131 | |
| 132 | // Special cases: |
| 133 | // - for m == 2^n or m == 0, unsigned integer overflow is safe. |
| 134 | // - a * (m - 1) + c fits in _Tp, there is no overflow. |
| 135 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s> |
| 136 | struct _Mod<_Tp, __m, __a, __c, true, __s> |
| 137 | { |
| 138 | static _Tp |
| 139 | __calc(_Tp __x) |
| 140 | { |
| 141 | _Tp __res = __a * __x + __c; |
| 142 | if (__m) |
| 143 | __res %= __m; |
| 144 | return __res; |
| 145 | } |
| 146 | }; |
| 147 | |
| 148 | template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0> |
| 149 | inline _Tp |
| 150 | __mod(_Tp __x) |
| 151 | { return _Mod<_Tp, __m, __a, __c>::__calc(__x); } |
| 152 | |
| 153 | /* |
| 154 | * An adaptor class for converting the output of any Generator into |
| 155 | * the input for a specific Distribution. |
| 156 | */ |
| 157 | template<typename _Engine, typename _DInputType> |
| 158 | struct _Adaptor |
| 159 | { |
| 160 | static_assert(std::is_floating_point<_DInputType>::value, |
| 161 | "template argument must be a floating point type" ); |
| 162 | |
| 163 | public: |
| 164 | _Adaptor(_Engine& __g) |
| 165 | : _M_g(__g) { } |
| 166 | |
| 167 | _DInputType |
| 168 | min() const |
| 169 | { return _DInputType(0); } |
| 170 | |
| 171 | _DInputType |
| 172 | max() const |
| 173 | { return _DInputType(1); } |
| 174 | |
| 175 | /* |
| 176 | * Converts a value generated by the adapted random number generator |
| 177 | * into a value in the input domain for the dependent random number |
| 178 | * distribution. |
| 179 | */ |
| 180 | _DInputType |
| 181 | operator()() |
| 182 | { |
| 183 | return std::generate_canonical<_DInputType, |
| 184 | std::numeric_limits<_DInputType>::digits, |
| 185 | _Engine>(_M_g); |
| 186 | } |
| 187 | |
| 188 | private: |
| 189 | _Engine& _M_g; |
| 190 | }; |
| 191 | |
| 192 | _GLIBCXX_END_NAMESPACE_VERSION |
| 193 | } // namespace __detail |
| 194 | |
| 195 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 196 | |
| 197 | /** |
| 198 | * @addtogroup random_generators Random Number Generators |
| 199 | * @ingroup random |
| 200 | * |
| 201 | * These classes define objects which provide random or pseudorandom |
| 202 | * numbers, either from a discrete or a continuous interval. The |
| 203 | * random number generator supplied as a part of this library are |
| 204 | * all uniform random number generators which provide a sequence of |
| 205 | * random number uniformly distributed over their range. |
| 206 | * |
| 207 | * A number generator is a function object with an operator() that |
| 208 | * takes zero arguments and returns a number. |
| 209 | * |
| 210 | * A compliant random number generator must satisfy the following |
| 211 | * requirements. <table border=1 cellpadding=10 cellspacing=0> |
| 212 | * <caption align=top>Random Number Generator Requirements</caption> |
| 213 | * <tr><td>To be documented.</td></tr> </table> |
| 214 | * |
| 215 | * @{ |
| 216 | */ |
| 217 | |
| 218 | /** |
| 219 | * @brief A model of a linear congruential random number generator. |
| 220 | * |
| 221 | * A random number generator that produces pseudorandom numbers via |
| 222 | * linear function: |
| 223 | * @f[ |
| 224 | * x_{i+1}\leftarrow(ax_{i} + c) \bmod m |
| 225 | * @f] |
| 226 | * |
| 227 | * The template parameter @p _UIntType must be an unsigned integral type |
| 228 | * large enough to store values up to (__m-1). If the template parameter |
| 229 | * @p __m is 0, the modulus @p __m used is |
| 230 | * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template |
| 231 | * parameters @p __a and @p __c must be less than @p __m. |
| 232 | * |
| 233 | * The size of the state is @f$1@f$. |
| 234 | */ |
| 235 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 236 | class linear_congruential_engine |
| 237 | { |
| 238 | static_assert(std::is_unsigned<_UIntType>::value, |
| 239 | "result_type must be an unsigned integral type" ); |
| 240 | static_assert(__m == 0u || (__a < __m && __c < __m), |
| 241 | "template argument substituting __m out of bounds" ); |
| 242 | |
| 243 | public: |
| 244 | /** The type of the generated random value. */ |
| 245 | typedef _UIntType result_type; |
| 246 | |
| 247 | /** The multiplier. */ |
| 248 | static constexpr result_type multiplier = __a; |
| 249 | /** An increment. */ |
| 250 | static constexpr result_type increment = __c; |
| 251 | /** The modulus. */ |
| 252 | static constexpr result_type modulus = __m; |
| 253 | static constexpr result_type default_seed = 1u; |
| 254 | |
| 255 | /** |
| 256 | * @brief Constructs a %linear_congruential_engine random number |
| 257 | * generator engine with seed @p __s. The default seed value |
| 258 | * is 1. |
| 259 | * |
| 260 | * @param __s The initial seed value. |
| 261 | */ |
| 262 | explicit |
| 263 | linear_congruential_engine(result_type __s = default_seed) |
| 264 | { seed(__s); } |
| 265 | |
| 266 | /** |
| 267 | * @brief Constructs a %linear_congruential_engine random number |
| 268 | * generator engine seeded from the seed sequence @p __q. |
| 269 | * |
| 270 | * @param __q the seed sequence. |
| 271 | */ |
| 272 | template<typename _Sseq, typename = typename |
| 273 | std::enable_if<!std::is_same<_Sseq, linear_congruential_engine>::value> |
| 274 | ::type> |
| 275 | explicit |
| 276 | linear_congruential_engine(_Sseq& __q) |
| 277 | { seed(__q); } |
| 278 | |
| 279 | /** |
| 280 | * @brief Reseeds the %linear_congruential_engine random number generator |
| 281 | * engine sequence to the seed @p __s. |
| 282 | * |
| 283 | * @param __s The new seed. |
| 284 | */ |
| 285 | void |
| 286 | seed(result_type __s = default_seed); |
| 287 | |
| 288 | /** |
| 289 | * @brief Reseeds the %linear_congruential_engine random number generator |
| 290 | * engine |
| 291 | * sequence using values from the seed sequence @p __q. |
| 292 | * |
| 293 | * @param __q the seed sequence. |
| 294 | */ |
| 295 | template<typename _Sseq> |
| 296 | typename std::enable_if<std::is_class<_Sseq>::value>::type |
| 297 | seed(_Sseq& __q); |
| 298 | |
| 299 | /** |
| 300 | * @brief Gets the smallest possible value in the output range. |
| 301 | * |
| 302 | * The minimum depends on the @p __c parameter: if it is zero, the |
| 303 | * minimum generated must be > 0, otherwise 0 is allowed. |
| 304 | */ |
| 305 | static constexpr result_type |
| 306 | min() |
| 307 | { return __c == 0u ? 1u : 0u; } |
| 308 | |
| 309 | /** |
| 310 | * @brief Gets the largest possible value in the output range. |
| 311 | */ |
| 312 | static constexpr result_type |
| 313 | max() |
| 314 | { return __m - 1u; } |
| 315 | |
| 316 | /** |
| 317 | * @brief Discard a sequence of random numbers. |
| 318 | */ |
| 319 | void |
| 320 | discard(unsigned long long __z) |
| 321 | { |
| 322 | for (; __z != 0ULL; --__z) |
| 323 | (*this)(); |
| 324 | } |
| 325 | |
| 326 | /** |
| 327 | * @brief Gets the next random number in the sequence. |
| 328 | */ |
| 329 | result_type |
| 330 | operator()() |
| 331 | { |
| 332 | _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x); |
| 333 | return _M_x; |
| 334 | } |
| 335 | |
| 336 | /** |
| 337 | * @brief Compares two linear congruential random number generator |
| 338 | * objects of the same type for equality. |
| 339 | * |
| 340 | * @param __lhs A linear congruential random number generator object. |
| 341 | * @param __rhs Another linear congruential random number generator |
| 342 | * object. |
| 343 | * |
| 344 | * @returns true if the infinite sequences of generated values |
| 345 | * would be equal, false otherwise. |
| 346 | */ |
| 347 | friend bool |
| 348 | operator==(const linear_congruential_engine& __lhs, |
| 349 | const linear_congruential_engine& __rhs) |
| 350 | { return __lhs._M_x == __rhs._M_x; } |
| 351 | |
| 352 | /** |
| 353 | * @brief Writes the textual representation of the state x(i) of x to |
| 354 | * @p __os. |
| 355 | * |
| 356 | * @param __os The output stream. |
| 357 | * @param __lcr A % linear_congruential_engine random number generator. |
| 358 | * @returns __os. |
| 359 | */ |
| 360 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
| 361 | _UIntType1 __m1, typename _CharT, typename _Traits> |
| 362 | friend std::basic_ostream<_CharT, _Traits>& |
| 363 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 364 | const std::linear_congruential_engine<_UIntType1, |
| 365 | __a1, __c1, __m1>& __lcr); |
| 366 | |
| 367 | /** |
| 368 | * @brief Sets the state of the engine by reading its textual |
| 369 | * representation from @p __is. |
| 370 | * |
| 371 | * The textual representation must have been previously written using |
| 372 | * an output stream whose imbued locale and whose type's template |
| 373 | * specialization arguments _CharT and _Traits were the same as those |
| 374 | * of @p __is. |
| 375 | * |
| 376 | * @param __is The input stream. |
| 377 | * @param __lcr A % linear_congruential_engine random number generator. |
| 378 | * @returns __is. |
| 379 | */ |
| 380 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
| 381 | _UIntType1 __m1, typename _CharT, typename _Traits> |
| 382 | friend std::basic_istream<_CharT, _Traits>& |
| 383 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 384 | std::linear_congruential_engine<_UIntType1, __a1, |
| 385 | __c1, __m1>& __lcr); |
| 386 | |
| 387 | private: |
| 388 | _UIntType _M_x; |
| 389 | }; |
| 390 | |
| 391 | /** |
| 392 | * @brief Compares two linear congruential random number generator |
| 393 | * objects of the same type for inequality. |
| 394 | * |
| 395 | * @param __lhs A linear congruential random number generator object. |
| 396 | * @param __rhs Another linear congruential random number generator |
| 397 | * object. |
| 398 | * |
| 399 | * @returns true if the infinite sequences of generated values |
| 400 | * would be different, false otherwise. |
| 401 | */ |
| 402 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 403 | inline bool |
| 404 | operator!=(const std::linear_congruential_engine<_UIntType, __a, |
| 405 | __c, __m>& __lhs, |
| 406 | const std::linear_congruential_engine<_UIntType, __a, |
| 407 | __c, __m>& __rhs) |
| 408 | { return !(__lhs == __rhs); } |
| 409 | |
| 410 | |
| 411 | /** |
| 412 | * A generalized feedback shift register discrete random number generator. |
| 413 | * |
| 414 | * This algorithm avoids multiplication and division and is designed to be |
| 415 | * friendly to a pipelined architecture. If the parameters are chosen |
| 416 | * correctly, this generator will produce numbers with a very long period and |
| 417 | * fairly good apparent entropy, although still not cryptographically strong. |
| 418 | * |
| 419 | * The best way to use this generator is with the predefined mt19937 class. |
| 420 | * |
| 421 | * This algorithm was originally invented by Makoto Matsumoto and |
| 422 | * Takuji Nishimura. |
| 423 | * |
| 424 | * @tparam __w Word size, the number of bits in each element of |
| 425 | * the state vector. |
| 426 | * @tparam __n The degree of recursion. |
| 427 | * @tparam __m The period parameter. |
| 428 | * @tparam __r The separation point bit index. |
| 429 | * @tparam __a The last row of the twist matrix. |
| 430 | * @tparam __u The first right-shift tempering matrix parameter. |
| 431 | * @tparam __d The first right-shift tempering matrix mask. |
| 432 | * @tparam __s The first left-shift tempering matrix parameter. |
| 433 | * @tparam __b The first left-shift tempering matrix mask. |
| 434 | * @tparam __t The second left-shift tempering matrix parameter. |
| 435 | * @tparam __c The second left-shift tempering matrix mask. |
| 436 | * @tparam __l The second right-shift tempering matrix parameter. |
| 437 | * @tparam __f Initialization multiplier. |
| 438 | */ |
| 439 | template<typename _UIntType, size_t __w, |
| 440 | size_t __n, size_t __m, size_t __r, |
| 441 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 442 | _UIntType __b, size_t __t, |
| 443 | _UIntType __c, size_t __l, _UIntType __f> |
| 444 | class mersenne_twister_engine |
| 445 | { |
| 446 | static_assert(std::is_unsigned<_UIntType>::value, |
| 447 | "result_type must be an unsigned integral type" ); |
| 448 | static_assert(1u <= __m && __m <= __n, |
| 449 | "template argument substituting __m out of bounds" ); |
| 450 | static_assert(__r <= __w, "template argument substituting " |
| 451 | "__r out of bound" ); |
| 452 | static_assert(__u <= __w, "template argument substituting " |
| 453 | "__u out of bound" ); |
| 454 | static_assert(__s <= __w, "template argument substituting " |
| 455 | "__s out of bound" ); |
| 456 | static_assert(__t <= __w, "template argument substituting " |
| 457 | "__t out of bound" ); |
| 458 | static_assert(__l <= __w, "template argument substituting " |
| 459 | "__l out of bound" ); |
| 460 | static_assert(__w <= std::numeric_limits<_UIntType>::digits, |
| 461 | "template argument substituting __w out of bound" ); |
| 462 | static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 463 | "template argument substituting __a out of bound" ); |
| 464 | static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 465 | "template argument substituting __b out of bound" ); |
| 466 | static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 467 | "template argument substituting __c out of bound" ); |
| 468 | static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 469 | "template argument substituting __d out of bound" ); |
| 470 | static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| 471 | "template argument substituting __f out of bound" ); |
| 472 | |
| 473 | public: |
| 474 | /** The type of the generated random value. */ |
| 475 | typedef _UIntType result_type; |
| 476 | |
| 477 | // parameter values |
| 478 | static constexpr size_t word_size = __w; |
| 479 | static constexpr size_t state_size = __n; |
| 480 | static constexpr size_t shift_size = __m; |
| 481 | static constexpr size_t mask_bits = __r; |
| 482 | static constexpr result_type xor_mask = __a; |
| 483 | static constexpr size_t tempering_u = __u; |
| 484 | static constexpr result_type tempering_d = __d; |
| 485 | static constexpr size_t tempering_s = __s; |
| 486 | static constexpr result_type tempering_b = __b; |
| 487 | static constexpr size_t tempering_t = __t; |
| 488 | static constexpr result_type tempering_c = __c; |
| 489 | static constexpr size_t tempering_l = __l; |
| 490 | static constexpr result_type initialization_multiplier = __f; |
| 491 | static constexpr result_type default_seed = 5489u; |
| 492 | |
| 493 | // constructors and member function |
| 494 | explicit |
| 495 | mersenne_twister_engine(result_type __sd = default_seed) |
| 496 | { seed(__sd); } |
| 497 | |
| 498 | /** |
| 499 | * @brief Constructs a %mersenne_twister_engine random number generator |
| 500 | * engine seeded from the seed sequence @p __q. |
| 501 | * |
| 502 | * @param __q the seed sequence. |
| 503 | */ |
| 504 | template<typename _Sseq, typename = typename |
| 505 | std::enable_if<!std::is_same<_Sseq, mersenne_twister_engine>::value> |
| 506 | ::type> |
| 507 | explicit |
| 508 | mersenne_twister_engine(_Sseq& __q) |
| 509 | { seed(__q); } |
| 510 | |
| 511 | void |
| 512 | seed(result_type __sd = default_seed); |
| 513 | |
| 514 | template<typename _Sseq> |
| 515 | typename std::enable_if<std::is_class<_Sseq>::value>::type |
| 516 | seed(_Sseq& __q); |
| 517 | |
| 518 | /** |
| 519 | * @brief Gets the smallest possible value in the output range. |
| 520 | */ |
| 521 | static constexpr result_type |
| 522 | min() |
| 523 | { return 0; }; |
| 524 | |
| 525 | /** |
| 526 | * @brief Gets the largest possible value in the output range. |
| 527 | */ |
| 528 | static constexpr result_type |
| 529 | max() |
| 530 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| 531 | |
| 532 | /** |
| 533 | * @brief Discard a sequence of random numbers. |
| 534 | */ |
| 535 | void |
| 536 | discard(unsigned long long __z); |
| 537 | |
| 538 | result_type |
| 539 | operator()(); |
| 540 | |
| 541 | /** |
| 542 | * @brief Compares two % mersenne_twister_engine random number generator |
| 543 | * objects of the same type for equality. |
| 544 | * |
| 545 | * @param __lhs A % mersenne_twister_engine random number generator |
| 546 | * object. |
| 547 | * @param __rhs Another % mersenne_twister_engine random number |
| 548 | * generator object. |
| 549 | * |
| 550 | * @returns true if the infinite sequences of generated values |
| 551 | * would be equal, false otherwise. |
| 552 | */ |
| 553 | friend bool |
| 554 | operator==(const mersenne_twister_engine& __lhs, |
| 555 | const mersenne_twister_engine& __rhs) |
| 556 | { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x) |
| 557 | && __lhs._M_p == __rhs._M_p); } |
| 558 | |
| 559 | /** |
| 560 | * @brief Inserts the current state of a % mersenne_twister_engine |
| 561 | * random number generator engine @p __x into the output stream |
| 562 | * @p __os. |
| 563 | * |
| 564 | * @param __os An output stream. |
| 565 | * @param __x A % mersenne_twister_engine random number generator |
| 566 | * engine. |
| 567 | * |
| 568 | * @returns The output stream with the state of @p __x inserted or in |
| 569 | * an error state. |
| 570 | */ |
| 571 | template<typename _UIntType1, |
| 572 | size_t __w1, size_t __n1, |
| 573 | size_t __m1, size_t __r1, |
| 574 | _UIntType1 __a1, size_t __u1, |
| 575 | _UIntType1 __d1, size_t __s1, |
| 576 | _UIntType1 __b1, size_t __t1, |
| 577 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
| 578 | typename _CharT, typename _Traits> |
| 579 | friend std::basic_ostream<_CharT, _Traits>& |
| 580 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 581 | const std::mersenne_twister_engine<_UIntType1, __w1, __n1, |
| 582 | __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
| 583 | __l1, __f1>& __x); |
| 584 | |
| 585 | /** |
| 586 | * @brief Extracts the current state of a % mersenne_twister_engine |
| 587 | * random number generator engine @p __x from the input stream |
| 588 | * @p __is. |
| 589 | * |
| 590 | * @param __is An input stream. |
| 591 | * @param __x A % mersenne_twister_engine random number generator |
| 592 | * engine. |
| 593 | * |
| 594 | * @returns The input stream with the state of @p __x extracted or in |
| 595 | * an error state. |
| 596 | */ |
| 597 | template<typename _UIntType1, |
| 598 | size_t __w1, size_t __n1, |
| 599 | size_t __m1, size_t __r1, |
| 600 | _UIntType1 __a1, size_t __u1, |
| 601 | _UIntType1 __d1, size_t __s1, |
| 602 | _UIntType1 __b1, size_t __t1, |
| 603 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
| 604 | typename _CharT, typename _Traits> |
| 605 | friend std::basic_istream<_CharT, _Traits>& |
| 606 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 607 | std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1, |
| 608 | __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
| 609 | __l1, __f1>& __x); |
| 610 | |
| 611 | private: |
| 612 | void _M_gen_rand(); |
| 613 | |
| 614 | _UIntType _M_x[state_size]; |
| 615 | size_t _M_p; |
| 616 | }; |
| 617 | |
| 618 | /** |
| 619 | * @brief Compares two % mersenne_twister_engine random number generator |
| 620 | * objects of the same type for inequality. |
| 621 | * |
| 622 | * @param __lhs A % mersenne_twister_engine random number generator |
| 623 | * object. |
| 624 | * @param __rhs Another % mersenne_twister_engine random number |
| 625 | * generator object. |
| 626 | * |
| 627 | * @returns true if the infinite sequences of generated values |
| 628 | * would be different, false otherwise. |
| 629 | */ |
| 630 | template<typename _UIntType, size_t __w, |
| 631 | size_t __n, size_t __m, size_t __r, |
| 632 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 633 | _UIntType __b, size_t __t, |
| 634 | _UIntType __c, size_t __l, _UIntType __f> |
| 635 | inline bool |
| 636 | operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 637 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs, |
| 638 | const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 639 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs) |
| 640 | { return !(__lhs == __rhs); } |
| 641 | |
| 642 | |
| 643 | /** |
| 644 | * @brief The Marsaglia-Zaman generator. |
| 645 | * |
| 646 | * This is a model of a Generalized Fibonacci discrete random number |
| 647 | * generator, sometimes referred to as the SWC generator. |
| 648 | * |
| 649 | * A discrete random number generator that produces pseudorandom |
| 650 | * numbers using: |
| 651 | * @f[ |
| 652 | * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m |
| 653 | * @f] |
| 654 | * |
| 655 | * The size of the state is @f$r@f$ |
| 656 | * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$. |
| 657 | */ |
| 658 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 659 | class subtract_with_carry_engine |
| 660 | { |
| 661 | static_assert(std::is_unsigned<_UIntType>::value, |
| 662 | "result_type must be an unsigned integral type" ); |
| 663 | static_assert(0u < __s && __s < __r, |
| 664 | "0 < s < r" ); |
| 665 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
| 666 | "template argument substituting __w out of bounds" ); |
| 667 | |
| 668 | public: |
| 669 | /** The type of the generated random value. */ |
| 670 | typedef _UIntType result_type; |
| 671 | |
| 672 | // parameter values |
| 673 | static constexpr size_t word_size = __w; |
| 674 | static constexpr size_t short_lag = __s; |
| 675 | static constexpr size_t long_lag = __r; |
| 676 | static constexpr result_type default_seed = 19780503u; |
| 677 | |
| 678 | /** |
| 679 | * @brief Constructs an explicitly seeded % subtract_with_carry_engine |
| 680 | * random number generator. |
| 681 | */ |
| 682 | explicit |
| 683 | subtract_with_carry_engine(result_type __sd = default_seed) |
| 684 | { seed(__sd); } |
| 685 | |
| 686 | /** |
| 687 | * @brief Constructs a %subtract_with_carry_engine random number engine |
| 688 | * seeded from the seed sequence @p __q. |
| 689 | * |
| 690 | * @param __q the seed sequence. |
| 691 | */ |
| 692 | template<typename _Sseq, typename = typename |
| 693 | std::enable_if<!std::is_same<_Sseq, subtract_with_carry_engine>::value> |
| 694 | ::type> |
| 695 | explicit |
| 696 | subtract_with_carry_engine(_Sseq& __q) |
| 697 | { seed(__q); } |
| 698 | |
| 699 | /** |
| 700 | * @brief Seeds the initial state @f$x_0@f$ of the random number |
| 701 | * generator. |
| 702 | * |
| 703 | * N1688[4.19] modifies this as follows. If @p __value == 0, |
| 704 | * sets value to 19780503. In any case, with a linear |
| 705 | * congruential generator lcg(i) having parameters @f$ m_{lcg} = |
| 706 | * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value |
| 707 | * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m |
| 708 | * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$ |
| 709 | * set carry to 1, otherwise sets carry to 0. |
| 710 | */ |
| 711 | void |
| 712 | seed(result_type __sd = default_seed); |
| 713 | |
| 714 | /** |
| 715 | * @brief Seeds the initial state @f$x_0@f$ of the |
| 716 | * % subtract_with_carry_engine random number generator. |
| 717 | */ |
| 718 | template<typename _Sseq> |
| 719 | typename std::enable_if<std::is_class<_Sseq>::value>::type |
| 720 | seed(_Sseq& __q); |
| 721 | |
| 722 | /** |
| 723 | * @brief Gets the inclusive minimum value of the range of random |
| 724 | * integers returned by this generator. |
| 725 | */ |
| 726 | static constexpr result_type |
| 727 | min() |
| 728 | { return 0; } |
| 729 | |
| 730 | /** |
| 731 | * @brief Gets the inclusive maximum value of the range of random |
| 732 | * integers returned by this generator. |
| 733 | */ |
| 734 | static constexpr result_type |
| 735 | max() |
| 736 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| 737 | |
| 738 | /** |
| 739 | * @brief Discard a sequence of random numbers. |
| 740 | */ |
| 741 | void |
| 742 | discard(unsigned long long __z) |
| 743 | { |
| 744 | for (; __z != 0ULL; --__z) |
| 745 | (*this)(); |
| 746 | } |
| 747 | |
| 748 | /** |
| 749 | * @brief Gets the next random number in the sequence. |
| 750 | */ |
| 751 | result_type |
| 752 | operator()(); |
| 753 | |
| 754 | /** |
| 755 | * @brief Compares two % subtract_with_carry_engine random number |
| 756 | * generator objects of the same type for equality. |
| 757 | * |
| 758 | * @param __lhs A % subtract_with_carry_engine random number generator |
| 759 | * object. |
| 760 | * @param __rhs Another % subtract_with_carry_engine random number |
| 761 | * generator object. |
| 762 | * |
| 763 | * @returns true if the infinite sequences of generated values |
| 764 | * would be equal, false otherwise. |
| 765 | */ |
| 766 | friend bool |
| 767 | operator==(const subtract_with_carry_engine& __lhs, |
| 768 | const subtract_with_carry_engine& __rhs) |
| 769 | { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x) |
| 770 | && __lhs._M_carry == __rhs._M_carry |
| 771 | && __lhs._M_p == __rhs._M_p); } |
| 772 | |
| 773 | /** |
| 774 | * @brief Inserts the current state of a % subtract_with_carry_engine |
| 775 | * random number generator engine @p __x into the output stream |
| 776 | * @p __os. |
| 777 | * |
| 778 | * @param __os An output stream. |
| 779 | * @param __x A % subtract_with_carry_engine random number generator |
| 780 | * engine. |
| 781 | * |
| 782 | * @returns The output stream with the state of @p __x inserted or in |
| 783 | * an error state. |
| 784 | */ |
| 785 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
| 786 | typename _CharT, typename _Traits> |
| 787 | friend std::basic_ostream<_CharT, _Traits>& |
| 788 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 789 | const std::subtract_with_carry_engine<_UIntType1, __w1, |
| 790 | __s1, __r1>& __x); |
| 791 | |
| 792 | /** |
| 793 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 794 | * random number generator engine @p __x from the input stream |
| 795 | * @p __is. |
| 796 | * |
| 797 | * @param __is An input stream. |
| 798 | * @param __x A % subtract_with_carry_engine random number generator |
| 799 | * engine. |
| 800 | * |
| 801 | * @returns The input stream with the state of @p __x extracted or in |
| 802 | * an error state. |
| 803 | */ |
| 804 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
| 805 | typename _CharT, typename _Traits> |
| 806 | friend std::basic_istream<_CharT, _Traits>& |
| 807 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 808 | std::subtract_with_carry_engine<_UIntType1, __w1, |
| 809 | __s1, __r1>& __x); |
| 810 | |
| 811 | private: |
| 812 | /// The state of the generator. This is a ring buffer. |
| 813 | _UIntType _M_x[long_lag]; |
| 814 | _UIntType _M_carry; ///< The carry |
| 815 | size_t _M_p; ///< Current index of x(i - r). |
| 816 | }; |
| 817 | |
| 818 | /** |
| 819 | * @brief Compares two % subtract_with_carry_engine random number |
| 820 | * generator objects of the same type for inequality. |
| 821 | * |
| 822 | * @param __lhs A % subtract_with_carry_engine random number generator |
| 823 | * object. |
| 824 | * @param __rhs Another % subtract_with_carry_engine random number |
| 825 | * generator object. |
| 826 | * |
| 827 | * @returns true if the infinite sequences of generated values |
| 828 | * would be different, false otherwise. |
| 829 | */ |
| 830 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 831 | inline bool |
| 832 | operator!=(const std::subtract_with_carry_engine<_UIntType, __w, |
| 833 | __s, __r>& __lhs, |
| 834 | const std::subtract_with_carry_engine<_UIntType, __w, |
| 835 | __s, __r>& __rhs) |
| 836 | { return !(__lhs == __rhs); } |
| 837 | |
| 838 | |
| 839 | /** |
| 840 | * Produces random numbers from some base engine by discarding blocks of |
| 841 | * data. |
| 842 | * |
| 843 | * 0 <= @p __r <= @p __p |
| 844 | */ |
| 845 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 846 | class discard_block_engine |
| 847 | { |
| 848 | static_assert(1 <= __r && __r <= __p, |
| 849 | "template argument substituting __r out of bounds" ); |
| 850 | |
| 851 | public: |
| 852 | /** The type of the generated random value. */ |
| 853 | typedef typename _RandomNumberEngine::result_type result_type; |
| 854 | |
| 855 | // parameter values |
| 856 | static constexpr size_t block_size = __p; |
| 857 | static constexpr size_t used_block = __r; |
| 858 | |
| 859 | /** |
| 860 | * @brief Constructs a default %discard_block_engine engine. |
| 861 | * |
| 862 | * The underlying engine is default constructed as well. |
| 863 | */ |
| 864 | discard_block_engine() |
| 865 | : _M_b(), _M_n(0) { } |
| 866 | |
| 867 | /** |
| 868 | * @brief Copy constructs a %discard_block_engine engine. |
| 869 | * |
| 870 | * Copies an existing base class random number generator. |
| 871 | * @param __rng An existing (base class) engine object. |
| 872 | */ |
| 873 | explicit |
| 874 | discard_block_engine(const _RandomNumberEngine& __rng) |
| 875 | : _M_b(__rng), _M_n(0) { } |
| 876 | |
| 877 | /** |
| 878 | * @brief Move constructs a %discard_block_engine engine. |
| 879 | * |
| 880 | * Copies an existing base class random number generator. |
| 881 | * @param __rng An existing (base class) engine object. |
| 882 | */ |
| 883 | explicit |
| 884 | discard_block_engine(_RandomNumberEngine&& __rng) |
| 885 | : _M_b(std::move(__rng)), _M_n(0) { } |
| 886 | |
| 887 | /** |
| 888 | * @brief Seed constructs a %discard_block_engine engine. |
| 889 | * |
| 890 | * Constructs the underlying generator engine seeded with @p __s. |
| 891 | * @param __s A seed value for the base class engine. |
| 892 | */ |
| 893 | explicit |
| 894 | discard_block_engine(result_type __s) |
| 895 | : _M_b(__s), _M_n(0) { } |
| 896 | |
| 897 | /** |
| 898 | * @brief Generator construct a %discard_block_engine engine. |
| 899 | * |
| 900 | * @param __q A seed sequence. |
| 901 | */ |
| 902 | template<typename _Sseq, typename = typename |
| 903 | std::enable_if<!std::is_same<_Sseq, discard_block_engine>::value |
| 904 | && !std::is_same<_Sseq, _RandomNumberEngine>::value> |
| 905 | ::type> |
| 906 | explicit |
| 907 | discard_block_engine(_Sseq& __q) |
| 908 | : _M_b(__q), _M_n(0) |
| 909 | { } |
| 910 | |
| 911 | /** |
| 912 | * @brief Reseeds the %discard_block_engine object with the default |
| 913 | * seed for the underlying base class generator engine. |
| 914 | */ |
| 915 | void |
| 916 | seed() |
| 917 | { |
| 918 | _M_b.seed(); |
| 919 | _M_n = 0; |
| 920 | } |
| 921 | |
| 922 | /** |
| 923 | * @brief Reseeds the %discard_block_engine object with the default |
| 924 | * seed for the underlying base class generator engine. |
| 925 | */ |
| 926 | void |
| 927 | seed(result_type __s) |
| 928 | { |
| 929 | _M_b.seed(__s); |
| 930 | _M_n = 0; |
| 931 | } |
| 932 | |
| 933 | /** |
| 934 | * @brief Reseeds the %discard_block_engine object with the given seed |
| 935 | * sequence. |
| 936 | * @param __q A seed generator function. |
| 937 | */ |
| 938 | template<typename _Sseq> |
| 939 | void |
| 940 | seed(_Sseq& __q) |
| 941 | { |
| 942 | _M_b.seed(__q); |
| 943 | _M_n = 0; |
| 944 | } |
| 945 | |
| 946 | /** |
| 947 | * @brief Gets a const reference to the underlying generator engine |
| 948 | * object. |
| 949 | */ |
| 950 | const _RandomNumberEngine& |
| 951 | base() const noexcept |
| 952 | { return _M_b; } |
| 953 | |
| 954 | /** |
| 955 | * @brief Gets the minimum value in the generated random number range. |
| 956 | */ |
| 957 | static constexpr result_type |
| 958 | min() |
| 959 | { return _RandomNumberEngine::min(); } |
| 960 | |
| 961 | /** |
| 962 | * @brief Gets the maximum value in the generated random number range. |
| 963 | */ |
| 964 | static constexpr result_type |
| 965 | max() |
| 966 | { return _RandomNumberEngine::max(); } |
| 967 | |
| 968 | /** |
| 969 | * @brief Discard a sequence of random numbers. |
| 970 | */ |
| 971 | void |
| 972 | discard(unsigned long long __z) |
| 973 | { |
| 974 | for (; __z != 0ULL; --__z) |
| 975 | (*this)(); |
| 976 | } |
| 977 | |
| 978 | /** |
| 979 | * @brief Gets the next value in the generated random number sequence. |
| 980 | */ |
| 981 | result_type |
| 982 | operator()(); |
| 983 | |
| 984 | /** |
| 985 | * @brief Compares two %discard_block_engine random number generator |
| 986 | * objects of the same type for equality. |
| 987 | * |
| 988 | * @param __lhs A %discard_block_engine random number generator object. |
| 989 | * @param __rhs Another %discard_block_engine random number generator |
| 990 | * object. |
| 991 | * |
| 992 | * @returns true if the infinite sequences of generated values |
| 993 | * would be equal, false otherwise. |
| 994 | */ |
| 995 | friend bool |
| 996 | operator==(const discard_block_engine& __lhs, |
| 997 | const discard_block_engine& __rhs) |
| 998 | { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; } |
| 999 | |
| 1000 | /** |
| 1001 | * @brief Inserts the current state of a %discard_block_engine random |
| 1002 | * number generator engine @p __x into the output stream |
| 1003 | * @p __os. |
| 1004 | * |
| 1005 | * @param __os An output stream. |
| 1006 | * @param __x A %discard_block_engine random number generator engine. |
| 1007 | * |
| 1008 | * @returns The output stream with the state of @p __x inserted or in |
| 1009 | * an error state. |
| 1010 | */ |
| 1011 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
| 1012 | typename _CharT, typename _Traits> |
| 1013 | friend std::basic_ostream<_CharT, _Traits>& |
| 1014 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1015 | const std::discard_block_engine<_RandomNumberEngine1, |
| 1016 | __p1, __r1>& __x); |
| 1017 | |
| 1018 | /** |
| 1019 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 1020 | * random number generator engine @p __x from the input stream |
| 1021 | * @p __is. |
| 1022 | * |
| 1023 | * @param __is An input stream. |
| 1024 | * @param __x A %discard_block_engine random number generator engine. |
| 1025 | * |
| 1026 | * @returns The input stream with the state of @p __x extracted or in |
| 1027 | * an error state. |
| 1028 | */ |
| 1029 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
| 1030 | typename _CharT, typename _Traits> |
| 1031 | friend std::basic_istream<_CharT, _Traits>& |
| 1032 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1033 | std::discard_block_engine<_RandomNumberEngine1, |
| 1034 | __p1, __r1>& __x); |
| 1035 | |
| 1036 | private: |
| 1037 | _RandomNumberEngine _M_b; |
| 1038 | size_t _M_n; |
| 1039 | }; |
| 1040 | |
| 1041 | /** |
| 1042 | * @brief Compares two %discard_block_engine random number generator |
| 1043 | * objects of the same type for inequality. |
| 1044 | * |
| 1045 | * @param __lhs A %discard_block_engine random number generator object. |
| 1046 | * @param __rhs Another %discard_block_engine random number generator |
| 1047 | * object. |
| 1048 | * |
| 1049 | * @returns true if the infinite sequences of generated values |
| 1050 | * would be different, false otherwise. |
| 1051 | */ |
| 1052 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 1053 | inline bool |
| 1054 | operator!=(const std::discard_block_engine<_RandomNumberEngine, __p, |
| 1055 | __r>& __lhs, |
| 1056 | const std::discard_block_engine<_RandomNumberEngine, __p, |
| 1057 | __r>& __rhs) |
| 1058 | { return !(__lhs == __rhs); } |
| 1059 | |
| 1060 | |
| 1061 | /** |
| 1062 | * Produces random numbers by combining random numbers from some base |
| 1063 | * engine to produce random numbers with a specifies number of bits @p __w. |
| 1064 | */ |
| 1065 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| 1066 | class independent_bits_engine |
| 1067 | { |
| 1068 | static_assert(std::is_unsigned<_UIntType>::value, |
| 1069 | "result_type must be an unsigned integral type" ); |
| 1070 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
| 1071 | "template argument substituting __w out of bounds" ); |
| 1072 | |
| 1073 | public: |
| 1074 | /** The type of the generated random value. */ |
| 1075 | typedef _UIntType result_type; |
| 1076 | |
| 1077 | /** |
| 1078 | * @brief Constructs a default %independent_bits_engine engine. |
| 1079 | * |
| 1080 | * The underlying engine is default constructed as well. |
| 1081 | */ |
| 1082 | independent_bits_engine() |
| 1083 | : _M_b() { } |
| 1084 | |
| 1085 | /** |
| 1086 | * @brief Copy constructs a %independent_bits_engine engine. |
| 1087 | * |
| 1088 | * Copies an existing base class random number generator. |
| 1089 | * @param __rng An existing (base class) engine object. |
| 1090 | */ |
| 1091 | explicit |
| 1092 | independent_bits_engine(const _RandomNumberEngine& __rng) |
| 1093 | : _M_b(__rng) { } |
| 1094 | |
| 1095 | /** |
| 1096 | * @brief Move constructs a %independent_bits_engine engine. |
| 1097 | * |
| 1098 | * Copies an existing base class random number generator. |
| 1099 | * @param __rng An existing (base class) engine object. |
| 1100 | */ |
| 1101 | explicit |
| 1102 | independent_bits_engine(_RandomNumberEngine&& __rng) |
| 1103 | : _M_b(std::move(__rng)) { } |
| 1104 | |
| 1105 | /** |
| 1106 | * @brief Seed constructs a %independent_bits_engine engine. |
| 1107 | * |
| 1108 | * Constructs the underlying generator engine seeded with @p __s. |
| 1109 | * @param __s A seed value for the base class engine. |
| 1110 | */ |
| 1111 | explicit |
| 1112 | independent_bits_engine(result_type __s) |
| 1113 | : _M_b(__s) { } |
| 1114 | |
| 1115 | /** |
| 1116 | * @brief Generator construct a %independent_bits_engine engine. |
| 1117 | * |
| 1118 | * @param __q A seed sequence. |
| 1119 | */ |
| 1120 | template<typename _Sseq, typename = typename |
| 1121 | std::enable_if<!std::is_same<_Sseq, independent_bits_engine>::value |
| 1122 | && !std::is_same<_Sseq, _RandomNumberEngine>::value> |
| 1123 | ::type> |
| 1124 | explicit |
| 1125 | independent_bits_engine(_Sseq& __q) |
| 1126 | : _M_b(__q) |
| 1127 | { } |
| 1128 | |
| 1129 | /** |
| 1130 | * @brief Reseeds the %independent_bits_engine object with the default |
| 1131 | * seed for the underlying base class generator engine. |
| 1132 | */ |
| 1133 | void |
| 1134 | seed() |
| 1135 | { _M_b.seed(); } |
| 1136 | |
| 1137 | /** |
| 1138 | * @brief Reseeds the %independent_bits_engine object with the default |
| 1139 | * seed for the underlying base class generator engine. |
| 1140 | */ |
| 1141 | void |
| 1142 | seed(result_type __s) |
| 1143 | { _M_b.seed(__s); } |
| 1144 | |
| 1145 | /** |
| 1146 | * @brief Reseeds the %independent_bits_engine object with the given |
| 1147 | * seed sequence. |
| 1148 | * @param __q A seed generator function. |
| 1149 | */ |
| 1150 | template<typename _Sseq> |
| 1151 | void |
| 1152 | seed(_Sseq& __q) |
| 1153 | { _M_b.seed(__q); } |
| 1154 | |
| 1155 | /** |
| 1156 | * @brief Gets a const reference to the underlying generator engine |
| 1157 | * object. |
| 1158 | */ |
| 1159 | const _RandomNumberEngine& |
| 1160 | base() const noexcept |
| 1161 | { return _M_b; } |
| 1162 | |
| 1163 | /** |
| 1164 | * @brief Gets the minimum value in the generated random number range. |
| 1165 | */ |
| 1166 | static constexpr result_type |
| 1167 | min() |
| 1168 | { return 0U; } |
| 1169 | |
| 1170 | /** |
| 1171 | * @brief Gets the maximum value in the generated random number range. |
| 1172 | */ |
| 1173 | static constexpr result_type |
| 1174 | max() |
| 1175 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| 1176 | |
| 1177 | /** |
| 1178 | * @brief Discard a sequence of random numbers. |
| 1179 | */ |
| 1180 | void |
| 1181 | discard(unsigned long long __z) |
| 1182 | { |
| 1183 | for (; __z != 0ULL; --__z) |
| 1184 | (*this)(); |
| 1185 | } |
| 1186 | |
| 1187 | /** |
| 1188 | * @brief Gets the next value in the generated random number sequence. |
| 1189 | */ |
| 1190 | result_type |
| 1191 | operator()(); |
| 1192 | |
| 1193 | /** |
| 1194 | * @brief Compares two %independent_bits_engine random number generator |
| 1195 | * objects of the same type for equality. |
| 1196 | * |
| 1197 | * @param __lhs A %independent_bits_engine random number generator |
| 1198 | * object. |
| 1199 | * @param __rhs Another %independent_bits_engine random number generator |
| 1200 | * object. |
| 1201 | * |
| 1202 | * @returns true if the infinite sequences of generated values |
| 1203 | * would be equal, false otherwise. |
| 1204 | */ |
| 1205 | friend bool |
| 1206 | operator==(const independent_bits_engine& __lhs, |
| 1207 | const independent_bits_engine& __rhs) |
| 1208 | { return __lhs._M_b == __rhs._M_b; } |
| 1209 | |
| 1210 | /** |
| 1211 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 1212 | * random number generator engine @p __x from the input stream |
| 1213 | * @p __is. |
| 1214 | * |
| 1215 | * @param __is An input stream. |
| 1216 | * @param __x A %independent_bits_engine random number generator |
| 1217 | * engine. |
| 1218 | * |
| 1219 | * @returns The input stream with the state of @p __x extracted or in |
| 1220 | * an error state. |
| 1221 | */ |
| 1222 | template<typename _CharT, typename _Traits> |
| 1223 | friend std::basic_istream<_CharT, _Traits>& |
| 1224 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1225 | std::independent_bits_engine<_RandomNumberEngine, |
| 1226 | __w, _UIntType>& __x) |
| 1227 | { |
| 1228 | __is >> __x._M_b; |
| 1229 | return __is; |
| 1230 | } |
| 1231 | |
| 1232 | private: |
| 1233 | _RandomNumberEngine _M_b; |
| 1234 | }; |
| 1235 | |
| 1236 | /** |
| 1237 | * @brief Compares two %independent_bits_engine random number generator |
| 1238 | * objects of the same type for inequality. |
| 1239 | * |
| 1240 | * @param __lhs A %independent_bits_engine random number generator |
| 1241 | * object. |
| 1242 | * @param __rhs Another %independent_bits_engine random number generator |
| 1243 | * object. |
| 1244 | * |
| 1245 | * @returns true if the infinite sequences of generated values |
| 1246 | * would be different, false otherwise. |
| 1247 | */ |
| 1248 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| 1249 | inline bool |
| 1250 | operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w, |
| 1251 | _UIntType>& __lhs, |
| 1252 | const std::independent_bits_engine<_RandomNumberEngine, __w, |
| 1253 | _UIntType>& __rhs) |
| 1254 | { return !(__lhs == __rhs); } |
| 1255 | |
| 1256 | /** |
| 1257 | * @brief Inserts the current state of a %independent_bits_engine random |
| 1258 | * number generator engine @p __x into the output stream @p __os. |
| 1259 | * |
| 1260 | * @param __os An output stream. |
| 1261 | * @param __x A %independent_bits_engine random number generator engine. |
| 1262 | * |
| 1263 | * @returns The output stream with the state of @p __x inserted or in |
| 1264 | * an error state. |
| 1265 | */ |
| 1266 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType, |
| 1267 | typename _CharT, typename _Traits> |
| 1268 | std::basic_ostream<_CharT, _Traits>& |
| 1269 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1270 | const std::independent_bits_engine<_RandomNumberEngine, |
| 1271 | __w, _UIntType>& __x) |
| 1272 | { |
| 1273 | __os << __x.base(); |
| 1274 | return __os; |
| 1275 | } |
| 1276 | |
| 1277 | |
| 1278 | /** |
| 1279 | * @brief Produces random numbers by combining random numbers from some |
| 1280 | * base engine to produce random numbers with a specifies number of bits |
| 1281 | * @p __k. |
| 1282 | */ |
| 1283 | template<typename _RandomNumberEngine, size_t __k> |
| 1284 | class shuffle_order_engine |
| 1285 | { |
| 1286 | static_assert(1u <= __k, "template argument substituting " |
| 1287 | "__k out of bound" ); |
| 1288 | |
| 1289 | public: |
| 1290 | /** The type of the generated random value. */ |
| 1291 | typedef typename _RandomNumberEngine::result_type result_type; |
| 1292 | |
| 1293 | static constexpr size_t table_size = __k; |
| 1294 | |
| 1295 | /** |
| 1296 | * @brief Constructs a default %shuffle_order_engine engine. |
| 1297 | * |
| 1298 | * The underlying engine is default constructed as well. |
| 1299 | */ |
| 1300 | shuffle_order_engine() |
| 1301 | : _M_b() |
| 1302 | { _M_initialize(); } |
| 1303 | |
| 1304 | /** |
| 1305 | * @brief Copy constructs a %shuffle_order_engine engine. |
| 1306 | * |
| 1307 | * Copies an existing base class random number generator. |
| 1308 | * @param __rng An existing (base class) engine object. |
| 1309 | */ |
| 1310 | explicit |
| 1311 | shuffle_order_engine(const _RandomNumberEngine& __rng) |
| 1312 | : _M_b(__rng) |
| 1313 | { _M_initialize(); } |
| 1314 | |
| 1315 | /** |
| 1316 | * @brief Move constructs a %shuffle_order_engine engine. |
| 1317 | * |
| 1318 | * Copies an existing base class random number generator. |
| 1319 | * @param __rng An existing (base class) engine object. |
| 1320 | */ |
| 1321 | explicit |
| 1322 | shuffle_order_engine(_RandomNumberEngine&& __rng) |
| 1323 | : _M_b(std::move(__rng)) |
| 1324 | { _M_initialize(); } |
| 1325 | |
| 1326 | /** |
| 1327 | * @brief Seed constructs a %shuffle_order_engine engine. |
| 1328 | * |
| 1329 | * Constructs the underlying generator engine seeded with @p __s. |
| 1330 | * @param __s A seed value for the base class engine. |
| 1331 | */ |
| 1332 | explicit |
| 1333 | shuffle_order_engine(result_type __s) |
| 1334 | : _M_b(__s) |
| 1335 | { _M_initialize(); } |
| 1336 | |
| 1337 | /** |
| 1338 | * @brief Generator construct a %shuffle_order_engine engine. |
| 1339 | * |
| 1340 | * @param __q A seed sequence. |
| 1341 | */ |
| 1342 | template<typename _Sseq, typename = typename |
| 1343 | std::enable_if<!std::is_same<_Sseq, shuffle_order_engine>::value |
| 1344 | && !std::is_same<_Sseq, _RandomNumberEngine>::value> |
| 1345 | ::type> |
| 1346 | explicit |
| 1347 | shuffle_order_engine(_Sseq& __q) |
| 1348 | : _M_b(__q) |
| 1349 | { _M_initialize(); } |
| 1350 | |
| 1351 | /** |
| 1352 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
| 1353 | for the underlying base class generator engine. |
| 1354 | */ |
| 1355 | void |
| 1356 | seed() |
| 1357 | { |
| 1358 | _M_b.seed(); |
| 1359 | _M_initialize(); |
| 1360 | } |
| 1361 | |
| 1362 | /** |
| 1363 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
| 1364 | * for the underlying base class generator engine. |
| 1365 | */ |
| 1366 | void |
| 1367 | seed(result_type __s) |
| 1368 | { |
| 1369 | _M_b.seed(__s); |
| 1370 | _M_initialize(); |
| 1371 | } |
| 1372 | |
| 1373 | /** |
| 1374 | * @brief Reseeds the %shuffle_order_engine object with the given seed |
| 1375 | * sequence. |
| 1376 | * @param __q A seed generator function. |
| 1377 | */ |
| 1378 | template<typename _Sseq> |
| 1379 | void |
| 1380 | seed(_Sseq& __q) |
| 1381 | { |
| 1382 | _M_b.seed(__q); |
| 1383 | _M_initialize(); |
| 1384 | } |
| 1385 | |
| 1386 | /** |
| 1387 | * Gets a const reference to the underlying generator engine object. |
| 1388 | */ |
| 1389 | const _RandomNumberEngine& |
| 1390 | base() const noexcept |
| 1391 | { return _M_b; } |
| 1392 | |
| 1393 | /** |
| 1394 | * Gets the minimum value in the generated random number range. |
| 1395 | */ |
| 1396 | static constexpr result_type |
| 1397 | min() |
| 1398 | { return _RandomNumberEngine::min(); } |
| 1399 | |
| 1400 | /** |
| 1401 | * Gets the maximum value in the generated random number range. |
| 1402 | */ |
| 1403 | static constexpr result_type |
| 1404 | max() |
| 1405 | { return _RandomNumberEngine::max(); } |
| 1406 | |
| 1407 | /** |
| 1408 | * Discard a sequence of random numbers. |
| 1409 | */ |
| 1410 | void |
| 1411 | discard(unsigned long long __z) |
| 1412 | { |
| 1413 | for (; __z != 0ULL; --__z) |
| 1414 | (*this)(); |
| 1415 | } |
| 1416 | |
| 1417 | /** |
| 1418 | * Gets the next value in the generated random number sequence. |
| 1419 | */ |
| 1420 | result_type |
| 1421 | operator()(); |
| 1422 | |
| 1423 | /** |
| 1424 | * Compares two %shuffle_order_engine random number generator objects |
| 1425 | * of the same type for equality. |
| 1426 | * |
| 1427 | * @param __lhs A %shuffle_order_engine random number generator object. |
| 1428 | * @param __rhs Another %shuffle_order_engine random number generator |
| 1429 | * object. |
| 1430 | * |
| 1431 | * @returns true if the infinite sequences of generated values |
| 1432 | * would be equal, false otherwise. |
| 1433 | */ |
| 1434 | friend bool |
| 1435 | operator==(const shuffle_order_engine& __lhs, |
| 1436 | const shuffle_order_engine& __rhs) |
| 1437 | { return (__lhs._M_b == __rhs._M_b |
| 1438 | && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v) |
| 1439 | && __lhs._M_y == __rhs._M_y); } |
| 1440 | |
| 1441 | /** |
| 1442 | * @brief Inserts the current state of a %shuffle_order_engine random |
| 1443 | * number generator engine @p __x into the output stream |
| 1444 | @p __os. |
| 1445 | * |
| 1446 | * @param __os An output stream. |
| 1447 | * @param __x A %shuffle_order_engine random number generator engine. |
| 1448 | * |
| 1449 | * @returns The output stream with the state of @p __x inserted or in |
| 1450 | * an error state. |
| 1451 | */ |
| 1452 | template<typename _RandomNumberEngine1, size_t __k1, |
| 1453 | typename _CharT, typename _Traits> |
| 1454 | friend std::basic_ostream<_CharT, _Traits>& |
| 1455 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1456 | const std::shuffle_order_engine<_RandomNumberEngine1, |
| 1457 | __k1>& __x); |
| 1458 | |
| 1459 | /** |
| 1460 | * @brief Extracts the current state of a % subtract_with_carry_engine |
| 1461 | * random number generator engine @p __x from the input stream |
| 1462 | * @p __is. |
| 1463 | * |
| 1464 | * @param __is An input stream. |
| 1465 | * @param __x A %shuffle_order_engine random number generator engine. |
| 1466 | * |
| 1467 | * @returns The input stream with the state of @p __x extracted or in |
| 1468 | * an error state. |
| 1469 | */ |
| 1470 | template<typename _RandomNumberEngine1, size_t __k1, |
| 1471 | typename _CharT, typename _Traits> |
| 1472 | friend std::basic_istream<_CharT, _Traits>& |
| 1473 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1474 | std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x); |
| 1475 | |
| 1476 | private: |
| 1477 | void _M_initialize() |
| 1478 | { |
| 1479 | for (size_t __i = 0; __i < __k; ++__i) |
| 1480 | _M_v[__i] = _M_b(); |
| 1481 | _M_y = _M_b(); |
| 1482 | } |
| 1483 | |
| 1484 | _RandomNumberEngine _M_b; |
| 1485 | result_type _M_v[__k]; |
| 1486 | result_type _M_y; |
| 1487 | }; |
| 1488 | |
| 1489 | /** |
| 1490 | * Compares two %shuffle_order_engine random number generator objects |
| 1491 | * of the same type for inequality. |
| 1492 | * |
| 1493 | * @param __lhs A %shuffle_order_engine random number generator object. |
| 1494 | * @param __rhs Another %shuffle_order_engine random number generator |
| 1495 | * object. |
| 1496 | * |
| 1497 | * @returns true if the infinite sequences of generated values |
| 1498 | * would be different, false otherwise. |
| 1499 | */ |
| 1500 | template<typename _RandomNumberEngine, size_t __k> |
| 1501 | inline bool |
| 1502 | operator!=(const std::shuffle_order_engine<_RandomNumberEngine, |
| 1503 | __k>& __lhs, |
| 1504 | const std::shuffle_order_engine<_RandomNumberEngine, |
| 1505 | __k>& __rhs) |
| 1506 | { return !(__lhs == __rhs); } |
| 1507 | |
| 1508 | |
| 1509 | /** |
| 1510 | * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller. |
| 1511 | */ |
| 1512 | typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL> |
| 1513 | minstd_rand0; |
| 1514 | |
| 1515 | /** |
| 1516 | * An alternative LCR (Lehmer Generator function). |
| 1517 | */ |
| 1518 | typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL> |
| 1519 | minstd_rand; |
| 1520 | |
| 1521 | /** |
| 1522 | * The classic Mersenne Twister. |
| 1523 | * |
| 1524 | * Reference: |
| 1525 | * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally |
| 1526 | * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions |
| 1527 | * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. |
| 1528 | */ |
| 1529 | typedef mersenne_twister_engine< |
| 1530 | uint_fast32_t, |
| 1531 | 32, 624, 397, 31, |
| 1532 | 0x9908b0dfUL, 11, |
| 1533 | 0xffffffffUL, 7, |
| 1534 | 0x9d2c5680UL, 15, |
| 1535 | 0xefc60000UL, 18, 1812433253UL> mt19937; |
| 1536 | |
| 1537 | /** |
| 1538 | * An alternative Mersenne Twister. |
| 1539 | */ |
| 1540 | typedef mersenne_twister_engine< |
| 1541 | uint_fast64_t, |
| 1542 | 64, 312, 156, 31, |
| 1543 | 0xb5026f5aa96619e9ULL, 29, |
| 1544 | 0x5555555555555555ULL, 17, |
| 1545 | 0x71d67fffeda60000ULL, 37, |
| 1546 | 0xfff7eee000000000ULL, 43, |
| 1547 | 6364136223846793005ULL> mt19937_64; |
| 1548 | |
| 1549 | typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> |
| 1550 | ranlux24_base; |
| 1551 | |
| 1552 | typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> |
| 1553 | ranlux48_base; |
| 1554 | |
| 1555 | typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24; |
| 1556 | |
| 1557 | typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48; |
| 1558 | |
| 1559 | typedef shuffle_order_engine<minstd_rand0, 256> knuth_b; |
| 1560 | |
| 1561 | typedef minstd_rand0 default_random_engine; |
| 1562 | |
| 1563 | /** |
| 1564 | * A standard interface to a platform-specific non-deterministic |
| 1565 | * random number generator (if any are available). |
| 1566 | */ |
| 1567 | class random_device |
| 1568 | { |
| 1569 | public: |
| 1570 | /** The type of the generated random value. */ |
| 1571 | typedef unsigned int result_type; |
| 1572 | |
| 1573 | // constructors, destructors and member functions |
| 1574 | |
| 1575 | #ifdef _GLIBCXX_USE_RANDOM_TR1 |
| 1576 | |
| 1577 | explicit |
| 1578 | random_device(const std::string& __token = "default" ) |
| 1579 | { |
| 1580 | _M_init(__token); |
| 1581 | } |
| 1582 | |
| 1583 | ~random_device() |
| 1584 | { _M_fini(); } |
| 1585 | |
| 1586 | #else |
| 1587 | |
| 1588 | explicit |
| 1589 | random_device(const std::string& __token = "mt19937" ) |
| 1590 | { _M_init_pretr1(__token); } |
| 1591 | |
| 1592 | public: |
| 1593 | |
| 1594 | #endif |
| 1595 | |
| 1596 | static constexpr result_type |
| 1597 | min() |
| 1598 | { return std::numeric_limits<result_type>::min(); } |
| 1599 | |
| 1600 | static constexpr result_type |
| 1601 | max() |
| 1602 | { return std::numeric_limits<result_type>::max(); } |
| 1603 | |
| 1604 | double |
| 1605 | entropy() const noexcept |
| 1606 | { return 0.0; } |
| 1607 | |
| 1608 | result_type |
| 1609 | operator()() |
| 1610 | { |
| 1611 | #ifdef _GLIBCXX_USE_RANDOM_TR1 |
| 1612 | return this->_M_getval(); |
| 1613 | #else |
| 1614 | return this->_M_getval_pretr1(); |
| 1615 | #endif |
| 1616 | } |
| 1617 | |
| 1618 | // No copy functions. |
| 1619 | random_device(const random_device&) = delete; |
| 1620 | void operator=(const random_device&) = delete; |
| 1621 | |
| 1622 | private: |
| 1623 | |
| 1624 | void _M_init(const std::string& __token); |
| 1625 | void _M_init_pretr1(const std::string& __token); |
| 1626 | void _M_fini(); |
| 1627 | |
| 1628 | result_type _M_getval(); |
| 1629 | result_type _M_getval_pretr1(); |
| 1630 | |
| 1631 | union |
| 1632 | { |
| 1633 | void* _M_file; |
| 1634 | mt19937 _M_mt; |
| 1635 | }; |
| 1636 | }; |
| 1637 | |
| 1638 | /* @} */ // group random_generators |
| 1639 | |
| 1640 | /** |
| 1641 | * @addtogroup random_distributions Random Number Distributions |
| 1642 | * @ingroup random |
| 1643 | * @{ |
| 1644 | */ |
| 1645 | |
| 1646 | /** |
| 1647 | * @addtogroup random_distributions_uniform Uniform Distributions |
| 1648 | * @ingroup random_distributions |
| 1649 | * @{ |
| 1650 | */ |
| 1651 | |
| 1652 | // std::uniform_int_distribution is defined in <bits/uniform_int_dist.h> |
| 1653 | |
| 1654 | /** |
| 1655 | * @brief Return true if two uniform integer distributions have |
| 1656 | * different parameters. |
| 1657 | */ |
| 1658 | template<typename _IntType> |
| 1659 | inline bool |
| 1660 | operator!=(const std::uniform_int_distribution<_IntType>& __d1, |
| 1661 | const std::uniform_int_distribution<_IntType>& __d2) |
| 1662 | { return !(__d1 == __d2); } |
| 1663 | |
| 1664 | /** |
| 1665 | * @brief Inserts a %uniform_int_distribution random number |
| 1666 | * distribution @p __x into the output stream @p os. |
| 1667 | * |
| 1668 | * @param __os An output stream. |
| 1669 | * @param __x A %uniform_int_distribution random number distribution. |
| 1670 | * |
| 1671 | * @returns The output stream with the state of @p __x inserted or in |
| 1672 | * an error state. |
| 1673 | */ |
| 1674 | template<typename _IntType, typename _CharT, typename _Traits> |
| 1675 | std::basic_ostream<_CharT, _Traits>& |
| 1676 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1677 | const std::uniform_int_distribution<_IntType>&); |
| 1678 | |
| 1679 | /** |
| 1680 | * @brief Extracts a %uniform_int_distribution random number distribution |
| 1681 | * @p __x from the input stream @p __is. |
| 1682 | * |
| 1683 | * @param __is An input stream. |
| 1684 | * @param __x A %uniform_int_distribution random number generator engine. |
| 1685 | * |
| 1686 | * @returns The input stream with @p __x extracted or in an error state. |
| 1687 | */ |
| 1688 | template<typename _IntType, typename _CharT, typename _Traits> |
| 1689 | std::basic_istream<_CharT, _Traits>& |
| 1690 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1691 | std::uniform_int_distribution<_IntType>&); |
| 1692 | |
| 1693 | |
| 1694 | /** |
| 1695 | * @brief Uniform continuous distribution for random numbers. |
| 1696 | * |
| 1697 | * A continuous random distribution on the range [min, max) with equal |
| 1698 | * probability throughout the range. The URNG should be real-valued and |
| 1699 | * deliver number in the range [0, 1). |
| 1700 | */ |
| 1701 | template<typename _RealType = double> |
| 1702 | class uniform_real_distribution |
| 1703 | { |
| 1704 | static_assert(std::is_floating_point<_RealType>::value, |
| 1705 | "result_type must be a floating point type" ); |
| 1706 | |
| 1707 | public: |
| 1708 | /** The type of the range of the distribution. */ |
| 1709 | typedef _RealType result_type; |
| 1710 | |
| 1711 | /** Parameter type. */ |
| 1712 | struct param_type |
| 1713 | { |
| 1714 | typedef uniform_real_distribution<_RealType> distribution_type; |
| 1715 | |
| 1716 | explicit |
| 1717 | param_type(_RealType __a = _RealType(0), |
| 1718 | _RealType __b = _RealType(1)) |
| 1719 | : _M_a(__a), _M_b(__b) |
| 1720 | { |
| 1721 | __glibcxx_assert(_M_a <= _M_b); |
| 1722 | } |
| 1723 | |
| 1724 | result_type |
| 1725 | a() const |
| 1726 | { return _M_a; } |
| 1727 | |
| 1728 | result_type |
| 1729 | b() const |
| 1730 | { return _M_b; } |
| 1731 | |
| 1732 | friend bool |
| 1733 | operator==(const param_type& __p1, const param_type& __p2) |
| 1734 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 1735 | |
| 1736 | friend bool |
| 1737 | operator!=(const param_type& __p1, const param_type& __p2) |
| 1738 | { return !(__p1 == __p2); } |
| 1739 | |
| 1740 | private: |
| 1741 | _RealType _M_a; |
| 1742 | _RealType _M_b; |
| 1743 | }; |
| 1744 | |
| 1745 | public: |
| 1746 | /** |
| 1747 | * @brief Constructs a uniform_real_distribution object. |
| 1748 | * |
| 1749 | * @param __a [IN] The lower bound of the distribution. |
| 1750 | * @param __b [IN] The upper bound of the distribution. |
| 1751 | */ |
| 1752 | explicit |
| 1753 | uniform_real_distribution(_RealType __a = _RealType(0), |
| 1754 | _RealType __b = _RealType(1)) |
| 1755 | : _M_param(__a, __b) |
| 1756 | { } |
| 1757 | |
| 1758 | explicit |
| 1759 | uniform_real_distribution(const param_type& __p) |
| 1760 | : _M_param(__p) |
| 1761 | { } |
| 1762 | |
| 1763 | /** |
| 1764 | * @brief Resets the distribution state. |
| 1765 | * |
| 1766 | * Does nothing for the uniform real distribution. |
| 1767 | */ |
| 1768 | void |
| 1769 | reset() { } |
| 1770 | |
| 1771 | result_type |
| 1772 | a() const |
| 1773 | { return _M_param.a(); } |
| 1774 | |
| 1775 | result_type |
| 1776 | b() const |
| 1777 | { return _M_param.b(); } |
| 1778 | |
| 1779 | /** |
| 1780 | * @brief Returns the parameter set of the distribution. |
| 1781 | */ |
| 1782 | param_type |
| 1783 | param() const |
| 1784 | { return _M_param; } |
| 1785 | |
| 1786 | /** |
| 1787 | * @brief Sets the parameter set of the distribution. |
| 1788 | * @param __param The new parameter set of the distribution. |
| 1789 | */ |
| 1790 | void |
| 1791 | param(const param_type& __param) |
| 1792 | { _M_param = __param; } |
| 1793 | |
| 1794 | /** |
| 1795 | * @brief Returns the inclusive lower bound of the distribution range. |
| 1796 | */ |
| 1797 | result_type |
| 1798 | min() const |
| 1799 | { return this->a(); } |
| 1800 | |
| 1801 | /** |
| 1802 | * @brief Returns the inclusive upper bound of the distribution range. |
| 1803 | */ |
| 1804 | result_type |
| 1805 | max() const |
| 1806 | { return this->b(); } |
| 1807 | |
| 1808 | /** |
| 1809 | * @brief Generating functions. |
| 1810 | */ |
| 1811 | template<typename _UniformRandomNumberGenerator> |
| 1812 | result_type |
| 1813 | operator()(_UniformRandomNumberGenerator& __urng) |
| 1814 | { return this->operator()(__urng, _M_param); } |
| 1815 | |
| 1816 | template<typename _UniformRandomNumberGenerator> |
| 1817 | result_type |
| 1818 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1819 | const param_type& __p) |
| 1820 | { |
| 1821 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1822 | __aurng(__urng); |
| 1823 | return (__aurng() * (__p.b() - __p.a())) + __p.a(); |
| 1824 | } |
| 1825 | |
| 1826 | template<typename _ForwardIterator, |
| 1827 | typename _UniformRandomNumberGenerator> |
| 1828 | void |
| 1829 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1830 | _UniformRandomNumberGenerator& __urng) |
| 1831 | { this->__generate(__f, __t, __urng, _M_param); } |
| 1832 | |
| 1833 | template<typename _ForwardIterator, |
| 1834 | typename _UniformRandomNumberGenerator> |
| 1835 | void |
| 1836 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1837 | _UniformRandomNumberGenerator& __urng, |
| 1838 | const param_type& __p) |
| 1839 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1840 | |
| 1841 | template<typename _UniformRandomNumberGenerator> |
| 1842 | void |
| 1843 | __generate(result_type* __f, result_type* __t, |
| 1844 | _UniformRandomNumberGenerator& __urng, |
| 1845 | const param_type& __p) |
| 1846 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1847 | |
| 1848 | /** |
| 1849 | * @brief Return true if two uniform real distributions have |
| 1850 | * the same parameters. |
| 1851 | */ |
| 1852 | friend bool |
| 1853 | operator==(const uniform_real_distribution& __d1, |
| 1854 | const uniform_real_distribution& __d2) |
| 1855 | { return __d1._M_param == __d2._M_param; } |
| 1856 | |
| 1857 | private: |
| 1858 | template<typename _ForwardIterator, |
| 1859 | typename _UniformRandomNumberGenerator> |
| 1860 | void |
| 1861 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1862 | _UniformRandomNumberGenerator& __urng, |
| 1863 | const param_type& __p); |
| 1864 | |
| 1865 | param_type _M_param; |
| 1866 | }; |
| 1867 | |
| 1868 | /** |
| 1869 | * @brief Return true if two uniform real distributions have |
| 1870 | * different parameters. |
| 1871 | */ |
| 1872 | template<typename _IntType> |
| 1873 | inline bool |
| 1874 | operator!=(const std::uniform_real_distribution<_IntType>& __d1, |
| 1875 | const std::uniform_real_distribution<_IntType>& __d2) |
| 1876 | { return !(__d1 == __d2); } |
| 1877 | |
| 1878 | /** |
| 1879 | * @brief Inserts a %uniform_real_distribution random number |
| 1880 | * distribution @p __x into the output stream @p __os. |
| 1881 | * |
| 1882 | * @param __os An output stream. |
| 1883 | * @param __x A %uniform_real_distribution random number distribution. |
| 1884 | * |
| 1885 | * @returns The output stream with the state of @p __x inserted or in |
| 1886 | * an error state. |
| 1887 | */ |
| 1888 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1889 | std::basic_ostream<_CharT, _Traits>& |
| 1890 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1891 | const std::uniform_real_distribution<_RealType>&); |
| 1892 | |
| 1893 | /** |
| 1894 | * @brief Extracts a %uniform_real_distribution random number distribution |
| 1895 | * @p __x from the input stream @p __is. |
| 1896 | * |
| 1897 | * @param __is An input stream. |
| 1898 | * @param __x A %uniform_real_distribution random number generator engine. |
| 1899 | * |
| 1900 | * @returns The input stream with @p __x extracted or in an error state. |
| 1901 | */ |
| 1902 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1903 | std::basic_istream<_CharT, _Traits>& |
| 1904 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1905 | std::uniform_real_distribution<_RealType>&); |
| 1906 | |
| 1907 | /* @} */ // group random_distributions_uniform |
| 1908 | |
| 1909 | /** |
| 1910 | * @addtogroup random_distributions_normal Normal Distributions |
| 1911 | * @ingroup random_distributions |
| 1912 | * @{ |
| 1913 | */ |
| 1914 | |
| 1915 | /** |
| 1916 | * @brief A normal continuous distribution for random numbers. |
| 1917 | * |
| 1918 | * The formula for the normal probability density function is |
| 1919 | * @f[ |
| 1920 | * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}} |
| 1921 | * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} } |
| 1922 | * @f] |
| 1923 | */ |
| 1924 | template<typename _RealType = double> |
| 1925 | class normal_distribution |
| 1926 | { |
| 1927 | static_assert(std::is_floating_point<_RealType>::value, |
| 1928 | "result_type must be a floating point type" ); |
| 1929 | |
| 1930 | public: |
| 1931 | /** The type of the range of the distribution. */ |
| 1932 | typedef _RealType result_type; |
| 1933 | |
| 1934 | /** Parameter type. */ |
| 1935 | struct param_type |
| 1936 | { |
| 1937 | typedef normal_distribution<_RealType> distribution_type; |
| 1938 | |
| 1939 | explicit |
| 1940 | param_type(_RealType __mean = _RealType(0), |
| 1941 | _RealType __stddev = _RealType(1)) |
| 1942 | : _M_mean(__mean), _M_stddev(__stddev) |
| 1943 | { |
| 1944 | __glibcxx_assert(_M_stddev > _RealType(0)); |
| 1945 | } |
| 1946 | |
| 1947 | _RealType |
| 1948 | mean() const |
| 1949 | { return _M_mean; } |
| 1950 | |
| 1951 | _RealType |
| 1952 | stddev() const |
| 1953 | { return _M_stddev; } |
| 1954 | |
| 1955 | friend bool |
| 1956 | operator==(const param_type& __p1, const param_type& __p2) |
| 1957 | { return (__p1._M_mean == __p2._M_mean |
| 1958 | && __p1._M_stddev == __p2._M_stddev); } |
| 1959 | |
| 1960 | friend bool |
| 1961 | operator!=(const param_type& __p1, const param_type& __p2) |
| 1962 | { return !(__p1 == __p2); } |
| 1963 | |
| 1964 | private: |
| 1965 | _RealType _M_mean; |
| 1966 | _RealType _M_stddev; |
| 1967 | }; |
| 1968 | |
| 1969 | public: |
| 1970 | /** |
| 1971 | * Constructs a normal distribution with parameters @f$mean@f$ and |
| 1972 | * standard deviation. |
| 1973 | */ |
| 1974 | explicit |
| 1975 | normal_distribution(result_type __mean = result_type(0), |
| 1976 | result_type __stddev = result_type(1)) |
| 1977 | : _M_param(__mean, __stddev), _M_saved_available(false) |
| 1978 | { } |
| 1979 | |
| 1980 | explicit |
| 1981 | normal_distribution(const param_type& __p) |
| 1982 | : _M_param(__p), _M_saved_available(false) |
| 1983 | { } |
| 1984 | |
| 1985 | /** |
| 1986 | * @brief Resets the distribution state. |
| 1987 | */ |
| 1988 | void |
| 1989 | reset() |
| 1990 | { _M_saved_available = false; } |
| 1991 | |
| 1992 | /** |
| 1993 | * @brief Returns the mean of the distribution. |
| 1994 | */ |
| 1995 | _RealType |
| 1996 | mean() const |
| 1997 | { return _M_param.mean(); } |
| 1998 | |
| 1999 | /** |
| 2000 | * @brief Returns the standard deviation of the distribution. |
| 2001 | */ |
| 2002 | _RealType |
| 2003 | stddev() const |
| 2004 | { return _M_param.stddev(); } |
| 2005 | |
| 2006 | /** |
| 2007 | * @brief Returns the parameter set of the distribution. |
| 2008 | */ |
| 2009 | param_type |
| 2010 | param() const |
| 2011 | { return _M_param; } |
| 2012 | |
| 2013 | /** |
| 2014 | * @brief Sets the parameter set of the distribution. |
| 2015 | * @param __param The new parameter set of the distribution. |
| 2016 | */ |
| 2017 | void |
| 2018 | param(const param_type& __param) |
| 2019 | { _M_param = __param; } |
| 2020 | |
| 2021 | /** |
| 2022 | * @brief Returns the greatest lower bound value of the distribution. |
| 2023 | */ |
| 2024 | result_type |
| 2025 | min() const |
| 2026 | { return std::numeric_limits<result_type>::lowest(); } |
| 2027 | |
| 2028 | /** |
| 2029 | * @brief Returns the least upper bound value of the distribution. |
| 2030 | */ |
| 2031 | result_type |
| 2032 | max() const |
| 2033 | { return std::numeric_limits<result_type>::max(); } |
| 2034 | |
| 2035 | /** |
| 2036 | * @brief Generating functions. |
| 2037 | */ |
| 2038 | template<typename _UniformRandomNumberGenerator> |
| 2039 | result_type |
| 2040 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2041 | { return this->operator()(__urng, _M_param); } |
| 2042 | |
| 2043 | template<typename _UniformRandomNumberGenerator> |
| 2044 | result_type |
| 2045 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2046 | const param_type& __p); |
| 2047 | |
| 2048 | template<typename _ForwardIterator, |
| 2049 | typename _UniformRandomNumberGenerator> |
| 2050 | void |
| 2051 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2052 | _UniformRandomNumberGenerator& __urng) |
| 2053 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2054 | |
| 2055 | template<typename _ForwardIterator, |
| 2056 | typename _UniformRandomNumberGenerator> |
| 2057 | void |
| 2058 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2059 | _UniformRandomNumberGenerator& __urng, |
| 2060 | const param_type& __p) |
| 2061 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2062 | |
| 2063 | template<typename _UniformRandomNumberGenerator> |
| 2064 | void |
| 2065 | __generate(result_type* __f, result_type* __t, |
| 2066 | _UniformRandomNumberGenerator& __urng, |
| 2067 | const param_type& __p) |
| 2068 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2069 | |
| 2070 | /** |
| 2071 | * @brief Return true if two normal distributions have |
| 2072 | * the same parameters and the sequences that would |
| 2073 | * be generated are equal. |
| 2074 | */ |
| 2075 | template<typename _RealType1> |
| 2076 | friend bool |
| 2077 | operator==(const std::normal_distribution<_RealType1>& __d1, |
| 2078 | const std::normal_distribution<_RealType1>& __d2); |
| 2079 | |
| 2080 | /** |
| 2081 | * @brief Inserts a %normal_distribution random number distribution |
| 2082 | * @p __x into the output stream @p __os. |
| 2083 | * |
| 2084 | * @param __os An output stream. |
| 2085 | * @param __x A %normal_distribution random number distribution. |
| 2086 | * |
| 2087 | * @returns The output stream with the state of @p __x inserted or in |
| 2088 | * an error state. |
| 2089 | */ |
| 2090 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2091 | friend std::basic_ostream<_CharT, _Traits>& |
| 2092 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2093 | const std::normal_distribution<_RealType1>& __x); |
| 2094 | |
| 2095 | /** |
| 2096 | * @brief Extracts a %normal_distribution random number distribution |
| 2097 | * @p __x from the input stream @p __is. |
| 2098 | * |
| 2099 | * @param __is An input stream. |
| 2100 | * @param __x A %normal_distribution random number generator engine. |
| 2101 | * |
| 2102 | * @returns The input stream with @p __x extracted or in an error |
| 2103 | * state. |
| 2104 | */ |
| 2105 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2106 | friend std::basic_istream<_CharT, _Traits>& |
| 2107 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2108 | std::normal_distribution<_RealType1>& __x); |
| 2109 | |
| 2110 | private: |
| 2111 | template<typename _ForwardIterator, |
| 2112 | typename _UniformRandomNumberGenerator> |
| 2113 | void |
| 2114 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2115 | _UniformRandomNumberGenerator& __urng, |
| 2116 | const param_type& __p); |
| 2117 | |
| 2118 | param_type _M_param; |
| 2119 | result_type _M_saved; |
| 2120 | bool _M_saved_available; |
| 2121 | }; |
| 2122 | |
| 2123 | /** |
| 2124 | * @brief Return true if two normal distributions are different. |
| 2125 | */ |
| 2126 | template<typename _RealType> |
| 2127 | inline bool |
| 2128 | operator!=(const std::normal_distribution<_RealType>& __d1, |
| 2129 | const std::normal_distribution<_RealType>& __d2) |
| 2130 | { return !(__d1 == __d2); } |
| 2131 | |
| 2132 | |
| 2133 | /** |
| 2134 | * @brief A lognormal_distribution random number distribution. |
| 2135 | * |
| 2136 | * The formula for the normal probability mass function is |
| 2137 | * @f[ |
| 2138 | * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}} |
| 2139 | * \exp{-\frac{(\ln{x} - m)^2}{2s^2}} |
| 2140 | * @f] |
| 2141 | */ |
| 2142 | template<typename _RealType = double> |
| 2143 | class lognormal_distribution |
| 2144 | { |
| 2145 | static_assert(std::is_floating_point<_RealType>::value, |
| 2146 | "result_type must be a floating point type" ); |
| 2147 | |
| 2148 | public: |
| 2149 | /** The type of the range of the distribution. */ |
| 2150 | typedef _RealType result_type; |
| 2151 | |
| 2152 | /** Parameter type. */ |
| 2153 | struct param_type |
| 2154 | { |
| 2155 | typedef lognormal_distribution<_RealType> distribution_type; |
| 2156 | |
| 2157 | explicit |
| 2158 | param_type(_RealType __m = _RealType(0), |
| 2159 | _RealType __s = _RealType(1)) |
| 2160 | : _M_m(__m), _M_s(__s) |
| 2161 | { } |
| 2162 | |
| 2163 | _RealType |
| 2164 | m() const |
| 2165 | { return _M_m; } |
| 2166 | |
| 2167 | _RealType |
| 2168 | s() const |
| 2169 | { return _M_s; } |
| 2170 | |
| 2171 | friend bool |
| 2172 | operator==(const param_type& __p1, const param_type& __p2) |
| 2173 | { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; } |
| 2174 | |
| 2175 | friend bool |
| 2176 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2177 | { return !(__p1 == __p2); } |
| 2178 | |
| 2179 | private: |
| 2180 | _RealType _M_m; |
| 2181 | _RealType _M_s; |
| 2182 | }; |
| 2183 | |
| 2184 | explicit |
| 2185 | lognormal_distribution(_RealType __m = _RealType(0), |
| 2186 | _RealType __s = _RealType(1)) |
| 2187 | : _M_param(__m, __s), _M_nd() |
| 2188 | { } |
| 2189 | |
| 2190 | explicit |
| 2191 | lognormal_distribution(const param_type& __p) |
| 2192 | : _M_param(__p), _M_nd() |
| 2193 | { } |
| 2194 | |
| 2195 | /** |
| 2196 | * Resets the distribution state. |
| 2197 | */ |
| 2198 | void |
| 2199 | reset() |
| 2200 | { _M_nd.reset(); } |
| 2201 | |
| 2202 | /** |
| 2203 | * |
| 2204 | */ |
| 2205 | _RealType |
| 2206 | m() const |
| 2207 | { return _M_param.m(); } |
| 2208 | |
| 2209 | _RealType |
| 2210 | s() const |
| 2211 | { return _M_param.s(); } |
| 2212 | |
| 2213 | /** |
| 2214 | * @brief Returns the parameter set of the distribution. |
| 2215 | */ |
| 2216 | param_type |
| 2217 | param() const |
| 2218 | { return _M_param; } |
| 2219 | |
| 2220 | /** |
| 2221 | * @brief Sets the parameter set of the distribution. |
| 2222 | * @param __param The new parameter set of the distribution. |
| 2223 | */ |
| 2224 | void |
| 2225 | param(const param_type& __param) |
| 2226 | { _M_param = __param; } |
| 2227 | |
| 2228 | /** |
| 2229 | * @brief Returns the greatest lower bound value of the distribution. |
| 2230 | */ |
| 2231 | result_type |
| 2232 | min() const |
| 2233 | { return result_type(0); } |
| 2234 | |
| 2235 | /** |
| 2236 | * @brief Returns the least upper bound value of the distribution. |
| 2237 | */ |
| 2238 | result_type |
| 2239 | max() const |
| 2240 | { return std::numeric_limits<result_type>::max(); } |
| 2241 | |
| 2242 | /** |
| 2243 | * @brief Generating functions. |
| 2244 | */ |
| 2245 | template<typename _UniformRandomNumberGenerator> |
| 2246 | result_type |
| 2247 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2248 | { return this->operator()(__urng, _M_param); } |
| 2249 | |
| 2250 | template<typename _UniformRandomNumberGenerator> |
| 2251 | result_type |
| 2252 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2253 | const param_type& __p) |
| 2254 | { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); } |
| 2255 | |
| 2256 | template<typename _ForwardIterator, |
| 2257 | typename _UniformRandomNumberGenerator> |
| 2258 | void |
| 2259 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2260 | _UniformRandomNumberGenerator& __urng) |
| 2261 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2262 | |
| 2263 | template<typename _ForwardIterator, |
| 2264 | typename _UniformRandomNumberGenerator> |
| 2265 | void |
| 2266 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2267 | _UniformRandomNumberGenerator& __urng, |
| 2268 | const param_type& __p) |
| 2269 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2270 | |
| 2271 | template<typename _UniformRandomNumberGenerator> |
| 2272 | void |
| 2273 | __generate(result_type* __f, result_type* __t, |
| 2274 | _UniformRandomNumberGenerator& __urng, |
| 2275 | const param_type& __p) |
| 2276 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2277 | |
| 2278 | /** |
| 2279 | * @brief Return true if two lognormal distributions have |
| 2280 | * the same parameters and the sequences that would |
| 2281 | * be generated are equal. |
| 2282 | */ |
| 2283 | friend bool |
| 2284 | operator==(const lognormal_distribution& __d1, |
| 2285 | const lognormal_distribution& __d2) |
| 2286 | { return (__d1._M_param == __d2._M_param |
| 2287 | && __d1._M_nd == __d2._M_nd); } |
| 2288 | |
| 2289 | /** |
| 2290 | * @brief Inserts a %lognormal_distribution random number distribution |
| 2291 | * @p __x into the output stream @p __os. |
| 2292 | * |
| 2293 | * @param __os An output stream. |
| 2294 | * @param __x A %lognormal_distribution random number distribution. |
| 2295 | * |
| 2296 | * @returns The output stream with the state of @p __x inserted or in |
| 2297 | * an error state. |
| 2298 | */ |
| 2299 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2300 | friend std::basic_ostream<_CharT, _Traits>& |
| 2301 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2302 | const std::lognormal_distribution<_RealType1>& __x); |
| 2303 | |
| 2304 | /** |
| 2305 | * @brief Extracts a %lognormal_distribution random number distribution |
| 2306 | * @p __x from the input stream @p __is. |
| 2307 | * |
| 2308 | * @param __is An input stream. |
| 2309 | * @param __x A %lognormal_distribution random number |
| 2310 | * generator engine. |
| 2311 | * |
| 2312 | * @returns The input stream with @p __x extracted or in an error state. |
| 2313 | */ |
| 2314 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2315 | friend std::basic_istream<_CharT, _Traits>& |
| 2316 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2317 | std::lognormal_distribution<_RealType1>& __x); |
| 2318 | |
| 2319 | private: |
| 2320 | template<typename _ForwardIterator, |
| 2321 | typename _UniformRandomNumberGenerator> |
| 2322 | void |
| 2323 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2324 | _UniformRandomNumberGenerator& __urng, |
| 2325 | const param_type& __p); |
| 2326 | |
| 2327 | param_type _M_param; |
| 2328 | |
| 2329 | std::normal_distribution<result_type> _M_nd; |
| 2330 | }; |
| 2331 | |
| 2332 | /** |
| 2333 | * @brief Return true if two lognormal distributions are different. |
| 2334 | */ |
| 2335 | template<typename _RealType> |
| 2336 | inline bool |
| 2337 | operator!=(const std::lognormal_distribution<_RealType>& __d1, |
| 2338 | const std::lognormal_distribution<_RealType>& __d2) |
| 2339 | { return !(__d1 == __d2); } |
| 2340 | |
| 2341 | |
| 2342 | /** |
| 2343 | * @brief A gamma continuous distribution for random numbers. |
| 2344 | * |
| 2345 | * The formula for the gamma probability density function is: |
| 2346 | * @f[ |
| 2347 | * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)} |
| 2348 | * (x/\beta)^{\alpha - 1} e^{-x/\beta} |
| 2349 | * @f] |
| 2350 | */ |
| 2351 | template<typename _RealType = double> |
| 2352 | class gamma_distribution |
| 2353 | { |
| 2354 | static_assert(std::is_floating_point<_RealType>::value, |
| 2355 | "result_type must be a floating point type" ); |
| 2356 | |
| 2357 | public: |
| 2358 | /** The type of the range of the distribution. */ |
| 2359 | typedef _RealType result_type; |
| 2360 | |
| 2361 | /** Parameter type. */ |
| 2362 | struct param_type |
| 2363 | { |
| 2364 | typedef gamma_distribution<_RealType> distribution_type; |
| 2365 | friend class gamma_distribution<_RealType>; |
| 2366 | |
| 2367 | explicit |
| 2368 | param_type(_RealType __alpha_val = _RealType(1), |
| 2369 | _RealType __beta_val = _RealType(1)) |
| 2370 | : _M_alpha(__alpha_val), _M_beta(__beta_val) |
| 2371 | { |
| 2372 | __glibcxx_assert(_M_alpha > _RealType(0)); |
| 2373 | _M_initialize(); |
| 2374 | } |
| 2375 | |
| 2376 | _RealType |
| 2377 | alpha() const |
| 2378 | { return _M_alpha; } |
| 2379 | |
| 2380 | _RealType |
| 2381 | beta() const |
| 2382 | { return _M_beta; } |
| 2383 | |
| 2384 | friend bool |
| 2385 | operator==(const param_type& __p1, const param_type& __p2) |
| 2386 | { return (__p1._M_alpha == __p2._M_alpha |
| 2387 | && __p1._M_beta == __p2._M_beta); } |
| 2388 | |
| 2389 | friend bool |
| 2390 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2391 | { return !(__p1 == __p2); } |
| 2392 | |
| 2393 | private: |
| 2394 | void |
| 2395 | _M_initialize(); |
| 2396 | |
| 2397 | _RealType _M_alpha; |
| 2398 | _RealType _M_beta; |
| 2399 | |
| 2400 | _RealType _M_malpha, _M_a2; |
| 2401 | }; |
| 2402 | |
| 2403 | public: |
| 2404 | /** |
| 2405 | * @brief Constructs a gamma distribution with parameters |
| 2406 | * @f$\alpha@f$ and @f$\beta@f$. |
| 2407 | */ |
| 2408 | explicit |
| 2409 | gamma_distribution(_RealType __alpha_val = _RealType(1), |
| 2410 | _RealType __beta_val = _RealType(1)) |
| 2411 | : _M_param(__alpha_val, __beta_val), _M_nd() |
| 2412 | { } |
| 2413 | |
| 2414 | explicit |
| 2415 | gamma_distribution(const param_type& __p) |
| 2416 | : _M_param(__p), _M_nd() |
| 2417 | { } |
| 2418 | |
| 2419 | /** |
| 2420 | * @brief Resets the distribution state. |
| 2421 | */ |
| 2422 | void |
| 2423 | reset() |
| 2424 | { _M_nd.reset(); } |
| 2425 | |
| 2426 | /** |
| 2427 | * @brief Returns the @f$\alpha@f$ of the distribution. |
| 2428 | */ |
| 2429 | _RealType |
| 2430 | alpha() const |
| 2431 | { return _M_param.alpha(); } |
| 2432 | |
| 2433 | /** |
| 2434 | * @brief Returns the @f$\beta@f$ of the distribution. |
| 2435 | */ |
| 2436 | _RealType |
| 2437 | beta() const |
| 2438 | { return _M_param.beta(); } |
| 2439 | |
| 2440 | /** |
| 2441 | * @brief Returns the parameter set of the distribution. |
| 2442 | */ |
| 2443 | param_type |
| 2444 | param() const |
| 2445 | { return _M_param; } |
| 2446 | |
| 2447 | /** |
| 2448 | * @brief Sets the parameter set of the distribution. |
| 2449 | * @param __param The new parameter set of the distribution. |
| 2450 | */ |
| 2451 | void |
| 2452 | param(const param_type& __param) |
| 2453 | { _M_param = __param; } |
| 2454 | |
| 2455 | /** |
| 2456 | * @brief Returns the greatest lower bound value of the distribution. |
| 2457 | */ |
| 2458 | result_type |
| 2459 | min() const |
| 2460 | { return result_type(0); } |
| 2461 | |
| 2462 | /** |
| 2463 | * @brief Returns the least upper bound value of the distribution. |
| 2464 | */ |
| 2465 | result_type |
| 2466 | max() const |
| 2467 | { return std::numeric_limits<result_type>::max(); } |
| 2468 | |
| 2469 | /** |
| 2470 | * @brief Generating functions. |
| 2471 | */ |
| 2472 | template<typename _UniformRandomNumberGenerator> |
| 2473 | result_type |
| 2474 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2475 | { return this->operator()(__urng, _M_param); } |
| 2476 | |
| 2477 | template<typename _UniformRandomNumberGenerator> |
| 2478 | result_type |
| 2479 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2480 | const param_type& __p); |
| 2481 | |
| 2482 | template<typename _ForwardIterator, |
| 2483 | typename _UniformRandomNumberGenerator> |
| 2484 | void |
| 2485 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2486 | _UniformRandomNumberGenerator& __urng) |
| 2487 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2488 | |
| 2489 | template<typename _ForwardIterator, |
| 2490 | typename _UniformRandomNumberGenerator> |
| 2491 | void |
| 2492 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2493 | _UniformRandomNumberGenerator& __urng, |
| 2494 | const param_type& __p) |
| 2495 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2496 | |
| 2497 | template<typename _UniformRandomNumberGenerator> |
| 2498 | void |
| 2499 | __generate(result_type* __f, result_type* __t, |
| 2500 | _UniformRandomNumberGenerator& __urng, |
| 2501 | const param_type& __p) |
| 2502 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2503 | |
| 2504 | /** |
| 2505 | * @brief Return true if two gamma distributions have the same |
| 2506 | * parameters and the sequences that would be generated |
| 2507 | * are equal. |
| 2508 | */ |
| 2509 | friend bool |
| 2510 | operator==(const gamma_distribution& __d1, |
| 2511 | const gamma_distribution& __d2) |
| 2512 | { return (__d1._M_param == __d2._M_param |
| 2513 | && __d1._M_nd == __d2._M_nd); } |
| 2514 | |
| 2515 | /** |
| 2516 | * @brief Inserts a %gamma_distribution random number distribution |
| 2517 | * @p __x into the output stream @p __os. |
| 2518 | * |
| 2519 | * @param __os An output stream. |
| 2520 | * @param __x A %gamma_distribution random number distribution. |
| 2521 | * |
| 2522 | * @returns The output stream with the state of @p __x inserted or in |
| 2523 | * an error state. |
| 2524 | */ |
| 2525 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2526 | friend std::basic_ostream<_CharT, _Traits>& |
| 2527 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2528 | const std::gamma_distribution<_RealType1>& __x); |
| 2529 | |
| 2530 | /** |
| 2531 | * @brief Extracts a %gamma_distribution random number distribution |
| 2532 | * @p __x from the input stream @p __is. |
| 2533 | * |
| 2534 | * @param __is An input stream. |
| 2535 | * @param __x A %gamma_distribution random number generator engine. |
| 2536 | * |
| 2537 | * @returns The input stream with @p __x extracted or in an error state. |
| 2538 | */ |
| 2539 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2540 | friend std::basic_istream<_CharT, _Traits>& |
| 2541 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2542 | std::gamma_distribution<_RealType1>& __x); |
| 2543 | |
| 2544 | private: |
| 2545 | template<typename _ForwardIterator, |
| 2546 | typename _UniformRandomNumberGenerator> |
| 2547 | void |
| 2548 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2549 | _UniformRandomNumberGenerator& __urng, |
| 2550 | const param_type& __p); |
| 2551 | |
| 2552 | param_type _M_param; |
| 2553 | |
| 2554 | std::normal_distribution<result_type> _M_nd; |
| 2555 | }; |
| 2556 | |
| 2557 | /** |
| 2558 | * @brief Return true if two gamma distributions are different. |
| 2559 | */ |
| 2560 | template<typename _RealType> |
| 2561 | inline bool |
| 2562 | operator!=(const std::gamma_distribution<_RealType>& __d1, |
| 2563 | const std::gamma_distribution<_RealType>& __d2) |
| 2564 | { return !(__d1 == __d2); } |
| 2565 | |
| 2566 | |
| 2567 | /** |
| 2568 | * @brief A chi_squared_distribution random number distribution. |
| 2569 | * |
| 2570 | * The formula for the normal probability mass function is |
| 2571 | * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$ |
| 2572 | */ |
| 2573 | template<typename _RealType = double> |
| 2574 | class chi_squared_distribution |
| 2575 | { |
| 2576 | static_assert(std::is_floating_point<_RealType>::value, |
| 2577 | "result_type must be a floating point type" ); |
| 2578 | |
| 2579 | public: |
| 2580 | /** The type of the range of the distribution. */ |
| 2581 | typedef _RealType result_type; |
| 2582 | |
| 2583 | /** Parameter type. */ |
| 2584 | struct param_type |
| 2585 | { |
| 2586 | typedef chi_squared_distribution<_RealType> distribution_type; |
| 2587 | |
| 2588 | explicit |
| 2589 | param_type(_RealType __n = _RealType(1)) |
| 2590 | : _M_n(__n) |
| 2591 | { } |
| 2592 | |
| 2593 | _RealType |
| 2594 | n() const |
| 2595 | { return _M_n; } |
| 2596 | |
| 2597 | friend bool |
| 2598 | operator==(const param_type& __p1, const param_type& __p2) |
| 2599 | { return __p1._M_n == __p2._M_n; } |
| 2600 | |
| 2601 | friend bool |
| 2602 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2603 | { return !(__p1 == __p2); } |
| 2604 | |
| 2605 | private: |
| 2606 | _RealType _M_n; |
| 2607 | }; |
| 2608 | |
| 2609 | explicit |
| 2610 | chi_squared_distribution(_RealType __n = _RealType(1)) |
| 2611 | : _M_param(__n), _M_gd(__n / 2) |
| 2612 | { } |
| 2613 | |
| 2614 | explicit |
| 2615 | chi_squared_distribution(const param_type& __p) |
| 2616 | : _M_param(__p), _M_gd(__p.n() / 2) |
| 2617 | { } |
| 2618 | |
| 2619 | /** |
| 2620 | * @brief Resets the distribution state. |
| 2621 | */ |
| 2622 | void |
| 2623 | reset() |
| 2624 | { _M_gd.reset(); } |
| 2625 | |
| 2626 | /** |
| 2627 | * |
| 2628 | */ |
| 2629 | _RealType |
| 2630 | n() const |
| 2631 | { return _M_param.n(); } |
| 2632 | |
| 2633 | /** |
| 2634 | * @brief Returns the parameter set of the distribution. |
| 2635 | */ |
| 2636 | param_type |
| 2637 | param() const |
| 2638 | { return _M_param; } |
| 2639 | |
| 2640 | /** |
| 2641 | * @brief Sets the parameter set of the distribution. |
| 2642 | * @param __param The new parameter set of the distribution. |
| 2643 | */ |
| 2644 | void |
| 2645 | param(const param_type& __param) |
| 2646 | { |
| 2647 | _M_param = __param; |
| 2648 | typedef typename std::gamma_distribution<result_type>::param_type |
| 2649 | param_type; |
| 2650 | _M_gd.param(param_type{__param.n() / 2}); |
| 2651 | } |
| 2652 | |
| 2653 | /** |
| 2654 | * @brief Returns the greatest lower bound value of the distribution. |
| 2655 | */ |
| 2656 | result_type |
| 2657 | min() const |
| 2658 | { return result_type(0); } |
| 2659 | |
| 2660 | /** |
| 2661 | * @brief Returns the least upper bound value of the distribution. |
| 2662 | */ |
| 2663 | result_type |
| 2664 | max() const |
| 2665 | { return std::numeric_limits<result_type>::max(); } |
| 2666 | |
| 2667 | /** |
| 2668 | * @brief Generating functions. |
| 2669 | */ |
| 2670 | template<typename _UniformRandomNumberGenerator> |
| 2671 | result_type |
| 2672 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2673 | { return 2 * _M_gd(__urng); } |
| 2674 | |
| 2675 | template<typename _UniformRandomNumberGenerator> |
| 2676 | result_type |
| 2677 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2678 | const param_type& __p) |
| 2679 | { |
| 2680 | typedef typename std::gamma_distribution<result_type>::param_type |
| 2681 | param_type; |
| 2682 | return 2 * _M_gd(__urng, param_type(__p.n() / 2)); |
| 2683 | } |
| 2684 | |
| 2685 | template<typename _ForwardIterator, |
| 2686 | typename _UniformRandomNumberGenerator> |
| 2687 | void |
| 2688 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2689 | _UniformRandomNumberGenerator& __urng) |
| 2690 | { this->__generate_impl(__f, __t, __urng); } |
| 2691 | |
| 2692 | template<typename _ForwardIterator, |
| 2693 | typename _UniformRandomNumberGenerator> |
| 2694 | void |
| 2695 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2696 | _UniformRandomNumberGenerator& __urng, |
| 2697 | const param_type& __p) |
| 2698 | { typename std::gamma_distribution<result_type>::param_type |
| 2699 | __p2(__p.n() / 2); |
| 2700 | this->__generate_impl(__f, __t, __urng, __p2); } |
| 2701 | |
| 2702 | template<typename _UniformRandomNumberGenerator> |
| 2703 | void |
| 2704 | __generate(result_type* __f, result_type* __t, |
| 2705 | _UniformRandomNumberGenerator& __urng) |
| 2706 | { this->__generate_impl(__f, __t, __urng); } |
| 2707 | |
| 2708 | template<typename _UniformRandomNumberGenerator> |
| 2709 | void |
| 2710 | __generate(result_type* __f, result_type* __t, |
| 2711 | _UniformRandomNumberGenerator& __urng, |
| 2712 | const param_type& __p) |
| 2713 | { typename std::gamma_distribution<result_type>::param_type |
| 2714 | __p2(__p.n() / 2); |
| 2715 | this->__generate_impl(__f, __t, __urng, __p2); } |
| 2716 | |
| 2717 | /** |
| 2718 | * @brief Return true if two Chi-squared distributions have |
| 2719 | * the same parameters and the sequences that would be |
| 2720 | * generated are equal. |
| 2721 | */ |
| 2722 | friend bool |
| 2723 | operator==(const chi_squared_distribution& __d1, |
| 2724 | const chi_squared_distribution& __d2) |
| 2725 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
| 2726 | |
| 2727 | /** |
| 2728 | * @brief Inserts a %chi_squared_distribution random number distribution |
| 2729 | * @p __x into the output stream @p __os. |
| 2730 | * |
| 2731 | * @param __os An output stream. |
| 2732 | * @param __x A %chi_squared_distribution random number distribution. |
| 2733 | * |
| 2734 | * @returns The output stream with the state of @p __x inserted or in |
| 2735 | * an error state. |
| 2736 | */ |
| 2737 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2738 | friend std::basic_ostream<_CharT, _Traits>& |
| 2739 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2740 | const std::chi_squared_distribution<_RealType1>& __x); |
| 2741 | |
| 2742 | /** |
| 2743 | * @brief Extracts a %chi_squared_distribution random number distribution |
| 2744 | * @p __x from the input stream @p __is. |
| 2745 | * |
| 2746 | * @param __is An input stream. |
| 2747 | * @param __x A %chi_squared_distribution random number |
| 2748 | * generator engine. |
| 2749 | * |
| 2750 | * @returns The input stream with @p __x extracted or in an error state. |
| 2751 | */ |
| 2752 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2753 | friend std::basic_istream<_CharT, _Traits>& |
| 2754 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2755 | std::chi_squared_distribution<_RealType1>& __x); |
| 2756 | |
| 2757 | private: |
| 2758 | template<typename _ForwardIterator, |
| 2759 | typename _UniformRandomNumberGenerator> |
| 2760 | void |
| 2761 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2762 | _UniformRandomNumberGenerator& __urng); |
| 2763 | |
| 2764 | template<typename _ForwardIterator, |
| 2765 | typename _UniformRandomNumberGenerator> |
| 2766 | void |
| 2767 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2768 | _UniformRandomNumberGenerator& __urng, |
| 2769 | const typename |
| 2770 | std::gamma_distribution<result_type>::param_type& __p); |
| 2771 | |
| 2772 | param_type _M_param; |
| 2773 | |
| 2774 | std::gamma_distribution<result_type> _M_gd; |
| 2775 | }; |
| 2776 | |
| 2777 | /** |
| 2778 | * @brief Return true if two Chi-squared distributions are different. |
| 2779 | */ |
| 2780 | template<typename _RealType> |
| 2781 | inline bool |
| 2782 | operator!=(const std::chi_squared_distribution<_RealType>& __d1, |
| 2783 | const std::chi_squared_distribution<_RealType>& __d2) |
| 2784 | { return !(__d1 == __d2); } |
| 2785 | |
| 2786 | |
| 2787 | /** |
| 2788 | * @brief A cauchy_distribution random number distribution. |
| 2789 | * |
| 2790 | * The formula for the normal probability mass function is |
| 2791 | * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$ |
| 2792 | */ |
| 2793 | template<typename _RealType = double> |
| 2794 | class cauchy_distribution |
| 2795 | { |
| 2796 | static_assert(std::is_floating_point<_RealType>::value, |
| 2797 | "result_type must be a floating point type" ); |
| 2798 | |
| 2799 | public: |
| 2800 | /** The type of the range of the distribution. */ |
| 2801 | typedef _RealType result_type; |
| 2802 | |
| 2803 | /** Parameter type. */ |
| 2804 | struct param_type |
| 2805 | { |
| 2806 | typedef cauchy_distribution<_RealType> distribution_type; |
| 2807 | |
| 2808 | explicit |
| 2809 | param_type(_RealType __a = _RealType(0), |
| 2810 | _RealType __b = _RealType(1)) |
| 2811 | : _M_a(__a), _M_b(__b) |
| 2812 | { } |
| 2813 | |
| 2814 | _RealType |
| 2815 | a() const |
| 2816 | { return _M_a; } |
| 2817 | |
| 2818 | _RealType |
| 2819 | b() const |
| 2820 | { return _M_b; } |
| 2821 | |
| 2822 | friend bool |
| 2823 | operator==(const param_type& __p1, const param_type& __p2) |
| 2824 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 2825 | |
| 2826 | friend bool |
| 2827 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2828 | { return !(__p1 == __p2); } |
| 2829 | |
| 2830 | private: |
| 2831 | _RealType _M_a; |
| 2832 | _RealType _M_b; |
| 2833 | }; |
| 2834 | |
| 2835 | explicit |
| 2836 | cauchy_distribution(_RealType __a = _RealType(0), |
| 2837 | _RealType __b = _RealType(1)) |
| 2838 | : _M_param(__a, __b) |
| 2839 | { } |
| 2840 | |
| 2841 | explicit |
| 2842 | cauchy_distribution(const param_type& __p) |
| 2843 | : _M_param(__p) |
| 2844 | { } |
| 2845 | |
| 2846 | /** |
| 2847 | * @brief Resets the distribution state. |
| 2848 | */ |
| 2849 | void |
| 2850 | reset() |
| 2851 | { } |
| 2852 | |
| 2853 | /** |
| 2854 | * |
| 2855 | */ |
| 2856 | _RealType |
| 2857 | a() const |
| 2858 | { return _M_param.a(); } |
| 2859 | |
| 2860 | _RealType |
| 2861 | b() const |
| 2862 | { return _M_param.b(); } |
| 2863 | |
| 2864 | /** |
| 2865 | * @brief Returns the parameter set of the distribution. |
| 2866 | */ |
| 2867 | param_type |
| 2868 | param() const |
| 2869 | { return _M_param; } |
| 2870 | |
| 2871 | /** |
| 2872 | * @brief Sets the parameter set of the distribution. |
| 2873 | * @param __param The new parameter set of the distribution. |
| 2874 | */ |
| 2875 | void |
| 2876 | param(const param_type& __param) |
| 2877 | { _M_param = __param; } |
| 2878 | |
| 2879 | /** |
| 2880 | * @brief Returns the greatest lower bound value of the distribution. |
| 2881 | */ |
| 2882 | result_type |
| 2883 | min() const |
| 2884 | { return std::numeric_limits<result_type>::lowest(); } |
| 2885 | |
| 2886 | /** |
| 2887 | * @brief Returns the least upper bound value of the distribution. |
| 2888 | */ |
| 2889 | result_type |
| 2890 | max() const |
| 2891 | { return std::numeric_limits<result_type>::max(); } |
| 2892 | |
| 2893 | /** |
| 2894 | * @brief Generating functions. |
| 2895 | */ |
| 2896 | template<typename _UniformRandomNumberGenerator> |
| 2897 | result_type |
| 2898 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2899 | { return this->operator()(__urng, _M_param); } |
| 2900 | |
| 2901 | template<typename _UniformRandomNumberGenerator> |
| 2902 | result_type |
| 2903 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2904 | const param_type& __p); |
| 2905 | |
| 2906 | template<typename _ForwardIterator, |
| 2907 | typename _UniformRandomNumberGenerator> |
| 2908 | void |
| 2909 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2910 | _UniformRandomNumberGenerator& __urng) |
| 2911 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2912 | |
| 2913 | template<typename _ForwardIterator, |
| 2914 | typename _UniformRandomNumberGenerator> |
| 2915 | void |
| 2916 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2917 | _UniformRandomNumberGenerator& __urng, |
| 2918 | const param_type& __p) |
| 2919 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2920 | |
| 2921 | template<typename _UniformRandomNumberGenerator> |
| 2922 | void |
| 2923 | __generate(result_type* __f, result_type* __t, |
| 2924 | _UniformRandomNumberGenerator& __urng, |
| 2925 | const param_type& __p) |
| 2926 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2927 | |
| 2928 | /** |
| 2929 | * @brief Return true if two Cauchy distributions have |
| 2930 | * the same parameters. |
| 2931 | */ |
| 2932 | friend bool |
| 2933 | operator==(const cauchy_distribution& __d1, |
| 2934 | const cauchy_distribution& __d2) |
| 2935 | { return __d1._M_param == __d2._M_param; } |
| 2936 | |
| 2937 | private: |
| 2938 | template<typename _ForwardIterator, |
| 2939 | typename _UniformRandomNumberGenerator> |
| 2940 | void |
| 2941 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2942 | _UniformRandomNumberGenerator& __urng, |
| 2943 | const param_type& __p); |
| 2944 | |
| 2945 | param_type _M_param; |
| 2946 | }; |
| 2947 | |
| 2948 | /** |
| 2949 | * @brief Return true if two Cauchy distributions have |
| 2950 | * different parameters. |
| 2951 | */ |
| 2952 | template<typename _RealType> |
| 2953 | inline bool |
| 2954 | operator!=(const std::cauchy_distribution<_RealType>& __d1, |
| 2955 | const std::cauchy_distribution<_RealType>& __d2) |
| 2956 | { return !(__d1 == __d2); } |
| 2957 | |
| 2958 | /** |
| 2959 | * @brief Inserts a %cauchy_distribution random number distribution |
| 2960 | * @p __x into the output stream @p __os. |
| 2961 | * |
| 2962 | * @param __os An output stream. |
| 2963 | * @param __x A %cauchy_distribution random number distribution. |
| 2964 | * |
| 2965 | * @returns The output stream with the state of @p __x inserted or in |
| 2966 | * an error state. |
| 2967 | */ |
| 2968 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2969 | std::basic_ostream<_CharT, _Traits>& |
| 2970 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2971 | const std::cauchy_distribution<_RealType>& __x); |
| 2972 | |
| 2973 | /** |
| 2974 | * @brief Extracts a %cauchy_distribution random number distribution |
| 2975 | * @p __x from the input stream @p __is. |
| 2976 | * |
| 2977 | * @param __is An input stream. |
| 2978 | * @param __x A %cauchy_distribution random number |
| 2979 | * generator engine. |
| 2980 | * |
| 2981 | * @returns The input stream with @p __x extracted or in an error state. |
| 2982 | */ |
| 2983 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2984 | std::basic_istream<_CharT, _Traits>& |
| 2985 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2986 | std::cauchy_distribution<_RealType>& __x); |
| 2987 | |
| 2988 | |
| 2989 | /** |
| 2990 | * @brief A fisher_f_distribution random number distribution. |
| 2991 | * |
| 2992 | * The formula for the normal probability mass function is |
| 2993 | * @f[ |
| 2994 | * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} |
| 2995 | * (\frac{m}{n})^{m/2} x^{(m/2)-1} |
| 2996 | * (1 + \frac{mx}{n})^{-(m+n)/2} |
| 2997 | * @f] |
| 2998 | */ |
| 2999 | template<typename _RealType = double> |
| 3000 | class fisher_f_distribution |
| 3001 | { |
| 3002 | static_assert(std::is_floating_point<_RealType>::value, |
| 3003 | "result_type must be a floating point type" ); |
| 3004 | |
| 3005 | public: |
| 3006 | /** The type of the range of the distribution. */ |
| 3007 | typedef _RealType result_type; |
| 3008 | |
| 3009 | /** Parameter type. */ |
| 3010 | struct param_type |
| 3011 | { |
| 3012 | typedef fisher_f_distribution<_RealType> distribution_type; |
| 3013 | |
| 3014 | explicit |
| 3015 | param_type(_RealType __m = _RealType(1), |
| 3016 | _RealType __n = _RealType(1)) |
| 3017 | : _M_m(__m), _M_n(__n) |
| 3018 | { } |
| 3019 | |
| 3020 | _RealType |
| 3021 | m() const |
| 3022 | { return _M_m; } |
| 3023 | |
| 3024 | _RealType |
| 3025 | n() const |
| 3026 | { return _M_n; } |
| 3027 | |
| 3028 | friend bool |
| 3029 | operator==(const param_type& __p1, const param_type& __p2) |
| 3030 | { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; } |
| 3031 | |
| 3032 | friend bool |
| 3033 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3034 | { return !(__p1 == __p2); } |
| 3035 | |
| 3036 | private: |
| 3037 | _RealType _M_m; |
| 3038 | _RealType _M_n; |
| 3039 | }; |
| 3040 | |
| 3041 | explicit |
| 3042 | fisher_f_distribution(_RealType __m = _RealType(1), |
| 3043 | _RealType __n = _RealType(1)) |
| 3044 | : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2) |
| 3045 | { } |
| 3046 | |
| 3047 | explicit |
| 3048 | fisher_f_distribution(const param_type& __p) |
| 3049 | : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2) |
| 3050 | { } |
| 3051 | |
| 3052 | /** |
| 3053 | * @brief Resets the distribution state. |
| 3054 | */ |
| 3055 | void |
| 3056 | reset() |
| 3057 | { |
| 3058 | _M_gd_x.reset(); |
| 3059 | _M_gd_y.reset(); |
| 3060 | } |
| 3061 | |
| 3062 | /** |
| 3063 | * |
| 3064 | */ |
| 3065 | _RealType |
| 3066 | m() const |
| 3067 | { return _M_param.m(); } |
| 3068 | |
| 3069 | _RealType |
| 3070 | n() const |
| 3071 | { return _M_param.n(); } |
| 3072 | |
| 3073 | /** |
| 3074 | * @brief Returns the parameter set of the distribution. |
| 3075 | */ |
| 3076 | param_type |
| 3077 | param() const |
| 3078 | { return _M_param; } |
| 3079 | |
| 3080 | /** |
| 3081 | * @brief Sets the parameter set of the distribution. |
| 3082 | * @param __param The new parameter set of the distribution. |
| 3083 | */ |
| 3084 | void |
| 3085 | param(const param_type& __param) |
| 3086 | { _M_param = __param; } |
| 3087 | |
| 3088 | /** |
| 3089 | * @brief Returns the greatest lower bound value of the distribution. |
| 3090 | */ |
| 3091 | result_type |
| 3092 | min() const |
| 3093 | { return result_type(0); } |
| 3094 | |
| 3095 | /** |
| 3096 | * @brief Returns the least upper bound value of the distribution. |
| 3097 | */ |
| 3098 | result_type |
| 3099 | max() const |
| 3100 | { return std::numeric_limits<result_type>::max(); } |
| 3101 | |
| 3102 | /** |
| 3103 | * @brief Generating functions. |
| 3104 | */ |
| 3105 | template<typename _UniformRandomNumberGenerator> |
| 3106 | result_type |
| 3107 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3108 | { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); } |
| 3109 | |
| 3110 | template<typename _UniformRandomNumberGenerator> |
| 3111 | result_type |
| 3112 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3113 | const param_type& __p) |
| 3114 | { |
| 3115 | typedef typename std::gamma_distribution<result_type>::param_type |
| 3116 | param_type; |
| 3117 | return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n()) |
| 3118 | / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m())); |
| 3119 | } |
| 3120 | |
| 3121 | template<typename _ForwardIterator, |
| 3122 | typename _UniformRandomNumberGenerator> |
| 3123 | void |
| 3124 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3125 | _UniformRandomNumberGenerator& __urng) |
| 3126 | { this->__generate_impl(__f, __t, __urng); } |
| 3127 | |
| 3128 | template<typename _ForwardIterator, |
| 3129 | typename _UniformRandomNumberGenerator> |
| 3130 | void |
| 3131 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3132 | _UniformRandomNumberGenerator& __urng, |
| 3133 | const param_type& __p) |
| 3134 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3135 | |
| 3136 | template<typename _UniformRandomNumberGenerator> |
| 3137 | void |
| 3138 | __generate(result_type* __f, result_type* __t, |
| 3139 | _UniformRandomNumberGenerator& __urng) |
| 3140 | { this->__generate_impl(__f, __t, __urng); } |
| 3141 | |
| 3142 | template<typename _UniformRandomNumberGenerator> |
| 3143 | void |
| 3144 | __generate(result_type* __f, result_type* __t, |
| 3145 | _UniformRandomNumberGenerator& __urng, |
| 3146 | const param_type& __p) |
| 3147 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3148 | |
| 3149 | /** |
| 3150 | * @brief Return true if two Fisher f distributions have |
| 3151 | * the same parameters and the sequences that would |
| 3152 | * be generated are equal. |
| 3153 | */ |
| 3154 | friend bool |
| 3155 | operator==(const fisher_f_distribution& __d1, |
| 3156 | const fisher_f_distribution& __d2) |
| 3157 | { return (__d1._M_param == __d2._M_param |
| 3158 | && __d1._M_gd_x == __d2._M_gd_x |
| 3159 | && __d1._M_gd_y == __d2._M_gd_y); } |
| 3160 | |
| 3161 | /** |
| 3162 | * @brief Inserts a %fisher_f_distribution random number distribution |
| 3163 | * @p __x into the output stream @p __os. |
| 3164 | * |
| 3165 | * @param __os An output stream. |
| 3166 | * @param __x A %fisher_f_distribution random number distribution. |
| 3167 | * |
| 3168 | * @returns The output stream with the state of @p __x inserted or in |
| 3169 | * an error state. |
| 3170 | */ |
| 3171 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3172 | friend std::basic_ostream<_CharT, _Traits>& |
| 3173 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3174 | const std::fisher_f_distribution<_RealType1>& __x); |
| 3175 | |
| 3176 | /** |
| 3177 | * @brief Extracts a %fisher_f_distribution random number distribution |
| 3178 | * @p __x from the input stream @p __is. |
| 3179 | * |
| 3180 | * @param __is An input stream. |
| 3181 | * @param __x A %fisher_f_distribution random number |
| 3182 | * generator engine. |
| 3183 | * |
| 3184 | * @returns The input stream with @p __x extracted or in an error state. |
| 3185 | */ |
| 3186 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3187 | friend std::basic_istream<_CharT, _Traits>& |
| 3188 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3189 | std::fisher_f_distribution<_RealType1>& __x); |
| 3190 | |
| 3191 | private: |
| 3192 | template<typename _ForwardIterator, |
| 3193 | typename _UniformRandomNumberGenerator> |
| 3194 | void |
| 3195 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3196 | _UniformRandomNumberGenerator& __urng); |
| 3197 | |
| 3198 | template<typename _ForwardIterator, |
| 3199 | typename _UniformRandomNumberGenerator> |
| 3200 | void |
| 3201 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3202 | _UniformRandomNumberGenerator& __urng, |
| 3203 | const param_type& __p); |
| 3204 | |
| 3205 | param_type _M_param; |
| 3206 | |
| 3207 | std::gamma_distribution<result_type> _M_gd_x, _M_gd_y; |
| 3208 | }; |
| 3209 | |
| 3210 | /** |
| 3211 | * @brief Return true if two Fisher f distributions are different. |
| 3212 | */ |
| 3213 | template<typename _RealType> |
| 3214 | inline bool |
| 3215 | operator!=(const std::fisher_f_distribution<_RealType>& __d1, |
| 3216 | const std::fisher_f_distribution<_RealType>& __d2) |
| 3217 | { return !(__d1 == __d2); } |
| 3218 | |
| 3219 | /** |
| 3220 | * @brief A student_t_distribution random number distribution. |
| 3221 | * |
| 3222 | * The formula for the normal probability mass function is: |
| 3223 | * @f[ |
| 3224 | * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)} |
| 3225 | * (1 + \frac{x^2}{n}) ^{-(n+1)/2} |
| 3226 | * @f] |
| 3227 | */ |
| 3228 | template<typename _RealType = double> |
| 3229 | class student_t_distribution |
| 3230 | { |
| 3231 | static_assert(std::is_floating_point<_RealType>::value, |
| 3232 | "result_type must be a floating point type" ); |
| 3233 | |
| 3234 | public: |
| 3235 | /** The type of the range of the distribution. */ |
| 3236 | typedef _RealType result_type; |
| 3237 | |
| 3238 | /** Parameter type. */ |
| 3239 | struct param_type |
| 3240 | { |
| 3241 | typedef student_t_distribution<_RealType> distribution_type; |
| 3242 | |
| 3243 | explicit |
| 3244 | param_type(_RealType __n = _RealType(1)) |
| 3245 | : _M_n(__n) |
| 3246 | { } |
| 3247 | |
| 3248 | _RealType |
| 3249 | n() const |
| 3250 | { return _M_n; } |
| 3251 | |
| 3252 | friend bool |
| 3253 | operator==(const param_type& __p1, const param_type& __p2) |
| 3254 | { return __p1._M_n == __p2._M_n; } |
| 3255 | |
| 3256 | friend bool |
| 3257 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3258 | { return !(__p1 == __p2); } |
| 3259 | |
| 3260 | private: |
| 3261 | _RealType _M_n; |
| 3262 | }; |
| 3263 | |
| 3264 | explicit |
| 3265 | student_t_distribution(_RealType __n = _RealType(1)) |
| 3266 | : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2) |
| 3267 | { } |
| 3268 | |
| 3269 | explicit |
| 3270 | student_t_distribution(const param_type& __p) |
| 3271 | : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2) |
| 3272 | { } |
| 3273 | |
| 3274 | /** |
| 3275 | * @brief Resets the distribution state. |
| 3276 | */ |
| 3277 | void |
| 3278 | reset() |
| 3279 | { |
| 3280 | _M_nd.reset(); |
| 3281 | _M_gd.reset(); |
| 3282 | } |
| 3283 | |
| 3284 | /** |
| 3285 | * |
| 3286 | */ |
| 3287 | _RealType |
| 3288 | n() const |
| 3289 | { return _M_param.n(); } |
| 3290 | |
| 3291 | /** |
| 3292 | * @brief Returns the parameter set of the distribution. |
| 3293 | */ |
| 3294 | param_type |
| 3295 | param() const |
| 3296 | { return _M_param; } |
| 3297 | |
| 3298 | /** |
| 3299 | * @brief Sets the parameter set of the distribution. |
| 3300 | * @param __param The new parameter set of the distribution. |
| 3301 | */ |
| 3302 | void |
| 3303 | param(const param_type& __param) |
| 3304 | { _M_param = __param; } |
| 3305 | |
| 3306 | /** |
| 3307 | * @brief Returns the greatest lower bound value of the distribution. |
| 3308 | */ |
| 3309 | result_type |
| 3310 | min() const |
| 3311 | { return std::numeric_limits<result_type>::lowest(); } |
| 3312 | |
| 3313 | /** |
| 3314 | * @brief Returns the least upper bound value of the distribution. |
| 3315 | */ |
| 3316 | result_type |
| 3317 | max() const |
| 3318 | { return std::numeric_limits<result_type>::max(); } |
| 3319 | |
| 3320 | /** |
| 3321 | * @brief Generating functions. |
| 3322 | */ |
| 3323 | template<typename _UniformRandomNumberGenerator> |
| 3324 | result_type |
| 3325 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3326 | { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); } |
| 3327 | |
| 3328 | template<typename _UniformRandomNumberGenerator> |
| 3329 | result_type |
| 3330 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3331 | const param_type& __p) |
| 3332 | { |
| 3333 | typedef typename std::gamma_distribution<result_type>::param_type |
| 3334 | param_type; |
| 3335 | |
| 3336 | const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2)); |
| 3337 | return _M_nd(__urng) * std::sqrt(__p.n() / __g); |
| 3338 | } |
| 3339 | |
| 3340 | template<typename _ForwardIterator, |
| 3341 | typename _UniformRandomNumberGenerator> |
| 3342 | void |
| 3343 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3344 | _UniformRandomNumberGenerator& __urng) |
| 3345 | { this->__generate_impl(__f, __t, __urng); } |
| 3346 | |
| 3347 | template<typename _ForwardIterator, |
| 3348 | typename _UniformRandomNumberGenerator> |
| 3349 | void |
| 3350 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3351 | _UniformRandomNumberGenerator& __urng, |
| 3352 | const param_type& __p) |
| 3353 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3354 | |
| 3355 | template<typename _UniformRandomNumberGenerator> |
| 3356 | void |
| 3357 | __generate(result_type* __f, result_type* __t, |
| 3358 | _UniformRandomNumberGenerator& __urng) |
| 3359 | { this->__generate_impl(__f, __t, __urng); } |
| 3360 | |
| 3361 | template<typename _UniformRandomNumberGenerator> |
| 3362 | void |
| 3363 | __generate(result_type* __f, result_type* __t, |
| 3364 | _UniformRandomNumberGenerator& __urng, |
| 3365 | const param_type& __p) |
| 3366 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3367 | |
| 3368 | /** |
| 3369 | * @brief Return true if two Student t distributions have |
| 3370 | * the same parameters and the sequences that would |
| 3371 | * be generated are equal. |
| 3372 | */ |
| 3373 | friend bool |
| 3374 | operator==(const student_t_distribution& __d1, |
| 3375 | const student_t_distribution& __d2) |
| 3376 | { return (__d1._M_param == __d2._M_param |
| 3377 | && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); } |
| 3378 | |
| 3379 | /** |
| 3380 | * @brief Inserts a %student_t_distribution random number distribution |
| 3381 | * @p __x into the output stream @p __os. |
| 3382 | * |
| 3383 | * @param __os An output stream. |
| 3384 | * @param __x A %student_t_distribution random number distribution. |
| 3385 | * |
| 3386 | * @returns The output stream with the state of @p __x inserted or in |
| 3387 | * an error state. |
| 3388 | */ |
| 3389 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3390 | friend std::basic_ostream<_CharT, _Traits>& |
| 3391 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3392 | const std::student_t_distribution<_RealType1>& __x); |
| 3393 | |
| 3394 | /** |
| 3395 | * @brief Extracts a %student_t_distribution random number distribution |
| 3396 | * @p __x from the input stream @p __is. |
| 3397 | * |
| 3398 | * @param __is An input stream. |
| 3399 | * @param __x A %student_t_distribution random number |
| 3400 | * generator engine. |
| 3401 | * |
| 3402 | * @returns The input stream with @p __x extracted or in an error state. |
| 3403 | */ |
| 3404 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3405 | friend std::basic_istream<_CharT, _Traits>& |
| 3406 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3407 | std::student_t_distribution<_RealType1>& __x); |
| 3408 | |
| 3409 | private: |
| 3410 | template<typename _ForwardIterator, |
| 3411 | typename _UniformRandomNumberGenerator> |
| 3412 | void |
| 3413 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3414 | _UniformRandomNumberGenerator& __urng); |
| 3415 | template<typename _ForwardIterator, |
| 3416 | typename _UniformRandomNumberGenerator> |
| 3417 | void |
| 3418 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3419 | _UniformRandomNumberGenerator& __urng, |
| 3420 | const param_type& __p); |
| 3421 | |
| 3422 | param_type _M_param; |
| 3423 | |
| 3424 | std::normal_distribution<result_type> _M_nd; |
| 3425 | std::gamma_distribution<result_type> _M_gd; |
| 3426 | }; |
| 3427 | |
| 3428 | /** |
| 3429 | * @brief Return true if two Student t distributions are different. |
| 3430 | */ |
| 3431 | template<typename _RealType> |
| 3432 | inline bool |
| 3433 | operator!=(const std::student_t_distribution<_RealType>& __d1, |
| 3434 | const std::student_t_distribution<_RealType>& __d2) |
| 3435 | { return !(__d1 == __d2); } |
| 3436 | |
| 3437 | |
| 3438 | /* @} */ // group random_distributions_normal |
| 3439 | |
| 3440 | /** |
| 3441 | * @addtogroup random_distributions_bernoulli Bernoulli Distributions |
| 3442 | * @ingroup random_distributions |
| 3443 | * @{ |
| 3444 | */ |
| 3445 | |
| 3446 | /** |
| 3447 | * @brief A Bernoulli random number distribution. |
| 3448 | * |
| 3449 | * Generates a sequence of true and false values with likelihood @f$p@f$ |
| 3450 | * that true will come up and @f$(1 - p)@f$ that false will appear. |
| 3451 | */ |
| 3452 | class bernoulli_distribution |
| 3453 | { |
| 3454 | public: |
| 3455 | /** The type of the range of the distribution. */ |
| 3456 | typedef bool result_type; |
| 3457 | |
| 3458 | /** Parameter type. */ |
| 3459 | struct param_type |
| 3460 | { |
| 3461 | typedef bernoulli_distribution distribution_type; |
| 3462 | |
| 3463 | explicit |
| 3464 | param_type(double __p = 0.5) |
| 3465 | : _M_p(__p) |
| 3466 | { |
| 3467 | __glibcxx_assert((_M_p >= 0.0) && (_M_p <= 1.0)); |
| 3468 | } |
| 3469 | |
| 3470 | double |
| 3471 | p() const |
| 3472 | { return _M_p; } |
| 3473 | |
| 3474 | friend bool |
| 3475 | operator==(const param_type& __p1, const param_type& __p2) |
| 3476 | { return __p1._M_p == __p2._M_p; } |
| 3477 | |
| 3478 | friend bool |
| 3479 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3480 | { return !(__p1 == __p2); } |
| 3481 | |
| 3482 | private: |
| 3483 | double _M_p; |
| 3484 | }; |
| 3485 | |
| 3486 | public: |
| 3487 | /** |
| 3488 | * @brief Constructs a Bernoulli distribution with likelihood @p p. |
| 3489 | * |
| 3490 | * @param __p [IN] The likelihood of a true result being returned. |
| 3491 | * Must be in the interval @f$[0, 1]@f$. |
| 3492 | */ |
| 3493 | explicit |
| 3494 | bernoulli_distribution(double __p = 0.5) |
| 3495 | : _M_param(__p) |
| 3496 | { } |
| 3497 | |
| 3498 | explicit |
| 3499 | bernoulli_distribution(const param_type& __p) |
| 3500 | : _M_param(__p) |
| 3501 | { } |
| 3502 | |
| 3503 | /** |
| 3504 | * @brief Resets the distribution state. |
| 3505 | * |
| 3506 | * Does nothing for a Bernoulli distribution. |
| 3507 | */ |
| 3508 | void |
| 3509 | reset() { } |
| 3510 | |
| 3511 | /** |
| 3512 | * @brief Returns the @p p parameter of the distribution. |
| 3513 | */ |
| 3514 | double |
| 3515 | p() const |
| 3516 | { return _M_param.p(); } |
| 3517 | |
| 3518 | /** |
| 3519 | * @brief Returns the parameter set of the distribution. |
| 3520 | */ |
| 3521 | param_type |
| 3522 | param() const |
| 3523 | { return _M_param; } |
| 3524 | |
| 3525 | /** |
| 3526 | * @brief Sets the parameter set of the distribution. |
| 3527 | * @param __param The new parameter set of the distribution. |
| 3528 | */ |
| 3529 | void |
| 3530 | param(const param_type& __param) |
| 3531 | { _M_param = __param; } |
| 3532 | |
| 3533 | /** |
| 3534 | * @brief Returns the greatest lower bound value of the distribution. |
| 3535 | */ |
| 3536 | result_type |
| 3537 | min() const |
| 3538 | { return std::numeric_limits<result_type>::min(); } |
| 3539 | |
| 3540 | /** |
| 3541 | * @brief Returns the least upper bound value of the distribution. |
| 3542 | */ |
| 3543 | result_type |
| 3544 | max() const |
| 3545 | { return std::numeric_limits<result_type>::max(); } |
| 3546 | |
| 3547 | /** |
| 3548 | * @brief Generating functions. |
| 3549 | */ |
| 3550 | template<typename _UniformRandomNumberGenerator> |
| 3551 | result_type |
| 3552 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3553 | { return this->operator()(__urng, _M_param); } |
| 3554 | |
| 3555 | template<typename _UniformRandomNumberGenerator> |
| 3556 | result_type |
| 3557 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3558 | const param_type& __p) |
| 3559 | { |
| 3560 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 3561 | __aurng(__urng); |
| 3562 | if ((__aurng() - __aurng.min()) |
| 3563 | < __p.p() * (__aurng.max() - __aurng.min())) |
| 3564 | return true; |
| 3565 | return false; |
| 3566 | } |
| 3567 | |
| 3568 | template<typename _ForwardIterator, |
| 3569 | typename _UniformRandomNumberGenerator> |
| 3570 | void |
| 3571 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3572 | _UniformRandomNumberGenerator& __urng) |
| 3573 | { this->__generate(__f, __t, __urng, _M_param); } |
| 3574 | |
| 3575 | template<typename _ForwardIterator, |
| 3576 | typename _UniformRandomNumberGenerator> |
| 3577 | void |
| 3578 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3579 | _UniformRandomNumberGenerator& __urng, const param_type& __p) |
| 3580 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3581 | |
| 3582 | template<typename _UniformRandomNumberGenerator> |
| 3583 | void |
| 3584 | __generate(result_type* __f, result_type* __t, |
| 3585 | _UniformRandomNumberGenerator& __urng, |
| 3586 | const param_type& __p) |
| 3587 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3588 | |
| 3589 | /** |
| 3590 | * @brief Return true if two Bernoulli distributions have |
| 3591 | * the same parameters. |
| 3592 | */ |
| 3593 | friend bool |
| 3594 | operator==(const bernoulli_distribution& __d1, |
| 3595 | const bernoulli_distribution& __d2) |
| 3596 | { return __d1._M_param == __d2._M_param; } |
| 3597 | |
| 3598 | private: |
| 3599 | template<typename _ForwardIterator, |
| 3600 | typename _UniformRandomNumberGenerator> |
| 3601 | void |
| 3602 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3603 | _UniformRandomNumberGenerator& __urng, |
| 3604 | const param_type& __p); |
| 3605 | |
| 3606 | param_type _M_param; |
| 3607 | }; |
| 3608 | |
| 3609 | /** |
| 3610 | * @brief Return true if two Bernoulli distributions have |
| 3611 | * different parameters. |
| 3612 | */ |
| 3613 | inline bool |
| 3614 | operator!=(const std::bernoulli_distribution& __d1, |
| 3615 | const std::bernoulli_distribution& __d2) |
| 3616 | { return !(__d1 == __d2); } |
| 3617 | |
| 3618 | /** |
| 3619 | * @brief Inserts a %bernoulli_distribution random number distribution |
| 3620 | * @p __x into the output stream @p __os. |
| 3621 | * |
| 3622 | * @param __os An output stream. |
| 3623 | * @param __x A %bernoulli_distribution random number distribution. |
| 3624 | * |
| 3625 | * @returns The output stream with the state of @p __x inserted or in |
| 3626 | * an error state. |
| 3627 | */ |
| 3628 | template<typename _CharT, typename _Traits> |
| 3629 | std::basic_ostream<_CharT, _Traits>& |
| 3630 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3631 | const std::bernoulli_distribution& __x); |
| 3632 | |
| 3633 | /** |
| 3634 | * @brief Extracts a %bernoulli_distribution random number distribution |
| 3635 | * @p __x from the input stream @p __is. |
| 3636 | * |
| 3637 | * @param __is An input stream. |
| 3638 | * @param __x A %bernoulli_distribution random number generator engine. |
| 3639 | * |
| 3640 | * @returns The input stream with @p __x extracted or in an error state. |
| 3641 | */ |
| 3642 | template<typename _CharT, typename _Traits> |
| 3643 | std::basic_istream<_CharT, _Traits>& |
| 3644 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3645 | std::bernoulli_distribution& __x) |
| 3646 | { |
| 3647 | double __p; |
| 3648 | __is >> __p; |
| 3649 | __x.param(bernoulli_distribution::param_type(__p)); |
| 3650 | return __is; |
| 3651 | } |
| 3652 | |
| 3653 | |
| 3654 | /** |
| 3655 | * @brief A discrete binomial random number distribution. |
| 3656 | * |
| 3657 | * The formula for the binomial probability density function is |
| 3658 | * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
| 3659 | * and @f$p@f$ are the parameters of the distribution. |
| 3660 | */ |
| 3661 | template<typename _IntType = int> |
| 3662 | class binomial_distribution |
| 3663 | { |
| 3664 | static_assert(std::is_integral<_IntType>::value, |
| 3665 | "result_type must be an integral type" ); |
| 3666 | |
| 3667 | public: |
| 3668 | /** The type of the range of the distribution. */ |
| 3669 | typedef _IntType result_type; |
| 3670 | |
| 3671 | /** Parameter type. */ |
| 3672 | struct param_type |
| 3673 | { |
| 3674 | typedef binomial_distribution<_IntType> distribution_type; |
| 3675 | friend class binomial_distribution<_IntType>; |
| 3676 | |
| 3677 | explicit |
| 3678 | param_type(_IntType __t = _IntType(1), double __p = 0.5) |
| 3679 | : _M_t(__t), _M_p(__p) |
| 3680 | { |
| 3681 | __glibcxx_assert((_M_t >= _IntType(0)) |
| 3682 | && (_M_p >= 0.0) |
| 3683 | && (_M_p <= 1.0)); |
| 3684 | _M_initialize(); |
| 3685 | } |
| 3686 | |
| 3687 | _IntType |
| 3688 | t() const |
| 3689 | { return _M_t; } |
| 3690 | |
| 3691 | double |
| 3692 | p() const |
| 3693 | { return _M_p; } |
| 3694 | |
| 3695 | friend bool |
| 3696 | operator==(const param_type& __p1, const param_type& __p2) |
| 3697 | { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; } |
| 3698 | |
| 3699 | friend bool |
| 3700 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3701 | { return !(__p1 == __p2); } |
| 3702 | |
| 3703 | private: |
| 3704 | void |
| 3705 | _M_initialize(); |
| 3706 | |
| 3707 | _IntType _M_t; |
| 3708 | double _M_p; |
| 3709 | |
| 3710 | double _M_q; |
| 3711 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 3712 | double _M_d1, _M_d2, _M_s1, _M_s2, _M_c, |
| 3713 | _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p; |
| 3714 | #endif |
| 3715 | bool _M_easy; |
| 3716 | }; |
| 3717 | |
| 3718 | // constructors and member function |
| 3719 | explicit |
| 3720 | binomial_distribution(_IntType __t = _IntType(1), |
| 3721 | double __p = 0.5) |
| 3722 | : _M_param(__t, __p), _M_nd() |
| 3723 | { } |
| 3724 | |
| 3725 | explicit |
| 3726 | binomial_distribution(const param_type& __p) |
| 3727 | : _M_param(__p), _M_nd() |
| 3728 | { } |
| 3729 | |
| 3730 | /** |
| 3731 | * @brief Resets the distribution state. |
| 3732 | */ |
| 3733 | void |
| 3734 | reset() |
| 3735 | { _M_nd.reset(); } |
| 3736 | |
| 3737 | /** |
| 3738 | * @brief Returns the distribution @p t parameter. |
| 3739 | */ |
| 3740 | _IntType |
| 3741 | t() const |
| 3742 | { return _M_param.t(); } |
| 3743 | |
| 3744 | /** |
| 3745 | * @brief Returns the distribution @p p parameter. |
| 3746 | */ |
| 3747 | double |
| 3748 | p() const |
| 3749 | { return _M_param.p(); } |
| 3750 | |
| 3751 | /** |
| 3752 | * @brief Returns the parameter set of the distribution. |
| 3753 | */ |
| 3754 | param_type |
| 3755 | param() const |
| 3756 | { return _M_param; } |
| 3757 | |
| 3758 | /** |
| 3759 | * @brief Sets the parameter set of the distribution. |
| 3760 | * @param __param The new parameter set of the distribution. |
| 3761 | */ |
| 3762 | void |
| 3763 | param(const param_type& __param) |
| 3764 | { _M_param = __param; } |
| 3765 | |
| 3766 | /** |
| 3767 | * @brief Returns the greatest lower bound value of the distribution. |
| 3768 | */ |
| 3769 | result_type |
| 3770 | min() const |
| 3771 | { return 0; } |
| 3772 | |
| 3773 | /** |
| 3774 | * @brief Returns the least upper bound value of the distribution. |
| 3775 | */ |
| 3776 | result_type |
| 3777 | max() const |
| 3778 | { return _M_param.t(); } |
| 3779 | |
| 3780 | /** |
| 3781 | * @brief Generating functions. |
| 3782 | */ |
| 3783 | template<typename _UniformRandomNumberGenerator> |
| 3784 | result_type |
| 3785 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3786 | { return this->operator()(__urng, _M_param); } |
| 3787 | |
| 3788 | template<typename _UniformRandomNumberGenerator> |
| 3789 | result_type |
| 3790 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3791 | const param_type& __p); |
| 3792 | |
| 3793 | template<typename _ForwardIterator, |
| 3794 | typename _UniformRandomNumberGenerator> |
| 3795 | void |
| 3796 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3797 | _UniformRandomNumberGenerator& __urng) |
| 3798 | { this->__generate(__f, __t, __urng, _M_param); } |
| 3799 | |
| 3800 | template<typename _ForwardIterator, |
| 3801 | typename _UniformRandomNumberGenerator> |
| 3802 | void |
| 3803 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3804 | _UniformRandomNumberGenerator& __urng, |
| 3805 | const param_type& __p) |
| 3806 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3807 | |
| 3808 | template<typename _UniformRandomNumberGenerator> |
| 3809 | void |
| 3810 | __generate(result_type* __f, result_type* __t, |
| 3811 | _UniformRandomNumberGenerator& __urng, |
| 3812 | const param_type& __p) |
| 3813 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3814 | |
| 3815 | /** |
| 3816 | * @brief Return true if two binomial distributions have |
| 3817 | * the same parameters and the sequences that would |
| 3818 | * be generated are equal. |
| 3819 | */ |
| 3820 | friend bool |
| 3821 | operator==(const binomial_distribution& __d1, |
| 3822 | const binomial_distribution& __d2) |
| 3823 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
| 3824 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
| 3825 | #else |
| 3826 | { return __d1._M_param == __d2._M_param; } |
| 3827 | #endif |
| 3828 | |
| 3829 | /** |
| 3830 | * @brief Inserts a %binomial_distribution random number distribution |
| 3831 | * @p __x into the output stream @p __os. |
| 3832 | * |
| 3833 | * @param __os An output stream. |
| 3834 | * @param __x A %binomial_distribution random number distribution. |
| 3835 | * |
| 3836 | * @returns The output stream with the state of @p __x inserted or in |
| 3837 | * an error state. |
| 3838 | */ |
| 3839 | template<typename _IntType1, |
| 3840 | typename _CharT, typename _Traits> |
| 3841 | friend std::basic_ostream<_CharT, _Traits>& |
| 3842 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3843 | const std::binomial_distribution<_IntType1>& __x); |
| 3844 | |
| 3845 | /** |
| 3846 | * @brief Extracts a %binomial_distribution random number distribution |
| 3847 | * @p __x from the input stream @p __is. |
| 3848 | * |
| 3849 | * @param __is An input stream. |
| 3850 | * @param __x A %binomial_distribution random number generator engine. |
| 3851 | * |
| 3852 | * @returns The input stream with @p __x extracted or in an error |
| 3853 | * state. |
| 3854 | */ |
| 3855 | template<typename _IntType1, |
| 3856 | typename _CharT, typename _Traits> |
| 3857 | friend std::basic_istream<_CharT, _Traits>& |
| 3858 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3859 | std::binomial_distribution<_IntType1>& __x); |
| 3860 | |
| 3861 | private: |
| 3862 | template<typename _ForwardIterator, |
| 3863 | typename _UniformRandomNumberGenerator> |
| 3864 | void |
| 3865 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3866 | _UniformRandomNumberGenerator& __urng, |
| 3867 | const param_type& __p); |
| 3868 | |
| 3869 | template<typename _UniformRandomNumberGenerator> |
| 3870 | result_type |
| 3871 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
| 3872 | _IntType __t, double __q); |
| 3873 | |
| 3874 | param_type _M_param; |
| 3875 | |
| 3876 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
| 3877 | std::normal_distribution<double> _M_nd; |
| 3878 | }; |
| 3879 | |
| 3880 | /** |
| 3881 | * @brief Return true if two binomial distributions are different. |
| 3882 | */ |
| 3883 | template<typename _IntType> |
| 3884 | inline bool |
| 3885 | operator!=(const std::binomial_distribution<_IntType>& __d1, |
| 3886 | const std::binomial_distribution<_IntType>& __d2) |
| 3887 | { return !(__d1 == __d2); } |
| 3888 | |
| 3889 | |
| 3890 | /** |
| 3891 | * @brief A discrete geometric random number distribution. |
| 3892 | * |
| 3893 | * The formula for the geometric probability density function is |
| 3894 | * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the |
| 3895 | * distribution. |
| 3896 | */ |
| 3897 | template<typename _IntType = int> |
| 3898 | class geometric_distribution |
| 3899 | { |
| 3900 | static_assert(std::is_integral<_IntType>::value, |
| 3901 | "result_type must be an integral type" ); |
| 3902 | |
| 3903 | public: |
| 3904 | /** The type of the range of the distribution. */ |
| 3905 | typedef _IntType result_type; |
| 3906 | |
| 3907 | /** Parameter type. */ |
| 3908 | struct param_type |
| 3909 | { |
| 3910 | typedef geometric_distribution<_IntType> distribution_type; |
| 3911 | friend class geometric_distribution<_IntType>; |
| 3912 | |
| 3913 | explicit |
| 3914 | param_type(double __p = 0.5) |
| 3915 | : _M_p(__p) |
| 3916 | { |
| 3917 | __glibcxx_assert((_M_p > 0.0) && (_M_p < 1.0)); |
| 3918 | _M_initialize(); |
| 3919 | } |
| 3920 | |
| 3921 | double |
| 3922 | p() const |
| 3923 | { return _M_p; } |
| 3924 | |
| 3925 | friend bool |
| 3926 | operator==(const param_type& __p1, const param_type& __p2) |
| 3927 | { return __p1._M_p == __p2._M_p; } |
| 3928 | |
| 3929 | friend bool |
| 3930 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3931 | { return !(__p1 == __p2); } |
| 3932 | |
| 3933 | private: |
| 3934 | void |
| 3935 | _M_initialize() |
| 3936 | { _M_log_1_p = std::log(1.0 - _M_p); } |
| 3937 | |
| 3938 | double _M_p; |
| 3939 | |
| 3940 | double _M_log_1_p; |
| 3941 | }; |
| 3942 | |
| 3943 | // constructors and member function |
| 3944 | explicit |
| 3945 | geometric_distribution(double __p = 0.5) |
| 3946 | : _M_param(__p) |
| 3947 | { } |
| 3948 | |
| 3949 | explicit |
| 3950 | geometric_distribution(const param_type& __p) |
| 3951 | : _M_param(__p) |
| 3952 | { } |
| 3953 | |
| 3954 | /** |
| 3955 | * @brief Resets the distribution state. |
| 3956 | * |
| 3957 | * Does nothing for the geometric distribution. |
| 3958 | */ |
| 3959 | void |
| 3960 | reset() { } |
| 3961 | |
| 3962 | /** |
| 3963 | * @brief Returns the distribution parameter @p p. |
| 3964 | */ |
| 3965 | double |
| 3966 | p() const |
| 3967 | { return _M_param.p(); } |
| 3968 | |
| 3969 | /** |
| 3970 | * @brief Returns the parameter set of the distribution. |
| 3971 | */ |
| 3972 | param_type |
| 3973 | param() const |
| 3974 | { return _M_param; } |
| 3975 | |
| 3976 | /** |
| 3977 | * @brief Sets the parameter set of the distribution. |
| 3978 | * @param __param The new parameter set of the distribution. |
| 3979 | */ |
| 3980 | void |
| 3981 | param(const param_type& __param) |
| 3982 | { _M_param = __param; } |
| 3983 | |
| 3984 | /** |
| 3985 | * @brief Returns the greatest lower bound value of the distribution. |
| 3986 | */ |
| 3987 | result_type |
| 3988 | min() const |
| 3989 | { return 0; } |
| 3990 | |
| 3991 | /** |
| 3992 | * @brief Returns the least upper bound value of the distribution. |
| 3993 | */ |
| 3994 | result_type |
| 3995 | max() const |
| 3996 | { return std::numeric_limits<result_type>::max(); } |
| 3997 | |
| 3998 | /** |
| 3999 | * @brief Generating functions. |
| 4000 | */ |
| 4001 | template<typename _UniformRandomNumberGenerator> |
| 4002 | result_type |
| 4003 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4004 | { return this->operator()(__urng, _M_param); } |
| 4005 | |
| 4006 | template<typename _UniformRandomNumberGenerator> |
| 4007 | result_type |
| 4008 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4009 | const param_type& __p); |
| 4010 | |
| 4011 | template<typename _ForwardIterator, |
| 4012 | typename _UniformRandomNumberGenerator> |
| 4013 | void |
| 4014 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4015 | _UniformRandomNumberGenerator& __urng) |
| 4016 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4017 | |
| 4018 | template<typename _ForwardIterator, |
| 4019 | typename _UniformRandomNumberGenerator> |
| 4020 | void |
| 4021 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4022 | _UniformRandomNumberGenerator& __urng, |
| 4023 | const param_type& __p) |
| 4024 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4025 | |
| 4026 | template<typename _UniformRandomNumberGenerator> |
| 4027 | void |
| 4028 | __generate(result_type* __f, result_type* __t, |
| 4029 | _UniformRandomNumberGenerator& __urng, |
| 4030 | const param_type& __p) |
| 4031 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4032 | |
| 4033 | /** |
| 4034 | * @brief Return true if two geometric distributions have |
| 4035 | * the same parameters. |
| 4036 | */ |
| 4037 | friend bool |
| 4038 | operator==(const geometric_distribution& __d1, |
| 4039 | const geometric_distribution& __d2) |
| 4040 | { return __d1._M_param == __d2._M_param; } |
| 4041 | |
| 4042 | private: |
| 4043 | template<typename _ForwardIterator, |
| 4044 | typename _UniformRandomNumberGenerator> |
| 4045 | void |
| 4046 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4047 | _UniformRandomNumberGenerator& __urng, |
| 4048 | const param_type& __p); |
| 4049 | |
| 4050 | param_type _M_param; |
| 4051 | }; |
| 4052 | |
| 4053 | /** |
| 4054 | * @brief Return true if two geometric distributions have |
| 4055 | * different parameters. |
| 4056 | */ |
| 4057 | template<typename _IntType> |
| 4058 | inline bool |
| 4059 | operator!=(const std::geometric_distribution<_IntType>& __d1, |
| 4060 | const std::geometric_distribution<_IntType>& __d2) |
| 4061 | { return !(__d1 == __d2); } |
| 4062 | |
| 4063 | /** |
| 4064 | * @brief Inserts a %geometric_distribution random number distribution |
| 4065 | * @p __x into the output stream @p __os. |
| 4066 | * |
| 4067 | * @param __os An output stream. |
| 4068 | * @param __x A %geometric_distribution random number distribution. |
| 4069 | * |
| 4070 | * @returns The output stream with the state of @p __x inserted or in |
| 4071 | * an error state. |
| 4072 | */ |
| 4073 | template<typename _IntType, |
| 4074 | typename _CharT, typename _Traits> |
| 4075 | std::basic_ostream<_CharT, _Traits>& |
| 4076 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4077 | const std::geometric_distribution<_IntType>& __x); |
| 4078 | |
| 4079 | /** |
| 4080 | * @brief Extracts a %geometric_distribution random number distribution |
| 4081 | * @p __x from the input stream @p __is. |
| 4082 | * |
| 4083 | * @param __is An input stream. |
| 4084 | * @param __x A %geometric_distribution random number generator engine. |
| 4085 | * |
| 4086 | * @returns The input stream with @p __x extracted or in an error state. |
| 4087 | */ |
| 4088 | template<typename _IntType, |
| 4089 | typename _CharT, typename _Traits> |
| 4090 | std::basic_istream<_CharT, _Traits>& |
| 4091 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4092 | std::geometric_distribution<_IntType>& __x); |
| 4093 | |
| 4094 | |
| 4095 | /** |
| 4096 | * @brief A negative_binomial_distribution random number distribution. |
| 4097 | * |
| 4098 | * The formula for the negative binomial probability mass function is |
| 4099 | * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
| 4100 | * and @f$p@f$ are the parameters of the distribution. |
| 4101 | */ |
| 4102 | template<typename _IntType = int> |
| 4103 | class negative_binomial_distribution |
| 4104 | { |
| 4105 | static_assert(std::is_integral<_IntType>::value, |
| 4106 | "result_type must be an integral type" ); |
| 4107 | |
| 4108 | public: |
| 4109 | /** The type of the range of the distribution. */ |
| 4110 | typedef _IntType result_type; |
| 4111 | |
| 4112 | /** Parameter type. */ |
| 4113 | struct param_type |
| 4114 | { |
| 4115 | typedef negative_binomial_distribution<_IntType> distribution_type; |
| 4116 | |
| 4117 | explicit |
| 4118 | param_type(_IntType __k = 1, double __p = 0.5) |
| 4119 | : _M_k(__k), _M_p(__p) |
| 4120 | { |
| 4121 | __glibcxx_assert((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0)); |
| 4122 | } |
| 4123 | |
| 4124 | _IntType |
| 4125 | k() const |
| 4126 | { return _M_k; } |
| 4127 | |
| 4128 | double |
| 4129 | p() const |
| 4130 | { return _M_p; } |
| 4131 | |
| 4132 | friend bool |
| 4133 | operator==(const param_type& __p1, const param_type& __p2) |
| 4134 | { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; } |
| 4135 | |
| 4136 | friend bool |
| 4137 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4138 | { return !(__p1 == __p2); } |
| 4139 | |
| 4140 | private: |
| 4141 | _IntType _M_k; |
| 4142 | double _M_p; |
| 4143 | }; |
| 4144 | |
| 4145 | explicit |
| 4146 | negative_binomial_distribution(_IntType __k = 1, double __p = 0.5) |
| 4147 | : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p) |
| 4148 | { } |
| 4149 | |
| 4150 | explicit |
| 4151 | negative_binomial_distribution(const param_type& __p) |
| 4152 | : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p()) |
| 4153 | { } |
| 4154 | |
| 4155 | /** |
| 4156 | * @brief Resets the distribution state. |
| 4157 | */ |
| 4158 | void |
| 4159 | reset() |
| 4160 | { _M_gd.reset(); } |
| 4161 | |
| 4162 | /** |
| 4163 | * @brief Return the @f$k@f$ parameter of the distribution. |
| 4164 | */ |
| 4165 | _IntType |
| 4166 | k() const |
| 4167 | { return _M_param.k(); } |
| 4168 | |
| 4169 | /** |
| 4170 | * @brief Return the @f$p@f$ parameter of the distribution. |
| 4171 | */ |
| 4172 | double |
| 4173 | p() const |
| 4174 | { return _M_param.p(); } |
| 4175 | |
| 4176 | /** |
| 4177 | * @brief Returns the parameter set of the distribution. |
| 4178 | */ |
| 4179 | param_type |
| 4180 | param() const |
| 4181 | { return _M_param; } |
| 4182 | |
| 4183 | /** |
| 4184 | * @brief Sets the parameter set of the distribution. |
| 4185 | * @param __param The new parameter set of the distribution. |
| 4186 | */ |
| 4187 | void |
| 4188 | param(const param_type& __param) |
| 4189 | { _M_param = __param; } |
| 4190 | |
| 4191 | /** |
| 4192 | * @brief Returns the greatest lower bound value of the distribution. |
| 4193 | */ |
| 4194 | result_type |
| 4195 | min() const |
| 4196 | { return result_type(0); } |
| 4197 | |
| 4198 | /** |
| 4199 | * @brief Returns the least upper bound value of the distribution. |
| 4200 | */ |
| 4201 | result_type |
| 4202 | max() const |
| 4203 | { return std::numeric_limits<result_type>::max(); } |
| 4204 | |
| 4205 | /** |
| 4206 | * @brief Generating functions. |
| 4207 | */ |
| 4208 | template<typename _UniformRandomNumberGenerator> |
| 4209 | result_type |
| 4210 | operator()(_UniformRandomNumberGenerator& __urng); |
| 4211 | |
| 4212 | template<typename _UniformRandomNumberGenerator> |
| 4213 | result_type |
| 4214 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4215 | const param_type& __p); |
| 4216 | |
| 4217 | template<typename _ForwardIterator, |
| 4218 | typename _UniformRandomNumberGenerator> |
| 4219 | void |
| 4220 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4221 | _UniformRandomNumberGenerator& __urng) |
| 4222 | { this->__generate_impl(__f, __t, __urng); } |
| 4223 | |
| 4224 | template<typename _ForwardIterator, |
| 4225 | typename _UniformRandomNumberGenerator> |
| 4226 | void |
| 4227 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4228 | _UniformRandomNumberGenerator& __urng, |
| 4229 | const param_type& __p) |
| 4230 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4231 | |
| 4232 | template<typename _UniformRandomNumberGenerator> |
| 4233 | void |
| 4234 | __generate(result_type* __f, result_type* __t, |
| 4235 | _UniformRandomNumberGenerator& __urng) |
| 4236 | { this->__generate_impl(__f, __t, __urng); } |
| 4237 | |
| 4238 | template<typename _UniformRandomNumberGenerator> |
| 4239 | void |
| 4240 | __generate(result_type* __f, result_type* __t, |
| 4241 | _UniformRandomNumberGenerator& __urng, |
| 4242 | const param_type& __p) |
| 4243 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4244 | |
| 4245 | /** |
| 4246 | * @brief Return true if two negative binomial distributions have |
| 4247 | * the same parameters and the sequences that would be |
| 4248 | * generated are equal. |
| 4249 | */ |
| 4250 | friend bool |
| 4251 | operator==(const negative_binomial_distribution& __d1, |
| 4252 | const negative_binomial_distribution& __d2) |
| 4253 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
| 4254 | |
| 4255 | /** |
| 4256 | * @brief Inserts a %negative_binomial_distribution random |
| 4257 | * number distribution @p __x into the output stream @p __os. |
| 4258 | * |
| 4259 | * @param __os An output stream. |
| 4260 | * @param __x A %negative_binomial_distribution random number |
| 4261 | * distribution. |
| 4262 | * |
| 4263 | * @returns The output stream with the state of @p __x inserted or in |
| 4264 | * an error state. |
| 4265 | */ |
| 4266 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4267 | friend std::basic_ostream<_CharT, _Traits>& |
| 4268 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4269 | const std::negative_binomial_distribution<_IntType1>& __x); |
| 4270 | |
| 4271 | /** |
| 4272 | * @brief Extracts a %negative_binomial_distribution random number |
| 4273 | * distribution @p __x from the input stream @p __is. |
| 4274 | * |
| 4275 | * @param __is An input stream. |
| 4276 | * @param __x A %negative_binomial_distribution random number |
| 4277 | * generator engine. |
| 4278 | * |
| 4279 | * @returns The input stream with @p __x extracted or in an error state. |
| 4280 | */ |
| 4281 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4282 | friend std::basic_istream<_CharT, _Traits>& |
| 4283 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4284 | std::negative_binomial_distribution<_IntType1>& __x); |
| 4285 | |
| 4286 | private: |
| 4287 | template<typename _ForwardIterator, |
| 4288 | typename _UniformRandomNumberGenerator> |
| 4289 | void |
| 4290 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4291 | _UniformRandomNumberGenerator& __urng); |
| 4292 | template<typename _ForwardIterator, |
| 4293 | typename _UniformRandomNumberGenerator> |
| 4294 | void |
| 4295 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4296 | _UniformRandomNumberGenerator& __urng, |
| 4297 | const param_type& __p); |
| 4298 | |
| 4299 | param_type _M_param; |
| 4300 | |
| 4301 | std::gamma_distribution<double> _M_gd; |
| 4302 | }; |
| 4303 | |
| 4304 | /** |
| 4305 | * @brief Return true if two negative binomial distributions are different. |
| 4306 | */ |
| 4307 | template<typename _IntType> |
| 4308 | inline bool |
| 4309 | operator!=(const std::negative_binomial_distribution<_IntType>& __d1, |
| 4310 | const std::negative_binomial_distribution<_IntType>& __d2) |
| 4311 | { return !(__d1 == __d2); } |
| 4312 | |
| 4313 | |
| 4314 | /* @} */ // group random_distributions_bernoulli |
| 4315 | |
| 4316 | /** |
| 4317 | * @addtogroup random_distributions_poisson Poisson Distributions |
| 4318 | * @ingroup random_distributions |
| 4319 | * @{ |
| 4320 | */ |
| 4321 | |
| 4322 | /** |
| 4323 | * @brief A discrete Poisson random number distribution. |
| 4324 | * |
| 4325 | * The formula for the Poisson probability density function is |
| 4326 | * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the |
| 4327 | * parameter of the distribution. |
| 4328 | */ |
| 4329 | template<typename _IntType = int> |
| 4330 | class poisson_distribution |
| 4331 | { |
| 4332 | static_assert(std::is_integral<_IntType>::value, |
| 4333 | "result_type must be an integral type" ); |
| 4334 | |
| 4335 | public: |
| 4336 | /** The type of the range of the distribution. */ |
| 4337 | typedef _IntType result_type; |
| 4338 | |
| 4339 | /** Parameter type. */ |
| 4340 | struct param_type |
| 4341 | { |
| 4342 | typedef poisson_distribution<_IntType> distribution_type; |
| 4343 | friend class poisson_distribution<_IntType>; |
| 4344 | |
| 4345 | explicit |
| 4346 | param_type(double __mean = 1.0) |
| 4347 | : _M_mean(__mean) |
| 4348 | { |
| 4349 | __glibcxx_assert(_M_mean > 0.0); |
| 4350 | _M_initialize(); |
| 4351 | } |
| 4352 | |
| 4353 | double |
| 4354 | mean() const |
| 4355 | { return _M_mean; } |
| 4356 | |
| 4357 | friend bool |
| 4358 | operator==(const param_type& __p1, const param_type& __p2) |
| 4359 | { return __p1._M_mean == __p2._M_mean; } |
| 4360 | |
| 4361 | friend bool |
| 4362 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4363 | { return !(__p1 == __p2); } |
| 4364 | |
| 4365 | private: |
| 4366 | // Hosts either log(mean) or the threshold of the simple method. |
| 4367 | void |
| 4368 | _M_initialize(); |
| 4369 | |
| 4370 | double _M_mean; |
| 4371 | |
| 4372 | double _M_lm_thr; |
| 4373 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 4374 | double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb; |
| 4375 | #endif |
| 4376 | }; |
| 4377 | |
| 4378 | // constructors and member function |
| 4379 | explicit |
| 4380 | poisson_distribution(double __mean = 1.0) |
| 4381 | : _M_param(__mean), _M_nd() |
| 4382 | { } |
| 4383 | |
| 4384 | explicit |
| 4385 | poisson_distribution(const param_type& __p) |
| 4386 | : _M_param(__p), _M_nd() |
| 4387 | { } |
| 4388 | |
| 4389 | /** |
| 4390 | * @brief Resets the distribution state. |
| 4391 | */ |
| 4392 | void |
| 4393 | reset() |
| 4394 | { _M_nd.reset(); } |
| 4395 | |
| 4396 | /** |
| 4397 | * @brief Returns the distribution parameter @p mean. |
| 4398 | */ |
| 4399 | double |
| 4400 | mean() const |
| 4401 | { return _M_param.mean(); } |
| 4402 | |
| 4403 | /** |
| 4404 | * @brief Returns the parameter set of the distribution. |
| 4405 | */ |
| 4406 | param_type |
| 4407 | param() const |
| 4408 | { return _M_param; } |
| 4409 | |
| 4410 | /** |
| 4411 | * @brief Sets the parameter set of the distribution. |
| 4412 | * @param __param The new parameter set of the distribution. |
| 4413 | */ |
| 4414 | void |
| 4415 | param(const param_type& __param) |
| 4416 | { _M_param = __param; } |
| 4417 | |
| 4418 | /** |
| 4419 | * @brief Returns the greatest lower bound value of the distribution. |
| 4420 | */ |
| 4421 | result_type |
| 4422 | min() const |
| 4423 | { return 0; } |
| 4424 | |
| 4425 | /** |
| 4426 | * @brief Returns the least upper bound value of the distribution. |
| 4427 | */ |
| 4428 | result_type |
| 4429 | max() const |
| 4430 | { return std::numeric_limits<result_type>::max(); } |
| 4431 | |
| 4432 | /** |
| 4433 | * @brief Generating functions. |
| 4434 | */ |
| 4435 | template<typename _UniformRandomNumberGenerator> |
| 4436 | result_type |
| 4437 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4438 | { return this->operator()(__urng, _M_param); } |
| 4439 | |
| 4440 | template<typename _UniformRandomNumberGenerator> |
| 4441 | result_type |
| 4442 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4443 | const param_type& __p); |
| 4444 | |
| 4445 | template<typename _ForwardIterator, |
| 4446 | typename _UniformRandomNumberGenerator> |
| 4447 | void |
| 4448 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4449 | _UniformRandomNumberGenerator& __urng) |
| 4450 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4451 | |
| 4452 | template<typename _ForwardIterator, |
| 4453 | typename _UniformRandomNumberGenerator> |
| 4454 | void |
| 4455 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4456 | _UniformRandomNumberGenerator& __urng, |
| 4457 | const param_type& __p) |
| 4458 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4459 | |
| 4460 | template<typename _UniformRandomNumberGenerator> |
| 4461 | void |
| 4462 | __generate(result_type* __f, result_type* __t, |
| 4463 | _UniformRandomNumberGenerator& __urng, |
| 4464 | const param_type& __p) |
| 4465 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4466 | |
| 4467 | /** |
| 4468 | * @brief Return true if two Poisson distributions have the same |
| 4469 | * parameters and the sequences that would be generated |
| 4470 | * are equal. |
| 4471 | */ |
| 4472 | friend bool |
| 4473 | operator==(const poisson_distribution& __d1, |
| 4474 | const poisson_distribution& __d2) |
| 4475 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
| 4476 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
| 4477 | #else |
| 4478 | { return __d1._M_param == __d2._M_param; } |
| 4479 | #endif |
| 4480 | |
| 4481 | /** |
| 4482 | * @brief Inserts a %poisson_distribution random number distribution |
| 4483 | * @p __x into the output stream @p __os. |
| 4484 | * |
| 4485 | * @param __os An output stream. |
| 4486 | * @param __x A %poisson_distribution random number distribution. |
| 4487 | * |
| 4488 | * @returns The output stream with the state of @p __x inserted or in |
| 4489 | * an error state. |
| 4490 | */ |
| 4491 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4492 | friend std::basic_ostream<_CharT, _Traits>& |
| 4493 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4494 | const std::poisson_distribution<_IntType1>& __x); |
| 4495 | |
| 4496 | /** |
| 4497 | * @brief Extracts a %poisson_distribution random number distribution |
| 4498 | * @p __x from the input stream @p __is. |
| 4499 | * |
| 4500 | * @param __is An input stream. |
| 4501 | * @param __x A %poisson_distribution random number generator engine. |
| 4502 | * |
| 4503 | * @returns The input stream with @p __x extracted or in an error |
| 4504 | * state. |
| 4505 | */ |
| 4506 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 4507 | friend std::basic_istream<_CharT, _Traits>& |
| 4508 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4509 | std::poisson_distribution<_IntType1>& __x); |
| 4510 | |
| 4511 | private: |
| 4512 | template<typename _ForwardIterator, |
| 4513 | typename _UniformRandomNumberGenerator> |
| 4514 | void |
| 4515 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4516 | _UniformRandomNumberGenerator& __urng, |
| 4517 | const param_type& __p); |
| 4518 | |
| 4519 | param_type _M_param; |
| 4520 | |
| 4521 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
| 4522 | std::normal_distribution<double> _M_nd; |
| 4523 | }; |
| 4524 | |
| 4525 | /** |
| 4526 | * @brief Return true if two Poisson distributions are different. |
| 4527 | */ |
| 4528 | template<typename _IntType> |
| 4529 | inline bool |
| 4530 | operator!=(const std::poisson_distribution<_IntType>& __d1, |
| 4531 | const std::poisson_distribution<_IntType>& __d2) |
| 4532 | { return !(__d1 == __d2); } |
| 4533 | |
| 4534 | |
| 4535 | /** |
| 4536 | * @brief An exponential continuous distribution for random numbers. |
| 4537 | * |
| 4538 | * The formula for the exponential probability density function is |
| 4539 | * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$. |
| 4540 | * |
| 4541 | * <table border=1 cellpadding=10 cellspacing=0> |
| 4542 | * <caption align=top>Distribution Statistics</caption> |
| 4543 | * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
| 4544 | * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr> |
| 4545 | * <tr><td>Mode</td><td>@f$zero@f$</td></tr> |
| 4546 | * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr> |
| 4547 | * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
| 4548 | * </table> |
| 4549 | */ |
| 4550 | template<typename _RealType = double> |
| 4551 | class exponential_distribution |
| 4552 | { |
| 4553 | static_assert(std::is_floating_point<_RealType>::value, |
| 4554 | "result_type must be a floating point type" ); |
| 4555 | |
| 4556 | public: |
| 4557 | /** The type of the range of the distribution. */ |
| 4558 | typedef _RealType result_type; |
| 4559 | |
| 4560 | /** Parameter type. */ |
| 4561 | struct param_type |
| 4562 | { |
| 4563 | typedef exponential_distribution<_RealType> distribution_type; |
| 4564 | |
| 4565 | explicit |
| 4566 | param_type(_RealType __lambda = _RealType(1)) |
| 4567 | : _M_lambda(__lambda) |
| 4568 | { |
| 4569 | __glibcxx_assert(_M_lambda > _RealType(0)); |
| 4570 | } |
| 4571 | |
| 4572 | _RealType |
| 4573 | lambda() const |
| 4574 | { return _M_lambda; } |
| 4575 | |
| 4576 | friend bool |
| 4577 | operator==(const param_type& __p1, const param_type& __p2) |
| 4578 | { return __p1._M_lambda == __p2._M_lambda; } |
| 4579 | |
| 4580 | friend bool |
| 4581 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4582 | { return !(__p1 == __p2); } |
| 4583 | |
| 4584 | private: |
| 4585 | _RealType _M_lambda; |
| 4586 | }; |
| 4587 | |
| 4588 | public: |
| 4589 | /** |
| 4590 | * @brief Constructs an exponential distribution with inverse scale |
| 4591 | * parameter @f$\lambda@f$. |
| 4592 | */ |
| 4593 | explicit |
| 4594 | exponential_distribution(const result_type& __lambda = result_type(1)) |
| 4595 | : _M_param(__lambda) |
| 4596 | { } |
| 4597 | |
| 4598 | explicit |
| 4599 | exponential_distribution(const param_type& __p) |
| 4600 | : _M_param(__p) |
| 4601 | { } |
| 4602 | |
| 4603 | /** |
| 4604 | * @brief Resets the distribution state. |
| 4605 | * |
| 4606 | * Has no effect on exponential distributions. |
| 4607 | */ |
| 4608 | void |
| 4609 | reset() { } |
| 4610 | |
| 4611 | /** |
| 4612 | * @brief Returns the inverse scale parameter of the distribution. |
| 4613 | */ |
| 4614 | _RealType |
| 4615 | lambda() const |
| 4616 | { return _M_param.lambda(); } |
| 4617 | |
| 4618 | /** |
| 4619 | * @brief Returns the parameter set of the distribution. |
| 4620 | */ |
| 4621 | param_type |
| 4622 | param() const |
| 4623 | { return _M_param; } |
| 4624 | |
| 4625 | /** |
| 4626 | * @brief Sets the parameter set of the distribution. |
| 4627 | * @param __param The new parameter set of the distribution. |
| 4628 | */ |
| 4629 | void |
| 4630 | param(const param_type& __param) |
| 4631 | { _M_param = __param; } |
| 4632 | |
| 4633 | /** |
| 4634 | * @brief Returns the greatest lower bound value of the distribution. |
| 4635 | */ |
| 4636 | result_type |
| 4637 | min() const |
| 4638 | { return result_type(0); } |
| 4639 | |
| 4640 | /** |
| 4641 | * @brief Returns the least upper bound value of the distribution. |
| 4642 | */ |
| 4643 | result_type |
| 4644 | max() const |
| 4645 | { return std::numeric_limits<result_type>::max(); } |
| 4646 | |
| 4647 | /** |
| 4648 | * @brief Generating functions. |
| 4649 | */ |
| 4650 | template<typename _UniformRandomNumberGenerator> |
| 4651 | result_type |
| 4652 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4653 | { return this->operator()(__urng, _M_param); } |
| 4654 | |
| 4655 | template<typename _UniformRandomNumberGenerator> |
| 4656 | result_type |
| 4657 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4658 | const param_type& __p) |
| 4659 | { |
| 4660 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 4661 | __aurng(__urng); |
| 4662 | return -std::log(result_type(1) - __aurng()) / __p.lambda(); |
| 4663 | } |
| 4664 | |
| 4665 | template<typename _ForwardIterator, |
| 4666 | typename _UniformRandomNumberGenerator> |
| 4667 | void |
| 4668 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4669 | _UniformRandomNumberGenerator& __urng) |
| 4670 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4671 | |
| 4672 | template<typename _ForwardIterator, |
| 4673 | typename _UniformRandomNumberGenerator> |
| 4674 | void |
| 4675 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4676 | _UniformRandomNumberGenerator& __urng, |
| 4677 | const param_type& __p) |
| 4678 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4679 | |
| 4680 | template<typename _UniformRandomNumberGenerator> |
| 4681 | void |
| 4682 | __generate(result_type* __f, result_type* __t, |
| 4683 | _UniformRandomNumberGenerator& __urng, |
| 4684 | const param_type& __p) |
| 4685 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4686 | |
| 4687 | /** |
| 4688 | * @brief Return true if two exponential distributions have the same |
| 4689 | * parameters. |
| 4690 | */ |
| 4691 | friend bool |
| 4692 | operator==(const exponential_distribution& __d1, |
| 4693 | const exponential_distribution& __d2) |
| 4694 | { return __d1._M_param == __d2._M_param; } |
| 4695 | |
| 4696 | private: |
| 4697 | template<typename _ForwardIterator, |
| 4698 | typename _UniformRandomNumberGenerator> |
| 4699 | void |
| 4700 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4701 | _UniformRandomNumberGenerator& __urng, |
| 4702 | const param_type& __p); |
| 4703 | |
| 4704 | param_type _M_param; |
| 4705 | }; |
| 4706 | |
| 4707 | /** |
| 4708 | * @brief Return true if two exponential distributions have different |
| 4709 | * parameters. |
| 4710 | */ |
| 4711 | template<typename _RealType> |
| 4712 | inline bool |
| 4713 | operator!=(const std::exponential_distribution<_RealType>& __d1, |
| 4714 | const std::exponential_distribution<_RealType>& __d2) |
| 4715 | { return !(__d1 == __d2); } |
| 4716 | |
| 4717 | /** |
| 4718 | * @brief Inserts a %exponential_distribution random number distribution |
| 4719 | * @p __x into the output stream @p __os. |
| 4720 | * |
| 4721 | * @param __os An output stream. |
| 4722 | * @param __x A %exponential_distribution random number distribution. |
| 4723 | * |
| 4724 | * @returns The output stream with the state of @p __x inserted or in |
| 4725 | * an error state. |
| 4726 | */ |
| 4727 | template<typename _RealType, typename _CharT, typename _Traits> |
| 4728 | std::basic_ostream<_CharT, _Traits>& |
| 4729 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4730 | const std::exponential_distribution<_RealType>& __x); |
| 4731 | |
| 4732 | /** |
| 4733 | * @brief Extracts a %exponential_distribution random number distribution |
| 4734 | * @p __x from the input stream @p __is. |
| 4735 | * |
| 4736 | * @param __is An input stream. |
| 4737 | * @param __x A %exponential_distribution random number |
| 4738 | * generator engine. |
| 4739 | * |
| 4740 | * @returns The input stream with @p __x extracted or in an error state. |
| 4741 | */ |
| 4742 | template<typename _RealType, typename _CharT, typename _Traits> |
| 4743 | std::basic_istream<_CharT, _Traits>& |
| 4744 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4745 | std::exponential_distribution<_RealType>& __x); |
| 4746 | |
| 4747 | |
| 4748 | /** |
| 4749 | * @brief A weibull_distribution random number distribution. |
| 4750 | * |
| 4751 | * The formula for the normal probability density function is: |
| 4752 | * @f[ |
| 4753 | * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1} |
| 4754 | * \exp{(-(\frac{x}{\beta})^\alpha)} |
| 4755 | * @f] |
| 4756 | */ |
| 4757 | template<typename _RealType = double> |
| 4758 | class weibull_distribution |
| 4759 | { |
| 4760 | static_assert(std::is_floating_point<_RealType>::value, |
| 4761 | "result_type must be a floating point type" ); |
| 4762 | |
| 4763 | public: |
| 4764 | /** The type of the range of the distribution. */ |
| 4765 | typedef _RealType result_type; |
| 4766 | |
| 4767 | /** Parameter type. */ |
| 4768 | struct param_type |
| 4769 | { |
| 4770 | typedef weibull_distribution<_RealType> distribution_type; |
| 4771 | |
| 4772 | explicit |
| 4773 | param_type(_RealType __a = _RealType(1), |
| 4774 | _RealType __b = _RealType(1)) |
| 4775 | : _M_a(__a), _M_b(__b) |
| 4776 | { } |
| 4777 | |
| 4778 | _RealType |
| 4779 | a() const |
| 4780 | { return _M_a; } |
| 4781 | |
| 4782 | _RealType |
| 4783 | b() const |
| 4784 | { return _M_b; } |
| 4785 | |
| 4786 | friend bool |
| 4787 | operator==(const param_type& __p1, const param_type& __p2) |
| 4788 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 4789 | |
| 4790 | friend bool |
| 4791 | operator!=(const param_type& __p1, const param_type& __p2) |
| 4792 | { return !(__p1 == __p2); } |
| 4793 | |
| 4794 | private: |
| 4795 | _RealType _M_a; |
| 4796 | _RealType _M_b; |
| 4797 | }; |
| 4798 | |
| 4799 | explicit |
| 4800 | weibull_distribution(_RealType __a = _RealType(1), |
| 4801 | _RealType __b = _RealType(1)) |
| 4802 | : _M_param(__a, __b) |
| 4803 | { } |
| 4804 | |
| 4805 | explicit |
| 4806 | weibull_distribution(const param_type& __p) |
| 4807 | : _M_param(__p) |
| 4808 | { } |
| 4809 | |
| 4810 | /** |
| 4811 | * @brief Resets the distribution state. |
| 4812 | */ |
| 4813 | void |
| 4814 | reset() |
| 4815 | { } |
| 4816 | |
| 4817 | /** |
| 4818 | * @brief Return the @f$a@f$ parameter of the distribution. |
| 4819 | */ |
| 4820 | _RealType |
| 4821 | a() const |
| 4822 | { return _M_param.a(); } |
| 4823 | |
| 4824 | /** |
| 4825 | * @brief Return the @f$b@f$ parameter of the distribution. |
| 4826 | */ |
| 4827 | _RealType |
| 4828 | b() const |
| 4829 | { return _M_param.b(); } |
| 4830 | |
| 4831 | /** |
| 4832 | * @brief Returns the parameter set of the distribution. |
| 4833 | */ |
| 4834 | param_type |
| 4835 | param() const |
| 4836 | { return _M_param; } |
| 4837 | |
| 4838 | /** |
| 4839 | * @brief Sets the parameter set of the distribution. |
| 4840 | * @param __param The new parameter set of the distribution. |
| 4841 | */ |
| 4842 | void |
| 4843 | param(const param_type& __param) |
| 4844 | { _M_param = __param; } |
| 4845 | |
| 4846 | /** |
| 4847 | * @brief Returns the greatest lower bound value of the distribution. |
| 4848 | */ |
| 4849 | result_type |
| 4850 | min() const |
| 4851 | { return result_type(0); } |
| 4852 | |
| 4853 | /** |
| 4854 | * @brief Returns the least upper bound value of the distribution. |
| 4855 | */ |
| 4856 | result_type |
| 4857 | max() const |
| 4858 | { return std::numeric_limits<result_type>::max(); } |
| 4859 | |
| 4860 | /** |
| 4861 | * @brief Generating functions. |
| 4862 | */ |
| 4863 | template<typename _UniformRandomNumberGenerator> |
| 4864 | result_type |
| 4865 | operator()(_UniformRandomNumberGenerator& __urng) |
| 4866 | { return this->operator()(__urng, _M_param); } |
| 4867 | |
| 4868 | template<typename _UniformRandomNumberGenerator> |
| 4869 | result_type |
| 4870 | operator()(_UniformRandomNumberGenerator& __urng, |
| 4871 | const param_type& __p); |
| 4872 | |
| 4873 | template<typename _ForwardIterator, |
| 4874 | typename _UniformRandomNumberGenerator> |
| 4875 | void |
| 4876 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4877 | _UniformRandomNumberGenerator& __urng) |
| 4878 | { this->__generate(__f, __t, __urng, _M_param); } |
| 4879 | |
| 4880 | template<typename _ForwardIterator, |
| 4881 | typename _UniformRandomNumberGenerator> |
| 4882 | void |
| 4883 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 4884 | _UniformRandomNumberGenerator& __urng, |
| 4885 | const param_type& __p) |
| 4886 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4887 | |
| 4888 | template<typename _UniformRandomNumberGenerator> |
| 4889 | void |
| 4890 | __generate(result_type* __f, result_type* __t, |
| 4891 | _UniformRandomNumberGenerator& __urng, |
| 4892 | const param_type& __p) |
| 4893 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 4894 | |
| 4895 | /** |
| 4896 | * @brief Return true if two Weibull distributions have the same |
| 4897 | * parameters. |
| 4898 | */ |
| 4899 | friend bool |
| 4900 | operator==(const weibull_distribution& __d1, |
| 4901 | const weibull_distribution& __d2) |
| 4902 | { return __d1._M_param == __d2._M_param; } |
| 4903 | |
| 4904 | private: |
| 4905 | template<typename _ForwardIterator, |
| 4906 | typename _UniformRandomNumberGenerator> |
| 4907 | void |
| 4908 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 4909 | _UniformRandomNumberGenerator& __urng, |
| 4910 | const param_type& __p); |
| 4911 | |
| 4912 | param_type _M_param; |
| 4913 | }; |
| 4914 | |
| 4915 | /** |
| 4916 | * @brief Return true if two Weibull distributions have different |
| 4917 | * parameters. |
| 4918 | */ |
| 4919 | template<typename _RealType> |
| 4920 | inline bool |
| 4921 | operator!=(const std::weibull_distribution<_RealType>& __d1, |
| 4922 | const std::weibull_distribution<_RealType>& __d2) |
| 4923 | { return !(__d1 == __d2); } |
| 4924 | |
| 4925 | /** |
| 4926 | * @brief Inserts a %weibull_distribution random number distribution |
| 4927 | * @p __x into the output stream @p __os. |
| 4928 | * |
| 4929 | * @param __os An output stream. |
| 4930 | * @param __x A %weibull_distribution random number distribution. |
| 4931 | * |
| 4932 | * @returns The output stream with the state of @p __x inserted or in |
| 4933 | * an error state. |
| 4934 | */ |
| 4935 | template<typename _RealType, typename _CharT, typename _Traits> |
| 4936 | std::basic_ostream<_CharT, _Traits>& |
| 4937 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 4938 | const std::weibull_distribution<_RealType>& __x); |
| 4939 | |
| 4940 | /** |
| 4941 | * @brief Extracts a %weibull_distribution random number distribution |
| 4942 | * @p __x from the input stream @p __is. |
| 4943 | * |
| 4944 | * @param __is An input stream. |
| 4945 | * @param __x A %weibull_distribution random number |
| 4946 | * generator engine. |
| 4947 | * |
| 4948 | * @returns The input stream with @p __x extracted or in an error state. |
| 4949 | */ |
| 4950 | template<typename _RealType, typename _CharT, typename _Traits> |
| 4951 | std::basic_istream<_CharT, _Traits>& |
| 4952 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 4953 | std::weibull_distribution<_RealType>& __x); |
| 4954 | |
| 4955 | |
| 4956 | /** |
| 4957 | * @brief A extreme_value_distribution random number distribution. |
| 4958 | * |
| 4959 | * The formula for the normal probability mass function is |
| 4960 | * @f[ |
| 4961 | * p(x|a,b) = \frac{1}{b} |
| 4962 | * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b})) |
| 4963 | * @f] |
| 4964 | */ |
| 4965 | template<typename _RealType = double> |
| 4966 | class extreme_value_distribution |
| 4967 | { |
| 4968 | static_assert(std::is_floating_point<_RealType>::value, |
| 4969 | "result_type must be a floating point type" ); |
| 4970 | |
| 4971 | public: |
| 4972 | /** The type of the range of the distribution. */ |
| 4973 | typedef _RealType result_type; |
| 4974 | |
| 4975 | /** Parameter type. */ |
| 4976 | struct param_type |
| 4977 | { |
| 4978 | typedef extreme_value_distribution<_RealType> distribution_type; |
| 4979 | |
| 4980 | explicit |
| 4981 | param_type(_RealType __a = _RealType(0), |
| 4982 | _RealType __b = _RealType(1)) |
| 4983 | : _M_a(__a), _M_b(__b) |
| 4984 | { } |
| 4985 | |
| 4986 | _RealType |
| 4987 | a() const |
| 4988 | { return _M_a; } |
| 4989 | |
| 4990 | _RealType |
| 4991 | b() const |
| 4992 | { return _M_b; } |
| 4993 | |
| 4994 | friend bool |
| 4995 | operator==(const param_type& __p1, const param_type& __p2) |
| 4996 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 4997 | |
| 4998 | friend bool |
| 4999 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5000 | { return !(__p1 == __p2); } |
| 5001 | |
| 5002 | private: |
| 5003 | _RealType _M_a; |
| 5004 | _RealType _M_b; |
| 5005 | }; |
| 5006 | |
| 5007 | explicit |
| 5008 | extreme_value_distribution(_RealType __a = _RealType(0), |
| 5009 | _RealType __b = _RealType(1)) |
| 5010 | : _M_param(__a, __b) |
| 5011 | { } |
| 5012 | |
| 5013 | explicit |
| 5014 | extreme_value_distribution(const param_type& __p) |
| 5015 | : _M_param(__p) |
| 5016 | { } |
| 5017 | |
| 5018 | /** |
| 5019 | * @brief Resets the distribution state. |
| 5020 | */ |
| 5021 | void |
| 5022 | reset() |
| 5023 | { } |
| 5024 | |
| 5025 | /** |
| 5026 | * @brief Return the @f$a@f$ parameter of the distribution. |
| 5027 | */ |
| 5028 | _RealType |
| 5029 | a() const |
| 5030 | { return _M_param.a(); } |
| 5031 | |
| 5032 | /** |
| 5033 | * @brief Return the @f$b@f$ parameter of the distribution. |
| 5034 | */ |
| 5035 | _RealType |
| 5036 | b() const |
| 5037 | { return _M_param.b(); } |
| 5038 | |
| 5039 | /** |
| 5040 | * @brief Returns the parameter set of the distribution. |
| 5041 | */ |
| 5042 | param_type |
| 5043 | param() const |
| 5044 | { return _M_param; } |
| 5045 | |
| 5046 | /** |
| 5047 | * @brief Sets the parameter set of the distribution. |
| 5048 | * @param __param The new parameter set of the distribution. |
| 5049 | */ |
| 5050 | void |
| 5051 | param(const param_type& __param) |
| 5052 | { _M_param = __param; } |
| 5053 | |
| 5054 | /** |
| 5055 | * @brief Returns the greatest lower bound value of the distribution. |
| 5056 | */ |
| 5057 | result_type |
| 5058 | min() const |
| 5059 | { return std::numeric_limits<result_type>::lowest(); } |
| 5060 | |
| 5061 | /** |
| 5062 | * @brief Returns the least upper bound value of the distribution. |
| 5063 | */ |
| 5064 | result_type |
| 5065 | max() const |
| 5066 | { return std::numeric_limits<result_type>::max(); } |
| 5067 | |
| 5068 | /** |
| 5069 | * @brief Generating functions. |
| 5070 | */ |
| 5071 | template<typename _UniformRandomNumberGenerator> |
| 5072 | result_type |
| 5073 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5074 | { return this->operator()(__urng, _M_param); } |
| 5075 | |
| 5076 | template<typename _UniformRandomNumberGenerator> |
| 5077 | result_type |
| 5078 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5079 | const param_type& __p); |
| 5080 | |
| 5081 | template<typename _ForwardIterator, |
| 5082 | typename _UniformRandomNumberGenerator> |
| 5083 | void |
| 5084 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5085 | _UniformRandomNumberGenerator& __urng) |
| 5086 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5087 | |
| 5088 | template<typename _ForwardIterator, |
| 5089 | typename _UniformRandomNumberGenerator> |
| 5090 | void |
| 5091 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5092 | _UniformRandomNumberGenerator& __urng, |
| 5093 | const param_type& __p) |
| 5094 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5095 | |
| 5096 | template<typename _UniformRandomNumberGenerator> |
| 5097 | void |
| 5098 | __generate(result_type* __f, result_type* __t, |
| 5099 | _UniformRandomNumberGenerator& __urng, |
| 5100 | const param_type& __p) |
| 5101 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5102 | |
| 5103 | /** |
| 5104 | * @brief Return true if two extreme value distributions have the same |
| 5105 | * parameters. |
| 5106 | */ |
| 5107 | friend bool |
| 5108 | operator==(const extreme_value_distribution& __d1, |
| 5109 | const extreme_value_distribution& __d2) |
| 5110 | { return __d1._M_param == __d2._M_param; } |
| 5111 | |
| 5112 | private: |
| 5113 | template<typename _ForwardIterator, |
| 5114 | typename _UniformRandomNumberGenerator> |
| 5115 | void |
| 5116 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5117 | _UniformRandomNumberGenerator& __urng, |
| 5118 | const param_type& __p); |
| 5119 | |
| 5120 | param_type _M_param; |
| 5121 | }; |
| 5122 | |
| 5123 | /** |
| 5124 | * @brief Return true if two extreme value distributions have different |
| 5125 | * parameters. |
| 5126 | */ |
| 5127 | template<typename _RealType> |
| 5128 | inline bool |
| 5129 | operator!=(const std::extreme_value_distribution<_RealType>& __d1, |
| 5130 | const std::extreme_value_distribution<_RealType>& __d2) |
| 5131 | { return !(__d1 == __d2); } |
| 5132 | |
| 5133 | /** |
| 5134 | * @brief Inserts a %extreme_value_distribution random number distribution |
| 5135 | * @p __x into the output stream @p __os. |
| 5136 | * |
| 5137 | * @param __os An output stream. |
| 5138 | * @param __x A %extreme_value_distribution random number distribution. |
| 5139 | * |
| 5140 | * @returns The output stream with the state of @p __x inserted or in |
| 5141 | * an error state. |
| 5142 | */ |
| 5143 | template<typename _RealType, typename _CharT, typename _Traits> |
| 5144 | std::basic_ostream<_CharT, _Traits>& |
| 5145 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5146 | const std::extreme_value_distribution<_RealType>& __x); |
| 5147 | |
| 5148 | /** |
| 5149 | * @brief Extracts a %extreme_value_distribution random number |
| 5150 | * distribution @p __x from the input stream @p __is. |
| 5151 | * |
| 5152 | * @param __is An input stream. |
| 5153 | * @param __x A %extreme_value_distribution random number |
| 5154 | * generator engine. |
| 5155 | * |
| 5156 | * @returns The input stream with @p __x extracted or in an error state. |
| 5157 | */ |
| 5158 | template<typename _RealType, typename _CharT, typename _Traits> |
| 5159 | std::basic_istream<_CharT, _Traits>& |
| 5160 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5161 | std::extreme_value_distribution<_RealType>& __x); |
| 5162 | |
| 5163 | |
| 5164 | /** |
| 5165 | * @brief A discrete_distribution random number distribution. |
| 5166 | * |
| 5167 | * The formula for the discrete probability mass function is |
| 5168 | * |
| 5169 | */ |
| 5170 | template<typename _IntType = int> |
| 5171 | class discrete_distribution |
| 5172 | { |
| 5173 | static_assert(std::is_integral<_IntType>::value, |
| 5174 | "result_type must be an integral type" ); |
| 5175 | |
| 5176 | public: |
| 5177 | /** The type of the range of the distribution. */ |
| 5178 | typedef _IntType result_type; |
| 5179 | |
| 5180 | /** Parameter type. */ |
| 5181 | struct param_type |
| 5182 | { |
| 5183 | typedef discrete_distribution<_IntType> distribution_type; |
| 5184 | friend class discrete_distribution<_IntType>; |
| 5185 | |
| 5186 | param_type() |
| 5187 | : _M_prob(), _M_cp() |
| 5188 | { } |
| 5189 | |
| 5190 | template<typename _InputIterator> |
| 5191 | param_type(_InputIterator __wbegin, |
| 5192 | _InputIterator __wend) |
| 5193 | : _M_prob(__wbegin, __wend), _M_cp() |
| 5194 | { _M_initialize(); } |
| 5195 | |
| 5196 | param_type(initializer_list<double> __wil) |
| 5197 | : _M_prob(__wil.begin(), __wil.end()), _M_cp() |
| 5198 | { _M_initialize(); } |
| 5199 | |
| 5200 | template<typename _Func> |
| 5201 | param_type(size_t __nw, double __xmin, double __xmax, |
| 5202 | _Func __fw); |
| 5203 | |
| 5204 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
| 5205 | param_type(const param_type&) = default; |
| 5206 | param_type& operator=(const param_type&) = default; |
| 5207 | |
| 5208 | std::vector<double> |
| 5209 | probabilities() const |
| 5210 | { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; } |
| 5211 | |
| 5212 | friend bool |
| 5213 | operator==(const param_type& __p1, const param_type& __p2) |
| 5214 | { return __p1._M_prob == __p2._M_prob; } |
| 5215 | |
| 5216 | friend bool |
| 5217 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5218 | { return !(__p1 == __p2); } |
| 5219 | |
| 5220 | private: |
| 5221 | void |
| 5222 | _M_initialize(); |
| 5223 | |
| 5224 | std::vector<double> _M_prob; |
| 5225 | std::vector<double> _M_cp; |
| 5226 | }; |
| 5227 | |
| 5228 | discrete_distribution() |
| 5229 | : _M_param() |
| 5230 | { } |
| 5231 | |
| 5232 | template<typename _InputIterator> |
| 5233 | discrete_distribution(_InputIterator __wbegin, |
| 5234 | _InputIterator __wend) |
| 5235 | : _M_param(__wbegin, __wend) |
| 5236 | { } |
| 5237 | |
| 5238 | discrete_distribution(initializer_list<double> __wl) |
| 5239 | : _M_param(__wl) |
| 5240 | { } |
| 5241 | |
| 5242 | template<typename _Func> |
| 5243 | discrete_distribution(size_t __nw, double __xmin, double __xmax, |
| 5244 | _Func __fw) |
| 5245 | : _M_param(__nw, __xmin, __xmax, __fw) |
| 5246 | { } |
| 5247 | |
| 5248 | explicit |
| 5249 | discrete_distribution(const param_type& __p) |
| 5250 | : _M_param(__p) |
| 5251 | { } |
| 5252 | |
| 5253 | /** |
| 5254 | * @brief Resets the distribution state. |
| 5255 | */ |
| 5256 | void |
| 5257 | reset() |
| 5258 | { } |
| 5259 | |
| 5260 | /** |
| 5261 | * @brief Returns the probabilities of the distribution. |
| 5262 | */ |
| 5263 | std::vector<double> |
| 5264 | probabilities() const |
| 5265 | { |
| 5266 | return _M_param._M_prob.empty() |
| 5267 | ? std::vector<double>(1, 1.0) : _M_param._M_prob; |
| 5268 | } |
| 5269 | |
| 5270 | /** |
| 5271 | * @brief Returns the parameter set of the distribution. |
| 5272 | */ |
| 5273 | param_type |
| 5274 | param() const |
| 5275 | { return _M_param; } |
| 5276 | |
| 5277 | /** |
| 5278 | * @brief Sets the parameter set of the distribution. |
| 5279 | * @param __param The new parameter set of the distribution. |
| 5280 | */ |
| 5281 | void |
| 5282 | param(const param_type& __param) |
| 5283 | { _M_param = __param; } |
| 5284 | |
| 5285 | /** |
| 5286 | * @brief Returns the greatest lower bound value of the distribution. |
| 5287 | */ |
| 5288 | result_type |
| 5289 | min() const |
| 5290 | { return result_type(0); } |
| 5291 | |
| 5292 | /** |
| 5293 | * @brief Returns the least upper bound value of the distribution. |
| 5294 | */ |
| 5295 | result_type |
| 5296 | max() const |
| 5297 | { |
| 5298 | return _M_param._M_prob.empty() |
| 5299 | ? result_type(0) : result_type(_M_param._M_prob.size() - 1); |
| 5300 | } |
| 5301 | |
| 5302 | /** |
| 5303 | * @brief Generating functions. |
| 5304 | */ |
| 5305 | template<typename _UniformRandomNumberGenerator> |
| 5306 | result_type |
| 5307 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5308 | { return this->operator()(__urng, _M_param); } |
| 5309 | |
| 5310 | template<typename _UniformRandomNumberGenerator> |
| 5311 | result_type |
| 5312 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5313 | const param_type& __p); |
| 5314 | |
| 5315 | template<typename _ForwardIterator, |
| 5316 | typename _UniformRandomNumberGenerator> |
| 5317 | void |
| 5318 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5319 | _UniformRandomNumberGenerator& __urng) |
| 5320 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5321 | |
| 5322 | template<typename _ForwardIterator, |
| 5323 | typename _UniformRandomNumberGenerator> |
| 5324 | void |
| 5325 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5326 | _UniformRandomNumberGenerator& __urng, |
| 5327 | const param_type& __p) |
| 5328 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5329 | |
| 5330 | template<typename _UniformRandomNumberGenerator> |
| 5331 | void |
| 5332 | __generate(result_type* __f, result_type* __t, |
| 5333 | _UniformRandomNumberGenerator& __urng, |
| 5334 | const param_type& __p) |
| 5335 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5336 | |
| 5337 | /** |
| 5338 | * @brief Return true if two discrete distributions have the same |
| 5339 | * parameters. |
| 5340 | */ |
| 5341 | friend bool |
| 5342 | operator==(const discrete_distribution& __d1, |
| 5343 | const discrete_distribution& __d2) |
| 5344 | { return __d1._M_param == __d2._M_param; } |
| 5345 | |
| 5346 | /** |
| 5347 | * @brief Inserts a %discrete_distribution random number distribution |
| 5348 | * @p __x into the output stream @p __os. |
| 5349 | * |
| 5350 | * @param __os An output stream. |
| 5351 | * @param __x A %discrete_distribution random number distribution. |
| 5352 | * |
| 5353 | * @returns The output stream with the state of @p __x inserted or in |
| 5354 | * an error state. |
| 5355 | */ |
| 5356 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 5357 | friend std::basic_ostream<_CharT, _Traits>& |
| 5358 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5359 | const std::discrete_distribution<_IntType1>& __x); |
| 5360 | |
| 5361 | /** |
| 5362 | * @brief Extracts a %discrete_distribution random number distribution |
| 5363 | * @p __x from the input stream @p __is. |
| 5364 | * |
| 5365 | * @param __is An input stream. |
| 5366 | * @param __x A %discrete_distribution random number |
| 5367 | * generator engine. |
| 5368 | * |
| 5369 | * @returns The input stream with @p __x extracted or in an error |
| 5370 | * state. |
| 5371 | */ |
| 5372 | template<typename _IntType1, typename _CharT, typename _Traits> |
| 5373 | friend std::basic_istream<_CharT, _Traits>& |
| 5374 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5375 | std::discrete_distribution<_IntType1>& __x); |
| 5376 | |
| 5377 | private: |
| 5378 | template<typename _ForwardIterator, |
| 5379 | typename _UniformRandomNumberGenerator> |
| 5380 | void |
| 5381 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5382 | _UniformRandomNumberGenerator& __urng, |
| 5383 | const param_type& __p); |
| 5384 | |
| 5385 | param_type _M_param; |
| 5386 | }; |
| 5387 | |
| 5388 | /** |
| 5389 | * @brief Return true if two discrete distributions have different |
| 5390 | * parameters. |
| 5391 | */ |
| 5392 | template<typename _IntType> |
| 5393 | inline bool |
| 5394 | operator!=(const std::discrete_distribution<_IntType>& __d1, |
| 5395 | const std::discrete_distribution<_IntType>& __d2) |
| 5396 | { return !(__d1 == __d2); } |
| 5397 | |
| 5398 | |
| 5399 | /** |
| 5400 | * @brief A piecewise_constant_distribution random number distribution. |
| 5401 | * |
| 5402 | * The formula for the piecewise constant probability mass function is |
| 5403 | * |
| 5404 | */ |
| 5405 | template<typename _RealType = double> |
| 5406 | class piecewise_constant_distribution |
| 5407 | { |
| 5408 | static_assert(std::is_floating_point<_RealType>::value, |
| 5409 | "result_type must be a floating point type" ); |
| 5410 | |
| 5411 | public: |
| 5412 | /** The type of the range of the distribution. */ |
| 5413 | typedef _RealType result_type; |
| 5414 | |
| 5415 | /** Parameter type. */ |
| 5416 | struct param_type |
| 5417 | { |
| 5418 | typedef piecewise_constant_distribution<_RealType> distribution_type; |
| 5419 | friend class piecewise_constant_distribution<_RealType>; |
| 5420 | |
| 5421 | param_type() |
| 5422 | : _M_int(), _M_den(), _M_cp() |
| 5423 | { } |
| 5424 | |
| 5425 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5426 | param_type(_InputIteratorB __bfirst, |
| 5427 | _InputIteratorB __bend, |
| 5428 | _InputIteratorW __wbegin); |
| 5429 | |
| 5430 | template<typename _Func> |
| 5431 | param_type(initializer_list<_RealType> __bi, _Func __fw); |
| 5432 | |
| 5433 | template<typename _Func> |
| 5434 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
| 5435 | _Func __fw); |
| 5436 | |
| 5437 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
| 5438 | param_type(const param_type&) = default; |
| 5439 | param_type& operator=(const param_type&) = default; |
| 5440 | |
| 5441 | std::vector<_RealType> |
| 5442 | intervals() const |
| 5443 | { |
| 5444 | if (_M_int.empty()) |
| 5445 | { |
| 5446 | std::vector<_RealType> __tmp(2); |
| 5447 | __tmp[1] = _RealType(1); |
| 5448 | return __tmp; |
| 5449 | } |
| 5450 | else |
| 5451 | return _M_int; |
| 5452 | } |
| 5453 | |
| 5454 | std::vector<double> |
| 5455 | densities() const |
| 5456 | { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; } |
| 5457 | |
| 5458 | friend bool |
| 5459 | operator==(const param_type& __p1, const param_type& __p2) |
| 5460 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
| 5461 | |
| 5462 | friend bool |
| 5463 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5464 | { return !(__p1 == __p2); } |
| 5465 | |
| 5466 | private: |
| 5467 | void |
| 5468 | _M_initialize(); |
| 5469 | |
| 5470 | std::vector<_RealType> _M_int; |
| 5471 | std::vector<double> _M_den; |
| 5472 | std::vector<double> _M_cp; |
| 5473 | }; |
| 5474 | |
| 5475 | explicit |
| 5476 | piecewise_constant_distribution() |
| 5477 | : _M_param() |
| 5478 | { } |
| 5479 | |
| 5480 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5481 | piecewise_constant_distribution(_InputIteratorB __bfirst, |
| 5482 | _InputIteratorB __bend, |
| 5483 | _InputIteratorW __wbegin) |
| 5484 | : _M_param(__bfirst, __bend, __wbegin) |
| 5485 | { } |
| 5486 | |
| 5487 | template<typename _Func> |
| 5488 | piecewise_constant_distribution(initializer_list<_RealType> __bl, |
| 5489 | _Func __fw) |
| 5490 | : _M_param(__bl, __fw) |
| 5491 | { } |
| 5492 | |
| 5493 | template<typename _Func> |
| 5494 | piecewise_constant_distribution(size_t __nw, |
| 5495 | _RealType __xmin, _RealType __xmax, |
| 5496 | _Func __fw) |
| 5497 | : _M_param(__nw, __xmin, __xmax, __fw) |
| 5498 | { } |
| 5499 | |
| 5500 | explicit |
| 5501 | piecewise_constant_distribution(const param_type& __p) |
| 5502 | : _M_param(__p) |
| 5503 | { } |
| 5504 | |
| 5505 | /** |
| 5506 | * @brief Resets the distribution state. |
| 5507 | */ |
| 5508 | void |
| 5509 | reset() |
| 5510 | { } |
| 5511 | |
| 5512 | /** |
| 5513 | * @brief Returns a vector of the intervals. |
| 5514 | */ |
| 5515 | std::vector<_RealType> |
| 5516 | intervals() const |
| 5517 | { |
| 5518 | if (_M_param._M_int.empty()) |
| 5519 | { |
| 5520 | std::vector<_RealType> __tmp(2); |
| 5521 | __tmp[1] = _RealType(1); |
| 5522 | return __tmp; |
| 5523 | } |
| 5524 | else |
| 5525 | return _M_param._M_int; |
| 5526 | } |
| 5527 | |
| 5528 | /** |
| 5529 | * @brief Returns a vector of the probability densities. |
| 5530 | */ |
| 5531 | std::vector<double> |
| 5532 | densities() const |
| 5533 | { |
| 5534 | return _M_param._M_den.empty() |
| 5535 | ? std::vector<double>(1, 1.0) : _M_param._M_den; |
| 5536 | } |
| 5537 | |
| 5538 | /** |
| 5539 | * @brief Returns the parameter set of the distribution. |
| 5540 | */ |
| 5541 | param_type |
| 5542 | param() const |
| 5543 | { return _M_param; } |
| 5544 | |
| 5545 | /** |
| 5546 | * @brief Sets the parameter set of the distribution. |
| 5547 | * @param __param The new parameter set of the distribution. |
| 5548 | */ |
| 5549 | void |
| 5550 | param(const param_type& __param) |
| 5551 | { _M_param = __param; } |
| 5552 | |
| 5553 | /** |
| 5554 | * @brief Returns the greatest lower bound value of the distribution. |
| 5555 | */ |
| 5556 | result_type |
| 5557 | min() const |
| 5558 | { |
| 5559 | return _M_param._M_int.empty() |
| 5560 | ? result_type(0) : _M_param._M_int.front(); |
| 5561 | } |
| 5562 | |
| 5563 | /** |
| 5564 | * @brief Returns the least upper bound value of the distribution. |
| 5565 | */ |
| 5566 | result_type |
| 5567 | max() const |
| 5568 | { |
| 5569 | return _M_param._M_int.empty() |
| 5570 | ? result_type(1) : _M_param._M_int.back(); |
| 5571 | } |
| 5572 | |
| 5573 | /** |
| 5574 | * @brief Generating functions. |
| 5575 | */ |
| 5576 | template<typename _UniformRandomNumberGenerator> |
| 5577 | result_type |
| 5578 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5579 | { return this->operator()(__urng, _M_param); } |
| 5580 | |
| 5581 | template<typename _UniformRandomNumberGenerator> |
| 5582 | result_type |
| 5583 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5584 | const param_type& __p); |
| 5585 | |
| 5586 | template<typename _ForwardIterator, |
| 5587 | typename _UniformRandomNumberGenerator> |
| 5588 | void |
| 5589 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5590 | _UniformRandomNumberGenerator& __urng) |
| 5591 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5592 | |
| 5593 | template<typename _ForwardIterator, |
| 5594 | typename _UniformRandomNumberGenerator> |
| 5595 | void |
| 5596 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5597 | _UniformRandomNumberGenerator& __urng, |
| 5598 | const param_type& __p) |
| 5599 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5600 | |
| 5601 | template<typename _UniformRandomNumberGenerator> |
| 5602 | void |
| 5603 | __generate(result_type* __f, result_type* __t, |
| 5604 | _UniformRandomNumberGenerator& __urng, |
| 5605 | const param_type& __p) |
| 5606 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5607 | |
| 5608 | /** |
| 5609 | * @brief Return true if two piecewise constant distributions have the |
| 5610 | * same parameters. |
| 5611 | */ |
| 5612 | friend bool |
| 5613 | operator==(const piecewise_constant_distribution& __d1, |
| 5614 | const piecewise_constant_distribution& __d2) |
| 5615 | { return __d1._M_param == __d2._M_param; } |
| 5616 | |
| 5617 | /** |
| 5618 | * @brief Inserts a %piecewise_constant_distribution random |
| 5619 | * number distribution @p __x into the output stream @p __os. |
| 5620 | * |
| 5621 | * @param __os An output stream. |
| 5622 | * @param __x A %piecewise_constant_distribution random number |
| 5623 | * distribution. |
| 5624 | * |
| 5625 | * @returns The output stream with the state of @p __x inserted or in |
| 5626 | * an error state. |
| 5627 | */ |
| 5628 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 5629 | friend std::basic_ostream<_CharT, _Traits>& |
| 5630 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5631 | const std::piecewise_constant_distribution<_RealType1>& __x); |
| 5632 | |
| 5633 | /** |
| 5634 | * @brief Extracts a %piecewise_constant_distribution random |
| 5635 | * number distribution @p __x from the input stream @p __is. |
| 5636 | * |
| 5637 | * @param __is An input stream. |
| 5638 | * @param __x A %piecewise_constant_distribution random number |
| 5639 | * generator engine. |
| 5640 | * |
| 5641 | * @returns The input stream with @p __x extracted or in an error |
| 5642 | * state. |
| 5643 | */ |
| 5644 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 5645 | friend std::basic_istream<_CharT, _Traits>& |
| 5646 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5647 | std::piecewise_constant_distribution<_RealType1>& __x); |
| 5648 | |
| 5649 | private: |
| 5650 | template<typename _ForwardIterator, |
| 5651 | typename _UniformRandomNumberGenerator> |
| 5652 | void |
| 5653 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5654 | _UniformRandomNumberGenerator& __urng, |
| 5655 | const param_type& __p); |
| 5656 | |
| 5657 | param_type _M_param; |
| 5658 | }; |
| 5659 | |
| 5660 | /** |
| 5661 | * @brief Return true if two piecewise constant distributions have |
| 5662 | * different parameters. |
| 5663 | */ |
| 5664 | template<typename _RealType> |
| 5665 | inline bool |
| 5666 | operator!=(const std::piecewise_constant_distribution<_RealType>& __d1, |
| 5667 | const std::piecewise_constant_distribution<_RealType>& __d2) |
| 5668 | { return !(__d1 == __d2); } |
| 5669 | |
| 5670 | |
| 5671 | /** |
| 5672 | * @brief A piecewise_linear_distribution random number distribution. |
| 5673 | * |
| 5674 | * The formula for the piecewise linear probability mass function is |
| 5675 | * |
| 5676 | */ |
| 5677 | template<typename _RealType = double> |
| 5678 | class piecewise_linear_distribution |
| 5679 | { |
| 5680 | static_assert(std::is_floating_point<_RealType>::value, |
| 5681 | "result_type must be a floating point type" ); |
| 5682 | |
| 5683 | public: |
| 5684 | /** The type of the range of the distribution. */ |
| 5685 | typedef _RealType result_type; |
| 5686 | |
| 5687 | /** Parameter type. */ |
| 5688 | struct param_type |
| 5689 | { |
| 5690 | typedef piecewise_linear_distribution<_RealType> distribution_type; |
| 5691 | friend class piecewise_linear_distribution<_RealType>; |
| 5692 | |
| 5693 | param_type() |
| 5694 | : _M_int(), _M_den(), _M_cp(), _M_m() |
| 5695 | { } |
| 5696 | |
| 5697 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5698 | param_type(_InputIteratorB __bfirst, |
| 5699 | _InputIteratorB __bend, |
| 5700 | _InputIteratorW __wbegin); |
| 5701 | |
| 5702 | template<typename _Func> |
| 5703 | param_type(initializer_list<_RealType> __bl, _Func __fw); |
| 5704 | |
| 5705 | template<typename _Func> |
| 5706 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
| 5707 | _Func __fw); |
| 5708 | |
| 5709 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
| 5710 | param_type(const param_type&) = default; |
| 5711 | param_type& operator=(const param_type&) = default; |
| 5712 | |
| 5713 | std::vector<_RealType> |
| 5714 | intervals() const |
| 5715 | { |
| 5716 | if (_M_int.empty()) |
| 5717 | { |
| 5718 | std::vector<_RealType> __tmp(2); |
| 5719 | __tmp[1] = _RealType(1); |
| 5720 | return __tmp; |
| 5721 | } |
| 5722 | else |
| 5723 | return _M_int; |
| 5724 | } |
| 5725 | |
| 5726 | std::vector<double> |
| 5727 | densities() const |
| 5728 | { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; } |
| 5729 | |
| 5730 | friend bool |
| 5731 | operator==(const param_type& __p1, const param_type& __p2) |
| 5732 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
| 5733 | |
| 5734 | friend bool |
| 5735 | operator!=(const param_type& __p1, const param_type& __p2) |
| 5736 | { return !(__p1 == __p2); } |
| 5737 | |
| 5738 | private: |
| 5739 | void |
| 5740 | _M_initialize(); |
| 5741 | |
| 5742 | std::vector<_RealType> _M_int; |
| 5743 | std::vector<double> _M_den; |
| 5744 | std::vector<double> _M_cp; |
| 5745 | std::vector<double> _M_m; |
| 5746 | }; |
| 5747 | |
| 5748 | explicit |
| 5749 | piecewise_linear_distribution() |
| 5750 | : _M_param() |
| 5751 | { } |
| 5752 | |
| 5753 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 5754 | piecewise_linear_distribution(_InputIteratorB __bfirst, |
| 5755 | _InputIteratorB __bend, |
| 5756 | _InputIteratorW __wbegin) |
| 5757 | : _M_param(__bfirst, __bend, __wbegin) |
| 5758 | { } |
| 5759 | |
| 5760 | template<typename _Func> |
| 5761 | piecewise_linear_distribution(initializer_list<_RealType> __bl, |
| 5762 | _Func __fw) |
| 5763 | : _M_param(__bl, __fw) |
| 5764 | { } |
| 5765 | |
| 5766 | template<typename _Func> |
| 5767 | piecewise_linear_distribution(size_t __nw, |
| 5768 | _RealType __xmin, _RealType __xmax, |
| 5769 | _Func __fw) |
| 5770 | : _M_param(__nw, __xmin, __xmax, __fw) |
| 5771 | { } |
| 5772 | |
| 5773 | explicit |
| 5774 | piecewise_linear_distribution(const param_type& __p) |
| 5775 | : _M_param(__p) |
| 5776 | { } |
| 5777 | |
| 5778 | /** |
| 5779 | * Resets the distribution state. |
| 5780 | */ |
| 5781 | void |
| 5782 | reset() |
| 5783 | { } |
| 5784 | |
| 5785 | /** |
| 5786 | * @brief Return the intervals of the distribution. |
| 5787 | */ |
| 5788 | std::vector<_RealType> |
| 5789 | intervals() const |
| 5790 | { |
| 5791 | if (_M_param._M_int.empty()) |
| 5792 | { |
| 5793 | std::vector<_RealType> __tmp(2); |
| 5794 | __tmp[1] = _RealType(1); |
| 5795 | return __tmp; |
| 5796 | } |
| 5797 | else |
| 5798 | return _M_param._M_int; |
| 5799 | } |
| 5800 | |
| 5801 | /** |
| 5802 | * @brief Return a vector of the probability densities of the |
| 5803 | * distribution. |
| 5804 | */ |
| 5805 | std::vector<double> |
| 5806 | densities() const |
| 5807 | { |
| 5808 | return _M_param._M_den.empty() |
| 5809 | ? std::vector<double>(2, 1.0) : _M_param._M_den; |
| 5810 | } |
| 5811 | |
| 5812 | /** |
| 5813 | * @brief Returns the parameter set of the distribution. |
| 5814 | */ |
| 5815 | param_type |
| 5816 | param() const |
| 5817 | { return _M_param; } |
| 5818 | |
| 5819 | /** |
| 5820 | * @brief Sets the parameter set of the distribution. |
| 5821 | * @param __param The new parameter set of the distribution. |
| 5822 | */ |
| 5823 | void |
| 5824 | param(const param_type& __param) |
| 5825 | { _M_param = __param; } |
| 5826 | |
| 5827 | /** |
| 5828 | * @brief Returns the greatest lower bound value of the distribution. |
| 5829 | */ |
| 5830 | result_type |
| 5831 | min() const |
| 5832 | { |
| 5833 | return _M_param._M_int.empty() |
| 5834 | ? result_type(0) : _M_param._M_int.front(); |
| 5835 | } |
| 5836 | |
| 5837 | /** |
| 5838 | * @brief Returns the least upper bound value of the distribution. |
| 5839 | */ |
| 5840 | result_type |
| 5841 | max() const |
| 5842 | { |
| 5843 | return _M_param._M_int.empty() |
| 5844 | ? result_type(1) : _M_param._M_int.back(); |
| 5845 | } |
| 5846 | |
| 5847 | /** |
| 5848 | * @brief Generating functions. |
| 5849 | */ |
| 5850 | template<typename _UniformRandomNumberGenerator> |
| 5851 | result_type |
| 5852 | operator()(_UniformRandomNumberGenerator& __urng) |
| 5853 | { return this->operator()(__urng, _M_param); } |
| 5854 | |
| 5855 | template<typename _UniformRandomNumberGenerator> |
| 5856 | result_type |
| 5857 | operator()(_UniformRandomNumberGenerator& __urng, |
| 5858 | const param_type& __p); |
| 5859 | |
| 5860 | template<typename _ForwardIterator, |
| 5861 | typename _UniformRandomNumberGenerator> |
| 5862 | void |
| 5863 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5864 | _UniformRandomNumberGenerator& __urng) |
| 5865 | { this->__generate(__f, __t, __urng, _M_param); } |
| 5866 | |
| 5867 | template<typename _ForwardIterator, |
| 5868 | typename _UniformRandomNumberGenerator> |
| 5869 | void |
| 5870 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 5871 | _UniformRandomNumberGenerator& __urng, |
| 5872 | const param_type& __p) |
| 5873 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5874 | |
| 5875 | template<typename _UniformRandomNumberGenerator> |
| 5876 | void |
| 5877 | __generate(result_type* __f, result_type* __t, |
| 5878 | _UniformRandomNumberGenerator& __urng, |
| 5879 | const param_type& __p) |
| 5880 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 5881 | |
| 5882 | /** |
| 5883 | * @brief Return true if two piecewise linear distributions have the |
| 5884 | * same parameters. |
| 5885 | */ |
| 5886 | friend bool |
| 5887 | operator==(const piecewise_linear_distribution& __d1, |
| 5888 | const piecewise_linear_distribution& __d2) |
| 5889 | { return __d1._M_param == __d2._M_param; } |
| 5890 | |
| 5891 | /** |
| 5892 | * @brief Inserts a %piecewise_linear_distribution random number |
| 5893 | * distribution @p __x into the output stream @p __os. |
| 5894 | * |
| 5895 | * @param __os An output stream. |
| 5896 | * @param __x A %piecewise_linear_distribution random number |
| 5897 | * distribution. |
| 5898 | * |
| 5899 | * @returns The output stream with the state of @p __x inserted or in |
| 5900 | * an error state. |
| 5901 | */ |
| 5902 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 5903 | friend std::basic_ostream<_CharT, _Traits>& |
| 5904 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 5905 | const std::piecewise_linear_distribution<_RealType1>& __x); |
| 5906 | |
| 5907 | /** |
| 5908 | * @brief Extracts a %piecewise_linear_distribution random number |
| 5909 | * distribution @p __x from the input stream @p __is. |
| 5910 | * |
| 5911 | * @param __is An input stream. |
| 5912 | * @param __x A %piecewise_linear_distribution random number |
| 5913 | * generator engine. |
| 5914 | * |
| 5915 | * @returns The input stream with @p __x extracted or in an error |
| 5916 | * state. |
| 5917 | */ |
| 5918 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 5919 | friend std::basic_istream<_CharT, _Traits>& |
| 5920 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 5921 | std::piecewise_linear_distribution<_RealType1>& __x); |
| 5922 | |
| 5923 | private: |
| 5924 | template<typename _ForwardIterator, |
| 5925 | typename _UniformRandomNumberGenerator> |
| 5926 | void |
| 5927 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 5928 | _UniformRandomNumberGenerator& __urng, |
| 5929 | const param_type& __p); |
| 5930 | |
| 5931 | param_type _M_param; |
| 5932 | }; |
| 5933 | |
| 5934 | /** |
| 5935 | * @brief Return true if two piecewise linear distributions have |
| 5936 | * different parameters. |
| 5937 | */ |
| 5938 | template<typename _RealType> |
| 5939 | inline bool |
| 5940 | operator!=(const std::piecewise_linear_distribution<_RealType>& __d1, |
| 5941 | const std::piecewise_linear_distribution<_RealType>& __d2) |
| 5942 | { return !(__d1 == __d2); } |
| 5943 | |
| 5944 | |
| 5945 | /* @} */ // group random_distributions_poisson |
| 5946 | |
| 5947 | /* @} */ // group random_distributions |
| 5948 | |
| 5949 | /** |
| 5950 | * @addtogroup random_utilities Random Number Utilities |
| 5951 | * @ingroup random |
| 5952 | * @{ |
| 5953 | */ |
| 5954 | |
| 5955 | /** |
| 5956 | * @brief The seed_seq class generates sequences of seeds for random |
| 5957 | * number generators. |
| 5958 | */ |
| 5959 | class seed_seq |
| 5960 | { |
| 5961 | public: |
| 5962 | /** The type of the seed vales. */ |
| 5963 | typedef uint_least32_t result_type; |
| 5964 | |
| 5965 | /** Default constructor. */ |
| 5966 | seed_seq() noexcept |
| 5967 | : _M_v() |
| 5968 | { } |
| 5969 | |
| 5970 | template<typename _IntType> |
| 5971 | seed_seq(std::initializer_list<_IntType> il); |
| 5972 | |
| 5973 | template<typename _InputIterator> |
| 5974 | seed_seq(_InputIterator __begin, _InputIterator __end); |
| 5975 | |
| 5976 | // generating functions |
| 5977 | template<typename _RandomAccessIterator> |
| 5978 | void |
| 5979 | generate(_RandomAccessIterator __begin, _RandomAccessIterator __end); |
| 5980 | |
| 5981 | // property functions |
| 5982 | size_t size() const noexcept |
| 5983 | { return _M_v.size(); } |
| 5984 | |
| 5985 | template<typename OutputIterator> |
| 5986 | void |
| 5987 | param(OutputIterator __dest) const |
| 5988 | { std::copy(_M_v.begin(), _M_v.end(), __dest); } |
| 5989 | |
| 5990 | // no copy functions |
| 5991 | seed_seq(const seed_seq&) = delete; |
| 5992 | seed_seq& operator=(const seed_seq&) = delete; |
| 5993 | |
| 5994 | private: |
| 5995 | std::vector<result_type> _M_v; |
| 5996 | }; |
| 5997 | |
| 5998 | /* @} */ // group random_utilities |
| 5999 | |
| 6000 | /* @} */ // group random |
| 6001 | |
| 6002 | _GLIBCXX_END_NAMESPACE_VERSION |
| 6003 | } // namespace std |
| 6004 | |
| 6005 | #endif |
| 6006 | |