| 1 | /* Copyright Joyent, Inc. and other Node contributors. All rights reserved. |
| 2 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 3 | * of this software and associated documentation files (the "Software"), to |
| 4 | * deal in the Software without restriction, including without limitation the |
| 5 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 6 | * sell copies of the Software, and to permit persons to whom the Software is |
| 7 | * furnished to do so, subject to the following conditions: |
| 8 | * |
| 9 | * The above copyright notice and this permission notice shall be included in |
| 10 | * all copies or substantial portions of the Software. |
| 11 | * |
| 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 13 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 14 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 15 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 16 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 17 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| 18 | * IN THE SOFTWARE. |
| 19 | */ |
| 20 | |
| 21 | /* We lean on the fact that POLL{IN,OUT,ERR,HUP} correspond with their |
| 22 | * EPOLL* counterparts. We use the POLL* variants in this file because that |
| 23 | * is what libuv uses elsewhere. |
| 24 | */ |
| 25 | |
| 26 | #include "uv.h" |
| 27 | #include "internal.h" |
| 28 | |
| 29 | #include <inttypes.h> |
| 30 | #include <stdint.h> |
| 31 | #include <stdio.h> |
| 32 | #include <stdlib.h> |
| 33 | #include <string.h> |
| 34 | #include <assert.h> |
| 35 | #include <errno.h> |
| 36 | |
| 37 | #include <net/if.h> |
| 38 | #include <sys/epoll.h> |
| 39 | #include <sys/param.h> |
| 40 | #include <sys/prctl.h> |
| 41 | #include <sys/sysinfo.h> |
| 42 | #include <unistd.h> |
| 43 | #include <fcntl.h> |
| 44 | #include <time.h> |
| 45 | |
| 46 | #define HAVE_IFADDRS_H 1 |
| 47 | |
| 48 | #ifdef __UCLIBC__ |
| 49 | # if __UCLIBC_MAJOR__ < 0 && __UCLIBC_MINOR__ < 9 && __UCLIBC_SUBLEVEL__ < 32 |
| 50 | # undef HAVE_IFADDRS_H |
| 51 | # endif |
| 52 | #endif |
| 53 | |
| 54 | #ifdef HAVE_IFADDRS_H |
| 55 | # if defined(__ANDROID__) |
| 56 | # include "uv/android-ifaddrs.h" |
| 57 | # else |
| 58 | # include <ifaddrs.h> |
| 59 | # endif |
| 60 | # include <sys/socket.h> |
| 61 | # include <net/ethernet.h> |
| 62 | # include <netpacket/packet.h> |
| 63 | #endif /* HAVE_IFADDRS_H */ |
| 64 | |
| 65 | /* Available from 2.6.32 onwards. */ |
| 66 | #ifndef CLOCK_MONOTONIC_COARSE |
| 67 | # define CLOCK_MONOTONIC_COARSE 6 |
| 68 | #endif |
| 69 | |
| 70 | /* This is rather annoying: CLOCK_BOOTTIME lives in <linux/time.h> but we can't |
| 71 | * include that file because it conflicts with <time.h>. We'll just have to |
| 72 | * define it ourselves. |
| 73 | */ |
| 74 | #ifndef CLOCK_BOOTTIME |
| 75 | # define CLOCK_BOOTTIME 7 |
| 76 | #endif |
| 77 | |
| 78 | static int read_models(unsigned int numcpus, uv_cpu_info_t* ci); |
| 79 | static int read_times(FILE* statfile_fp, |
| 80 | unsigned int numcpus, |
| 81 | uv_cpu_info_t* ci); |
| 82 | static void read_speeds(unsigned int numcpus, uv_cpu_info_t* ci); |
| 83 | static uint64_t read_cpufreq(unsigned int cpunum); |
| 84 | |
| 85 | |
| 86 | int uv__platform_loop_init(uv_loop_t* loop) { |
| 87 | int fd; |
| 88 | fd = epoll_create1(O_CLOEXEC); |
| 89 | |
| 90 | /* epoll_create1() can fail either because it's not implemented (old kernel) |
| 91 | * or because it doesn't understand the O_CLOEXEC flag. |
| 92 | */ |
| 93 | if (fd == -1 && (errno == ENOSYS || errno == EINVAL)) { |
| 94 | fd = epoll_create(256); |
| 95 | |
| 96 | if (fd != -1) |
| 97 | uv__cloexec(fd, 1); |
| 98 | } |
| 99 | |
| 100 | loop->backend_fd = fd; |
| 101 | loop->inotify_fd = -1; |
| 102 | loop->inotify_watchers = NULL; |
| 103 | |
| 104 | if (fd == -1) |
| 105 | return UV__ERR(errno); |
| 106 | |
| 107 | return 0; |
| 108 | } |
| 109 | |
| 110 | |
| 111 | int uv__io_fork(uv_loop_t* loop) { |
| 112 | int err; |
| 113 | void* old_watchers; |
| 114 | |
| 115 | old_watchers = loop->inotify_watchers; |
| 116 | |
| 117 | uv__close(loop->backend_fd); |
| 118 | loop->backend_fd = -1; |
| 119 | uv__platform_loop_delete(loop); |
| 120 | |
| 121 | err = uv__platform_loop_init(loop); |
| 122 | if (err) |
| 123 | return err; |
| 124 | |
| 125 | return uv__inotify_fork(loop, old_watchers); |
| 126 | } |
| 127 | |
| 128 | |
| 129 | void uv__platform_loop_delete(uv_loop_t* loop) { |
| 130 | if (loop->inotify_fd == -1) return; |
| 131 | uv__io_stop(loop, &loop->inotify_read_watcher, POLLIN); |
| 132 | uv__close(loop->inotify_fd); |
| 133 | loop->inotify_fd = -1; |
| 134 | } |
| 135 | |
| 136 | |
| 137 | void uv__platform_invalidate_fd(uv_loop_t* loop, int fd) { |
| 138 | struct epoll_event* events; |
| 139 | struct epoll_event dummy; |
| 140 | uintptr_t i; |
| 141 | uintptr_t nfds; |
| 142 | |
| 143 | assert(loop->watchers != NULL); |
| 144 | assert(fd >= 0); |
| 145 | |
| 146 | events = (struct epoll_event*) loop->watchers[loop->nwatchers]; |
| 147 | nfds = (uintptr_t) loop->watchers[loop->nwatchers + 1]; |
| 148 | if (events != NULL) |
| 149 | /* Invalidate events with same file descriptor */ |
| 150 | for (i = 0; i < nfds; i++) |
| 151 | if (events[i].data.fd == fd) |
| 152 | events[i].data.fd = -1; |
| 153 | |
| 154 | /* Remove the file descriptor from the epoll. |
| 155 | * This avoids a problem where the same file description remains open |
| 156 | * in another process, causing repeated junk epoll events. |
| 157 | * |
| 158 | * We pass in a dummy epoll_event, to work around a bug in old kernels. |
| 159 | */ |
| 160 | if (loop->backend_fd >= 0) { |
| 161 | /* Work around a bug in kernels 3.10 to 3.19 where passing a struct that |
| 162 | * has the EPOLLWAKEUP flag set generates spurious audit syslog warnings. |
| 163 | */ |
| 164 | memset(&dummy, 0, sizeof(dummy)); |
| 165 | epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, &dummy); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | |
| 170 | int uv__io_check_fd(uv_loop_t* loop, int fd) { |
| 171 | struct epoll_event e; |
| 172 | int rc; |
| 173 | |
| 174 | memset(&e, 0, sizeof(e)); |
| 175 | e.events = POLLIN; |
| 176 | e.data.fd = -1; |
| 177 | |
| 178 | rc = 0; |
| 179 | if (epoll_ctl(loop->backend_fd, EPOLL_CTL_ADD, fd, &e)) |
| 180 | if (errno != EEXIST) |
| 181 | rc = UV__ERR(errno); |
| 182 | |
| 183 | if (rc == 0) |
| 184 | if (epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, &e)) |
| 185 | abort(); |
| 186 | |
| 187 | return rc; |
| 188 | } |
| 189 | |
| 190 | |
| 191 | void uv__io_poll(uv_loop_t* loop, int timeout) { |
| 192 | /* A bug in kernels < 2.6.37 makes timeouts larger than ~30 minutes |
| 193 | * effectively infinite on 32 bits architectures. To avoid blocking |
| 194 | * indefinitely, we cap the timeout and poll again if necessary. |
| 195 | * |
| 196 | * Note that "30 minutes" is a simplification because it depends on |
| 197 | * the value of CONFIG_HZ. The magic constant assumes CONFIG_HZ=1200, |
| 198 | * that being the largest value I have seen in the wild (and only once.) |
| 199 | */ |
| 200 | static const int max_safe_timeout = 1789569; |
| 201 | static int no_epoll_pwait_cached; |
| 202 | static int no_epoll_wait_cached; |
| 203 | int no_epoll_pwait; |
| 204 | int no_epoll_wait; |
| 205 | struct epoll_event events[1024]; |
| 206 | struct epoll_event* pe; |
| 207 | struct epoll_event e; |
| 208 | int real_timeout; |
| 209 | QUEUE* q; |
| 210 | uv__io_t* w; |
| 211 | sigset_t sigset; |
| 212 | uint64_t sigmask; |
| 213 | uint64_t base; |
| 214 | int have_signals; |
| 215 | int nevents; |
| 216 | int count; |
| 217 | int nfds; |
| 218 | int fd; |
| 219 | int op; |
| 220 | int i; |
| 221 | int user_timeout; |
| 222 | int reset_timeout; |
| 223 | |
| 224 | if (loop->nfds == 0) { |
| 225 | assert(QUEUE_EMPTY(&loop->watcher_queue)); |
| 226 | return; |
| 227 | } |
| 228 | |
| 229 | memset(&e, 0, sizeof(e)); |
| 230 | |
| 231 | while (!QUEUE_EMPTY(&loop->watcher_queue)) { |
| 232 | q = QUEUE_HEAD(&loop->watcher_queue); |
| 233 | QUEUE_REMOVE(q); |
| 234 | QUEUE_INIT(q); |
| 235 | |
| 236 | w = QUEUE_DATA(q, uv__io_t, watcher_queue); |
| 237 | assert(w->pevents != 0); |
| 238 | assert(w->fd >= 0); |
| 239 | assert(w->fd < (int) loop->nwatchers); |
| 240 | |
| 241 | e.events = w->pevents; |
| 242 | e.data.fd = w->fd; |
| 243 | |
| 244 | if (w->events == 0) |
| 245 | op = EPOLL_CTL_ADD; |
| 246 | else |
| 247 | op = EPOLL_CTL_MOD; |
| 248 | |
| 249 | /* XXX Future optimization: do EPOLL_CTL_MOD lazily if we stop watching |
| 250 | * events, skip the syscall and squelch the events after epoll_wait(). |
| 251 | */ |
| 252 | if (epoll_ctl(loop->backend_fd, op, w->fd, &e)) { |
| 253 | if (errno != EEXIST) |
| 254 | abort(); |
| 255 | |
| 256 | assert(op == EPOLL_CTL_ADD); |
| 257 | |
| 258 | /* We've reactivated a file descriptor that's been watched before. */ |
| 259 | if (epoll_ctl(loop->backend_fd, EPOLL_CTL_MOD, w->fd, &e)) |
| 260 | abort(); |
| 261 | } |
| 262 | |
| 263 | w->events = w->pevents; |
| 264 | } |
| 265 | |
| 266 | sigmask = 0; |
| 267 | if (loop->flags & UV_LOOP_BLOCK_SIGPROF) { |
| 268 | sigemptyset(&sigset); |
| 269 | sigaddset(&sigset, SIGPROF); |
| 270 | sigmask |= 1 << (SIGPROF - 1); |
| 271 | } |
| 272 | |
| 273 | assert(timeout >= -1); |
| 274 | base = loop->time; |
| 275 | count = 48; /* Benchmarks suggest this gives the best throughput. */ |
| 276 | real_timeout = timeout; |
| 277 | |
| 278 | if (uv__get_internal_fields(loop)->flags & UV_METRICS_IDLE_TIME) { |
| 279 | reset_timeout = 1; |
| 280 | user_timeout = timeout; |
| 281 | timeout = 0; |
| 282 | } else { |
| 283 | reset_timeout = 0; |
| 284 | user_timeout = 0; |
| 285 | } |
| 286 | |
| 287 | /* You could argue there is a dependency between these two but |
| 288 | * ultimately we don't care about their ordering with respect |
| 289 | * to one another. Worst case, we make a few system calls that |
| 290 | * could have been avoided because another thread already knows |
| 291 | * they fail with ENOSYS. Hardly the end of the world. |
| 292 | */ |
| 293 | no_epoll_pwait = uv__load_relaxed(&no_epoll_pwait_cached); |
| 294 | no_epoll_wait = uv__load_relaxed(&no_epoll_wait_cached); |
| 295 | |
| 296 | for (;;) { |
| 297 | /* Only need to set the provider_entry_time if timeout != 0. The function |
| 298 | * will return early if the loop isn't configured with UV_METRICS_IDLE_TIME. |
| 299 | */ |
| 300 | if (timeout != 0) |
| 301 | uv__metrics_set_provider_entry_time(loop); |
| 302 | |
| 303 | /* See the comment for max_safe_timeout for an explanation of why |
| 304 | * this is necessary. Executive summary: kernel bug workaround. |
| 305 | */ |
| 306 | if (sizeof(int32_t) == sizeof(long) && timeout >= max_safe_timeout) |
| 307 | timeout = max_safe_timeout; |
| 308 | |
| 309 | if (sigmask != 0 && no_epoll_pwait != 0) |
| 310 | if (pthread_sigmask(SIG_BLOCK, &sigset, NULL)) |
| 311 | abort(); |
| 312 | |
| 313 | if (no_epoll_wait != 0 || (sigmask != 0 && no_epoll_pwait == 0)) { |
| 314 | nfds = epoll_pwait(loop->backend_fd, |
| 315 | events, |
| 316 | ARRAY_SIZE(events), |
| 317 | timeout, |
| 318 | &sigset); |
| 319 | if (nfds == -1 && errno == ENOSYS) { |
| 320 | uv__store_relaxed(&no_epoll_pwait_cached, 1); |
| 321 | no_epoll_pwait = 1; |
| 322 | } |
| 323 | } else { |
| 324 | nfds = epoll_wait(loop->backend_fd, |
| 325 | events, |
| 326 | ARRAY_SIZE(events), |
| 327 | timeout); |
| 328 | if (nfds == -1 && errno == ENOSYS) { |
| 329 | uv__store_relaxed(&no_epoll_wait_cached, 1); |
| 330 | no_epoll_wait = 1; |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | if (sigmask != 0 && no_epoll_pwait != 0) |
| 335 | if (pthread_sigmask(SIG_UNBLOCK, &sigset, NULL)) |
| 336 | abort(); |
| 337 | |
| 338 | /* Update loop->time unconditionally. It's tempting to skip the update when |
| 339 | * timeout == 0 (i.e. non-blocking poll) but there is no guarantee that the |
| 340 | * operating system didn't reschedule our process while in the syscall. |
| 341 | */ |
| 342 | SAVE_ERRNO(uv__update_time(loop)); |
| 343 | |
| 344 | if (nfds == 0) { |
| 345 | assert(timeout != -1); |
| 346 | |
| 347 | if (reset_timeout != 0) { |
| 348 | timeout = user_timeout; |
| 349 | reset_timeout = 0; |
| 350 | } |
| 351 | |
| 352 | if (timeout == -1) |
| 353 | continue; |
| 354 | |
| 355 | if (timeout == 0) |
| 356 | return; |
| 357 | |
| 358 | /* We may have been inside the system call for longer than |timeout| |
| 359 | * milliseconds so we need to update the timestamp to avoid drift. |
| 360 | */ |
| 361 | goto update_timeout; |
| 362 | } |
| 363 | |
| 364 | if (nfds == -1) { |
| 365 | if (errno == ENOSYS) { |
| 366 | /* epoll_wait() or epoll_pwait() failed, try the other system call. */ |
| 367 | assert(no_epoll_wait == 0 || no_epoll_pwait == 0); |
| 368 | continue; |
| 369 | } |
| 370 | |
| 371 | if (errno != EINTR) |
| 372 | abort(); |
| 373 | |
| 374 | if (reset_timeout != 0) { |
| 375 | timeout = user_timeout; |
| 376 | reset_timeout = 0; |
| 377 | } |
| 378 | |
| 379 | if (timeout == -1) |
| 380 | continue; |
| 381 | |
| 382 | if (timeout == 0) |
| 383 | return; |
| 384 | |
| 385 | /* Interrupted by a signal. Update timeout and poll again. */ |
| 386 | goto update_timeout; |
| 387 | } |
| 388 | |
| 389 | have_signals = 0; |
| 390 | nevents = 0; |
| 391 | |
| 392 | { |
| 393 | /* Squelch a -Waddress-of-packed-member warning with gcc >= 9. */ |
| 394 | union { |
| 395 | struct epoll_event* events; |
| 396 | uv__io_t* watchers; |
| 397 | } x; |
| 398 | |
| 399 | x.events = events; |
| 400 | assert(loop->watchers != NULL); |
| 401 | loop->watchers[loop->nwatchers] = x.watchers; |
| 402 | loop->watchers[loop->nwatchers + 1] = (void*) (uintptr_t) nfds; |
| 403 | } |
| 404 | |
| 405 | for (i = 0; i < nfds; i++) { |
| 406 | pe = events + i; |
| 407 | fd = pe->data.fd; |
| 408 | |
| 409 | /* Skip invalidated events, see uv__platform_invalidate_fd */ |
| 410 | if (fd == -1) |
| 411 | continue; |
| 412 | |
| 413 | assert(fd >= 0); |
| 414 | assert((unsigned) fd < loop->nwatchers); |
| 415 | |
| 416 | w = loop->watchers[fd]; |
| 417 | |
| 418 | if (w == NULL) { |
| 419 | /* File descriptor that we've stopped watching, disarm it. |
| 420 | * |
| 421 | * Ignore all errors because we may be racing with another thread |
| 422 | * when the file descriptor is closed. |
| 423 | */ |
| 424 | epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, pe); |
| 425 | continue; |
| 426 | } |
| 427 | |
| 428 | /* Give users only events they're interested in. Prevents spurious |
| 429 | * callbacks when previous callback invocation in this loop has stopped |
| 430 | * the current watcher. Also, filters out events that users has not |
| 431 | * requested us to watch. |
| 432 | */ |
| 433 | pe->events &= w->pevents | POLLERR | POLLHUP; |
| 434 | |
| 435 | /* Work around an epoll quirk where it sometimes reports just the |
| 436 | * EPOLLERR or EPOLLHUP event. In order to force the event loop to |
| 437 | * move forward, we merge in the read/write events that the watcher |
| 438 | * is interested in; uv__read() and uv__write() will then deal with |
| 439 | * the error or hangup in the usual fashion. |
| 440 | * |
| 441 | * Note to self: happens when epoll reports EPOLLIN|EPOLLHUP, the user |
| 442 | * reads the available data, calls uv_read_stop(), then sometime later |
| 443 | * calls uv_read_start() again. By then, libuv has forgotten about the |
| 444 | * hangup and the kernel won't report EPOLLIN again because there's |
| 445 | * nothing left to read. If anything, libuv is to blame here. The |
| 446 | * current hack is just a quick bandaid; to properly fix it, libuv |
| 447 | * needs to remember the error/hangup event. We should get that for |
| 448 | * free when we switch over to edge-triggered I/O. |
| 449 | */ |
| 450 | if (pe->events == POLLERR || pe->events == POLLHUP) |
| 451 | pe->events |= |
| 452 | w->pevents & (POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI); |
| 453 | |
| 454 | if (pe->events != 0) { |
| 455 | /* Run signal watchers last. This also affects child process watchers |
| 456 | * because those are implemented in terms of signal watchers. |
| 457 | */ |
| 458 | if (w == &loop->signal_io_watcher) { |
| 459 | have_signals = 1; |
| 460 | } else { |
| 461 | uv__metrics_update_idle_time(loop); |
| 462 | w->cb(loop, w, pe->events); |
| 463 | } |
| 464 | |
| 465 | nevents++; |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | if (reset_timeout != 0) { |
| 470 | timeout = user_timeout; |
| 471 | reset_timeout = 0; |
| 472 | } |
| 473 | |
| 474 | if (have_signals != 0) { |
| 475 | uv__metrics_update_idle_time(loop); |
| 476 | loop->signal_io_watcher.cb(loop, &loop->signal_io_watcher, POLLIN); |
| 477 | } |
| 478 | |
| 479 | loop->watchers[loop->nwatchers] = NULL; |
| 480 | loop->watchers[loop->nwatchers + 1] = NULL; |
| 481 | |
| 482 | if (have_signals != 0) |
| 483 | return; /* Event loop should cycle now so don't poll again. */ |
| 484 | |
| 485 | if (nevents != 0) { |
| 486 | if (nfds == ARRAY_SIZE(events) && --count != 0) { |
| 487 | /* Poll for more events but don't block this time. */ |
| 488 | timeout = 0; |
| 489 | continue; |
| 490 | } |
| 491 | return; |
| 492 | } |
| 493 | |
| 494 | if (timeout == 0) |
| 495 | return; |
| 496 | |
| 497 | if (timeout == -1) |
| 498 | continue; |
| 499 | |
| 500 | update_timeout: |
| 501 | assert(timeout > 0); |
| 502 | |
| 503 | real_timeout -= (loop->time - base); |
| 504 | if (real_timeout <= 0) |
| 505 | return; |
| 506 | |
| 507 | timeout = real_timeout; |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | |
| 512 | uint64_t uv__hrtime(uv_clocktype_t type) { |
| 513 | static clock_t fast_clock_id = -1; |
| 514 | struct timespec t; |
| 515 | clock_t clock_id; |
| 516 | |
| 517 | /* Prefer CLOCK_MONOTONIC_COARSE if available but only when it has |
| 518 | * millisecond granularity or better. CLOCK_MONOTONIC_COARSE is |
| 519 | * serviced entirely from the vDSO, whereas CLOCK_MONOTONIC may |
| 520 | * decide to make a costly system call. |
| 521 | */ |
| 522 | /* TODO(bnoordhuis) Use CLOCK_MONOTONIC_COARSE for UV_CLOCK_PRECISE |
| 523 | * when it has microsecond granularity or better (unlikely). |
| 524 | */ |
| 525 | clock_id = CLOCK_MONOTONIC; |
| 526 | if (type != UV_CLOCK_FAST) |
| 527 | goto done; |
| 528 | |
| 529 | clock_id = uv__load_relaxed(&fast_clock_id); |
| 530 | if (clock_id != -1) |
| 531 | goto done; |
| 532 | |
| 533 | clock_id = CLOCK_MONOTONIC; |
| 534 | if (0 == clock_getres(CLOCK_MONOTONIC_COARSE, &t)) |
| 535 | if (t.tv_nsec <= 1 * 1000 * 1000) |
| 536 | clock_id = CLOCK_MONOTONIC_COARSE; |
| 537 | |
| 538 | uv__store_relaxed(&fast_clock_id, clock_id); |
| 539 | |
| 540 | done: |
| 541 | |
| 542 | if (clock_gettime(clock_id, &t)) |
| 543 | return 0; /* Not really possible. */ |
| 544 | |
| 545 | return t.tv_sec * (uint64_t) 1e9 + t.tv_nsec; |
| 546 | } |
| 547 | |
| 548 | |
| 549 | int uv_resident_set_memory(size_t* ) { |
| 550 | char buf[1024]; |
| 551 | const char* s; |
| 552 | ssize_t n; |
| 553 | long val; |
| 554 | int fd; |
| 555 | int i; |
| 556 | |
| 557 | do |
| 558 | fd = open("/proc/self/stat" , O_RDONLY); |
| 559 | while (fd == -1 && errno == EINTR); |
| 560 | |
| 561 | if (fd == -1) |
| 562 | return UV__ERR(errno); |
| 563 | |
| 564 | do |
| 565 | n = read(fd, buf, sizeof(buf) - 1); |
| 566 | while (n == -1 && errno == EINTR); |
| 567 | |
| 568 | uv__close(fd); |
| 569 | if (n == -1) |
| 570 | return UV__ERR(errno); |
| 571 | buf[n] = '\0'; |
| 572 | |
| 573 | s = strchr(buf, ' '); |
| 574 | if (s == NULL) |
| 575 | goto err; |
| 576 | |
| 577 | s += 1; |
| 578 | if (*s != '(') |
| 579 | goto err; |
| 580 | |
| 581 | s = strchr(s, ')'); |
| 582 | if (s == NULL) |
| 583 | goto err; |
| 584 | |
| 585 | for (i = 1; i <= 22; i++) { |
| 586 | s = strchr(s + 1, ' '); |
| 587 | if (s == NULL) |
| 588 | goto err; |
| 589 | } |
| 590 | |
| 591 | errno = 0; |
| 592 | val = strtol(s, NULL, 10); |
| 593 | if (errno != 0) |
| 594 | goto err; |
| 595 | if (val < 0) |
| 596 | goto err; |
| 597 | |
| 598 | *rss = val * getpagesize(); |
| 599 | return 0; |
| 600 | |
| 601 | err: |
| 602 | return UV_EINVAL; |
| 603 | } |
| 604 | |
| 605 | static int uv__slurp(const char* filename, char* buf, size_t len) { |
| 606 | ssize_t n; |
| 607 | int fd; |
| 608 | |
| 609 | assert(len > 0); |
| 610 | |
| 611 | fd = uv__open_cloexec(filename, O_RDONLY); |
| 612 | if (fd < 0) |
| 613 | return fd; |
| 614 | |
| 615 | do |
| 616 | n = read(fd, buf, len - 1); |
| 617 | while (n == -1 && errno == EINTR); |
| 618 | |
| 619 | if (uv__close_nocheckstdio(fd)) |
| 620 | abort(); |
| 621 | |
| 622 | if (n < 0) |
| 623 | return UV__ERR(errno); |
| 624 | |
| 625 | buf[n] = '\0'; |
| 626 | |
| 627 | return 0; |
| 628 | } |
| 629 | |
| 630 | int uv_uptime(double* uptime) { |
| 631 | static volatile int no_clock_boottime; |
| 632 | char buf[128]; |
| 633 | struct timespec now; |
| 634 | int r; |
| 635 | |
| 636 | /* Try /proc/uptime first, then fallback to clock_gettime(). */ |
| 637 | |
| 638 | if (0 == uv__slurp("/proc/uptime" , buf, sizeof(buf))) |
| 639 | if (1 == sscanf(buf, "%lf" , uptime)) |
| 640 | return 0; |
| 641 | |
| 642 | /* Try CLOCK_BOOTTIME first, fall back to CLOCK_MONOTONIC if not available |
| 643 | * (pre-2.6.39 kernels). CLOCK_MONOTONIC doesn't increase when the system |
| 644 | * is suspended. |
| 645 | */ |
| 646 | if (no_clock_boottime) { |
| 647 | retry_clock_gettime: r = clock_gettime(CLOCK_MONOTONIC, &now); |
| 648 | } |
| 649 | else if ((r = clock_gettime(CLOCK_BOOTTIME, &now)) && errno == EINVAL) { |
| 650 | no_clock_boottime = 1; |
| 651 | goto retry_clock_gettime; |
| 652 | } |
| 653 | |
| 654 | if (r) |
| 655 | return UV__ERR(errno); |
| 656 | |
| 657 | *uptime = now.tv_sec; |
| 658 | return 0; |
| 659 | } |
| 660 | |
| 661 | |
| 662 | static int uv__cpu_num(FILE* statfile_fp, unsigned int* numcpus) { |
| 663 | unsigned int num; |
| 664 | char buf[1024]; |
| 665 | |
| 666 | if (!fgets(buf, sizeof(buf), statfile_fp)) |
| 667 | return UV_EIO; |
| 668 | |
| 669 | num = 0; |
| 670 | while (fgets(buf, sizeof(buf), statfile_fp)) { |
| 671 | if (strncmp(buf, "cpu" , 3)) |
| 672 | break; |
| 673 | num++; |
| 674 | } |
| 675 | |
| 676 | if (num == 0) |
| 677 | return UV_EIO; |
| 678 | |
| 679 | *numcpus = num; |
| 680 | return 0; |
| 681 | } |
| 682 | |
| 683 | |
| 684 | int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) { |
| 685 | unsigned int numcpus; |
| 686 | uv_cpu_info_t* ci; |
| 687 | int err; |
| 688 | FILE* statfile_fp; |
| 689 | |
| 690 | *cpu_infos = NULL; |
| 691 | *count = 0; |
| 692 | |
| 693 | statfile_fp = uv__open_file("/proc/stat" ); |
| 694 | if (statfile_fp == NULL) |
| 695 | return UV__ERR(errno); |
| 696 | |
| 697 | err = uv__cpu_num(statfile_fp, &numcpus); |
| 698 | if (err < 0) |
| 699 | goto out; |
| 700 | |
| 701 | err = UV_ENOMEM; |
| 702 | ci = uv__calloc(numcpus, sizeof(*ci)); |
| 703 | if (ci == NULL) |
| 704 | goto out; |
| 705 | |
| 706 | err = read_models(numcpus, ci); |
| 707 | if (err == 0) |
| 708 | err = read_times(statfile_fp, numcpus, ci); |
| 709 | |
| 710 | if (err) { |
| 711 | uv_free_cpu_info(ci, numcpus); |
| 712 | goto out; |
| 713 | } |
| 714 | |
| 715 | /* read_models() on x86 also reads the CPU speed from /proc/cpuinfo. |
| 716 | * We don't check for errors here. Worst case, the field is left zero. |
| 717 | */ |
| 718 | if (ci[0].speed == 0) |
| 719 | read_speeds(numcpus, ci); |
| 720 | |
| 721 | *cpu_infos = ci; |
| 722 | *count = numcpus; |
| 723 | err = 0; |
| 724 | |
| 725 | out: |
| 726 | |
| 727 | if (fclose(statfile_fp)) |
| 728 | if (errno != EINTR && errno != EINPROGRESS) |
| 729 | abort(); |
| 730 | |
| 731 | return err; |
| 732 | } |
| 733 | |
| 734 | |
| 735 | static void read_speeds(unsigned int numcpus, uv_cpu_info_t* ci) { |
| 736 | unsigned int num; |
| 737 | |
| 738 | for (num = 0; num < numcpus; num++) |
| 739 | ci[num].speed = read_cpufreq(num) / 1000; |
| 740 | } |
| 741 | |
| 742 | |
| 743 | /* Also reads the CPU frequency on x86. The other architectures only have |
| 744 | * a BogoMIPS field, which may not be very accurate. |
| 745 | * |
| 746 | * Note: Simply returns on error, uv_cpu_info() takes care of the cleanup. |
| 747 | */ |
| 748 | static int read_models(unsigned int numcpus, uv_cpu_info_t* ci) { |
| 749 | static const char model_marker[] = "model name\t: " ; |
| 750 | static const char speed_marker[] = "cpu MHz\t\t: " ; |
| 751 | const char* inferred_model; |
| 752 | unsigned int model_idx; |
| 753 | unsigned int speed_idx; |
| 754 | char buf[1024]; |
| 755 | char* model; |
| 756 | FILE* fp; |
| 757 | |
| 758 | /* Most are unused on non-ARM, non-MIPS and non-x86 architectures. */ |
| 759 | (void) &model_marker; |
| 760 | (void) &speed_marker; |
| 761 | (void) &speed_idx; |
| 762 | (void) &model; |
| 763 | (void) &buf; |
| 764 | (void) &fp; |
| 765 | |
| 766 | model_idx = 0; |
| 767 | speed_idx = 0; |
| 768 | |
| 769 | #if defined(__arm__) || \ |
| 770 | defined(__i386__) || \ |
| 771 | defined(__mips__) || \ |
| 772 | defined(__x86_64__) |
| 773 | fp = uv__open_file("/proc/cpuinfo" ); |
| 774 | if (fp == NULL) |
| 775 | return UV__ERR(errno); |
| 776 | |
| 777 | while (fgets(buf, sizeof(buf), fp)) { |
| 778 | if (model_idx < numcpus) { |
| 779 | if (strncmp(buf, model_marker, sizeof(model_marker) - 1) == 0) { |
| 780 | model = buf + sizeof(model_marker) - 1; |
| 781 | model = uv__strndup(model, strlen(model) - 1); /* Strip newline. */ |
| 782 | if (model == NULL) { |
| 783 | fclose(fp); |
| 784 | return UV_ENOMEM; |
| 785 | } |
| 786 | ci[model_idx++].model = model; |
| 787 | continue; |
| 788 | } |
| 789 | } |
| 790 | #if defined(__arm__) || defined(__mips__) |
| 791 | if (model_idx < numcpus) { |
| 792 | #if defined(__arm__) |
| 793 | /* Fallback for pre-3.8 kernels. */ |
| 794 | static const char model_marker[] = "Processor\t: " ; |
| 795 | #else /* defined(__mips__) */ |
| 796 | static const char model_marker[] = "cpu model\t\t: " ; |
| 797 | #endif |
| 798 | if (strncmp(buf, model_marker, sizeof(model_marker) - 1) == 0) { |
| 799 | model = buf + sizeof(model_marker) - 1; |
| 800 | model = uv__strndup(model, strlen(model) - 1); /* Strip newline. */ |
| 801 | if (model == NULL) { |
| 802 | fclose(fp); |
| 803 | return UV_ENOMEM; |
| 804 | } |
| 805 | ci[model_idx++].model = model; |
| 806 | continue; |
| 807 | } |
| 808 | } |
| 809 | #else /* !__arm__ && !__mips__ */ |
| 810 | if (speed_idx < numcpus) { |
| 811 | if (strncmp(buf, speed_marker, sizeof(speed_marker) - 1) == 0) { |
| 812 | ci[speed_idx++].speed = atoi(buf + sizeof(speed_marker) - 1); |
| 813 | continue; |
| 814 | } |
| 815 | } |
| 816 | #endif /* __arm__ || __mips__ */ |
| 817 | } |
| 818 | |
| 819 | fclose(fp); |
| 820 | #endif /* __arm__ || __i386__ || __mips__ || __x86_64__ */ |
| 821 | |
| 822 | /* Now we want to make sure that all the models contain *something* because |
| 823 | * it's not safe to leave them as null. Copy the last entry unless there |
| 824 | * isn't one, in that case we simply put "unknown" into everything. |
| 825 | */ |
| 826 | inferred_model = "unknown" ; |
| 827 | if (model_idx > 0) |
| 828 | inferred_model = ci[model_idx - 1].model; |
| 829 | |
| 830 | while (model_idx < numcpus) { |
| 831 | model = uv__strndup(inferred_model, strlen(inferred_model)); |
| 832 | if (model == NULL) |
| 833 | return UV_ENOMEM; |
| 834 | ci[model_idx++].model = model; |
| 835 | } |
| 836 | |
| 837 | return 0; |
| 838 | } |
| 839 | |
| 840 | |
| 841 | static int read_times(FILE* statfile_fp, |
| 842 | unsigned int numcpus, |
| 843 | uv_cpu_info_t* ci) { |
| 844 | struct uv_cpu_times_s ts; |
| 845 | unsigned int ticks; |
| 846 | unsigned int multiplier; |
| 847 | uint64_t user; |
| 848 | uint64_t nice; |
| 849 | uint64_t sys; |
| 850 | uint64_t idle; |
| 851 | uint64_t dummy; |
| 852 | uint64_t irq; |
| 853 | uint64_t num; |
| 854 | uint64_t len; |
| 855 | char buf[1024]; |
| 856 | |
| 857 | ticks = (unsigned int)sysconf(_SC_CLK_TCK); |
| 858 | multiplier = ((uint64_t)1000L / ticks); |
| 859 | assert(ticks != (unsigned int) -1); |
| 860 | assert(ticks != 0); |
| 861 | |
| 862 | rewind(statfile_fp); |
| 863 | |
| 864 | if (!fgets(buf, sizeof(buf), statfile_fp)) |
| 865 | abort(); |
| 866 | |
| 867 | num = 0; |
| 868 | |
| 869 | while (fgets(buf, sizeof(buf), statfile_fp)) { |
| 870 | if (num >= numcpus) |
| 871 | break; |
| 872 | |
| 873 | if (strncmp(buf, "cpu" , 3)) |
| 874 | break; |
| 875 | |
| 876 | /* skip "cpu<num> " marker */ |
| 877 | { |
| 878 | unsigned int n; |
| 879 | int r = sscanf(buf, "cpu%u " , &n); |
| 880 | assert(r == 1); |
| 881 | (void) r; /* silence build warning */ |
| 882 | for (len = sizeof("cpu0" ); n /= 10; len++); |
| 883 | } |
| 884 | |
| 885 | /* Line contains user, nice, system, idle, iowait, irq, softirq, steal, |
| 886 | * guest, guest_nice but we're only interested in the first four + irq. |
| 887 | * |
| 888 | * Don't use %*s to skip fields or %ll to read straight into the uint64_t |
| 889 | * fields, they're not allowed in C89 mode. |
| 890 | */ |
| 891 | if (6 != sscanf(buf + len, |
| 892 | "%" PRIu64 " %" PRIu64 " %" PRIu64 |
| 893 | "%" PRIu64 " %" PRIu64 " %" PRIu64, |
| 894 | &user, |
| 895 | &nice, |
| 896 | &sys, |
| 897 | &idle, |
| 898 | &dummy, |
| 899 | &irq)) |
| 900 | abort(); |
| 901 | |
| 902 | ts.user = user * multiplier; |
| 903 | ts.nice = nice * multiplier; |
| 904 | ts.sys = sys * multiplier; |
| 905 | ts.idle = idle * multiplier; |
| 906 | ts.irq = irq * multiplier; |
| 907 | ci[num++].cpu_times = ts; |
| 908 | } |
| 909 | assert(num == numcpus); |
| 910 | |
| 911 | return 0; |
| 912 | } |
| 913 | |
| 914 | |
| 915 | static uint64_t read_cpufreq(unsigned int cpunum) { |
| 916 | uint64_t val; |
| 917 | char buf[1024]; |
| 918 | FILE* fp; |
| 919 | |
| 920 | snprintf(buf, |
| 921 | sizeof(buf), |
| 922 | "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_cur_freq" , |
| 923 | cpunum); |
| 924 | |
| 925 | fp = uv__open_file(buf); |
| 926 | if (fp == NULL) |
| 927 | return 0; |
| 928 | |
| 929 | if (fscanf(fp, "%" PRIu64, &val) != 1) |
| 930 | val = 0; |
| 931 | |
| 932 | fclose(fp); |
| 933 | |
| 934 | return val; |
| 935 | } |
| 936 | |
| 937 | |
| 938 | static int uv__ifaddr_exclude(struct ifaddrs *ent, int exclude_type) { |
| 939 | if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING))) |
| 940 | return 1; |
| 941 | if (ent->ifa_addr == NULL) |
| 942 | return 1; |
| 943 | /* |
| 944 | * On Linux getifaddrs returns information related to the raw underlying |
| 945 | * devices. We're not interested in this information yet. |
| 946 | */ |
| 947 | if (ent->ifa_addr->sa_family == PF_PACKET) |
| 948 | return exclude_type; |
| 949 | return !exclude_type; |
| 950 | } |
| 951 | |
| 952 | int uv_interface_addresses(uv_interface_address_t** addresses, int* count) { |
| 953 | #ifndef HAVE_IFADDRS_H |
| 954 | *count = 0; |
| 955 | *addresses = NULL; |
| 956 | return UV_ENOSYS; |
| 957 | #else |
| 958 | struct ifaddrs *addrs, *ent; |
| 959 | uv_interface_address_t* address; |
| 960 | int i; |
| 961 | struct sockaddr_ll *sll; |
| 962 | |
| 963 | *count = 0; |
| 964 | *addresses = NULL; |
| 965 | |
| 966 | if (getifaddrs(&addrs)) |
| 967 | return UV__ERR(errno); |
| 968 | |
| 969 | /* Count the number of interfaces */ |
| 970 | for (ent = addrs; ent != NULL; ent = ent->ifa_next) { |
| 971 | if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR)) |
| 972 | continue; |
| 973 | |
| 974 | (*count)++; |
| 975 | } |
| 976 | |
| 977 | if (*count == 0) { |
| 978 | freeifaddrs(addrs); |
| 979 | return 0; |
| 980 | } |
| 981 | |
| 982 | /* Make sure the memory is initiallized to zero using calloc() */ |
| 983 | *addresses = uv__calloc(*count, sizeof(**addresses)); |
| 984 | if (!(*addresses)) { |
| 985 | freeifaddrs(addrs); |
| 986 | return UV_ENOMEM; |
| 987 | } |
| 988 | |
| 989 | address = *addresses; |
| 990 | |
| 991 | for (ent = addrs; ent != NULL; ent = ent->ifa_next) { |
| 992 | if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR)) |
| 993 | continue; |
| 994 | |
| 995 | address->name = uv__strdup(ent->ifa_name); |
| 996 | |
| 997 | if (ent->ifa_addr->sa_family == AF_INET6) { |
| 998 | address->address.address6 = *((struct sockaddr_in6*) ent->ifa_addr); |
| 999 | } else { |
| 1000 | address->address.address4 = *((struct sockaddr_in*) ent->ifa_addr); |
| 1001 | } |
| 1002 | |
| 1003 | if (ent->ifa_netmask->sa_family == AF_INET6) { |
| 1004 | address->netmask.netmask6 = *((struct sockaddr_in6*) ent->ifa_netmask); |
| 1005 | } else { |
| 1006 | address->netmask.netmask4 = *((struct sockaddr_in*) ent->ifa_netmask); |
| 1007 | } |
| 1008 | |
| 1009 | address->is_internal = !!(ent->ifa_flags & IFF_LOOPBACK); |
| 1010 | |
| 1011 | address++; |
| 1012 | } |
| 1013 | |
| 1014 | /* Fill in physical addresses for each interface */ |
| 1015 | for (ent = addrs; ent != NULL; ent = ent->ifa_next) { |
| 1016 | if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFPHYS)) |
| 1017 | continue; |
| 1018 | |
| 1019 | address = *addresses; |
| 1020 | |
| 1021 | for (i = 0; i < (*count); i++) { |
| 1022 | size_t namelen = strlen(ent->ifa_name); |
| 1023 | /* Alias interface share the same physical address */ |
| 1024 | if (strncmp(address->name, ent->ifa_name, namelen) == 0 && |
| 1025 | (address->name[namelen] == 0 || address->name[namelen] == ':')) { |
| 1026 | sll = (struct sockaddr_ll*)ent->ifa_addr; |
| 1027 | memcpy(address->phys_addr, sll->sll_addr, sizeof(address->phys_addr)); |
| 1028 | } |
| 1029 | address++; |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | freeifaddrs(addrs); |
| 1034 | |
| 1035 | return 0; |
| 1036 | #endif |
| 1037 | } |
| 1038 | |
| 1039 | |
| 1040 | void uv_free_interface_addresses(uv_interface_address_t* addresses, |
| 1041 | int count) { |
| 1042 | int i; |
| 1043 | |
| 1044 | for (i = 0; i < count; i++) { |
| 1045 | uv__free(addresses[i].name); |
| 1046 | } |
| 1047 | |
| 1048 | uv__free(addresses); |
| 1049 | } |
| 1050 | |
| 1051 | |
| 1052 | void uv__set_process_title(const char* title) { |
| 1053 | #if defined(PR_SET_NAME) |
| 1054 | prctl(PR_SET_NAME, title); /* Only copies first 16 characters. */ |
| 1055 | #endif |
| 1056 | } |
| 1057 | |
| 1058 | |
| 1059 | static uint64_t uv__read_proc_meminfo(const char* what) { |
| 1060 | uint64_t rc; |
| 1061 | char* p; |
| 1062 | char buf[4096]; /* Large enough to hold all of /proc/meminfo. */ |
| 1063 | |
| 1064 | if (uv__slurp("/proc/meminfo" , buf, sizeof(buf))) |
| 1065 | return 0; |
| 1066 | |
| 1067 | p = strstr(buf, what); |
| 1068 | |
| 1069 | if (p == NULL) |
| 1070 | return 0; |
| 1071 | |
| 1072 | p += strlen(what); |
| 1073 | |
| 1074 | rc = 0; |
| 1075 | sscanf(p, "%" PRIu64 " kB" , &rc); |
| 1076 | |
| 1077 | return rc * 1024; |
| 1078 | } |
| 1079 | |
| 1080 | |
| 1081 | uint64_t uv_get_free_memory(void) { |
| 1082 | struct sysinfo info; |
| 1083 | uint64_t rc; |
| 1084 | |
| 1085 | rc = uv__read_proc_meminfo("MemFree:" ); |
| 1086 | |
| 1087 | if (rc != 0) |
| 1088 | return rc; |
| 1089 | |
| 1090 | if (0 == sysinfo(&info)) |
| 1091 | return (uint64_t) info.freeram * info.mem_unit; |
| 1092 | |
| 1093 | return 0; |
| 1094 | } |
| 1095 | |
| 1096 | |
| 1097 | uint64_t uv_get_total_memory(void) { |
| 1098 | struct sysinfo info; |
| 1099 | uint64_t rc; |
| 1100 | |
| 1101 | rc = uv__read_proc_meminfo("MemTotal:" ); |
| 1102 | |
| 1103 | if (rc != 0) |
| 1104 | return rc; |
| 1105 | |
| 1106 | if (0 == sysinfo(&info)) |
| 1107 | return (uint64_t) info.totalram * info.mem_unit; |
| 1108 | |
| 1109 | return 0; |
| 1110 | } |
| 1111 | |
| 1112 | |
| 1113 | static uint64_t uv__read_cgroups_uint64(const char* cgroup, const char* param) { |
| 1114 | char filename[256]; |
| 1115 | char buf[32]; /* Large enough to hold an encoded uint64_t. */ |
| 1116 | uint64_t rc; |
| 1117 | |
| 1118 | rc = 0; |
| 1119 | snprintf(filename, sizeof(filename), "/sys/fs/cgroup/%s/%s" , cgroup, param); |
| 1120 | if (0 == uv__slurp(filename, buf, sizeof(buf))) |
| 1121 | sscanf(buf, "%" PRIu64, &rc); |
| 1122 | |
| 1123 | return rc; |
| 1124 | } |
| 1125 | |
| 1126 | |
| 1127 | uint64_t uv_get_constrained_memory(void) { |
| 1128 | /* |
| 1129 | * This might return 0 if there was a problem getting the memory limit from |
| 1130 | * cgroups. This is OK because a return value of 0 signifies that the memory |
| 1131 | * limit is unknown. |
| 1132 | */ |
| 1133 | return uv__read_cgroups_uint64("memory" , "memory.limit_in_bytes" ); |
| 1134 | } |
| 1135 | |
| 1136 | |
| 1137 | void uv_loadavg(double avg[3]) { |
| 1138 | struct sysinfo info; |
| 1139 | char buf[128]; /* Large enough to hold all of /proc/loadavg. */ |
| 1140 | |
| 1141 | if (0 == uv__slurp("/proc/loadavg" , buf, sizeof(buf))) |
| 1142 | if (3 == sscanf(buf, "%lf %lf %lf" , &avg[0], &avg[1], &avg[2])) |
| 1143 | return; |
| 1144 | |
| 1145 | if (sysinfo(&info) < 0) |
| 1146 | return; |
| 1147 | |
| 1148 | avg[0] = (double) info.loads[0] / 65536.0; |
| 1149 | avg[1] = (double) info.loads[1] / 65536.0; |
| 1150 | avg[2] = (double) info.loads[2] / 65536.0; |
| 1151 | } |
| 1152 | |